National Library of Energy BETA

Sample records for intec idaho nuclear

  1. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect (OSTI)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  2. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  3. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  4. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  5. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  6. Section 3116 Determination for Idaho Nuclear Technology and Engineerin...

    Office of Environmental Management (EM)

    3116 Determination for Idaho Nuclear Technology and Engineering Center Tank Farm Facility, signed by Secretary Samuel W. Bodman Section 3116 Determination for Idaho Nuclear...

  7. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  8. Dissolution Studies With Pilot Plant and Actual INTEC Calcines

    SciTech Connect (OSTI)

    Herbst, Ronald Scott; Garn, Troy Gerry

    1999-04-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/ Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive A1(NO3)3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt. % of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt. % dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt. % dissolution, a result consistent with previous studies using other similar types of pilot plant calcines.

  9. DOE Awards Contract for the Nuclear Regulatory Commission (NRC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center (INTEC) in Idaho; and management of the Idaho Spent Fuel Facility (ISFF) license. This is a hybrid type contract with Firm-Fixed-Price (FFP), Indefinite Delivery...

  10. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect (OSTI)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  11. The Women of Idaho National Laboratory's Space Nuclear Team

    Broader source: Energy.gov [DOE]

    The women of the Space Nuclear program at Idaho National Laboratory consider their work both demanding and enormously rewarding, operating in a high-stakes atmosphere. Read about the women who work in this program and get their insights about their careers.

  12. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  13. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect (OSTI)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  14. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more »the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  15. Energy Department Issues Draft Request For Proposal for Nuclear...

    Energy Savers [EERE]

    Center (INTEC) in Idaho; and management of the Idaho Spent Fuel Facility (ISFF) license. This procurement will be issued as a Small Business set-aside, with a five year...

  16. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  17. DOE, State of Idaho Sign Agreement on Nuclear Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSite toDOE, State of Idaho Sign Agreement

  18. Structural Integrity Program for INTEC Calcined Solids Storage Facilities

    SciTech Connect (OSTI)

    Jeffrey Bryant

    2008-08-30

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

  19. Measurement and Characterization of Nuclear Material at Idaho National Laboratory

    SciTech Connect (OSTI)

    J. L. Dolan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2009-07-01

    A measurement plan and preliminary Monte Carlo simulations are presented for the investigation of well-defined mixed-oxide fuel pins. Measurement analysis including pulse-height distributions and time-dependent cross-correlation functions will be performed separately for neutrons and gamma rays. The utilization of Monte Carlo particle transport codes, specifically MCNP-PoliMi, is discussed in conjunction with the anticipated measurements. Four EJ-309 liquid scintillation detectors with an accurate pulse timing and digital, offline, optimized pulse-shape discrimination method will be used to prove the dependency of pulse-height distributions, cross-correlation functions, and material multiplicities upon fuel pin composition, fuel pin quantity, and detector geometry. The objective of the measurements and simulations is to identify novel methods for describing mixed-oxide fuel samples by relating measured quantities to fuel characteristics such as criticality, mass quantity, and material composition. This research has applications in nuclear safeguards and nonproliferation.

  20. Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater

    SciTech Connect (OSTI)

    Forsythe, Howard S.

    2010-04-10

    This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

  1. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  2. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  3. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  4. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

  5. INTEC SBW Solid Sludge Surrogate Recipe and Validation

    SciTech Connect (OSTI)

    Maio, Vince; Janikowski, Stuart; Johnson, Jim; Maio, Vince; Pao, Jenn-Hai

    2004-06-01

    A nonhazardous INTEC tank farm sludge surrogate that incorporated metathesis reactions to generate solids from solutions of known elements present in the radioactive INTEC tank farm sodium-bearing waste sludges was formulated. Elemental analyses, physical property analyses, and filtration testing were performed on waste surrogate and tank farm waste samples, and the results were compared. For testing physical systems associated with moving the tank farm solids, the surrogate described in this report is the best currently available choice. No other available surrogate exhibits the noted similarities in behavior to the sludges. The chemical morphology, particle size distribution, and settling and flow characteristics of the surrogate were similar to those exhibited by the waste sludges. Nonetheless, there is a difference in chemical makeup of the surrogate and the tank farm waste. If a chemical treatment process were to be evaluated for final treatment and disposition of the waste sludges, the surrogate synthesis process would likely require modification to yield a surrogate with a closer matching chemical composition.

  6. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  7. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  8. Simple SE Methods Deployed in Revitalizing the Nuclear Post- Irradiation Examination Capability for the Idaho National Laboratory

    SciTech Connect (OSTI)

    Larry R. Zirker; R. Douglas Hamelin; Lori Braase

    2010-07-01

    The “crown jewels” of nuclear energy research facilities (i.e., hot cells, analysis systems, and scientists) have been centered at the Idaho National Laboratory for over 40 years, but in recent years, emphasis and funding for nuclear fuel research and development have declined to adversely affect the readiness and effectiveness of research facilities and equipment. Conversely, the current national nuclear renaissance forces the need for immediate enhancements in facilities, equipment, capabilities, and staff for the post-irradiation examination (PIE) of nuclear fuel. PIE characterizes the “burn-up” and structural integrity of fuel elements and defines the effectiveness of new fuels/alloys in search for optimum fuel burn-up and alloys for current and next generation nuclear reactors. This paper details how a team of system engineers adapted simple system engineering tools and techniques for a customer unfamiliar with the power and effectiveness of system engineering, to achieve project success.

  9. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  11. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  12. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Williams

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic properties is consistent with original missions related to nuclear reactor testing and is expected to result in no adverse effects to their historic significance. Cultural resource investigations also involved communication with representatives from the Shoshone-Bannock Tribes to characterize cultural resources of potential tribal concern. This report provides a summary of the cultural resources inventoried and assessed within the defined areas of potential effect for the resumption of transient testing at the INL. Based on these analyses, proposed activities would have no adverse effects on historic properties within the APEs that have been defined. Other archaeological resources and cultural resources of potential concern to the Shoshone-Bannock Tribes and others that are located near the APEs are also discussed with regard to potential indirect impacts. The report concludes with general recommendations for measures to reduce impacts to all identified resources.

  13. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  14. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  17. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  18. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  20. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Environmental Management (EM)

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  2. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  3. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  4. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  5. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  6. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  7. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2006-06-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  10. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  11. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  12. Idaho_Amsterdam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Data Amsterdam 1109 Wind Power - Idaho Wind Anemometer Loan Program Amsterdam Site 1109 Latitude: N. 42 deg. 17.34' Longitude: W. 114 deg. 42.6' Elevation: 5122' Anemometer...

  13. Characterization of Tank WM-189 Sodium-bearing Waste at INTEC, Rev. 1

    SciTech Connect (OSTI)

    Batcheller, Thomas Aquinas; Taylor, Dean Dalton

    2003-07-01

    Idaho Nuclear Technology and Engineering Center 300,000-gallon vessel WM-189 was filled in late 2001 with concentrated sodium bearing waste (SBW). Three airlifted liquid samples and a steam jetted slurry sample were obtained for quantitative analysis and characterization of WM-189 liquid phase SBW and tank heel sludge. Estimates were provided for most of the reported data values, based on the greater of (a) analytical uncertainty, and (b) variation of analytical results between nominally similar samples. A consistency check on the data was performed by comparing the total mass of dissolved solids in the liquid, as measured gravimetrically from a dried sample, with the corresponding value obtained by summing the masses of cations and anions in the liquid, based on the reported analytical data. After reasonable adjustments to the nitrate and oxygen concentrations, satisfactory consistency between the two results was obtained. A similar consistency check was performed on the reported compositional data for sludge solids from the steam jetted sample. In addition to the compositional data, various other analyses were performed: particle size distribution was measured for the sludge solids, sludge settling tests were performed, and viscosity measurements were made. WM-189 characterization results were compared with those for WM-180, and other Tank Farm Facility tank characterization data. A 2-liter batch of WM-189 simulant was prepared and a clear, stable solution was obtained, based on a general procedure for mixing SBW simulant that was develop by Dr. Jerry Christian. This WM-189 SBW simulant is considered suitable for laboratory testing for process development.

  14. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  15. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor operator in current US NPPs. In addition to the three workstations, information can be shared between the workstations and further displayed on a large-screen overview display or a panel mimic. An 82-inch high-definition display is commonly used for the overview display.

  16. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  17. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  18. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  19. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  20. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  1. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  2. Idaho/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    State Agency Links Idaho Department of Fish and Game Idaho State Historical Society Idaho Department of Environmental Quality Idaho Transportation Department Idaho Department of...

  3. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  4. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  5. Idaho | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdahoIdahoIdaho

  6. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    Idaho's Packaging and T t ti P ti Transportation Perspective Richard Provencher Manager DOE Idaho Operations Office DOE Idaho Operations Office Presented to the DOE National...

  7. Idaho_Laven

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power- Idaho Wind Anemometer Loan Program Kurt Laven Site 0793 Latitude: N. 46 deg. 36.284' Longitude: W. 116 deg. 29.934' Elevation: 2887' Anemometer Height: 20 Meters Placed in...

  8. Idaho_SmithPhillips

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Smith Phillips Site - Idaho Wind Anemometer Loan Program Latitude: N. 42 deg. 23.34' Longitude: W. 112 deg. 12.6' Elevation: 4967' Placed in service: December 14, 2005...

  9. Analysis Activities at Idaho National Engineering & Environmental...

    Energy Savers [EERE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  10. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  11. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  12. Idaho National Engineering and Environmental Laboratory Licensing Qualification Issues

    E-Print Network [OSTI]

    /shutdown is not like PWR criticality control/reactor shutdown system, neither in required timing nor consequences · Approach to Regulatory Approval · Nuclear Design Codes · Summary #12;Idaho National Engineering endeavors · In nuclear systems, the activities that comprise the qualification have two parts: ­ Design

  13. Office Of Nuclear Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors Troy Unruh Idaho National...

  14. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  16. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for the installation of heating and cooling systems for residential customers living in both Oregon and Idaho

  17. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  18. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.; Kelley, Morgan; Delmore, James E.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  19. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  20. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  1. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  2. CRAD, Engineering- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Engineering program at the Idaho Accelerated Retrieval Project Phase II.

  3. CRAD, Safety Basis- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Safety Basis at the Idaho Accelerated Retrieval Project Phase II.

  4. CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

  5. CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

  6. CRAD, Training- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

  7. CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

  8. CRAD, Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Management at the Idaho Accelerated Retrieval Project Phase II.

  9. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  10. CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

  11. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National Laboratory

  12. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i l 12,

  13. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i l

  14. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i lMarch

  15. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  16. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  17. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  18. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  19. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of China Hat, a 60,000-year-old region of volcanic rock near Soda Springs, Idaho. The wells allow researchers to precisely measure heat coming out of the Earth, which will help...

  20. DOE-Idaho's Packaging and Transportation Perspective | Department...

    Office of Environmental Management (EM)

    DOE-Idaho's Packaging and Transportation Perspective DOE-Idaho's Packaging and Transportation Perspective Presented by Richard Provencher, Manager for the DOE Idaho Operations...

  1. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  2. Idaho_AmericanFallsRockland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power - Idaho Wind Anemometer Loan Program American FallsRockland Site 106 Latitude: N. 42 deg. 40.682' Longitude: W. 112 deg. 46.325' Elevation: 6579' Anemometer Height: 20...

  3. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  4. Proximity and Provenance: A Lesson from the Sterling Cache, Idaho

    E-Print Network [OSTI]

    Hughes, Richard E.; Pavesic, Max G.

    2005-01-01

    Volcanic Field, Eastern Snake River Plain, Eastern Idaho andHeise Volcanic Field, Snake River Plain, Idaho, Western USA.

  5. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Energy Savers [EERE]

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  6. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  7. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  8. ANS 2006 WINTER MEETING & Nuclear Technology Expo

    E-Print Network [OSTI]

    Krings, Axel W.

    ) EXCEL Services Corporation Florida Power & Light GE Nuclear Energy Idaho National Laboratory INVENSYS support of the ANS Expo Special Events: Bechtel Nuclear Power BWX Technologies, Inc. Doosan HF ControlsANS 2006 WINTER MEETING & Nuclear Technology Expo "Ensuringthe

  9. CX-009632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – Suspect RH-TRU (AMWTP) CX(s) Applied: NO CX GIVEN Date: 11/23/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  10. CX-009635: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  11. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Third Modification to Consent Order Idaho Code 39-44-13 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Modify the language of Section 6.20.E.1 of...

  12. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Consent Order Idaho Code 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve the alleged violation listed in the Notice of Violation...

  13. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore »policies and programs.« less

  14. IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN

    E-Print Network [OSTI]

    IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

  15. Idaho Site Contractor Achieves Treatment Project Milestone

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site’s main cleanup contractor recently achieved a major performance milestone by successfully passing an operational readiness review for a first-of-a-kind facility that will treat the remaining 900,000 gallons of liquid radioactive waste generated by the site’s legacy cleanup mission.

  16. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  17. Department of Energy Idaho - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were looking for?DelegationsInside IDLaboratory

  18. Idaho Cleanup Project Congressional Nuclear Cleanup Caucus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:Petroleum RefiningCleanup Program April

  19. CURRICULUM VITAE University of Idaho

    E-Print Network [OSTI]

    : Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

  20. Idaho Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)CubicCitygateC : Q U A

  1. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  2. Idaho Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdaho Site

  3. MOX Services Unclassified Information System PIA, National Nuclear...

    Energy Savers [EERE]

    Nuclear Services Administration More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting...

  4. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    in Idaho's Eastern Snake River Plain in southern Idaho; the impacts that climate change may have on the Snake River Plain's surface & ground water resources in southern Idaho; ; and the sinks for metaloids

  5. Idaho National Laboratory (INL) Seismic Initiative | Department...

    Office of Environmental Management (EM)

    Initiative Idaho National Laboratory (INL) Seismic Initiative Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. INL Seismic Initiative More Documents &...

  6. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  9. Idaho National Engineering Laboratory Consent Order, November...

    Office of Environmental Management (EM)

    Consent Order, November 1, 1995 State Idaho Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Resolve LDR storage violations. Approve the modified "INEL Site...

  10. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    January 2001 Focused Safety Management Evaluation of the Idaho National Engineering and Environmental Laboratory This report provides the results of an evaluation of the integrated...

  11. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  12. Enforcement Letter, Lockheed Martin Idaho Technologies Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

  13. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    for the grid that links all of these service territories. Idaho Power, Bonneville Power Administration, Rocky Mountain Power, and Avista are the investor owned utilities in...

  14. Idaho Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  15. Department of Energy Designates the Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced...

  16. Idaho National Engineering Laboratory Consent Order, June 14...

    Office of Environmental Management (EM)

    Idaho National Engineering & Environmental Laboratory Consent Order 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve situations which...

  17. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company - EA-98-11 September 21, 1998 Issued to Lockheed Martin Idaho Technologies Company, related to...

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    June 4, 1998 Preliminary Notice of Violation issued to Lockheed Martin Idaho Technologies Company, related to a Radioactive Material Release at the Idaho National Engineering and...

  19. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  20. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  1. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results

    Broader source: Energy.gov [DOE]

    The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho National Laboratory.

  2. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle Technologies...

  3. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public...

  4. Voluntary Protection Program Onsite Review, Idaho Cleanup Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleanup Project- June 2007 Voluntary Protection Program Onsite Review, Idaho Cleanup Project- June 2007 June 2007 Evaluation to determine whether the Idaho Cleanup Project is...

  5. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer...

  6. Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY...

    Office of Environmental Management (EM)

    IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 May...

  7. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

  8. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP...

  9. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Office of Environmental Management (EM)

    to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming,...

  10. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Energy Savers [EERE]

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  11. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    SciTech Connect (OSTI)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  13. City of Idaho Falls, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth,Hoisington, KansasHunnewell, Missouri (UtilityIdaho

  14. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

  15. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  16. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  17. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  18. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  19. Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements

    Broader source: Energy.gov [DOE]

    As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

  20. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010)Texas) Jump to:Icecap LtdIdaho

  1. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  2. Independent Oversight Inspection, Idaho National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory Advanced Test Reactor

  3. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Consent Order 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve the Notice of Noncompliance (NON), Docket No. 1090-1-24-6601, issued...

  4. Preliminary Notice of Violation, International Isotopes Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, On May 19, 2000, the U.S. Department of Energy...

  5. Aboriginal Residential Structures in Southern Idaho

    E-Print Network [OSTI]

    Green, Thomas J

    1993-01-01

    Locales of the Westem Snake River Plain. North AmericanPoints from the Snake River Plain. In: Clovis; Origins andstudy includes the Snake River Plain in southern Idaho, and

  6. Idaho Power- Irrigation Efficiency Rewards Program

    Broader source: Energy.gov [DOE]

    Idaho Power provides incentives for energy-efficient equipment and design in irrigation systems. Incentives are available for a wide variety of specific equipment types as well as custom projects....

  7. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema (OSTI)

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  8. Idaho Falls Power- Residential Weatherization Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an energy...

  9. Contractor Fee Payments- Idaho Operations Office

    Broader source: Energy.gov [DOE]

    See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Idaho Operations Office on these charts.

  10. Retrofitting the Streetlights in Boise, Idaho

    Broader source: Energy.gov [DOE]

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

  11. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  13. Training the Next Generation of Nuclear Energy Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn...

  14. Feasibility Study for Vitrification of Sodium-Bearing Waste

    SciTech Connect (OSTI)

    J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

    2000-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

  15. THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON

    E-Print Network [OSTI]

    PREPARED BY IDAHO WATER USERS THE IDAHO WATER USERS ARE COMPOSED OF: THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION 410 S. ORCHARD, SUITE 144 BOISE, IDAHO 83705 JUNE 2001 #12;i CONTENTS...................................................................................... 7 Water Conservation

  16. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  17. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  18. March 2005 Page 1 of 2 CDCResearchInvolvingRadiationReleasesfromtheIdahoNational

    E-Print Network [OSTI]

    is the Idaho National Laboratory? The Idaho National Laboratory (INL) is on the upper Snake River Plain

  19. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  20. Enterprise Assessments Targeted Review, Idaho Site AMWTP Report...

    Energy Savers [EERE]

    Targeted Review, Idaho Site AMWTP Report - January 2015 January, 2015 Review of the Fire Protection Program at the Idaho Site Advanced Mixed Waste Treatment Project The U.S....

  1. Innovative Idaho Site Crews Find Ways to Make Waste Retrieval...

    Energy Savers [EERE]

    out of Idaho." Most of the waste was sent to the Idaho site from the now-closed Rocky Flats site near Denver from the late 1960s through the early 1970s. Located in a...

  2. Idaho Site Completes Cleanup with Help from Workers who Shipped...

    Office of Environmental Management (EM)

    Ago IDAHO FALLS, Idaho - From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of...

  3. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  4. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way...

  5. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  6. 2013 Annual Planning Summary for the Idaho Operations Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Idaho Operations Office.

  7. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  8. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  9. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  10. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  11. WATERFOWL USE OF WASTEWATER PONDS ON THE IDAHO NATIONAL

    E-Print Network [OSTI]

    WATERFOWL USE OF WASTEWATER PONDS ON THE IDAHO NATIONAL ENGINEERING LABORATORY Lester D. Flake, SD 57007~1696 ABSTRACT Wastewater ponds attract a variety of waterfowl to the Idaho National Engineering Laboratory (INEL) in southeastern Idaho. We censused waterfowl on INEL ponds monthly from August

  12. Seismic Reflection Results: Stewart Gulch Region, Boise, Idaho

    E-Print Network [OSTI]

    Barrash, Warren

    Seismic Reflection Results: Stewart Gulch Region, Boise, Idaho Report Prepared for The Terteling) Boise State University Boise, Idaho 83725 Technical Report BSU CGISS 96-04 1 December 1996 #12;SEISMIC REFLECTION RESULTS: STEWART GULCH REGION, BOISE, IDAHO 1 SEISMIC REFLECTION RESULTS: STEWART GULCH REGION

  13. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  14. EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

  15. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    processing, and frozen processing--in 2002. Idaho's potato industry is concen- trated along the Snake River Plain, extending from eastern Idaho through the Magic Valley to western Idaho's Treasure Valley

  16. Idaho farmers' opinions and preferences on

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Programs and Budget Priorities...8 Commodity Programs and Risk Management Policy...10 Conservation...16 Related Policy Issues: Expenditure of Research Funds...17 Related Policy Issues: Labor...17 for spec- ified programs...9 4: Idaho farmers' opinions on potential changes in commodity and risk

  17. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  18. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  19. EM SSAB Chairs Meeting Idaho Falls, Idaho Draft Chairs Recommendation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 KansasMarkets 1,Gases?lLaboratory |Chairs

  20. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  1. Characterization activities of the Waste Calcine Facility at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Feldt, E.G.; Bilson, B.

    1994-12-31

    The Idaho Chemical Processing Plant (ICPP) was established in 1949 at the Idaho National Engineering Laboratory. Its mission was to reprocess nuclear fuel for the recovery of enriched uranium for defense purposes. The ICPP is a large complex encompassing 10 process buildings, 3 fuel storage facilities, 181 support facilities, and 1800 workers. The facilities being deactivated range from contaminated structures that do not meet current code requirements (seismic and electrical) to structures that have had extensive upgrades performed during the 1980s and represent multiple opportunities for reuse due to their seismic qualifications and code compliance status. The facilities declared to be excess and being deactivated at the ICPP include the fuel dissolution cell, the CPP-601/602 complex, the CPP-627 custom dissolution lab, the rare gas plant, the Rover facility, the waste calcine facility, and several small ancillary buildings.

  2. Energy Incentive Programs, Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy Incentive Programs,Georgia EnergyIdaho

  3. Summary of Calcine Disposal Development Using Hot Isostatic Pressing

    SciTech Connect (OSTI)

    Bateman, Ken; Wahlquist, Dennis; Hart, Edward; McCartin, William

    2015-03-01

    Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signed an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.

  4. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  5. Idaho Falls Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers rebates to eligible customers for installing energy efficient equipment and pursuing whole building efficiency measures.  Rebates rebates are available for air source and...

  6. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    library Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS;...

  7. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  8. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    Geothermal investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  9. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S....

  10. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual...

  11. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    of a proposed waste treatment facility at the Idaho National Environmental and Engineering Laboratory (INEEL). PUBLIC COMMENT OPPORTUNITIES None available at this time....

  12. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  13. Idaho National Laboratory - WAG-1 | Department of Energy

    Office of Environmental Management (EM)

    Laboratory - WAG-1 January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report Installation Name, State: Idaho National...

  14. Idaho National Laboratory (INL) Seismic Risk Assessment Project...

    Office of Environmental Management (EM)

    Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Idaho National Laboratory (INL) Seismic Risk Assessment Project: Implementation...

  15. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  16. Freedom of Information and Privacy Act Database PIA, Idaho Operations...

    Broader source: Energy.gov (indexed) [DOE]

    Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  17. Once nearly extinct, Idaho sockeye regaining fitness advantage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

  18. ,"Idaho Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  19. ,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. In summary: Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Roush, D.; Mitchell, R.G.; Peterson, D.

    1996-08-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in our bodies. In addition to natural sources of radiation, humans can also be exposed to man-made sources of radiation. Examples of man-made sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering Laboratory (INEL) is a U.S. Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and storing radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a remote possibility for a member of the public near the INEL to be exposed to radioactivity from the INEL. Extensive monitoring of the environment takes place on and around the INEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1995.

  1. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    SciTech Connect (OSTI)

    David I Gertman; Katya L. LeBlanc; William phoenix; Alan R Mecham

    2010-11-01

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory’ s staffing requirements, lessons learned, and the researcher’s approach to measuring human performance in the simulation lab.

  2. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect (OSTI)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  3. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  4. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  5. Kamiah, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,CompositesKamiah, Idaho:

  6. Kooskia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildereTexas: EnergyEnergyKooskia, Idaho:

  7. Buhl, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy ResourcesBuhl, Idaho: Energy

  8. PacifiCorp (Idaho) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of Mason County JumpPVA TePlaIdaho

  9. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilitiesRenov veis do BrasilIcsaCoIdaho:

  10. Tetonia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberITerraPower Jump to:Tetonia, Idaho:

  11. Cottonwood, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to: navigation,Idaho: Energy

  12. Idaho Meeting #2 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010)Texas) JumpFish &IS 61Idaho

  13. Aberdeen, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9)ATS Lighting IncAbener GhenovaIdaho:

  14. Categorical Exclusion Determinations: Idaho | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasures to reduce| DepartmentHawaii.ofIdaho.

  15. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National

  16. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  17. Basis for Section 3116 Determination for the Idaho Nuclear Technology...

    Office of Environmental Management (EM)

    and analysis will be performed to assess the decontamination effectiveness and for waste characterization. (As discussed below, this sampling and analysis has already been...

  18. Bruce Hallbert Idaho National Laboratory T he Nuclear Energy...

    Energy Savers [EERE]

    from radiation-hard electronics (Figure 1). Consider the deployment of fiber optics and onboard instrument diagnostics for next generation sensor networks. Ionizing...

  19. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy12-98SouthDetailedDon0:Laboratory Environmental Restoration and

  20. Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION Aof DecemberNational

  1. Bruce Hallbert Idaho National Laboratory T he Nuclear Energy Enabling

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrialofof EnergyDC 20585 NovemberBruce

  2. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:Petroleum RefiningCleanup

  3. Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartment of Energy0ofRoad

  4. Idaho Nuclear Technology and Engineering Center Tank Farm Facility |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin About Us

  5. Klotz, Creedon visit Idaho National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet) SoldDepartmentGOES-10PV

  6. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  7. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  8. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect (OSTI)

    Lisbeth Mitchell

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  9. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  10. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  11. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  12. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    SciTech Connect (OSTI)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  13. Idaho - IC 61-516 - Priority Designation for Electric Transmission...

    Open Energy Info (EERE)

    Idaho - IC 61-516 - Priority Designation for Electric Transmission Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  14. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Broader source: Energy.gov (indexed) [DOE]

    Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

  15. A Compendium of Radiocarbon Dates for Southern Idaho Archaeological Sites

    E-Print Network [OSTI]

    Plew, Mark G; Pavesic, Max G

    1982-01-01

    Wasden Site, Eastern Snake River Plain, Idaho. In: Early Manfeatures on the westem Snake River Plain. With the exceptionPlains Anthropologist 24: 1981a Archaeological Test Excavations at Four Prehistoric Sites in the Western Snake River

  16. Idaho Falls Power- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

  17. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  18. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  19. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  20. Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming 

    E-Print Network [OSTI]

    Silver, Wendy Ilene

    1979-01-01

    GRAVITY INTERPRETATION OF THE NORTHERN OVERTHRUST BELT, IDAHO AND 'vlYOMING A Thesis by IJENDY ILENE SILVER Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the deoree of MASTER... OF SCIFNCE December 1979 Major Subject: Geology GRAVITY INTERPRETATION OF THE NORTHERN OVERTHRUST lIELT, . IDAHO AND NYOMING A Thesis by NENDY ILEI'lE 5!, LVER Approved as to style and content by: (Chairman of Committee (Hea o epartment (i~1embe...

  1. Idaho Students Learning Lessons on Energy Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdahoIdaho

  2. Visualization and continuous simulation of a space nuclear power system 

    E-Print Network [OSTI]

    Rawal, Rajiv

    1992-01-01

    - tor Systems. In Third International Symposium on Science and Engineering on Cray Supemornputers (Minneapolis, Minnesota, Sept. 9-11). 1987. 6 Ransom, V. H. et al. RELAP5/MODg Code Manual. EG Ic G Idaho, Inc, Idaho National Engineering Laboratory.... There is need for improvement in the current process. Omega is a graphical user interface driven software, which enables quasi real time anal- ysis of reactor characteristics to be gained without either constructing or operating a full scale space nuclear...

  3. Enterprise Assessments Targeted Review, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory The Office of Nuclear Safety and Environmental Assessments, within the...

  4. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  5. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    SciTech Connect (OSTI)

    Julie B. Williams; Brenda Pace

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  6. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  7. Geothermal features of Snake River plain, Idaho

    SciTech Connect (OSTI)

    Blackwell, D.D.

    1987-08-01

    The Snake River plain is the track of a hot spot beneath the continental lithosphere. The track has passed through southern Idaho as the continental plate has moved over the hot spot at a rate of about 3.5 cm/yr. The present site of the hot spot is Yellowstone Park. As a consequence of the passage, a systematic sequence of geologic and tectonic events illustrates the response of the continental lithosphere to this hotspot event. The three areas that represent various time slices in the evolution are the Yellowstone Plateau, the Eastern Snake River plain downwarp, and the Western Snake River plain basin/Owhyee Plateau. In addition to the age of silicic volcanic activity, the topographic profile of the Snake River plain shows a systematic variation from the high elevations in the east to lowest elevations on the west. The change in elevation follows the form of an oceanic lithosphere cooling curve, suggesting that temperature change is the dominant effect on the elevation.

  8. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  9. Idaho Operations Office: Technology summary, June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  10. In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. G. Mitchell; D. E. Roush, Jr.; R. B. Evans

    1998-10-01

    Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company, the US Geological Survey, and other INEEL contractors monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1997, exposures from the INEEL to the public were found to be negligible. Pathways by which INEEL contaminants might reach people were monitored. These included air, precipitation, water, locally grown food (wheat, milk, potatoes, and lettuce), livestock, game animals, and direct radiation. Results from samples collected to monitor these pathways often contain radioactivity from natural sources and nuclear weapons testing carried out in the 1950s and 1960s, termed ''background radioactivity.'' According to the results obtained in 1997, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from t! he INEEL wa s not detected by offsite environmental surveillance methods, computer models were used to estimate a radiation dose to people. The hypothetical maximum individual dose from the INEEL was calculated to be 0.03 millirem. That is 0.008 percent of an average person's annual dose from background radiation in southeast Idaho.

  11. Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  12. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  13. Idaho Workers Eager to Check Condition of Waste Moved to Cargo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1952 to 1970, workers buried drums containing radioactive waste from the now-closed Rocky Flats site at the Idaho site's Subsurface Disposal Area. In the 1970s, the Idaho site...

  14. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  15. Sedimentology of mid Permian strata of the Sublett Range, South-Central Idaho 

    E-Print Network [OSTI]

    Duree, Dana Kay

    1983-01-01

    REGIONAL STRATIGRAPHY. 20 Park City Group. West-Central Utah, Northeastern Nevada, and South- Central Idaho. Kaibab Limestone Formation. Grandeur Formation vs. Grandeur Member. . . . . . . , . . . . . Grandeur Formation Plympton Formation Murdock... in Utah, Nevada, and south-central Idaho 23 Figure 8 Fence diagram showing distribution of Park City and Phosphoria Formations in southeastern Idaho and northeastern Utah. . . . . . . . . . . . . . . . . . . Figure 9 Diagramatic dip section...

  16. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  17. Idaho Supplementation Studies, 1991-1992 Annual Report.

    SciTech Connect (OSTI)

    Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis

    1993-10-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

  18. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScience (SC)Idaho RegionsIdaho

  19. Idaho Cleanup Project grows its workforce to complete ARRA work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 Sign In AboutWorkshop:IceIdahoIdaho

  20. Intec Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian Centre for EnergyTorcuato Di Tella

  1. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  2. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  3. NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524

    E-Print Network [OSTI]

    of Idaho Department of Corrections labor for installation. We #12;2 have lowered costs of off-site watering-2008. The District's use of BPA funds is unique in that it has a comparatively low indirect administration cost of 10 and federal sources. We are estimating similar results for the 2007 to 2009 period. Sources of cost

  4. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contamination in lakes; methods to improve the estimates of key components of the Snake River Plain's hydrology; and linkage between Idaho's energy and water infrastructure in the Snake River. Research Program Introduction the designated Bunker Hill Mining and Metallurgical Superfund Site, contaminating the CDA River and CDA Lake

  5. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    a Conjunctive Water Resources Planning and Management Model for the Eastern Snake River Plain Basic Information River Plain Project Number: 2012ID178B Start Date: 3/1/2012 End Date: 2/28/2013 Funding Source: 104B services in our river basins; developing a conjunctive planning model for Idaho's most important water

  6. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  7. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

  8. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  9. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  10. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)CubicCitygateC : Q U A L I T Y O387

  11. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    SciTech Connect (OSTI)

    Payne, Suzette

    2008-08-01

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  12. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  13. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  14. Fremont County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho: Energy Resources Jump to:

  15. Drilling for Geothermal Resources Rules - Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules - Idaho Jump to:

  16. Shoshone County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshone County, Idaho: Energy Resources Jump

  17. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎RAPID/BulkTransmission/Idaho <

  18. RAPID/Geothermal/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada <RAPID/Geothermal/Environment <RAPID/Geothermal/Environment/Idaho

  19. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎ | Geothermal‎ | Exploration JumpGeothermal/Exploration/Idaho <

  20. Idaho State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdaho

  1. Veteran Leadership Strong at Idaho's Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran Leadership Strong at Idaho's Laboratory

  2. Voluntary Protection Program Onsite Review, Idaho Treatment Group, Llc,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization &Idaho

  3. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 şC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 şC) to over 175 şC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  4. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Third Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    2000-03-01

    The Environmental Science and Research Foundation conducts an offsite environmental surveillance program for the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the third quarter of 1999 is based on 704 samples of air, fine particulates, atmospheric moisture, precipitation, milk, and food. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No! measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  5. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Fourth Quarter 1998

    SciTech Connect (OSTI)

    T. Saffle; R. Evans

    1999-08-01

    The Environmental Science and Research Foundation conducts the Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the fourth quarter 1998 is based on 622 samples collected of air, fine particulates, atmospheric moisture, precipitation, water, milk, potatoes, and game animals. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radioactivity, worldwide fallout from past nuclear weapons testing, an! d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL, although statistical differences did exist between on-site and distant gross beta concentrations. No evidence could be found to link these differences with a specific INEEL source. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  6. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: First Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-09-01

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the first quarter 1999 is based on 564 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, and wild game tissues. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons ! testing, an d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  7. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Second Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-12-01

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the second quarter 1999 is based on 618 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, drinking water, sheep, wild game tissues, and environmental radiation. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  8. The Idaho National Engineering Laboratory site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Bowman, G.C.; Moore, R.

    1990-06-01

    To verify that exposures resulting from operations at the Department of Energy (DOE) nuclear facilities have remained very small, each site at which nuclear activities are underway operates an environmental surveillance program to monitor the air, water and any other pathway where radionuclides from operations might conceivably reach workers or members of the public. This report presents data collected in 1989 for the routine environmental surveillance program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of DOE and the US Geological Survey (USGS) at the Idaho National Engineering Laboratory (INEL) site. The environmental surveillance program for the INEL and vicinity for 1989 included the collection and analysis of samples from potential exposure pathways. Three basic groups of samples were collected. Those collected within the INEL boundaries will be referred to as onsite samples. Samples collected outside, but near, the Site boundaries will be referred to as boundary samples or part of a group of offsite samples. Samples collected from locations considerably beyond the Site boundaries will be referred to as distant samples or part of the offsite group. With the exception of Craters of the Moon National Monument, the distant locations are sufficiently remote from the Site to ensure that detectable radioactivity is primarily due to natural background sources or sources other than INEL operations. 35 refs., 14 figs., 13 tabs.

  9. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Sheryl Morton; Elizabeth Connell; Bill Buyers; John Reisenauer; Rob Logan; Chris Ischay; Ernest Fossum; Paul Contreras; Joel Zarret; Steve Hill; Jon Tillo

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4) establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.

  10. Cultural Geography of Early Chinese Americans in Idaho and Montana, 1865-1900

    E-Print Network [OSTI]

    Chang, Woojin

    2010-04-26

    63 Bibliography 65 vi LIST OF MAPS 1. Territorial Establishment in the Northern Rocky Mountain Region. 2 2. Physical Features of Idaho and Montana. 3 3. Early Gold Strikes in Idaho... 48 Methodist Episcopal Church in 1904. 15. Chinese Placer Miners in Rocky Bar, Elmore County, circa 1900. 53 16. Zee Tai Chung Co., a Chinese Dry Goods Store on Idaho Street, Boise, in 59 1900. 1 Chapter 1...

  11. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  12. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  13. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  14. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  15. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  16. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  17. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

    Office of Energy Efficiency and Renewable Energy (EERE)

    American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s.

  18. Amended Record of Decision: Idaho High-Level Waste and Facilities...

    Office of Environmental Management (EM)

    of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY:...

  19. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval...

  20. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    SciTech Connect (OSTI)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds.

  1. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  2. Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract--This paper explores a mathematical method for

    E-Print Network [OSTI]

    Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract-- This paper explores a mathematical method

  3. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  4. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J.

    2012-07-01

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  5. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  6. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  7. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  8. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  9. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  10. A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start Searching

    E-Print Network [OSTI]

    O'Laughlin, Jay

    A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start a subject search of su: Latah County Genealogy. More family histories and general guides to early settlers: Whitman County Genealogy. For many more Idaho Genealogical resources, and also for other states, try

  11. Valley County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles CalderaIdaho: Energy

  12. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  13. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2008-03-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m-3) and RGM (50–150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).

  14. Garden City, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to:Garden Acres, California:Idaho:

  15. Gem County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit HistoryGeary County,County, Idaho:

  16. Elmore County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: Energy Resources JumpNewElmore County,Idaho:

  17. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScience (SC)Idaho Regions

  18. Madison County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolarMacoupinEnergyIdaho: Energy

  19. Lewis County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho: Energy Resources Jump to:

  20. New Meadows, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: EnergyHavenInformationMarket,Meadows, Idaho:

  1. Oneida County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda LandfillShakthiNevada Jump to:Idaho:

  2. Idaho Waste Retrieval Facility Begins New Role | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to Apply for an SES PositionISA ApprovesReform atImproper UseIdaho

  3. City of Burley, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley, Idaho (Utility Company) Jump to: navigation,

  4. City of Plummer, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowa (UtilityCityPioche, NevadaPlummer, Idaho

  5. Vigilante Electric Coop, Inc (Idaho) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to: navigation, search Name: Vigilante

  6. Benefits of Biofuel Production and Use in Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeof Energy2 DOEisIdaho is a

  7. Soda Springs, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreekSnohomishSocratesIdaho:

  8. Teton County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSetIdaho: Energy Resources Jump to: navigation,

  9. Bear Lake County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:InformationHead Lake,County, Idaho:

  10. Camas County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(Redirected fromCounty,County, Idaho: Energy

  11. Cassia County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089°, -86.3376761° Show MapTexas:County, Idaho:

  12. Blaine County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies,Blackhawk Biofuels LLCBlaine County, Idaho:

  13. Boundary County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdahoTechnologyEnergyBound Brook,

  14. Custer County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, search Name:Custar, Ohio:Idaho:

  15. Idaho Power - Commercial Custom Efficiency Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71 HydrogenComputerPetroleumDepartment23 IdahoLocal

  16. Department of Energy Idaho - Inside DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were looking for?DelegationsInside ID Inside Idaho

  17. Adams County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessfulAdairsville, Georgia: EnergyColorado:Idaho:

  18. DOE-Idaho Operations Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis, MarchALARA StudySENSITIVE99 June 1999Offices in Idaho

  19. 2011 Annual Planning Summary for Idaho Operations Office (ID) | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a nsecond report111.pdfof Energy Idaho

  20. Idaho Petroleum Reduction Leadership Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartment of Energy Idaho2

  1. Voluntary Protection Program Onsite Review, Idaho National Laboratory -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization &Idaho NationalBattelleOctober

  2. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect (OSTI)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  3. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    SciTech Connect (OSTI)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  4. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  5. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  6. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  7. Compilation of CFD Models of Various Solid Oxide Electrolyzers Analyzed at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien

    2012-06-01

    Various three dimensional computational fluid dynamics (CFD) models of solid oxide electrolyzers have been created and analyzed at the Idaho National Laboratory since the inception of the Nuclear Hydrogen Initiative in 2004. Three models presented herein include: a 60 cell planar cross flow with inlet and outlet plenums, 10 cell integrated planar cross flow, and internally manifolded five cell planar cross flow. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) module adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, endothermic reaction, Ohmic heating, and change in local gas composition. Results are discussed for using these models in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production is reported herein. Contour plots and discussion show areas of likely cell degradation, flow distribution in inlet plenum, and flow distribution across and along the flow channels of the current collectors

  8. Idaho field experiment 1981. Volume 2: measurement data

    SciTech Connect (OSTI)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  9. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    SciTech Connect (OSTI)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  10. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    SciTech Connect (OSTI)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  11. Climate Change Vulnerability Assessment for Idaho National Laboratory

    SciTech Connect (OSTI)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  12. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  13. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  14. Small Business Opportunities at the Idaho National Laboratory...

    Office of Environmental Management (EM)

    technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate. Department of Energy - Nuclear...

  15. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect (OSTI)

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  16. Weld Tests Conducted by the Idaho National Laboratory

    SciTech Connect (OSTI)

    Larry Zirker; Lance Lauerhass; James Dowalo

    2007-02-01

    During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design—reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods.

  17. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    SciTech Connect (OSTI)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  18. Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.

    SciTech Connect (OSTI)

    Copeland, Timothy; Putnam, Scott

    2008-12-01

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

  19. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    G. G. Loomis; C. M. Miller; J. A. Giansiracusa; R. Kimmel; S. V. Prewett

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  20. Polysiloxane Encapsulation of High Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    Loomis, Guy George

    2000-03-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: 1) a characterization of the pilot calcine waste; 2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, 3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  1. Nuclear Fuels & Materials Spotlight Volume 4

    SciTech Connect (OSTI)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  2. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  3. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 of the Water Resources

  4. EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

  5. Idaho Request for Extension of Time to Submit Proof of Beneficial...

    Open Energy Info (EERE)

    Extension of Time to Submit Proof of Beneficial Use (DWR Form 204) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Request for Extension of Time to...

  6. IDAPA 31.01.01 - Rules of Procedure of the Idaho Public Utilities...

    Open Energy Info (EERE)

    IDAPA 31.01.01 - Rules of Procedure of the Idaho Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  7. Idaho IC 61-1701, Legislative Purposes and Findings for the Siting...

    Open Energy Info (EERE)

    Idaho IC 61-1701, Legislative Purposes and Findings for the Siting of Certain Electrical Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  9. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  10. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  11. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  12. Neoproterozoic strata of southeastern Idaho and Utah: record of Cryogenian rifting and glaciation

    E-Print Network [OSTI]

    Christie-Blick, Nicholas

    part of a westward-thickening rift to passive- margin succession that initiated c. 720 Ma. The latter Idaho is recog- nized near House Mountain, east of Boise at c. 725 + 5 Ma, in the Pioneer Mountains Core

  13. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  14. Nuclear Systems Design and Analysis (NSD&A) Division

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  15. Analysis of Nuclear Reconstitution, Nuclear

    E-Print Network [OSTI]

    Forbes, Douglass

    CHAPTER Analysis of Nuclear Reconstitution, Nuclear Envelope Assembly, and Nuclear Pore Assembly ....................................................................... 180 8.5 Assaying Assembly and Integrity of the Nuclear Envelope................................... 182 8.6 A Nuclear Pore Complex Assembly Assay Using pore-free Nuclear Intermediates

  16. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Broader source: Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  17. Tritium Operation Improvements at the Idaho National Laboratory...

    Office of Environmental Management (EM)

    Tritium Operation Improvements at the INL STAR facility More Documents & Publications Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Tritium...

  18. 34th Tritium Focus Group Meeting, Idaho National Laboratory,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Isotopes Continuum-scale Modeling of Hydrogen and Helium Bubble Growth in Metals Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research...

  19. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  20. Idaho National Laboratory LDRD Annual Report FY 2012

    SciTech Connect (OSTI)

    Dena Tomchak

    2013-03-01

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  1. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  2. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  3. Wildlife Impact Assessment Palisades Project, Idaho, Final Report.

    SciTech Connect (OSTI)

    Sather-Blair, Signe

    1985-02-01

    The Habitat Evaluation Procedures were used to evaluate pre- and post-construction habitat conditions of the US Bureau of Reclamation's Palisades Project in eastern Idaho. Eight evaluation species were selected with losses expressed in the number of Habitat Units (HU's). One HU is equivalent to one acre of prime habitat. The evaluation estimated that a loss of 2454 HU's of mule deer habitat, 2276 HU's of mink habitat, 2622 HU's of mallard habitat, 805 HU's of Canada goose habitat, 2331 HU's of ruffed grouse habitat, 5941 and 18,565 HU's for breeding and wintering bald eagles, and 1336 and 704 HU's for forested and scrub-shrub wetland nongame species occurred as a result of the project. The study area currently has 29 active osprey nests located around the reservoir and the mudflats probably provide more feeding habitat for migratory shore birds and waterfowl than was previously available along the river. A comparison of flow conditions on the South Fork of the Snake River below the dam between pre- and post-construction periods also could not substantiate claims that water releases from the dam were causing more Canada goose nest losses than flow in the river prior to construction. 41 refs., 16 figs., 9 tabs.

  4. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    SciTech Connect (OSTI)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  5. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  6. Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. J. Liszewski (USGS); J. J. Rosentreter (ISU); K. E. Miller (USGS); R. C. Bartholomay (USGS)

    1998-04-01

    The transport and fate of waste constituents in geologic media is dependent on physical and chemical processes that govern the distribution of constituents between the solid, geologic, stationary phase and an aqueous, mobile phase. This distribution often is quantified, at thermodynamic equilibrium by an empirically determined parameter called the distribution coefficient (Kd). Kd's can be used effectively to summarize the chemical factors that affect transport efficiency of ground-water constituents. Strontium distribution coefficients (Kd's) were measured for 21 surficial and 17 sedimentary interbed samples collected from sediment cores from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL) to help assess the variability of strontium Kd's at the INEEL as part of an ongoing investigation of strontium chemical-transport properties. Batch experimental techniques were used to determine strontium Kd's of the sediments. Measured strontium Kd's of th e surficial and interbedded sediments ranged from 26{+-}1 to 328{+-}41 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial and interbedded sediments at the INEEL. Some of this variability can be attributed to physical and chemical properties of the sediment; other variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  7. Idaho National Laboratory Small Business Program Vision & Opportunity

    E-Print Network [OSTI]

    contributor in national and homeland security, alternate and renewable energy and science and technology Studies Nuclear Programs Energy Security Global Security Homeland Security National Defense A leader in critical infrastructure protection for security of energy supply and delivery National & Homeland

  8. Aadland, R.K., and E.H. Bennett. 1979. Geologic Map of the Sandpoint Quadrangle, Idaho and Washington: Idaho Geological Survey, 1:250,000 Scale, 1 Plate.

    E-Print Network [OSTI]

    and the Bonneville Power Administration Alden, W. C. 1953. Physiography and glacial geology of western Montana Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P. J. 1994. Kootenai Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P.J. and M

  9. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema (OSTI)

    None

    2014-03-11

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  10. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    SciTech Connect (OSTI)

    2013-09-25

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  11. The Women of Idaho National Laboratory's Space Nuclear Team | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOfficeMatt RogersnowReno,DepartmentEnergy

  12. Basis for Section 3116 Determination for the Idaho Nuclear Technology and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergy Marketing Corp. |Storage,Theof EnergyDepartment ofofEngineering

  13. Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION Aof

  14. Idaho site completes demolition of Cold War-era nuclear fuel reprocessing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logo CH2M-WG logo Joint

  15. Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartment ofofEnergy Taps

  16. Idaho Site Completes Demolition of Cold War-era Nuclear Fuel Reprocessing

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin About UsServices

  17. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  18. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  19. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  20. Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL water quality within the HUA used in #12;2 -- Erosion Control IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER from farms­thus improving surface water quality. The technologies used to improve erosion control

  1. Evaluation of Bias in Roadside Point Count Surveys of Passerines in Shrubsteppe and Grassland Habitats in Southwestern Idaho1

    E-Print Network [OSTI]

    the Snake River Birds of Prey Area (SRBOPA) in southwestern Idaho. We asked if abundances of species River Plains of southwestern Idaho, contains a mosaic of native shrubsteppe and grassland habitat types. Methods Study Area The 195,325-ha SRBOPA, located south of Boise and west of Mountain Home on the Snake

  2. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  3. Redesignation Order No. 00-09.01-01 to the Manager of Department of Energy Idaho Operations Office

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-05-12

    Redesignation of the Manager of the Idaho Operations Office as the representative to perform as the "authorized representative," as that term is used in the NRC regulations at 10 CFR 72.16(b), and as name holder of the NRC license under 10 CFR 72 for the Idaho Spent Fuel Facility Independent Spent Fuel Storage Installation.

  4. 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22)

    SciTech Connect (OSTI)

    Mike Lewis

    2014-06-01

    This 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2013. It also provides detailed information for new, modified, and decommissioned wells and holes. Two new wells were drilled and completed in Calendar Year 2013. No modifications were performed on any wells. Seven wells were decommissioned in Calendar Year 2013. Detailed construction information for the new and decommissioned wells is provided. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

  5. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  6. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  7. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  8. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    SciTech Connect (OSTI)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  9. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  10. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  11. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  12. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  13. CRAD, Radiological Controls- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Radiation Protection Program at the Advanced Mixed Waste Treatment Project.

  14. Shallow structure from a seismic reflection profile across the Borah Peak, Idaho, fault scarp

    E-Print Network [OSTI]

    Miller, Richard D.; Steeples, Don W.

    1986-09-01

    A short 12-fold CDP seismic-reflection survey was performed along the road to Doublespring Pass across the fault scarp formed by the October 28, 1983, magnitude-7.3, Idaho earthquake. This high-resolution reflection survey was conducted to determine...

  15. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    SciTech Connect (OSTI)

    Markham, O. D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  16. Idaho MU Recovery Plan Draft Hatchery Discussions Snake River Spring/Summer Chinook Salmon and Steelhead

    E-Print Network [OSTI]

    (LSRCP), funded by the Bonneville Power Administration and operated by the states and tribes, the Bonneville Power Administration funds the Nez Perce Tribal Hatchery as mitigation for the Federal Columbia: (1) Hells Canyon Complex, funded by the Idaho Power Company as mitigation for fish losses caused

  17. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  18. Distribution of Fine Roots of Ponderosa Pine and Douglas-Fir in a Central Idaho Forest

    E-Print Network [OSTI]

    Fried, Jeremy S.

    at a study site in a central Idaho forest. Concentration and content of fine roots extracted from soil cores of exotic dis- eases, heavy grazing, and timber harvest has altered forest structure, stand composition(SwezyandAgee1991,Dumm2003).Finerootsarecritical structures for water and nutrient absorption from the soil

  19. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  20. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  1. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  2. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  3. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  4. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  5. Idaho National Laboratory Human Capitol Development Program Summary

    SciTech Connect (OSTI)

    Rynes, Amanda R.

    2014-09-01

    The Next Generation Safeguards Initiative HCD Subprogram has successfully employed unique nuclear capabilities and employee expertise through INL to achieve multiple initiatives in FY14. These opportunities range from internship programs to university and training courses. One of the central facets of this work has been the international safeguards pre inspector training course. Another significant milestone is the INL led university engagement effort which resulted in courses being offered at ISU and University of Utah.

  6. Innovative Technique Accelerates Waste Disposal at Idaho Site | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy Innovative Software Tackles Nuclear Industry|of

  7. Fusion Nuclear Science and Technology Program- Status and Plans for Tritium Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  8. CsIX/TRU Grout Feasibility Study

    SciTech Connect (OSTI)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    1998-11-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

  9. Going with the Flow: The Impact of Holocene Fissure Eruptions on Obsidian Source Use in Southeastern Idaho

    E-Print Network [OSTI]

    Henrikson, L. Suzann

    2008-01-01

    Fluted Points from the Snake River Plain. In Clovis: OriginsMobility on Idaho's Snake River Plain. Ph.D. dissertation.Structures on the Snake River Plain. Paper presented at the

  10. Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING AND ENVIRONMENTAL LABORATORY, WR-B-99-02

    Broader source: Energy.gov [DOE]

    In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle...

  11. After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014

    SciTech Connect (OSTI)

    V. Scott Barnes

    2014-12-01

    On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  12. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  13. Strategic Nuclear Research Collaboration - FY99 Annual Report

    SciTech Connect (OSTI)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  14. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  15. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  16. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  17. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  18. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    SciTech Connect (OSTI)

    C Stoots; J O'Brien; T Cable

    2009-11-01

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  19. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  20. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  1. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  2. EA-1984: Disposition of Five Signature Properties at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental assessment of a proposal to tear down four World War II-era historic structures and a portion of one additional World War II-era historic structure at Idaho National Laboratory’s Central Facilities Area where the U.S. Naval Proving Ground was established in 1942. The structures had deteriorated and were no longer used.

  3. Short-Term Energy Tests of a Credit Union Building in Idaho (Draft)

    SciTech Connect (OSTI)

    Subbarao, K.; Balcomb, J. D.

    1993-01-01

    This report describes tests and results of the energy performance of a credit union building in Idaho. The building is in the Energy Edge Program administered by the Bonneville Power Administration (BPA). BPA provided incentives to incorporate innovative features designed to conserve energy use by the building. It is of interest to determine the actual performance of these features. The objective of this project was to evaluate the applicability of the SERI short-term energy monitoring (STEM) method to nonresidential buildings.

  4. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  5. FLEXIBLE NEUTRON SHIELDING FOR A GLOVEBOX WITHIN THE IDAHO NATIONAL LABORATORY RADIOISOTOPE POWER SYSTEM PROGRAM

    SciTech Connect (OSTI)

    Stephanie Walsh

    2007-07-01

    Neutron shielding was desired to reduce worker exposure during handling of plutonium-238 (Pu-238) in a glovebox at the Idaho National Laboratory. Due to the unusual shape of the glovebox, standard methods of neutron shielding were impractical and would have interfered with glovebox operations. A silicon-based, boron-impregnated material was chosen due to its flexibility. This paper discusses the material, the installation, and the results from neutron source testing.

  6. Sequence Stratigraphy and Detrital Zircon Geochronology of the Swan Peak Quartzite, Southeastern Idaho 

    E-Print Network [OSTI]

    Wulf, Tracy David

    2012-02-14

    stream_source_info WULF-THESIS.pdf.txt stream_content_type text/plain stream_size 128192 Content-Encoding ISO-8859-1 stream_name WULF-THESIS.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SEQUENCE STRATIGRAPHY... of MASTER OF SCIENCE December 2011 Major Subject: Geology Sequence Stratigraphy and Detrital Zircon Geochronology of the Swan Peak Quartzite, Southeastern Idaho Copyright 2011 Tracy David Wulf...

  7. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  8. Idaho Field Experiment 1981. Volume 1. Experimental design and measurement systems

    SciTech Connect (OSTI)

    Start, G E; Cate, J H; Dickson, C R; Sagendorf, J F; Ackermann, G R

    1983-10-01

    The Idaho Field Experiment is reported in three volumes and supplemented by special contractor reports. Volume I describes the design and goals of the measurement program and the measurement systems utilized during the field program. The measurement systems layouts are described as well. The 1981 Idaho Field Experiment was conducted in South East Idaho over the Upper Snake River Plain. Nine test-day case studies were measured between July 15 and 30, 1981. Eight-hour releases of SF/sub 6/ gaseous tracer were made from 46 m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24 km square. Also, a single total integrated sample, of about 30 hours duration, was collected at approximately 100 sites within an area 48 by 72 km (using 6 km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plumes were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High-altitude aerial photographs of daytime plumes were also collected. 10 references, 14 figures, 5 tables.

  9. Idaho National Engineering Laboratory Environmental Restoration Program Schedule Contingency Evaluation Report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report represents the schedule contingency evaluation done on the FY-93 Major System Acquisition (MSA) Baseline for the Idaho National Engineering Laboratory`s (INEL) Environmental Restoration Program (EPP). A Schedule Contingency Evaluation Team (SCET) was established to evaluate schedule contingency on the MSA Baseline for the INEL ERP associated with completing work within milestones established in the baseline. Baseline schedules had been established considering enforceable deadlines contained in the Federal Facilities Agreement/Consent Order (FFA/CO), the agreement signed in 1992, by the State of Idaho, Department of Health & Welfare, the U.S. Environmental Protection Agency, Region 10, and the U.S. Department of Energy, Idaho Operations Office. The evaluation was based upon the application of standard schedule risk management techniques to the specific problems of the INEL ERP. The schedule contingency evaluation was designed to provided early visibility for potential schedule delays impacting enforceable deadlines. The focus of the analysis was on the duration of time needed to accomplish all required activities to achieve completion of the milestones in the baseline corresponding to the enforceable deadlines. Additionally, the analysis was designed to identify control of high-probability, high-impact schedule risk factors.

  10. Fusion Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology...

  11. Memorandum CH2M WG Idaho, LLC, Request for Variance to Title 10, Code of Federal Regulations Part 851, "Worker Safety and Health Program"

    Broader source: Energy.gov [DOE]

    Memorandum CH2M WG Idaho, LLC, Request for Variance to Title 10, Code of Federal Regulations Part 851, "Worker Safety and Health Program"

  12. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  13. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  14. INL @ work: Nuclear Reactor Operator

    ScienceCinema (OSTI)

    Russell, Patty

    2013-05-28

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  15. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  16. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  17. NRC Waste Incidental to Reprocessing Program: Overview of Consultation and Monitoring Activities at the Idaho National Laboratory and the Savannah River Site - What We Have Learned - 12470

    SciTech Connect (OSTI)

    Suber, Gregory [Nuclear Regulatory Commission (United States)

    2012-07-01

    In 2005 the U.S. Nuclear Regulatory Commission (NRC) began to implement a new set of responsibilities under the Ronald W. Reagan National Defense Authorization Act (NDAA) of Fiscal Year 2005. Section 3116 of the NDAA requires the U.S. Department of Energy (DOE) to consult with the NRC for certain non-high level waste determinations and also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2005, the NRC staff began consulting with DOE and completed reviews of draft waste determinations for salt waste at the Savannah River Site. In 2006, a second review was completed on tank waste residuals including sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center Tank Farm at the Idaho National Laboratory. Monitoring Plans were developed for these activities and the NRC is actively monitoring disposal actions at both sites. NRC is currently in consultation with DOE on the F-Area Tank Farm closure and anticipates entering consultation on the H-Area Tank Farm at the Savannah River Site. This paper presents, from the NRC perspective, an overview of how the consultation and monitoring process has evolved since its conception in 2005. It addresses changes in methods and procedures used to collect and develop information used by the NRC in developing the technical evaluation report and monitoring plan under consultation and the implementation the plan under monitoring. It will address lessons learned and best practices developed throughout the process. The NDAA has presented significant challenges for the NRC and DOE. Past and current successes demonstrate that the NDAA can achieve its intended goal of facilitating tank closure at DOE legacy defense waste sites. The NRC believes many of the challenges in performing the WD reviews have been identified and addressed. Lessons learned have been collected and documented throughout the review process. Future success will be contingent on each agencies commitment to consistently apply the lessons learned and continue to create an open and collaborative work environment to maintain the process of continuous improvement. (authors)

  18. Office of Inspector General audit report on vehicle fleet management at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    NONE

    1999-03-01

    In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle fleet operations might be done more cost effectively by the General Services Administration (GSA) than by Idaho Operations Office (Idaho) and its contractor. The report also concluded that a significant number of vehicles were underused and the fleet was too large. Accordingly, the report contained recommendations that a cost comparison study be conducted to ascertain the most economical and efficient method of managing fleet operations and that vehicle usage data be reviewed periodically by the contractor, with prompt reassignment or disposal of significantly underused vehicles. Thus, the purpose of this audit was to determine if action has been taken to implement recommendations in the prior report. Specifically, the objectives of the current audit were to determine whether a cost comparison had been performed and whether the fleet was still too large. In this report, the authors recommend that Idaho annually review individual vehicle use against mileage standards and promptly dispose of or reassign vehicles not meeting the standards. The authors also recommend that the Idaho Deputy Manager be provided a vehicle assignment report for review and approval.

  19. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  20. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  1. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  2. Nuclear Power 

    E-Print Network [OSTI]

    2010-01-01

    be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems...

  3. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  4. Five-Year Review of CERCLA Response Actions at the Idaho National Laboratory

    SciTech Connect (OSTI)

    W. L. Jolley

    2007-02-01

    This report summarizes the documentation submitted in support of the five-year review or remedial actions implemented under the Comprehensive Environmental Response, Compensation, and Liability Act Sitewide at the Idaho National Laboratory. The report also summarizes documentation and inspections conducted at the no-further-action sites. This review covered actions conducted at 9 of the 10 waste area groups at the Idaho National Laboratory, i.e. Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 9, and 10. Waste Area Group 8 was not subject to this review, because it does not fall under the jurisdiction of the U.S. Department of Energy Idaho Operations Office. The review included past site inspections and monitoring data collected in support of the remedial actions. The remedial actions have been completed at Waste Area Groups 2, 4, 5, 6, and 9. Remedial action reports have been completed for Waste Area Groups 2 and 4, and remedial action reports are expected to be completed during 2005 for Waste Area Groups 1, 5, and 9. Remediation is ongoing at Waste Area Groups 3, 7, and 10. Remedial investigations are yet to be completed for Operable Units 3-14, 7-13/14, and 10-08. The review showed that the remedies have been constructed in accordance with the requirements of the Records of Decision and are functioning as designed. Immediate threats have been addressed, and the remedies continue to be protective. Potential short-term threats are being addressed though institutional controls. Soil cover and cap remedies are being maintained properly and inspected in accordance with the appropriate requirements. Soil removal actions and equipment or system removals have successfully achieved remedial action objectives identified in the Records of Decision. The next Sitewide five-year review is scheduled for completion by 2011.

  5. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  6. Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho

    E-Print Network [OSTI]

    Torgersen, Christian

    Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho: U­1273 Prepared in cooperation with Blaine County, Idaho #12;#12;Post-Fire Debris-Flow Hazard Assessment

  7. DOE�s Idaho Operations Office Issues 2011-Beyond Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n e vRecognized by NewDOE's Idaho

  8. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect (OSTI)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  9. Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory

    SciTech Connect (OSTI)

    N. Seth Carpenter

    2010-07-01

    An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

  10. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    SciTech Connect (OSTI)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  11. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  12. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  13. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  14. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  15. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    SciTech Connect (OSTI)

    Cousins, Katherine

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  16. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  17. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    1995-12-31

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  18. I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:Hydrothermally Deposited RockLLC44 - Idaho Hazardous

  19. Audit of Construction Management at the Idaho National Engineering Laboratory, WR-B-96-03

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THE IDAHO NATIONAL

  20. Idaho Cleanup Project completes work at Test Area North complex at DOE�s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 Sign In AboutWorkshop:IceIdaho