National Library of Energy BETA

Sample records for int cosmic ray

  1. Cosmic Ray Shower Generation Utility

    Energy Science and Technology Software Center (OSTI)

    2007-01-18

    Generates correlated cosmic-ray particle showers at one of three elevations (sea level, 2100m, and 11300m) for use as input transport and detector simulation codes.

  2. 38th Int. Conf. on Vacuum UV and X-ray Physics - VUVX2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38th Int. Conf. on Vacuum UV and X-ray Physics - VUVX2013 http://vuvx2013.ustc.edu.cn/dct/page/1 12-18 July, 2013; Hefei, China

  3. The Origin of Cosmic Rays

    ScienceCinema (OSTI)

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  4. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray

    Office of Scientific and Technical Information (OSTI)

    Observatory () | Data Explorer High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory Title: High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger

  5. Cosmic Rays and Global Warming

    SciTech Connect (OSTI)

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  6. Characterising CCDs with cosmic rays

    SciTech Connect (OSTI)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  7. Characterising CCDs with cosmic rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  8. High-energy cosmic ray interactions

    SciTech Connect (OSTI)

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  9. High energy physics in cosmic rays

    SciTech Connect (OSTI)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  10. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the ...

  11. Probing Fukushima with cosmic rays should help speed cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays Probing Fukushima with cosmic rays should help speed cleanup of damaged plant The initiative could reduce the time required to clean up the ...

  12. Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes Citation Details In-Document Search Title: Observing Signatures of Cosmic Rays Using...

  13. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earths surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earths surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  14. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect (OSTI)

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  15. Cosmic Rays from Supernovae Proven to Hit Earth

    Broader source: Energy.gov [DOE]

    A new study confirms that cosmic rays are born in the violent aftermath of supernovas, exploding stars throughout the galaxy.

  16. The Pierre Auger Cosmic Ray Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completionmore » in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  17. The Pierre Auger Cosmic Ray Observatory

    SciTech Connect (OSTI)

    2015-02-04

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  18. The Pierre Auger Cosmic Ray Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  19. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Citation Details In-Document Search Title: Probing the Cosmic X-ray and MeV...

  20. Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays Citation Details In-Document Search Title: Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays We discuss the origin of ultra-high energy cosmic rays in light of the latest observational results from the Pierre Auger Observatory, highlighting potential astrophysical sources such as active galactic nuclei, gamma-ray bursts, and clusters of galaxies. Key issues include their energy budget, the

  1. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultt fr Physik and Astronomie, Theoretische Physik I, Ruhr-Universitt Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  2. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  3. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  4. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect (OSTI)

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  5. Measurement of the cosmic ray spectrum above 4 $\\times$ 10$^...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Measurement of the cosmic ray spectrum above 4 times 1018 eV using inclined events detected with the Pierre Auger Observatory Citation Details In-Document...

  6. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant September 2, 2014 New insights to changing the atomic structure of metals Los Alamos

  7. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. June 18, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri, right, and undergraduate research assistant Shelby Fellows prepare a lead hemisphere inside a muon tomography machine, which

  8. Los Alamos observatory fingers cosmic ray 'hot spots'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic ray 'hot spots' Los Alamos observatory fingers cosmic ray 'hot spots' The research calls into question nearly a century of understanding about galactic magnetic fields near our solar system. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  9. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect (OSTI)

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism??{sup 0}???. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  10. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect (OSTI)

    Veselinovi?, N. Dragi?, A. Maleti?, D. Jokovi?, D. Savi?, M. Banjanac, R. Udovi?i?, V. Ani?in, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  11. THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY BACKGROUND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY BACKGROUND RADIATION IN THE FERMI ERA Citation Details In-Document Search Title: THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY...

  12. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  13. Constraints on the Cosmic-Ray Density Gradient Beyond the Solar...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Constraints on the Cosmic-Ray Density Gradient Beyond the Solar Circle From Fermi Gamma-Ray Observations of the Third Galactic Quadrant Citation Details...

  14. PROBING THE COSMIC X-RAY AND MeV GAMMA-RAY BACKGROUND RADIATION THROUGH THE

    Office of Scientific and Technical Information (OSTI)

    ANISOTROPY (Journal Article) | SciTech Connect PROBING THE COSMIC X-RAY AND MeV GAMMA-RAY BACKGROUND RADIATION THROUGH THE ANISOTROPY Citation Details In-Document Search Title: PROBING THE COSMIC X-RAY AND MeV GAMMA-RAY BACKGROUND RADIATION THROUGH THE ANISOTROPY While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including

  15. Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes Citation Details In-Document Search Title: Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes Authors: Reimer, Olaf ; /Innsbruck U. /KIPAC, Menlo Park Publication Date: 2013-06-20 OSTI Identifier: 1084282 Report Number(s): SLAC-PUB-15629 DOE Contract Number: AC02-76SF00515 Resource Type: Conference Resource Relation: Journal Name: PoS

  16. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Eichler, David [Physics Department, Ben-Gurion University, Be'er-Sheva 84105 (Israel); Pohl, Martin [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam-Golm (Germany)

    2011-09-10

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10{sup 18} eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10{sup -3} of the average. Difficulties with these avoidance scenarios are noted.

  17. IS THE GALACTIC COSMIC-RAY SPECTRUM CONSTANT IN TIME?

    SciTech Connect (OSTI)

    Eichler, David; Kumar, Rahul; Pohl, Martin E-mail: rahuliitk@gmail.com

    2013-06-01

    The hypothesis is considered that the present, local Galactic cosmic-ray spectrum is, due to source intermittency, softer than average over time and over the Galaxy. Measurements of muogenic nuclides underground could provide an independent measurement of the time-averaged spectrum. Source intermittency could also account for the surprising low anisotropy reported by the IceCube Collaboration. Predictions for Galactic emission of ultrahigh-energy (UHE) quanta, such as UHE gamma rays and neutrinos, might be higher or lower than previously estimated.

  18. Probing Fukushima with cosmic rays should help speed cleanup of damaged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant Probing Fukushima with cosmic rays Probing Fukushima with cosmic rays should help speed cleanup of damaged plant The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. December 22, 2014 Probing Fukushima with cosmic rays should help speed cleanup of damaged plant Los Alamos-generated computer animation of the Fukushima Diachi powerplant. Contact James Rickman

  19. Constraints on particle dark matter from cosmic-ray antiprotons

    SciTech Connect (OSTI)

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2014-04-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints.

  20. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect (OSTI)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  1. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema (OSTI)

    Morris, Christopher

    2014-06-25

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  2. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING Citation Details In-Document Search Title: ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the

  3. CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES' CORE EMISSIONS TO THE COSMIC

    Office of Scientific and Technical Information (OSTI)

    MeV AND GeV GAMMA-RAY BACKGROUND RADIATION (Journal Article) | SciTech Connect CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES' CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION Citation Details In-Document Search Title: CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES' CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION The Fermi gamma-ray satellite has recently detected gamma-ray emissions from radio galaxy cores. From these samples, we first examine

  4. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-15

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  5. A search for correlation of ultra-high energy cosmic rays with IRAS-PSCz

    Office of Scientific and Technical Information (OSTI)

    and 2MASS-6dF galaxies (Journal Article) | SciTech Connect A search for correlation of ultra-high energy cosmic rays with IRAS-PSCz and 2MASS-6dF galaxies Citation Details In-Document Search Title: A search for correlation of ultra-high energy cosmic rays with IRAS-PSCz and 2MASS-6dF galaxies We study the arrival directions of 69 ultra-high energy cosmic rays (UHECRs) observed at the Pierre Auger Observatory (PAO) with energies exceeding 55 EeV. We investigate whether the UHECRs exhibit the

  6. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  7. Nambu--Goldstone Dark Matter and Cosmic Ray Electron and Positron...

    Office of Scientific and Technical Information (OSTI)

    in the recent cosmic ray experiments PAMELA, ATIC and PPB-BETS without postulating an overdensity in halo, and the limit on anti-proton flux from PAMELA is naturally evaded. ...

  8. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmospheres effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmospheres effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  9. Drift effects on the galactic cosmic ray modulation

    SciTech Connect (OSTI)

    Laurenza, M.; Storini, M.; Carbone, V.

    2014-02-01

    Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effects on CRs. A prominent periodicity at ?six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ?40, ?45, and >55 have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.

  10. Heliospheric influence on the anisotropy of TeV cosmic rays

    SciTech Connect (OSTI)

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy. When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.

  11. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the

    Office of Scientific and Technical Information (OSTI)

    Anisotropy (Journal Article) | SciTech Connect Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Citation Details In-Document Search Title: Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Authors: Inoue, Yoshiyuki ; Murase, Kohta ; Madejski, Grzegorz M. ; Uchiyama, Yasunobu Publication Date: 2013-08-15 OSTI Identifier: 1090325 Report Number(s): SLAC-PUB-15711 arXiv:1308.1951 DOE Contract Number: AC02-76SF00515

  12. UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION

    SciTech Connect (OSTI)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter, E-mail: philipp.baerwald@physik.uni-wuerzburg.de, E-mail: mauricio.bustamante@physik.uni-wuerzburg.de, E-mail: winter@physik.uni-wuerzburg.de [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2013-05-10

    The paradigm that gamma-ray burst fireballs are the sources of the ultra-high energy cosmic rays (UHECRs) is being probed by neutrino observations. Very stringent bounds can be obtained from the cosmic-ray (proton)-neutrino connection, assuming that the UHECRs escape as neutrons. In this study, we identify three different regimes as a function of the fireball parameters: the standard ''one neutrino per cosmic ray'' case, the optically thick (to neutron escape) case, and the case where leakage of protons from the boundaries of the shells (direct escape) dominates. In the optically thick regime, the photomeson production is very efficient, and more neutrinos will be emitted per cosmic ray than in the standard case, whereas in the direct escape-dominated regime, more cosmic rays than neutrinos will be emitted. We demonstrate that, for efficient proton acceleration, which is required to describe the observed UHECR spectrum, the standard case only applies to a very narrow region of the fireball parameter space. We illustrate with several observed examples that conclusions on the cosmic-ray-neutrino connection will depend on the actual burst parameters. We also show that the definition of the pion production efficiency currently used by the IceCube collaboration underestimates the neutrino production in the optically thick case. Finally, we point out that the direct escape component leads to a spectral break in the cosmic-ray spectrum emitted from a single source. The resulting ''two-component model'' can be used to even more strongly pronounce the spectral features of the observed UHECR spectrum than the dip model.

  13. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  14. Upper limits on the total cosmic-ray luminosity of individual sources

    SciTech Connect (OSTI)

    Anjos, R.C.; De Souza, V.; Supanitsky, A.D. E-mail: vitor@ifsc.usp.br

    2014-07-01

    In this paper, upper limits on the total luminosity of ultra-high-energy cosmic-rays (UHECR) E>10{sup 18} eV) are determined for five individual sources. The upper limit on the integral flux of GeV--TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV--TeV gamma-ray flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic rays in the background radiation fields, as explained in reference [1]. Twenty-eight sources measured by FERMI-LAT, VERITAS and MAGIC observatories have been studied. The measured upper limit on the GeV--TeV gamma-ray flux is restrictive enough to allow the calculation of an upper limit on the total UHECR cosmic-ray luminosity of five sources. The upper limit on the UHECR cosmic-ray luminosity of these sources is shown for several assumptions on the emission mechanism. For all studied sources an upper limit on the ultra-high-energy proton luminosity is also set.

  15. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect (OSTI)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  16. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect (OSTI)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (??1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (??2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  17. Neutrino and cosmic-ray release from gamma-ray bursts: Time-dependent simulations

    SciTech Connect (OSTI)

    Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mszros, Peter, E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: nnp@psu.edu [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-04-10

    We revisit the neutrino and ultra-high-energy cosmic-ray (UHECR) production from gamma-ray bursts (GRBs) with time-dependent simulations for the proton-induced cascades. This method can generate self-consistent photon, neutrino, and escaped neutron spectra. To obtain the integrated background spectra, we take into account the distributions of the burst luminosity and pulse duration timescale. A benchmark case with standard GRB luminosity function, a bulk Lorentz factor ? = 300, and a proton to gamma-ray luminosity fraction f{sub p} = 10 is consistent with both the neutrino upper limits and the observed UHECR intensity at ?10{sup 20} eV, while requiring a different type of UHECR source at the ankle. For the benchmark case, the GRBs in the bright end of the luminosity function, which contribute most of the neutrinos, have their photon spectrum substantially distorted by secondary photons. Such bright GRBs are few in number, and reducing their f{sub p} eliminates the distortion and reduces the neutrino production. Even if we neglect the contribution of the brightest GRBs, the UHECR production rate at energies corresponding to the Greisen-Zatsepin-Kuzmin limit is almost unchanged. These nominal GRB models, especially with L {sub iso} ? 10{sup 53} erg s{sup 1}, appear to meet the current constraints as far as being candidate UHECR sources above the ankle energy.

  18. Nambu--Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Nambu--Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess Citation Details In-Document Search Title: Nambu--Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of R-axions each of

  19. Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne

    Office of Scientific and Technical Information (OSTI)

    Radio Interferometer (Journal Article) | SciTech Connect Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer Citation Details In-Document Search Title: Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer Authors: Hoover, S. ; /UCLA ; Nam, J. ; /Ewha Women's U., Seoul ; Gorham, P.W. ; /Hawaii U. ; Grashorn, E. ; /Ohio State U. ; Allison, P. ; /Hawaii U. ; Barwick, S.W. ; /UC, Irvine ; Beatty, J.J. ; /Ohio

  20. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect (OSTI)

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  1. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-08-19

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy density is determined from the radio pulses at each observer position and is interpolated using a two dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge excess emission components. We found that the spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy corrected for geometrical effects is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. Finally we find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

  2. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, IST

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  3. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest conventional cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  4. Recommendations for a Static Cosmic Ray Shield for Enriched Germanium Detectors

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Ankney, Austin S.; Berguson, Timothy J.

    2011-09-21

    This document provides a detailed study of cost and materials that could be used to shield the detector material of the international Tonne-scale germanium neutrinoless double-beta decay experiment from hadronic particles from cosmic ray showers at the Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during storage; in particular, when the detector material is being worked on at the detector manufacturer's facility. This work considers two options for shielding the detector material from cosmic ray particles. One option is to use a pre-existing structure already located near the detector manufacturer, such as Canberra Industries in Meriden, Connecticut. The other option is to build a shield onsite at a detector manufacturer's site. This paper presents a cost and efficiency analysis of such construction.

  5. COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN

    SciTech Connect (OSTI)

    Zhou Li; Zheng Weijun; Kaiser, Ralf I.; Landera, Alexander; Mebel, Alexander M.; Liang, Mao-Chang; Yung, Yuk L.

    2010-08-01

    The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two orders of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.

  6. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  7. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. As amore » result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less

  8. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with $E \\ge 6 \\times 10^{19}$ eV by analyzing cosmic rays with energies above $E \\ge 5 \\times 10^{18}$ eV arriving within an angular separation of approximately 15$^{\\circ }$ . We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns aremorefound with this analysis. As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.less

  9. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  10. Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    SciTech Connect (OSTI)

    Aharonian, F.; Akhperjanian, A. G.; Sahakian, V.; Barres de Almeida, U.; Chadwick, P. M.; Cheesebrough, A.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Rulten, C. B.; Spangler, D.; Ward, M.; Bazer-Bachi, A. R.; Borrel, V.; Olive, J-F.

    2008-12-31

    The very large collection area of ground-based {gamma}-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  11. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  12. Cosmic ray propagation and dark matter in light of the latest AMS-02 data

    SciTech Connect (OSTI)

    Jin, Hong-Bo; Wu, Yue-Liang; Zhou, Yu-Feng

    2015-09-21

    The AMS-02 experiment is measuring the high energy cosmic rays with unprecedented accuracy. We explore the possibility of determining the cosmic-ray propagation models using the AMS-02 data alone. A global Bayesian analysis of the constraints on the cosmic-ray propagation models from the preliminary AMS-02 data on the Boron to Carbon nuclei flux ratio and proton flux is performed, with the assumption that the primary nucleon source is a broken power law in rigidity. The ratio of the diffusion coefficient D{sub 0} to the diffusive halo height Z{sub h} is determined with high accuracy D{sub 0}/Z{sub h}≃2.00±0.07 cm{sup 2}s{sup −1}kpc{sup −1}, and the value of the halo width is found to be Z{sub h}≃3.3 kpc with uncertainty less than 50%. As a consequence, the typical uncertainties in the positron fraction predicted from dark matter (DM) annihilation is reduced to a factor of two, and that in the antiproton flux is about an order of magnitude. Both of them are significantly smaller than that from the analyses prior to AMS-02. Taking into account the uncertainties and correlations in the propagation parameters, we derive conservative upper limits on the cross sections for DM annihilating into various standard model final states from the current PAMELA antiproton data. We also investigate the reconstruction capability of the future high precision AMS-02 antiproton data on the DM properties. The results show that for DM particles lighter than ∼100 GeV and with typical thermal annihilation cross section, the cross section can be well reconstructed with uncertainties about a factor of two for the AMS-02 three-year data taking.

  13. Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems

    SciTech Connect (OSTI)

    Fatuzzo, Marco; Adams, Fred C. E-mail: fca@umich.edu

    2014-05-20

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when ?B/B {sub 0} > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  14. The galactic center GeV excess from a series of leptonic cosmic-ray outbursts

    SciTech Connect (OSTI)

    Cholis, Ilias; Evoli, Carmelo; Calore, Francesca; Linden, Tim; Weniger, Christoph; Hooper, Dan

    2015-06-16

    It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of ~1 2 from the Galactic Center can be accommodated with two outbursts, one which took place approximately ~106 years ago, and another (injecting only about 10% as much energy as the first) about ~105 years ago. The emission observed from the innermost ~1 2 requires one or more additional recent outbursts and/or a contribution from a centrally concentrated population of unresolved millisecond pulsars. Furthermore, in order to produce a spectrum that is compatible with the measured excess (whose shape is approximately uniform over the region of the excess), the electrons from the older outburst must be injected with significantly greater average energy than those injected more recently, enabling their spectra to be similar after ~106 years of energy losses.

  15. Cosmic ray radiography of the damaged cores of the Fukushima reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borozdin, Konstantin; Greene, Steven; Lukić, Zarija; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Perry, John

    2012-10-11

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The interaction with the electrons leads to continuous energy loss and stopping of the muons. The interaction with nuclei leads to angle “diffusion.” Two muon-imaging methods that use flux attenuation and multiple Coulomb scattering of cosmic-ray muons are being studied as tools for diagnosing the damaged cores of the Fukushima reactors. Here, we compare these two methods. We conclude that the scattering method can provide detailed information about the core. Lastly, attenuation has low contrast and little sensitivity to the core.

  16. Modification of the parallel scattering mean free path of cosmic rays in the presence of adiabatic focusing

    SciTech Connect (OSTI)

    He, H.-Q.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-09-10

    The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standard forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.

  17. Large doppler shift in radar detection of ultra-high energy cosmic rays.

    SciTech Connect (OSTI)

    Underwood, D. G.; High Energy Physics

    2008-01-01

    Radar detection of cosmic ray air showers has been discussed for 60 years, but never clearly observed. The topic was reexamined by Gorham in 2001 and some serious simulations were done by Takai, who also initiated the Mariachi project utilizing commercial television transmissions as a signal source. The air showers from ultra-high energy cosmic rays are expected to generate a plasma with plasma frequency in the high VHF region. One factor limiting the received signal strength is the short ion recombination time in air at low altitude. However, a major factor which has not been the center of attention so far is the possible large Doppler shifts for non-specular reflection, and the soft transition between specular and diffuse for small objects and short time scales. We discuss recent work on receivers, and simulations of the Doppler shift. These simulations assume a very short ion recombination time in the lower atmosphere, and use an extremely simple mathematical model. A central feature of our simulations is large Doppler shift from non-moving material.

  18. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007

    SciTech Connect (OSTI)

    Nuntiyakul, W.; Ruffolo, D.; Siz, A.; Evenson, P.; Bieber, J. W.; Clem, J.; Pyle, R.; Duldig, M. L.; Humble, J. E. E-mail: david.ruf@mahidol.ac.th E-mail: evenson@udel.edu E-mail: clem@bartol.udel.edu E-mail: John.Humble@utas.edu.au

    2014-11-01

    The Galactic cosmic ray spectrum exhibits subtle variations over the 22 yr solar magnetic cycle in addition to the more dramatic variations over the 11 yr sunspot cycle. Neutron monitors are large ground-based detectors that provide accurate measurements of variations in the cosmic ray flux at the top of the atmosphere above the detector. At any given location the magnetic field of the Earth excludes particles below a well-defined rigidity (momentum per unit charge) known as the cutoff rigidity, which can be accurately calculated using detailed models of the geomagnetic field. By carrying a neutron monitor to different locations, e.g., on a ship, the Earth itself serves as a magnet spectrometer. By repeating such latitude surveys with identical equipment, a sensitive measurement of changes in the spectrum can be made. In this work, we analyze data from the 1994 through 2007 series of latitude surveys conducted by the Bartol Research Institute, the University of Tasmania, and the Australian Antarctic Division. We confirm the curious 'crossover' in spectra measured near solar minima during epochs of opposite solar magnetic polarity, and show that it is directly related to a sudden change in the spectral behavior of solar modulation at the time of the polarity reversal, as revealed from contemporaneous variations in the survey data and a fixed station. We suggest that the spectral change and crossover result from the interaction of effects due to gradient/curvature drifts with a systematic change in the interplanetary diffusion coefficient caused by turbulent magnetic helicity.

  19. The origin of all cosmic rays : a space-filling mechanism.

    SciTech Connect (OSTI)

    Colgate, S. A.; Li, H.

    2001-01-01

    There is a need for one mechanism to accelerate cosmic rays universally over the full energy spectrum, isotropically, and space filling. The current view is a theory based upon a series of mechanisms, patched to fit various spectral regions with a mechanism for the origin of the UHCRs still in doubt. We suggest that the reconnection of force-free magnetic fields produced by the twisting of all imbedded magnetic flux by the vorticity motion of all accretion or condensations both within the Galaxy as well as the metagalaxy is the universal mechanism. This leads to the acceleration of all cosmic rays with both total energy and individual energies up to the highest observed of 3 x 10{sup 20} ev and predicting an upper limit of 10{sup 23} ev. There are three primary, and we believe compelling reasons for adopting this different view of the origin of CRs. (1) The energy source is space filling and isotropic, thereby avoiding any anisotropy's due to single sources, e.g., supernovae remnants and AGN. (2) The galactic and particularly the extragalactic energy source is sufficient to supply the full energy of a universal galactic and extragalactic spectrum of 10{sup 60} to 10{sup 61} ergs sufficient to avoid the GZK cut-off. (3) Efficient E{sub parallel} acceleration from reconnection of force-free fields is well observed in the laboratory whereas collisionless shock acceleration still eludes laboratory confirmation.

  20. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect (OSTI)

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion ?(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ?E{sup -?} with ??1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ?5Zנ10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ?E{sup -2.7}). In this sense, at the ankle E{sub A}?5נ10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  1. Alignment of the ALICE Inner Tracking System with Cosmic-Ray Tracks

    SciTech Connect (OSTI)

    Aamodt, K.; Awes, Terry C; Enokizono, Akitomo; Silvermyr, David O; ALICE, Collaboration

    2010-03-01

    ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 {micro}m in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10{sup 5} charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.

  2. STABILITY OF COSMIC-RAY MODIFIED SHOCKS: TWO-FLUID APPROACH

    SciTech Connect (OSTI)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    2013-10-01

    The stability of cosmic-ray modified shocks (CRMSs) is studied by means of numerical simulations. Owing to the nonlinear feedback of cosmic-ray (CR) acceleration, a downstream state of the modified shock can no longer be uniquely determined for given upstream parameters. It is known that up to three distinct solutions exist, which are characterized by CR production efficiency as the 'efficient', 'intermediate', and 'inefficient' branches. The stability of these solutions is investigated by performing direct time-dependent simulations of a two-fluid model. It is found that both the efficient and inefficient branches are stable even against a large-amplitude perturbation, while the intermediate one is always unstable and evolves into the inefficient state as a result of nonlinear time development. This bistable feature is robust in a wide range of parameters and does not depend on the injection model. Fully nonlinear time evolution of a hydrodynamic shock with injection results in the least efficient state in terms of CR production, consistent with the bistable feature. This suggests that the CR production efficiency in supernova remnant shocks may be lower than previously discussed in the framework of the nonlinear shock acceleration theory considering the efficient solution of the CRMS.

  3. Detection of the Cosmic ?-Ray Horizon From Multiwavelength Observations of Blazars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dominguez, A.; Finke, J. D.; Prada, F.; Primack, J. R.; Kitaura, F. S.; Siana, B.; Paneque, D.

    2013-05-24

    The first statistically significant detection of the cosmic ?-ray horizon (CGRH) that is independent of any extragalactic background light (EBL) model is presented. The CGRH is a fundamental quantity in cosmology. It gives an estimate of the opacity of the Universe to very high energy (VHE) ?-ray photons due to photon-photon pair production with the EBL. The only estimations of the CGRH to date are predictions from EBL models and lower limits from ?-ray observations of cosmological blazars and ?-ray bursts. Here, we present homogeneous synchrotron/synchrotron self-Compton (SSC) models of the spectral energy distributions of 15 blazars based on (almost)moresimultaneous observations from radio up to the highest energy ?-rays taken with the Fermi satellite. These synchrotron/SSC models predict the unattenuated VHE fluxes, which are compared with the observations by imaging atmospheric Cherenkov telescopes. This comparison provides an estimate of the optical depth of the EBL, which allows a derivation of the CGRH through a maximum likelihood analysis that is EBL-model independent. We find that the observed CGRH is compatible with the current knowledge of the EBL.less

  4. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  5. X-ray imaging, spacecraft nuclear fission and cosmic ray contraband...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and its partners are among the honorees. July 8, 2013 MiniMAX is a battery powered, digital x-ray imaging system that is completely self-contained, lightweight, compact and...

  6. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    SciTech Connect (OSTI)

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-12-10

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10{sup 18} eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ? 10{sup 3} yr{sup 1} Gpc{sup 3}. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  7. Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory

    SciTech Connect (OSTI)

    Klinkhamer, F. R.; Risse, M.

    2008-01-01

    A particularly simple Lorentz-violating modification of the Maxwell theory of photons maintains gauge invariance, CPT, and renormalization. This modified Maxwell theory, coupled to standard Dirac particles, involves 19 dimensionless 'deformation parameters'. Ten of these parameters lead to birefringence and are already tightly constrained by astrophysics. New bounds on the remaining nine nonbirefringent parameters can be obtained from the absence of vacuum Cherenkov radiation for ultrahigh-energy cosmic rays (UHECRs). Using selected UHECR events recorded at the Pierre Auger Observatory and assigning pseudorandom directions (i.e., assuming large-scale isotropy), Cherenkov bounds are found at the 10{sup -18} level, which improve considerably upon current laboratory bounds. Future UHECR observations may reduce these Cherenkov bounds to the 10{sup -23} level.

  8. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  9. Corotating solar wind structures and recurrent trains of enhanced diurnal variation in galactic cosmic rays

    SciTech Connect (OSTI)

    Yeeram, T.; Ruffolo, D.; Siz, A.; Kamyan, N.; Nutaro, T. E-mail: david.ruf@mahidol.ac.th E-mail: p_chang24@hotmail.com

    2014-04-01

    Data from the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with a vertical cutoff rigidity of 16.8 GV, were utilized to determine the diurnal anisotropy (DA) of Galactic cosmic rays (GCRs) near Earth during solar minimum conditions between 2007 November and 2010 November. We identified trains of enhanced DA over several days, which often recur after a solar rotation period (?27 days). By investigating solar coronal holes as identified from synoptic maps and solar wind parameters, we found that the intensity and anisotropy of cosmic rays are associated with the high-speed streams (HSSs) in the solar wind, which are in turn related to the structure and evolution of coronal holes. An enhanced DA was observed after the onset of some, but not all, HSSs. During time periods of recurrent trains, the DA was often enhanced or suppressed according to the sign of the interplanetary magnetic field B, which suggests a contribution from a mechanism involving a southward gradient in the GCR density, n, and a gradient anisotropy along B ?n. In one non-recurrent and one recurrent sequence, an HSS from an equatorial coronal hole was merged with that from a trailing mid-latitude extension of a polar coronal hole, and the slanted HSS structure in space with suppressed GCR density can account for the southward GCR gradient. We conclude that the gradient anisotropy is a source of temporary changes in the GCR DA under solar minimum conditions, and that the latitudinal GCR gradient can sometimes be explained by the coronal hole morphology.

  10. WIDESPREAD METHANOL EMISSION FROM THE GALACTIC CENTER: THE ROLE OF COSMIC RAYS

    SciTech Connect (OSTI)

    Yusef-Zadeh, F.; Royster, M.; Cotton, W.; Viti, S.; Wardle, M.

    2013-02-20

    We report the discovery of a widespread population of collisionally excited methanol J = 4{sub -1} to 3{sub 0} E sources at 36.2 GHz from the inner 66' Multiplication-Sign 18' (160 Multiplication-Sign 43 pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of 16.6 km s{sup -1} taken from 41 channels of a Very Large Array continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2-1) and CH{sub 3}OH emission from four Galactic center clouds: the +50 and +20 km s{sup -1} clouds and G0.13-0.13 and G0.25 + 0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H{sub 2}. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH{sub 3}OH abundance of 10{sup -8} to 10{sup -7} on a chemical timescale of 5 Multiplication-Sign 10{sup 4} to 5 Multiplication-Sign 10{sup 5} years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.

  11. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOE Patents [OSTI]

    Menlove, Howard O. (Los Alamos, NM); Bourret, Steven C. (Los Alamos, NM); Krick, Merlyn S. (Los Alamos, NM)

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  12. The wavefront of the radio signal emitted by cosmic ray air showers

    SciTech Connect (OSTI)

    Apel, W.D.; Bekk, K.; Blmer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Arteaga-Velzquez, J.C.; Bhren, L.; Falcke, H.; Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di; Biermann, P.L.; Brancus, I.M.; De Souza, V.; Fuchs, B.; Gemmeke, H.; Grupen, C.; and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ?>50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  13. Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons

    SciTech Connect (OSTI)

    Schwellenbach, D.

    2012-07-17

    Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

  14. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Ayres, D.S.; Backhouse, C.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, B.; Bock, G.J.; Boehnlein, D.J.

    2010-08-01

    The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.

  15. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; ,

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  16. Shock waves and cosmic ray acceleration in the outskirts of galaxy clusters

    SciTech Connect (OSTI)

    Hong, Sungwook E.; Ryu, Dongsu; Kang, Hyesung; Cen, Renyue E-mail: ryu@canopus.cnu.ac.kr E-mail: cen@astro.princeton.edu

    2014-04-20

    The outskirts of galaxy clusters are continuously disturbed by mergers and gas infall along filaments, which in turn induce turbulent flow motions and shock waves. We examine the properties of shocks that form within r {sub 200} in sample galaxy clusters from structure formation simulations. While most of these shocks are weak and inefficient accelerators of cosmic rays (CRs), there are a number of strong, energetic shocks which can produce large amounts of CR protons via diffusive shock acceleration. We show that the energetic shocks reside mostly in the outskirts and a substantial fraction of them are induced by infall of the warm-hot intergalactic medium from filaments. As a result, the radial profile of the CR pressure in the intracluster medium is expected to be broad, dropping off more slowly than that of the gas pressure, and might be even temporarily inverted, peaking in the outskirts. The volume-integrated momentum spectrum of CR protons inside r {sub 200} has the power-law slope of 4.25-4.5, indicating that the average Mach number of the shocks of main CR production is in the range of {sub CR} ? 3-4. We suggest that some radio relics with relatively flat radio spectrum could be explained by primary electrons accelerated by energetic infall shocks with M{sub s} ? 3 induced in the cluster outskirts.

  17. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    SciTech Connect (OSTI)

    Fludra, A.

    2015-01-20

    We analyze a unique 15yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin etal. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30 in mid-2008 to 5 in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  18. ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION

    SciTech Connect (OSTI)

    Kuwabara, Takuhito; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2015-01-10

    We present the results obtained from the linear stability analysis and 2.5 dimensional magnetohydrodynamic (MHD) simulations of magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account the CR diffusion along the magnetic field but neglected the cross-field-line diffusion. Two models are considered in this paper: the shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of the CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by a weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force that acts on the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.

  19. Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory

    SciTech Connect (OSTI)

    Hussein, M.; Shalchi, A. E-mail: andreasm4@yahoo.com

    2014-04-10

    A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit of the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor ?B/B {sub 0} where B {sub 0} is the mean field and ?B the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.

  20. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  1. The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),

    SciTech Connect (OSTI)

    IceCube Collaboration; Ackermann, M.

    2007-11-02

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

  2. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  3. Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?

    SciTech Connect (OSTI)

    Senanayake, U. K.; Florinski, V. E-mail: vaf0001@uah.edu

    2013-12-01

    Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup 1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.

  4. The coherent acceleration of ultra high energy cosmic rays and the galactic dynamo

    SciTech Connect (OSTI)

    Colgate, S.A.

    1995-05-01

    In order to accelerate cosmic rays to ultra high energy, >10{sup 18} ev, requires that the step size in energy in a diffusive process be very much larger than occurs in galactic or extra galactic hydrodynamic mechanisms where {Delta}E/F {approximately} v/c{approximately}1/300 per step. This step size requires >10{sup 5} scatterings per doubling in energy (the shock mechanism) and therefore <10{sup {minus}5} energy loss per scattering. Coherent acceleration (CA), on the other hand, is proposed in which the energy gained, {Delta}E per particle in the CA region is very much larger so that only one or several scatterings are required to reach the final energy. The power law spectrum is created by the probability of loss from the CA region where this probability is inversely proportional to the particle`s rigidity, E. Therefore the fractional loss in number per fractional gain in energy, dN/N {approximately} {minus}{Gamma} dE/E, results in a power law spectrum. CA depends upon the electric field, E = {eta}J, J, the current density, in a force free field, where magnetic helicity, J={alpha}B, arises universally in all evolving mass condensations due to twisting of magnetic flux by the large number of turns before pressure support. The acceleration process is E*v, where universe beam instabilities enhance {eta} leading to phased coherent acceleration (PCA). The result of the energy transfer from field energy to matter energy is the relaxation of the field helicity, or reconnection but with J{parallel}B rather than J{perpendicular}B.

  5. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).« less

  6. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Buml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blmer, H.; Boh?ov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Domenico, M. De; Jong, S. J. de; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dembinski, H.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Daz; Diogo, F.; Dobrigkeit, C.; Docters, W.; DOlivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filip?i?, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Frhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garca, B.; Gamez, D. Garcia-; Pinto, D. Garcia-; Garilli, G.; Bravo, A. Gascon; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Berisso, M. Gmez; Vitale, P. F. Gmez; Gonalves, P.; Gonzalez, J. G.; Gonzlez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hrandel, J. R.; Horvath, P.; Hrabovsk, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kp, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krmer, O.; Hansen, D. Kruppke-; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Louedec, K.; Bahilo, J. Lozano; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mari?, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Bravo, O. Martnez; Martraire, D.; Meza, J. J. Masas; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Tanco, G. Medina-; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mi?anovi?, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Bueno, L. Molina-; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostaf, M.; Moura, C. A.; Muller, M. A.; Mller, G.; Mller, S.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Noka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Dei, D. Pakk Selmi-; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.

    2015-04-24

    In this study, we analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80, thus covering from $-90{}^\\circ $ to $+45{}^\\circ $ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Vron-Cetty and Vron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg/s (18 radius), and around the direction of Centaurus A (15 radius).

  7. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2015-04-24

    In this study, we analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80, thus covering from $-90{}^\\circ $ to $+45{}^\\circ $ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Vron-Cetty and Vron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localizedmoreexcess fluxes, self-clustering of event directions at angular scales up to 30, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg/s (18 radius), and around the direction of Centaurus A (15 radius).less

  8. Int'l Smart Grid Action Network | Department of Energy

    Office of Environmental Management (EM)

    Int'l Smart Grid Action Network Int'l Smart Grid Action Network International PDF icon Int'l Smart Grid Action Network More Documents & Publications Clean Energy Ministerial Press Fact Sheet IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008)

  9. A hadronic-leptonic model for the Fermi bubbles: Cosmic-rays in the galactic halo and radio emission

    SciTech Connect (OSTI)

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2014-07-01

    We investigate non-thermal emission from the Fermi bubbles in a hadronic model. Cosmic-ray (CR) protons are accelerated at the forward shock of the bubbles. They interact with the background gas in the Galactic halo and create ?{sup 0}-decay gamma-rays and secondary electrons through proton-proton interaction. We follow the evolution of the CR protons and electrons by calculating their distribution functions. We find that the spectrum and the intensity profiles of ?{sup 0}-decay gamma-rays are consistent with observations. We predict that the shock front is located far ahead of the gamma-ray boundary of the Fermi bubbles. This naturally explains the fact that a clear temperature jump of thermal gas was not discovered at the gamma-ray boundary in recent Suzaku observations. We also consider re-acceleration of the background CRs in the Galactic halo at the shock front. We find that it can significantly affect the gamma-rays from the Fermi bubbles, unless the density of the background CRs is ? 10% of that in the Galactic disk. We indicate that secondary electrons alone cannot produce the observed radio emission from the Fermi bubbles. However, the radio emission from the outermost region of the bubbles can be explained if electrons are directly accelerated at the shock front with an efficiency of ?0.1% of that of protons.

  10. LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-15

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  11. CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2013-01-01

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

  12. Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays

    SciTech Connect (OSTI)

    Baek, Seungwon; Ko, P.; Park, Wan-Il; Tang, Yong E-mail: pko@kias.re.kr E-mail: ytang@kias.re.kr

    2014-06-01

    We investigate the indirect signatures of the Higgs portal U(1){sub X} vector dark matter (VDM) X{sub ?} from both its pair annihilation and decay. The VDM is stable at renormalizable level by Z{sub 2} symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by 10{sup 16} GeV scale, the lifetime of VDM with mass ? 2 TeV is just right for explaining the positron excess in cosmic ray observed by PAMELA and AMS02 Collaborations. The VDM decaying into ?{sup +}?{sup ?} can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around ? 2 TeV can be tested by DM direct search at XENON1T, and also at the future colliders by measuring the Higgs self-couplings.

  13. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    SciTech Connect (OSTI)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  14. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2010-03-01

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  15. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  16. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting from the interaction with the salt massive. We intent to design and construct a 3D array in the underground of Slanic Prahova salt ore.

  17. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as VHE-like sources) are distributed along underdense lines of sight at the 2.4? level. There is a less suggestive correlation for the Fermi hard source population (1.7?). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4? and 2.6?, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity ?(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  18. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  19. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as VHE-like sources) are distributed along underdense lines of sight at the 2.4#27; level. There is also a less suggestive correlation for the Fermi hard source population (1.7#27;). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4#27; and 2.6#27;, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity #28;(E, z) #24; 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  20. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; ,

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  1. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect (OSTI)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; ,

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  2. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  3. Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities

    SciTech Connect (OSTI)

    Bykov, Andrei M.; Osipov, Sergei M.; Ellison, Donald C.; Vladimirov, Andrey E. E-mail: osm2004@mail.ru E-mail: avenovo@gmail.com

    2014-07-10

    We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvnic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (?eV) injected at the viscous subshock to the escape of the highest energy CRs (?PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.

  4. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  5. M.O. Wascko, LSU NuInt05...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Wascko, LSU NuInt05 26 September, 2005 MiniBooNE CC + CCQE Ratio M.O. Wascko, LSU J.R. Monroe, Columbia CC interactions Quasi-Elastic (CCQE) Inclusive Single +...

  6. R. Tayloe, Indiana U. NuInt07 1 Measuring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in neutrino mode, 2003-2005 (POT"protons-on-target") R. Tayloe, Indiana U. NuInt07 7 HARP experiment - pion production in p,Be at 8.9 GeVc from HARP experiment at CERN...

  7. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE FERMI GBM CATALOG OF COSMIC GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Svinkin, D. S. [Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation); Briggs, M. S.; Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Meegan, C. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W.; Fellows, C.; Harshman, K. [University of Arizona, Department of Planetary Sciences, Tucson, AZ 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A., E-mail: khurley@ssl.berkeley.edu [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, D-85748 Garching (Germany); and others

    2013-08-15

    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or {sup t}riangulation{sup )}. For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.'4 and 32 Degree-Sign , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1{sigma} GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 Degree-Sign systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of three, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3{sigma} error radius. The IPN 3{sigma} error boxes have areas between about 1 arcmin{sup 2} and 110 deg{sup 2}, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as ''uncertain''. We also discuss the sensitivity and calibration of the IPN.

  8. Electromagnetic-ram action of the plasma focus as a paradigm for the production of gigantic galactic jets and cosmic rays

    SciTech Connect (OSTI)

    Bostick, W.

    1985-04-01

    A recent paper suggests that the electromagnetic-ram action of the plasma focus is trying to tell us how cosmic rays acquire their energy. It will be only natural for those theoretical astrophysicists who are steeped in statistical mechanics and turbulent processes, and who are now having a love affair with the black hole, to scoff at such a suggestion. But this author, undaunted, plunges even further into this cosmical question: he has the audacity to suggest further that the gigantic galactic jets in the active galaxies such as are now being observed by the computer-synthesized data of the radio signals at a number of wavelengths with the Very Large Array radio telescope in New Mexico, from radio galaxies like Cygnus A and Centaurus A (NGC 5128), are being produced by an electromagnetic-ram action similar to that of the plasma focus; and further, that this action is producing not only these spectacular jets, but also the acceleration of the cosmic ray at the same time in the same accelerating gap.

  9. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    SciTech Connect (OSTI)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Kopp, A.; Heber, B.; Kissmann, R.

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  10. Probing the cosmic gamma-ray burst rate with trigger simulations of the swift burst alert telescope

    SciTech Connect (OSTI)

    Lien, Amy; Cannizzo, John K. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sakamoto, Takanori [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Gehrels, Neil; Barthelmy, Scott D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Palmer, David M. [Los Alamos National Laboratory, B244, Los Alamos, NM 87545 (United States); Graziani, Carlo [Astronomy Department, The University of Chicago, Chicago, IL 60637 (United States)

    2014-03-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae, and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and an additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest that bursts need to be dimmer than previously expected to avoid overproducing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568{sub ?1429}{sup +825} GRBs per year that are beamed toward us in the whole universe.

  11. An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; ,

    2006-06-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10{sup 19} eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favored.

  12. European Cosmic Ray Symposium

    ScienceCinema (OSTI)

    None

    2011-04-25

    13me Symposium qui se déroule du 27 au 31 juillet pour la première fois au Cern. Brian Pattison ouvre la cérémonie et donne la parole à Dr.Ugland (qui représente le DG C.Rubbia excusé) et d'autres intervenants

  13. EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS

    SciTech Connect (OSTI)

    Inoue, Yoshiyuki; Inoue, Susumu; Kobayashi, Masakazu A. R.; Makiya, Ryu; Totani, Tomonori; Niino, Yuu

    2013-05-10

    We present a new model of the extragalactic background light (EBL) and corresponding {gamma}{gamma} opacity for intergalactic gamma-ray absorption from z = 0 up to z = 10, based on a semi-analytical model of hierarchical galaxy formation that reproduces key observed properties of galaxies at various redshifts. Including the potential contribution from Population III stars and following the cosmic reionization history in a simplified way, the model is also broadly consistent with available data concerning reionization, particularly the Thomson scattering optical depth constraints from Wilkinson Microwave Anisotropy Probe (WMAP). In comparison with previous EBL studies up to z {approx} 3-5, our predicted {gamma}{gamma} opacity is in general agreement for observed gamma-ray energy below 400/(1 + z) GeV, whereas it is a factor of {approx}2 lower above this energy because of a correspondingly lower cosmic star formation rate, even though the observed ultraviolet (UV) luminosity is well reproduced by virtue of our improved treatment of dust obscuration and direct estimation of star formation rate. The horizon energy at which the gamma-ray opacity is unity does not evolve strongly beyond z {approx} 4 and approaches {approx}20 GeV. The contribution of Population III stars is a minor fraction of the EBL at z = 0, and is also difficult to distinguish through gamma-ray absorption in high-z objects, even at the highest levels allowed by the WMAP constraints. Nevertheless, the attenuation due to Population II stars should be observable in high-z gamma-ray sources by telescopes such as Fermi or the Cherenkov Telescope Array and provide a valuable probe of the evolving EBL in the rest-frame UV. The detailed results of our model are publicly available in numerical form at http://www.slac.stanford.edu/{approx}yinoue/Download.html.

  14. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...

  15. Measurement of the cosmic ray spectrum above 4$\\times$10$^{18}$ eV using inclined events detected with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander; et al.

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 41018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60 detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.31018 eV, the ``ankle'', the flux can be described by a power law E? with index ?=2.70 0.02 (stat) 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value inmorethe absence of suppression, we find Es=(5.120.25 (stat)+1.01.2 (sys))1019 eV.less

  16. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect (OSTI)

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  17. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  18. Measurement of the cosmic ray spectrum above 4×1018 eV using inclined events detected with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value inmore » the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×1019 eV.« less

  19. Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic Microwave Background Cosmic Microwave Background CMB.jpg The Cosmic Microwave Background (CMB) is relic radiation from a very early stage in the universe -- essentially a...

  20. Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 10{sup 19} eV at the Pierre Auger observatory and the telescope array

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Asorey, H.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration; Telescope Array Collaboration; and others

    2014-10-20

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 10{sup 19} eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 10{sup 19} eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  1. Searches for Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of $10^{19}$ eV at the Pierre Auger Observatory and the Telescope Array

    SciTech Connect (OSTI)

    Aab, Alexander; et al,

    2014-10-07

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  2. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  3. Precision Measurement of the(e++e-)Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index γ= -3.170 ± 0.008(stat+syst) ± 0.008(energy scale).

  4. Precision Measurement of the(e++e-)Flux in Primary Cosmic Rays from 0.5GeV to 1TeV with the Alpha Magnetic Spectrometer on the International Space Station

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index ?= -3.170 0.008(stat+syst) 0.008(energy scale).

  5. MCNP6 Cosmic-Source Option

    SciTech Connect (OSTI)

    McKinney, Gregg W; Armstrong, Hirotatsu; James, Michael R; Clem, John; Goldhagen, Paul

    2012-06-19

    MCNP is a Monte Carlo radiation transport code that has been under development for over half a century. Over the last decade, the development team of a high-energy offshoot of MCNP, called MCNPX, has implemented several physics and algorithm improvements important for modeling galactic cosmic-ray (GCR) interactions with matter. In this presentation, we discuss the latest of these improvements, a new Cosmic-Source option, that has been implemented in MCNP6.

  6. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    SciTech Connect (OSTI)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Falgarone, E.; Schilke, P.; Chambers, E. T.; Ossenkopf, V.; Benz, A. O.; Winkel, B.; Menten, K. M.; Black, John H.; Persson, C. M.; Bruderer, S.; Van Dishoeck, E. F.; Godard, B.; Lis, D. C.; Goicoechea, J. R.; Gupta, H.; Sonnentrucker, P.; Van der Tak, F. F. S.; and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (?{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ?{sub H} throughout our sample, and find a lognormal distribution with mean log (?{sub H}) = 15.75 (?{sub H} = 1.78 10{sup 16} s{sup 1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100times larger than found in the Galactic disk, also in accord with prior studies.

  7. Cosmic radioactivity and INTEGRAL results

    SciTech Connect (OSTI)

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  8. HD/H{sub 2} AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Liszt, H. S.

    2015-01-20

    We modeled recent observations of UV absorption of HD and H{sub 2} in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N(H{sub 2}) ratios reflect the separate self-shieldings of HD and H{sub 2} and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm{sup –3} ≲ n(H) ≲ 128 cm{sup –3} if the cosmic-ray ionization rate per H nucleus ζ {sub H} =2 × 10{sup –16} s{sup –1}, as inferred from H{sub 3} {sup +} and OH{sup +}. The dominant influence on N(HD)/N(H{sub 2}) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N(H{sub 2}). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N(H{sub 2}) and somewhat smaller N(H{sub 2})/N(H I). Comparison of our Galaxy with the Magellanic Clouds shows that smaller H{sub 2}/H is expected at subsolar metallicity, and we show by modeling that HD/H{sub 2} increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/H{sub 2} at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt H{sub 2} transition to H{sub 2}/H ≈ 1%-10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm{sup –3}. Interior H{sub 2} fractions are substantially increased by dust extinction below ≲ 32 cm{sup –3}. At smaller n(H), ζ {sub H}, small increases in H{sub 2} triggered by dust extinction can trigger abrupt increases in N(HD)

  9. A COSMIC VARIANCE COOKBOOK

    SciTech Connect (OSTI)

    Moster, Benjamin P.; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Somerville, Rachel S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Newman, Jeffrey A., E-mail: moster@mpia.de, E-mail: rix@mpia.de, E-mail: somerville@stsci.edu, E-mail: janewman@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States)

    2011-04-20

    Deep pencil beam surveys (<1 deg{sup 2}) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size {Delta}z. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , {Delta}z, and stellar mass m{sub *}. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates ({delta}{sigma}{sub v}/{sigma}{sub v}) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with {Delta}z = 0.5, the relative cosmic variance of galaxies with m{sub *}>10{sup 11} M{sub sun} is {approx}38%, while it is {approx}27% for GEMS and {approx}12% for COSMOS. For galaxies of m{sub *} {approx} 10{sup 10} M{sub sun}, the relative cosmic variance is {approx}19% for GOODS, {approx}13% for GEMS, and {approx}6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic variance is less serious.

  10. Cosmic muons, as messengers from the Universe

    SciTech Connect (OSTI)

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the penetrating component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  11. Precision Measurement of the(e++e-)Flux in Primary Cosmic Rays from 0.5GeV to 1TeV with the Alpha Magnetic Spectrometer on the International Space Station

    SciTech Connect (OSTI)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M.?J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X.?D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M.?J.; Chang, Y.?H.; Chen, A.?I.; Chen, H.; Cheng, G.?M.; Chen, H.?S.; Cheng, L.; Chikanian, A.; Chou, H.?Y.; Choumilov, E.; Choutko, V.; Chung, C.?H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Crispoltoni, M.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirkz, M.?B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Daz, C.; von Doetinchem, P.; Donnini, F.; Du, W.?J.; Duranti, M.; DUrso, D.; Eline, A.; Eppling, F.?J.; Eronen, T.; Fan, Y.?Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; Garca, B.; Garca-Lpez, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K.?H.; Habiby, M.; Haino, S.; Han, K.?C.; He, Z.?H.; Heil, M.; Hoffman, J.; Hsieh, T.?H.; Huang, Z.?C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W.?Y.; Jinchi, H.; Kanishev, K.; Kim, G.?N.; Kim, K.?S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M.?S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H.?T.; Lee, S.?C.; Leluc, C.; Li, H.?L.; Li, J.?Q.; Li, Q.; Li, Q.; Li, T.?X.; Li, W.; Li, Y.; Li, Z.?H.; Li, Z.?Y.; Lim, S.; Lin, C.?H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M.?J.; Lu, Y.?S.; Luebelsmeyer, K.; Luo, F.; Luo, J.?Z.; Lv, S.?S.; Majka, R.; Malinin, A.; Ma, C.; Marn, J.; Martin, T.; Martnez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D.?C.; Morescalchi, L.; Mott, P.; Mller, M.; Ni, J.?Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X.?M.; Rih, T.; Rancoita, P.?G.; Rapin, D.; Ricol, J.?S.; Rodrguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S.?M.; Schuckardt, D.; Schulz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.?S.; Shan, B.?S.; Shan, Y.?H.; Shi, J.?Y.; Shi, X.?Y.; Shi, Y.?M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W.?H.; Tacconi, M.; Tang, C.?P.; Tang, X.?W.; Tang, Z.?C.; Tao, L.; Tescaro, D.; Ting, Samuel C.?C.; Ting, S.?M.; Tomassetti, N.; Torsti, J.; Trko?lu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J.?P.; Wang, L.?Q.; Wang, Q.?L.; Wang, R.?S.; Wang, X.; Wang, Z.?X.; Weng, Z.?L.; Whitman, K.; Wienkenhver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R.?Q.; Xin, G.?M.; Xu, N.?S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q.?H.; Yi, H.; Yu, Y.?J.; Yu, Z.?Q.; Zeissler, S.; Zhang, J.?H.; Zhang, M.?T.; Zhang, X.?B.; Zhang, Z.; Zheng, Z.?M.; Zhuang, H.?L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index ?= -3.170 0.008(stat+syst) 0.008(energy scale).

  12. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  13. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  14. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  15. Cosmic super-strings and Kaluza-Klein modes

    SciTech Connect (OSTI)

    Dufaux, Jean-Franois

    2012-09-01

    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.

  16. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect (OSTI)

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Ebbets, Dennis [Ball Aerospace and Technologies Corp., 1600 Commerce Street, Boulder, CO 80301 (United States); Heap, Sara H. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Leitherer, Claus; Sembach, Kenneth [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Savage, Blair D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Siegmund, Oswald H. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Spencer, John; Alan Stern, S. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Welsh, Barry [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  17. NERSC Helps Discover Cosmic Transients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discover Cosmic Transients NERSC Helps Discover Cosmic Transients June 15, 2009 M31.png This false-color image of our glowing galactic neighbor, the Andromeda Galaxy, was created by layering 400 individual images captured by the PTF camera in February 2009. In one pointing, the camera has a seven square degree field of view, equivalent to approximately 25 full moons. (Palomar Transient Factory/ Peter Nugent, Berkeley Lab) An innovative new sky survey, called the Palomar Transient Factory (PTF),

  18. Masatoshi Koshiba and Cosmic Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Masatoshi Koshiba and Cosmic Neutrinos Resources with Additional Information Masatoshi Koshiba Courtesy of Sebastian Brandt 'The 2002 Nobel Prize in Physics has been awarded to ... Masatoshi Koshiba of the International Center for Elementary Particle Physics at the University of Tokyo in Japan, ... "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." ... Neutrinos are important in astrophysics since they might have played a considerable

  19. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing LaboratoryAndrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic vetofield measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

  20. HAWC γ-Ray Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC γ-Ray Observatory HAWC γ-Ray Observatory Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HAWC γ-Ray Observatory On August 1, 2013, the High-Altitude Water Cherenkov (HAWC) Gamma Ray Observatory formally began operations. HAWC is designed to study the origin of very high-energy cosmic rays and observe the

  1. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rejected Items without disclosing the corrective actions taken. IN15 LANGUAGE The English language version of this Contract shall be controlling. All deliverables under this...

  2. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rejected Items without disclosing the corrective actions taken. IN14 LANGUAGE The English language version of this Contract shall be controlling. All deliverables under this...

  3. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (11-03-2010) Title: Standard Terms & Conditions for International Commercial Transactions Owner: Procurement Policy & Quality Dept Initial Release Date: 11310 Page 1 of 8...

  4. Inverse Compton Origin of the Hard X-ray and Soft gamma-ray Emission from the Galactic Ridge

    SciTech Connect (OSTI)

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; Orlando, Elena; Bouchet, Laurent

    2008-09-30

    A recent re-determination of the non-thermal component of the hard X-ray to soft {gamma}-ray emission from the Galactic ridge, using the SPI instrument on the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) Observatory, is shown to be well reproduced as inverse-Compton emission from the interstellar medium. Both cosmic-ray primary electrons and secondary electrons and positrons contribute to the emission. The prediction uses the GALPROP model and includes a new calculation of the interstellar radiation field. This may solve a long-standing mystery of the origin of this emission, and potentially opens a new window on Galactic cosmic rays.

  5. Dark matter searches with cosmic antideuterons: status and perspectives

    SciTech Connect (OSTI)

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2013-09-01

    The search for antideuterons in cosmic rays has been proposed as a promising channel for dark matter indirect detection, especially for dark matter particles with a low or intermediate mass. With the current operational phase of the AMS-02 experiment and the ongoing development of a future dedicated experiment, the General Antiparticle Spectrometer (GAPS), there are exciting prospects for a dark matter detection in the near future. In this paper we develop a detailed and complete re-analysis of the cosmic-ray antideuteron signal, by discussing the main relevant issues related to antideuteron production and propagation through the interstellar medium and the heliosphere. In particular, we first critically revisit the coalescence mechanism for antideuteron production in dark matter annihilation processes. Then, since antideuteron searches have their best prospects of detection at low kinetic energies where the effect of the solar wind and magnetic field are most relevant, we address the impact of solar modulation modeling on the antideuteron flux at the Earth by developing a full numerical 4D solution of cosmic rays transport in the heliosphere. We finally use these improved predictions to provide updated estimates of the reaching capabilities for AMS-02 and GAPS, compatible with the current constraints imposed by the antiprotons measurements of PAMELA. After the antiproton bound is applied, prospects of detection of up to about 15 events in GAPS LDB+ and AMS-02 missions are found, depending on the dark matter mass, annihilation rate and production channel from one side, and on the coalescence process, galactic and solar transport parameters on the other.

  6. Cosmic Reionization On Computers | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its Cosmic Reionization On Computers (CROC) project, using the Adaptive Refinement Tree (ART) code as its main simulation tool. An important objective of this research is to make...

  7. Cosmic Neutrinos Scott Dodelson Fermilab/UChicago

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter particles with the smallest mass, neutrinos, are also the most abundant in the Universe. Large cosmic surveys can not only detect these neutrinos, produced when the Universe...

  8. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae We present the first large-scale...

  9. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae You are accessing a document...

  10. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the -Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the -Witness detector with Geant4 simulations in order to assure our understanding of the -Witness prototype. As a proof of concept, we present the results of using this detector with electroformed copper during its transport from Pacific Northwest National Laboratory, where the copper is grown, to the underground lab in Lead, South Dakota, where the experiment is being deployed. The development of a code to be used with the Majorana parts tracking database, designed to aid in estimating the cosmogenic activation, is also presented.

  11. Cosmological and astrophysical constraints on superconducting cosmic strings

    SciTech Connect (OSTI)

    Miyamoto, Koichi; Nakayama, Kazunori E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2013-07-01

    We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into account the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or ?-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.

  12. NEW LIMITS ON GAMMA-RAY EMISSION FROM GALAXY CLUSTERS

    SciTech Connect (OSTI)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S. E-mail: xdai@ou.edu

    2014-11-01

    Galaxy clusters are predicted to produce ?-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 10{sup 11} photons cm{sup 2} s{sup 1} (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 10{sup 44} photons s{sup 1}. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and ?-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  13. Cosmic ray acceleration at perpendicular shocks in supernova remnants

    SciTech Connect (OSTI)

    Ferrand, Gilles; Danos, Rebecca J.; Shalchi, Andreas; Safi-Harb, Samar; Edmon, Paul; Mendygral, Peter

    2014-09-10

    Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper, we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power law in momentum for low momenta (of index ?), but becomes independent of the particle momentum at high momenta (reaching a constant value ?{sub ?} above some characteristic momentum p {sub c}). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that for a given index ? and injection level, the shock modifications are similar for different possible values of p {sub c}, whereas the particle spectra differ markedly. Of particular interest, low values of p {sub c} tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.

  14. Fermilab | Science at Fermilab | Experiments & Projects | Cosmic Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intensity Frontier Cosmic Frontier Experiments at the Cosmic Frontier How it works Questions for the Universe Scientific results Experiments CDMS COUPP GammeV Pierre Auger SDSS Dark Energy Survey Proposed Projects and Experiments photo-cosmic Cosmic Frontier Particle physics experiments at the Cosmic Frontier use the cosmos as a laboratory to investigate the fundamental laws of physics. Researchers use detectors to study particles from space as they approach and enter our atmosphere in forms

  15. Uncovering the mysteries of cosmic explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncovering the mysteries of cosmic explosions Uncovering the mysteries of cosmic explosions An automated software system developed at Los Alamos National Laboratory played a key role in the discovery of supernova iPTF 14atg and could provide insight, a virtual Rosetta stone, into future supernovae and their underlying physics. May 20, 2015 A Los Alamos simulation of an exploding white dwarf, in which the supernova drives an expanding shock wave that collides with a torus of material accreted

  16. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  17. Constraints on Cosmology from the Cosmic Microwave Background...

    Office of Scientific and Technical Information (OSTI)

    from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic...

  18. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM

    Office of Scientific and Technical Information (OSTI)

    THE 2500 SQUARE-DEGREE SPT-SZ SURVEY (Journal Article) | SciTech Connect MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY Citation Details In-Document Search Title: A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South

  19. Cosmic strings: A problem or a solution

    SciTech Connect (OSTI)

    Bennett, D.P.; Bouchet, F.R.

    1987-10-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs.

  20. Scientific results from the cosmic background explorer (COBE). [Information on cosmic radiation

    SciTech Connect (OSTI)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F. ); Murdock, T.L. ); Smoot, G.F. ); Weiss, R. ); Wright, E.L. )

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 [+-] 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab.

  1. IntDataRevs.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interim Data Changes in the Short-term Energy Outlook Data System Related to Electric Power Sector and Natural Gas Demand Data Revisions Beginning with the December 2002 issue of EIA's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item

  2. Pixelsex or Cosmic Revelation ? how art & science can meet in public space

    ScienceCinema (OSTI)

    None

    2011-10-06

    Tim Otto Roth is known for his large projects in public space linking art & science. In his presentation the German artist and media theorist demonstrates some of his latest projects - among others Cosmic Revelation which changed the KASCADE detector field for cosmic rays at the Karlsruhe Institute of Technology into a giant flashing light field. The Pixelsex project leads him to the question if the universe might be digital. In occasion of his one week residency at CERN Tim Otto Roth explores the material culture of particle physics and its ways of finding pictorial representations. Above all he is interested in methods like the Monte Carlo simulation, but also in CERN as giant collaborative institution and consequently as birthplace for the World Wide Web.

  3. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation...

    Office of Scientific and Technical Information (OSTI)

    (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Astrophysics,ASTRO Word Cloud More Like This Full Text ...

  4. Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray...

    Office of Scientific and Technical Information (OSTI)

    Number: AC02-76SF00515 Resource Type: Conference Resource Relation: Journal Name: PoS EPS-HEP2009:010,2009; Conference: Prepared for 2009 Europhysics Conference on High Energy...

  5. PROBING THE COSMIC X-RAY AND MeV GAMMA-RAY BACKGROUND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    Park, CA 94025 (United States) School of Natural Sciences, Institute for Advanced Study, 1 ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  6. Cosmic-ray physics with the milagro gamma-ray observatory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux approx2.7 times that predicted by GALPROP. ...

  7. Gravity waves from cosmic bubble collisions

    SciTech Connect (OSTI)

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  8. Statistics and geometry of cosmic voids

    SciTech Connect (OSTI)

    Gaite, Jos

    2009-11-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.

  9. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    SciTech Connect (OSTI)

    Alexander, Stephon

    2009-07-06

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  10. DWARF GALAXIES AND THE COSMIC WEB

    SciTech Connect (OSTI)

    Benitez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.; Gottloeber, Stefan; Steinmetz, Matthias; Yepes, Gustavo; Hoffman, Yehuda

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  11. The Vainshtein mechanism in the cosmic web

    SciTech Connect (OSTI)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk E-mail: baojiu.li@durham.ac.uk

    2014-07-01

    We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particles are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.

  12. Massive gravity wrapped in the cosmic web

    SciTech Connect (OSTI)

    Shim, Junsup; Lee, Jounghun; Li, Baojiu E-mail: jounghun@astro.snu.ac.kr

    2014-03-20

    We study how the filamentary pattern of the cosmic web changes if the true gravity deviates from general relativity (GR) on a large scale. The f(R) gravity, whose strength is controlled to satisfy the current observational constraints on the cluster scale, is adopted as our fiducial model and a large, high-resolution N-body simulation is utilized for this study. By applying the minimal spanning tree algorithm to the halo catalogs from the simulation at various epochs, we identify the main stems of the rich superclusters located in the most prominent filamentary section of the cosmic web and determine their spatial extents per member cluster to be the degree of their straightness. It is found that the f(R) gravity has the effect of significantly bending the superclusters and that the effect becomes stronger as the universe evolves. Even in the case where the deviation from GR is too small to be detectable by any other observables, the degree of the supercluster straightness exhibits a conspicuous difference between the f(R) and the GR models. Our results also imply that the supercluster straightness could be a useful discriminator of f(R) gravity from the coupled dark energy since it is shown to evolve differently between the two models. As a final conclusion, the degree of the straightness of the rich superclusters should provide a powerful cosmological test of large scale gravity.

  13. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema (OSTI)

    Isabelle Grenier

    2010-01-08

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  14. Dark photons as fractional cosmic neutrino masquerader

    SciTech Connect (OSTI)

    Ng, Kin-Wang; Tu, Huitzu; Yuan, Tzu-Chiang E-mail: huitzu@phys.sinica.edu.tw

    2014-09-01

    Recently, Weinberg proposed a Higgs portal model with a spontaneously broken global U(1) symmetry in which Goldstone bosons may be masquerading as fractional cosmic neutrinos. We extend the model by gauging the U(1) symmetry. This gives rise to the so-called dark photon and dark Higgs. The dark photons can constitute about 0.912 (0.167) to the effective number of light neutrino species if they decouple from the thermal bath before the pions become non-relativistic and after (before) the QCD transition. Restriction on the parameter space of the portal coupling and the dark Higgs mass is obtained from the freeze-out condition of the dark photons. Combining with the collider data constraints on the invisible width of the standard model Higgs requires the dark Higgs mass to be less than a few GeV.

  15. Constraints on cosmology from the cosmic microwave background power

    Office of Scientific and Technical Information (OSTI)

    spectrum of the 2500 deg{sup 2} SPT-SZ survey (Journal Article) | SciTech Connect Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey Citation Details In-Document Search Title: Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along

  16. A measurement of the cosmic microwave background damping tail...

    Office of Scientific and Technical Information (OSTI)

    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) ...

  17. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators ...

  18. Parity Violation Constraints Using Cosmic Microwave Background Polarization

    Office of Scientific and Technical Information (OSTI)

    Spectra from 2006 and 2007 Observations by the QUaD Polarimeter (Journal Article) | SciTech Connect Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Citation Details In-Document Search Title: Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Authors: Wu, E.Y.S. ; /KIPAC, Menlo Park /Harvard U. /Stanford U., Phys.

  19. Cosmic Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Cosmic Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Experiments Theoretical and Computational Physics Advanced Technology R&D Accelerator R&D Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW

  20. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot, ... has been awarded the 2006 Nobel Prize for physics. He shares the award with John C. Mather of NASA Goddard Space Flight Center. The citation reads "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando Lawrence Award. 'Smoot has

  1. INVERSE-COMPTON CONTRIBUTION TO THE STAR-FORMING EXTRAGALACTIC GAMMA-RAY BACKGROUND

    SciTech Connect (OSTI)

    Chakraborty, Nachiketa; Fields, Brian D.

    2013-08-20

    Fermi has resolved several star-forming galaxies, but the vast majority of the star-forming universe is unresolved, and thus contributes to the extragalactic gamma-ray background (EGB). Here, we calculate the contribution of star-forming galaxies to the EGB in the Fermi range from 100 MeV to 100 GeV due to inverse-Compton (IC) scattering of the interstellar photon field by cosmic-ray electrons. We first construct one-zone models for individual star-forming galaxies assuming that supernovae power the acceleration of cosmic rays. We develop templates for both normal and starburst galaxies, accounting for differences in the cosmic-ray electron propagation and in the interstellar radiation fields. For both types of star-forming galaxies, the same IC interactions leading to gamma rays also substantially contribute to the energy loss of the high-energy cosmic-ray electrons. Consequently, a galaxy's IC emission is determined by the relative importance of IC losses in the cosmic-ray electron energy budget ({sup p}artial calorimetry{sup )}. We calculate the cosmological contribution of star-forming galaxies to the EGB using our templates and the cosmic star formation rate distribution. For all of our models, we find that the IC EGB contribution is almost an order of magnitude less than the peak of the emission due to cosmic-ray ion interactions (mostly pionic p{sub cr} p{sub ism} {yields} {pi}{sup 0} {yields} {gamma}{gamma}); even at the highest Fermi energies, IC is subdominant. The flatter IC spectrum increases the high-energy signal of the pionic+IC sum, bringing it closer to the EGB spectral index observed by Fermi. Partial calorimetry ensures that the overall IC signal is relatively well constrained, with only uncertainties in the amplitude and spectral shape for plausible model choices. We conclude with a brief discussion on how the pionic spectral feature and other methods can be used to measure the star-forming component of the EGB.

  2. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; et al

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmoresuch as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.less

  3. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect (OSTI)

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (??{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (??{sup 2}){sup 1/2} < 27.3 mrad (1.56), with r = 0.194 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  4. Is it really naked? On cosmic censorship in string theory

    SciTech Connect (OSTI)

    Frolov, Andrei V.

    2004-11-15

    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks.

  5. Is it Really Naked? On Cosmic Censorship in String Theory

    SciTech Connect (OSTI)

    Frolov, A

    2004-09-30

    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.

  6. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle

  7. Method for detecting moisture in soils using secondary cosmic radiation

    DOE Patents [OSTI]

    Condreva, Kenneth

    2003-12-16

    Water content in a soil is determined by measuring the attenuation of secondary background cosmic radiation as this radiation propagates through a layer of soil and water. By measuring the attenuation of secondary cosmic radiation in the range of 5 MeV-15 MeV it is possible to obtain a relative measure of the water content in a soil layer above a suitable radiation detector and thus establish when and how much irrigation is needed. The electronic circuitry is designed so that a battery pack can be used to supply power.

  8. Constraints on Cosmology from the Cosmic Microwave Background Power

    Office of Scientific and Technical Information (OSTI)

    Spectrum of the 2500-square degree SPT-SZ Survey (Journal Article) | SciTech Connect Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Authors: Hou, Z. ; et al. Publication Date: 2012-12-01 OSTI Identifier: 1156457 Report Number(s): FERMILAB-PUB-13-072-A arXiv eprint

  9. Photo of the Week: The Cosmic Frontier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Cosmic Frontier Photo of the Week: The Cosmic Frontier March 7, 2014 - 4:10pm Addthis This week on Energy.gov, we’ve covered space and beyond -- from technologies at our National Labs that are working to prevent traffic jams in space, to infographics about collecting space-based solar power, to the real-world scientific counterparts to lightsabers. Throughout it all, we've featured experts at the Energy Department and National Labs who are contributing to the U.S. space program. This

  10. PROMPT HIGH-ENERGY EMISSION FROM PROTON-DOMINATED GAMMA-RAY BURSTS (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect PROMPT HIGH-ENERGY EMISSION FROM PROTON-DOMINATED GAMMA-RAY BURSTS Citation Details In-Document Search Title: PROMPT HIGH-ENERGY EMISSION FROM PROTON-DOMINATED GAMMA-RAY BURSTS The prompt emission of gamma-ray bursts (GRBs) is widely thought to be radiation from accelerated electrons, but an appreciably larger amount of energy could be carried by accelerated protons, particularly if GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). We model the

  11. Cosmic Accelerators: Engines of the Extreme Universe

    SciTech Connect (OSTI)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  12. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect (OSTI)

    Lima, J.A.S.; Graef, L.L.; Pavn, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the GibbonsHawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  13. MCNP6 Cosmic & Terrestrial Background Particle Fluxes -- Release 4

    SciTech Connect (OSTI)

    McMath, Garrett E.; McKinney, Gregg W.; Wilcox, Trevor

    2015-01-23

    Essentially a set of slides, the presentation begins with the MCNP6 cosmic-source option, then continues with the MCNP6 transport model (atmospheric, terrestrial) and elevation scaling. It concludes with a few slides on results, conclusions, and suggestions for future work.

  14. CMB ISW-lensing bispectrum from cosmic strings

    SciTech Connect (OSTI)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro E-mail: sendouda@cc.hirosaki-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, G? << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  15. OBSERVATIONS OF OUTFLOWING ULTRAVIOLET ABSORBERS IN NGC 4051 WITH THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect (OSTI)

    Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Crenshaw, D. M.; Fischer, T. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Dunn, J. P. [Department of Chemistry and Physics, Augusta State University, 2500 Walton Way, Augusta, GA 30904 (United States); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Lobban, A. P.; Reeves, J. N. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Miller, L. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Braito, V., E-mail: steven.b.kraemer@nasa.gov [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2012-06-01

    We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations of the narrow-line Seyfert 1 galaxy NGC 4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph (STIS). None of the absorption components showed evidence for changes in column density or profile within the {approx}10 yr between the STIS and COS observations, which we interpret as evidence of (1) saturation, for the stronger components, or (2) very low densities, i.e., n{sub H} < 1 cm{sup -3}, for the weaker components. After applying a +200 km s{sup -1} offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5, and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass-loss rate is dominated by high-ionization gas which lacks a significant UV footprint.

  16. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect (OSTI)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  17. InteliSolar | Open Energy Information

    Open Energy Info (EERE)

    Santa Clara, California Zip: 95054 Region: Bay Area Sector: Efficiency, Renewable Energy, Services, Solar, Wind energy Product: Renewable Energy Systems using solar or wind...

  18. A. Sobiczewski, Int. Symp. on SHN,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models, one finds (A.S., Yu.A. Litvinov, PRC 89, 024311 (2014)): Rms (keV) Model DZ FRDM LSD HFB21 WS3+ WS4+ HN (Nnucl) Z,N 8 394 654 608 572 248 170 - 2353 Z 82, N 126...

  19. Nambu--Goldstone Dark Matter and Cosmic Ray Electron and Positron...

    Office of Scientific and Technical Information (OSTI)

    seudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow...

  20. A search for correlation of ultra-high energy cosmic rays with...

    Office of Scientific and Technical Information (OSTI)

    David 3 ; Waxman, Eli, E-mail: fotini@star.ucl.ac.uk, E-mail: connolly@physics.osu.edu, E-mail: fba@star.ucl.ac.uk, E-mail: o.lahav@ucl.ac.uk, E-mail: sat@star.ucl.ac.uk, ...

  1. Constraints on the Cosmic-Ray Density Gradient Beyond the Solar...

    Office of Scientific and Technical Information (OSTI)

    Authors: Ackermann, M. ; Ajello, M. ; KIPAC, Menlo Park ; Baldini, L. ; INFN, Pisa ; Ballet, J. ; DAPNIA, Saclay ; Barbiellini, G. ; INFN, Trieste Trieste U. ; Bastieri, D. ;...

  2. Measurements of cosmic-ray correlated events at the Soudan underground laboratory

    SciTech Connect (OSTI)

    Villano, A. N.; Cushman, P.; Bunker, R.

    2013-08-08

    The ceiling and walls of the Low Background Facility at the Soudan Underground Laboratory are lined proportional tubes which form a 30 m 17 m 12 m muon tracker. The data acquisition records GPS-generated time stamps along with position information. The tracker is a refurbished version of the Soudan 2 proton-decay muon veto shield. It can now be used in conjunction with other experiments housed within its walls. Particularly interesting is the possible measurement of cavern muons coincident with high-energy neutron detections in the Neutron Multiplicity Meter (NMM), a 4-tonne gadolinium-loaded water Cherenkov neutron capture detector atop a 20-kilotonne lead target. Here we cover the ability of the shield and co-located detectors to achieve coincident timing resolutions of about 1 microsecond via GPS-synchronized absolute timing electronics. The usage of such technology for constraining muon-neutron correlations underground is discussed.

  3. Concerning the possibility of employing superconducting systems for analyzing the composition of cosmic rays

    SciTech Connect (OSTI)

    Anashkin, O.P.; Belitskiy, B.M.; Brodskiy, V.B.; Kurnosova, L.V.; Mikhaylov, N.N.

    1983-09-01

    The experimental results on the use of superconductive systems onboard spacecraft are described. To ensure low temperatures in the cryostat under weightlessness helium was used at a pressure above the critical value. In flight the temperature was controlled at six points while the pressure and intensity of the magnetic field were controlled in the solenoids.

  4. Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon...

    Office of Scientific and Technical Information (OSTI)

    M.H. ; Washington U., St. Louis Delaware U. Hawaii U. Caltech, JPL Hawaii U. NASA, Goddard Minnesota U. Hawaii U. Ohio State U. Hawaii U. Caltech, JPL SLAC...

  5. Prototype Power and Communications System for EeV Cosmic Rays Studies

    SciTech Connect (OSTI)

    Russ, James S.

    2010-08-31

    An analysis of improving the power output of small wind turbines by adding a venturi housing was done. Including the effects of back pressure developed at the input to the housing lowers the efficiency gain from a factor of 5 to a factor of 2 for a turbine blade radius of 24 inches. The gain is small enough that only large systems could profit from the application.

  6. Estimation of Equivalent Sea Level Cosmic Ray Exposure for Low Background Experiment

    SciTech Connect (OSTI)

    Greene, Austen T.; Orrell, John L.

    2012-08-25

    While scientists at CERN and other particle accelerators around the world explore the boundaries of high energy physics, the Majorana project investigates the other end of the spectrum with its extremely sensitive, low background, low energy detector. The MAJORANA DEMONSTRATOR aims to detect neutrinoless double beta decay (0???), a rare theoretical process in which two neutrons decay into two protons and two electrons, without the emission of the two antineutrinos that are a product of a normal double beta decay. This process is only possible if and therefore a detection would prove the neutrino is a Majorana particle, meaning that it is its own antiparticle [Aaselth et al. 2004] . The existence of such a decay would also disprove lepton conservation and give information about the neutrino's mass.

  7. ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS (Journal...

    Office of Scientific and Technical Information (OSTI)

    distribution from a simple power law, in the form of an excess around 0.1-1 TeV energies. ... The model presented here assumes a power-law injection of electrons (and protons) by ...

  8. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal...

    Office of Scientific and Technical Information (OSTI)

    distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. ... The model presented here assumes a power-law injection of electrons (and protons) by ...

  9. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal...

    Office of Scientific and Technical Information (OSTI)

    as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the...

  10. Implications of fast radio bursts for superconducting cosmic strings

    SciTech Connect (OSTI)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry E-mail: hrspksc@hku.hk E-mail: iastye@ust.hk

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  11. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect (OSTI)

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  12. Cosmic Reionization On Computers III. The Clumping Factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  13. Constraining dark energy through the stability of cosmic structures

    SciTech Connect (OSTI)

    Pavlidou, V.; Tetradis, N.; Tomaras, T.N. E-mail: ntetrad@phys.uoa.gr

    2014-05-01

    For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.

  14. A JOINT MODEL OF THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL

    Office of Scientific and Technical Information (OSTI)

    CONSTRUCTION AND FIRST RESULTS (Journal Article) | SciTech Connect THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL CONSTRUCTION AND FIRST RESULTS Citation Details In-Document Search Title: A JOINT MODEL OF THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL CONSTRUCTION AND FIRST RESULTS We present an extragalactic population model of the cosmic background light to interpret the rich high-quality survey data in the X-ray and IR bands. The model incorporates star formation

  15. INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION

    SciTech Connect (OSTI)

    Carilli, C. L.

    2011-04-01

    I present a simple calculation of the expected mean CO brightness temperature from the large-scale distribution of galaxies during cosmic reionization. The calculation is based on the cosmic star formation rate density required to reionize, and keep ionized, the intergalactic medium, and uses standard relationships between star formation rate, IR luminosity, and CO luminosity derived for star-forming galaxies over a wide range in redshift. I find that the mean CO brightness temperature resulting from the galaxies that could reionize the universe at z = 8 is T{sub B} {approx} 1.1(C/5)(f{sub esc}/0.1){sup -1}{mu}K, where f{sub esc} is the escape fraction of ionizing photons from the first galaxies and C is the IGM clumping factor. Intensity mapping of the CO emission from the large-scale structure of the star-forming galaxies during cosmic reionization on scales of order 10{sup 2} to 10{sup 3} deg{sup 2}, in combination with H I 21 cm imaging of the neutral IGM, will provide a comprehensive study of the earliest epoch of galaxy formation.

  16. Can f(T) gravity theories mimic ?CDM cosmic history

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir

    2013-01-01

    Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ?CDM cosmology we assume that, (i) the background cosmic history provided by the flat ?CDM (the radiation ere with ?{sub eff} = (1/3), matter and de Sitter eras with ?{sub eff} = 0 and ?{sub eff} = ?1, respectively) (ii) the radiation dominate in the radiation era with ?{sub 0r} = 1 and the matter dominate during the matter phases when ?{sub 0m} = 1. We find the cosmological dynamical system which can obey the ?CDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.

  17. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    SciTech Connect (OSTI)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  18. A cosmic perspective from Lapland in 2001 (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: A cosmic perspective from Lapland in 2001 A convergence of ideas, observations and technology have led to the greatest period of cosmological discovery yet. Over the past ...

  19. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC...

    Office of Scientific and Technical Information (OSTI)

    ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. ...

  20. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE

    SciTech Connect (OSTI)

    Fixsen, D. J.; Kashlinsky, A. E-mail: alexander.kashlinsky@nasa.gov

    2011-06-10

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to {approx}30% by the COBE satellite. Over the 100-500 {mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of {approx}10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  1. Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion

    SciTech Connect (OSTI)

    Ying, Leong

    2010-09-30

    The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.

  2. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao; Mertsch, Philipp

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  3. Cosmic expansion histories in massive bigravity with symmetric matter coupling

    SciTech Connect (OSTI)

    Enander, Jonas; Mrtsell, Edvard [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden); Solomon, Adam R. [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA (United Kingdom); Akrami, Yashar, E-mail: enander@fysik.su.se, E-mail: a.r.solomon@damtp.cam.ac.uk, E-mail: yashar.akrami@astro.uio.no, E-mail: edvard@fysik.su.se [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2015-01-01

    We study the cosmic expansion history of massive bigravity with a viable matter coupling which treats both metrics on equal footing. We derive the Friedmann equation for the effective metric through which matter couples to the two metrics, and study its solutions. For certain parameter choices, the background cosmology is identical to that of ?CDM. More general parameters yield dynamical dark energy, which can still be in agreement with observations of the expansion history. We study specific parameter choices of interest, including minimal models, maximally-symmetric models, and a candidate partially-massless theory.

  4. Search for Linear Polarization of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  5. Is Cosmic Acceleration Telling Us Something About Gravity?

    ScienceCinema (OSTI)

    Trodden, Mark [Syracuse University, Syracuse, New York, United States

    2009-09-01

    Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach. I will conclude by discussing how we might hope to distinguish between modifications of General Relativity and dark energy as competing hypotheses to explain cosmic acceleration.

  6. Cosmic Shear Measurements with DES Science Verification Data

    SciTech Connect (OSTI)

    Becker, M. R.

    2015-07-20

    We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper (DES et al. 2015).

  7. Cosmology from Cosmic Shear with DES Science Verification Data

    SciTech Connect (OSTI)

    Abbott, T.

    2015-07-20

    We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find ?8(m=0.3)0.5 = 0:81 0:06 (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. Furthermore, we examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data. Our results are consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of ?8(?m=0.3)0.5 is present regardless of the value of w.

  8. Alignments of galaxies within cosmic filaments from SDSS DR7

    SciTech Connect (OSTI)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  9. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  10. Cosmic slowing down of acceleration for several dark energy parametrizations

    SciTech Connect (OSTI)

    Magaa, Juan; Crdenas, Vctor H.; Motta, Vernica, E-mail: juan.magana@uv.cl, E-mail: victor.cardenas@uv.cl, E-mail: veronica.motta@uv.cl [Instituto de Fsica y Astronoma, Facultad de Ciencias, Universidad de Valparaso, Avda. Gran Bretaa 1111, Valparaso (Chile)

    2014-10-01

    We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.

  11. Accretion disk radiation dynamics and the cosmic battery

    SciTech Connect (OSTI)

    Koutsantoniou, Leela E.; Contopoulos, Ioannis E-mail: icontop@academyofathens.gr

    2014-10-10

    We investigate the dynamics of radiation in the surface layers of an optically thick astrophysical accretion disk around a Kerr black hole. The source of the radiation is the surface of the accretion disk itself, and not a central object as in previous studies of the Poynting-Robertson effect. We generate numerical sky maps from photon trajectories that originate on the surface of the disk as seen from the inner edge of the disk at the position of the innermost stable circular orbit. We investigate several accretion disk morphologies with a Shakura-Sunyaev surface temperature distribution. Finally, we calculate the electromotive source of the Cosmic Battery mechanism around the inner edge of the accretion disk and obtain characteristic timescales for the generation of astrophysical magnetic fields.

  12. Far Infrared Spectrometry of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  13. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA

    Office of Scientific and Technical Information (OSTI)

    Experiment (Journal Article) | SciTech Connect New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment Citation Details In-Document Search Title: New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x

  14. A measurement of the cosmic microwave background damping tail from the

    Office of Scientific and Technical Information (OSTI)

    2500-square-degree SPT-SZ survey (Journal Article) | SciTech Connect A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey Citation Details In-Document Search Title: A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich

  15. COSMIC EMULATION: THE CONCENTRATION-MASS RELATION FOR wCDM UNIVERSES

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect COSMIC EMULATION: THE CONCENTRATION-MASS RELATION FOR wCDM UNIVERSES Citation Details In-Document Search Title: COSMIC EMULATION: THE CONCENTRATION-MASS RELATION FOR wCDM UNIVERSES The concentration-mass relation for dark matter-dominated halos is one of the essential results expected from a theory of structure formation. We present a simple prediction scheme, a cosmic emulator, for the concentration-mass (c-M) relation as a function of cosmological

  16. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  17. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  18. Ray J. Corey- Biography

    Broader source: Energy.gov [DOE]

    Ray Corey currently serves as the Assistance Manager for Safety and Environment at the DOE Richland Operations office (RL).

  19. PROMPT X-RAY AND OPTICAL EXCESS EMISSION DUE TO HADRONIC CASCADES IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Asano, Katsuaki; Inoue, Susumu; Meszaros, Peter E-mail: inoue@tap.scphys.kyoto-u.ac.j

    2010-12-20

    A fraction of gamma-ray bursts (GRBs) exhibit distinct spectral features in their prompt emission below few tens of keV that exceed simple extrapolations of the low-energy power-law portion of the Band spectral model. This is also true for the prompt optical emission observed in several bursts. Through Monte Carlo simulations, we model such low-energy spectral excess components as hadronic cascade emission initiated by photomeson interactions of ultra-high-energy protons accelerated within GRB outflows. Synchrotron radiation from the cascading, secondary electron-positron pairs can naturally reproduce the observed soft spectra in the X-ray band, and in some cases the optical spectra as well. These components can be directly related to the higher energy radiation at GeV energies due to the hadronic cascades. Depending on the spectral shape, the total energy in protons is required to be comparable to or appreciably larger than the observed total photon energy. In particular, we apply our model to the excess X-ray and GeV emission of GRB 090902B, and the bright optical emission of the 'naked-eye' GRB 080319B. Besides the hard GeV components detected by Fermi, such X-ray or optical spectral excesses are further potential signatures of ultra-high-energy cosmic ray production in GRBs.

  20. Gamma-ray constraints on hadronic and leptonic activities of decaying dark matter

    SciTech Connect (OSTI)

    Chen, Chuan-Ren; Mandal, Sourav K.; Takahashi, Fuminobu E-mail: sourav.mandal@berkeley.edu

    2010-01-01

    While the excess in cosmic-ray electrons and positrons reported by PAMELA and Fermi may be explained by dark matter decaying primarily into charged leptons, this does not necessarily mean that dark matter should not have any hadronic decay modes. In order to quantify the allowed hadronic activities, we derive constraints on the decay rates of dark matter into WW, ZZ, hh, q q-bar and gg using the Fermi and HESS gamma-ray data. We also derive gamma-ray constraints on the leptonic e{sup +}e{sup −}, μ{sup +}μ{sup −} and τ{sup +}τ{sup −} final states. We find that dark matter must decay primarily into μ{sup +}μ{sup −} or τ{sup +}τ{sup −} in order to simultaneously explain the reported excess and meet all gamma-ray constraints.

  1. #SpaceWeek: Science on the Cosmic Frontier | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy and beyond. These are just a few of the stories we'll be sharing as we explore science on the cosmic frontier: Since the launch of the Transit 4A navigation satellite in...

  2. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  3. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  4. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE

    Office of Scientific and Technical Information (OSTI)

    AND INFRARED BACKGROUND ANISOTROPIES (Journal Article) | SciTech Connect PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES Citation Details In-Document Search Title: PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The

  5. Cosmic Structure Probes of the Dark Universe (Porting and Tuning HACC on

    Office of Scientific and Technical Information (OSTI)

    Mira): ALCF-2 Early Science Program Technical Report (Technical Report) | SciTech Connect Cosmic Structure Probes of the Dark Universe (Porting and Tuning HACC on Mira): ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Cosmic Structure Probes of the Dark Universe (Porting and Tuning HACC on Mira): ALCF-2 Early Science Program Technical Report Authors: Finkel, H.J. [1] + Show Author Affiliations (LCF) Publication Date: 2013-05-13 OSTI Identifier:

  6. Hunting Cosmic Ghosts | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hunting Cosmic Ghosts News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 09.30.15 Hunting Cosmic Ghosts Third in a series of profiles on the recipients of DOE's Office of Science early career awards: Alysia

  7. Modeling Cosmic Nucleosynthesis | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Cosmic Nucleosynthesis Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 12.01.13 Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by

  8. TRACKING DOWN THE SOURCE POPULATION RESPONSIBLE FOR THE UNRESOLVED COSMIC 6-8 keV BACKGROUND

    SciTech Connect (OSTI)

    Xue, Y. Q.; Wang, S. X.; Brandt, W. N.; Luo, B.; Schneider, D. P.; Young, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Gilli, R.; Fabian, A. C.; Lehmer, B. D.; Vignali, C.

    2012-10-20

    Using the 4 Ms Chandra Deep Field-South (CDF-S) survey, we have identified a sample of 6845 X-ray-undetected galaxies that dominates the unresolved Almost-Equal-To 20%-25% of the 6-8 keV cosmic X-ray background (XRB). This sample was constructed by applying mass and color cuts to sources from a parent catalog based on GOODS-South Hubble Space Telescope z-band imaging of the central 6'radius area of the 4 Ms CDF-S. The stacked 6-8 keV detection is significant at the 3.9{sigma} level, but the stacked emission was not detected in the 4-6 keV band, which indicates the existence of an underlying population of highly obscured active galactic nuclei (AGNs). Further examinations of these 6845 galaxies indicate that the galaxies on the top of the blue cloud and with redshifts of 1 {approx}< z {approx}< 3, magnitudes of 25 {approx}< z {sub 850} {approx}< 28, and stellar masses of 2 Multiplication-Sign 10{sup 8} {approx}< M {sub *}/M {sub Sun} {approx}< 2 Multiplication-Sign 10{sup 9} make the majority contributions to the unresolved 6-8 keV XRB. Such a population is seemingly surprising given that the majority of the X-ray-detected AGNs reside in massive ({approx}> 10{sup 10} M {sub Sun }) galaxies. We discuss constraints upon this underlying AGN population, supporting evidence for relatively low mass galaxies hosting highly obscured AGNs, and prospects for further boosting the stacked signal.

  9. Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints

    SciTech Connect (OSTI)

    Esmaili, Arman; Serpico, Pasquale Dario

    2015-10-07

    The very high energy Galactic γ-ray sky is partially opaque in the (0.1–10) PeV energy range. In the light of the recently detected high energy neutrino flux by IceCube, a comparable very high energy γ-ray flux is expected in any scenario with a sizable Galactic contribution to the neutrino flux. Here we elaborate on the peculiar energy and anisotropy features imposed upon these very high energy γ-rays by the absorption on the cosmic microwave background photons and Galactic interstellar light. As a notable application of our considerations, we study the prospects of probing the PeV-scale decaying DM scenario, proposed as a possible source of IceCube neutrinos, by extensive air shower (EAS) cosmic ray experiments. In particular, we show that anisotropy measurements at EAS experiments are already sensitive to τ{sub DM}∼O(10{sup 27}) s and future measurements, using better gamma/hadron separation, can improve the limit significantly.

  10. Comments on Cosmic Censorship in AdS/CFT

    SciTech Connect (OSTI)

    Hubeny, Veronika E.; Liu, Xiao; Rangamani, Mukund; Shenker, Stephen

    2004-03-21

    Recently Hertog, Horowitz, and Maeda (HHM) (hep-th/0310054) have proposed that cosmic censorship can be violated in the AdS/CFT context. They argue that for certain initial data there is insufficient energy available to make a black hole whose horizon is big enough to cloak the singularity that forms. We have investigated this proposal in the models HHM discuss and have thus far been unable to find initial data that provably satisfy this criterion, despite our development of an improved lower bound on the size of the singular region. This is consistent with recent numerical results (hep-th/0402109). For certain initial data, the energies of our configurations are not far above the lower bound on the requisite black hole mass, and so it is possible that in the exact time development naked singularities do form. We go on to argue that the finite radius cut-off AdS_5 situation discussed by HHM displays instabilities when the full 10D theory is considered. We propose an AdS_3 example that may well be free of this instability.

  11. Magnification relations for Kerr lensing and testing cosmic censorship

    SciTech Connect (OSTI)

    Werner, M. C.; Petters, A. O.

    2007-09-15

    A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m>1 indicates a naked singularity, a most interesting application would be a test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.

  12. Comments on Cosmic Censorship in AdS/CFT

    SciTech Connect (OSTI)

    Hubeny, V.

    2004-04-06

    Recently Hertog, Horowitz, and Maeda (HHM) (hep-th/0310054) have proposed that cosmic censorship can be violated in the AdS/CFT context. They argue that for certain initial data there is insufficient energy available to make a black hole whose horizon is big enough to cloak the singularity that forms. We have investigated this proposal in the models HHM discuss and have thus far been unable to find initial data that provably satisfy this criterion, despite our development of an improved lower bound on the size of the singular region. This is consistent with recent numerical results (hep-th/0402109). For certain initial data, the energies of our configurations are not far above the lower bound on the requisite black hole mass, and so it is possible that in the exact time development naked singularities do form. We go on to argue that the finite radius cut-off AdS5 situation discussed by HHM displays instabilities when the full 10D theory is considered. We propose an AdS3 example that may well be free of this instability.

  13. Dynamics of cosmic strings with higher-dimensional windings

    SciTech Connect (OSTI)

    Yamauchi, Daisuke; Lake, Matthew J.

    2015-06-11

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.

  14. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1�}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  15. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect (OSTI)

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methodsray tracing, a one-zone model, and X-ray background modelingto investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  16. Gamma ray detector shield

    DOE Patents [OSTI]

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  17. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  18. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  19. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  20. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: timothy.r.kallman@nasa.gov

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  1. FERMI LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Li Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing (China); Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming (China)

    2013-06-20

    If gamma-ray bursts (GRBs) produce high-energy cosmic rays, neutrinos are expected to be generated in GRBs via photo-pion productions. However, we stress that the same process also generates electromagnetic (EM) emission induced by the secondary electrons and photons, and that the EM emission is expected to be correlated with neutrino flux. Using Fermi/Large Area Telescope results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be <20 GeV m{sup -2} per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that IceCube, operating at full scale, requires stacking of more than 130 GRBs in order to detect one GRB muon neutrino.

  2. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    SciTech Connect (OSTI)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P. E-mail: Markus.Rummel@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP to photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.

  3. ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS

    SciTech Connect (OSTI)

    Zauderer, B. A.; Berger, E.; Margutti, R.; Fong, W.; Laskar, T.; Chornock, R.; Soderberg, A. M. [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Olivares E, F.; Greiner, J. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Perley, D. A.; Horesh, A.; Carpenter, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91225 (United States); Updike, A. C. [Department of Chemistry and Physics, Roger Williams University, Bristol, RI 02809 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Nakar, E. [Department of Astrophysics, Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Chandra, P. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune 411007 (India); Castro-Tirado, A. J. [Instituto de Astrofisica de Andalucia (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Bremer, M. [Institut de Radioastronomie Millimetrique, 300 rue de la Piscine, F-38406 Saint Martin d'Heres (France); and others

    2013-04-20

    We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as ''dark''. Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z {approx}< 4 (110709B) and z Almost-Equal-To 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A{sub V}{sup host}{approx}>5.3 mag and GRB 111215A requires A{sub V}{sup host}{approx}>8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N{sub H,{sub int}} {approx}> 10{sup 22} cm{sup -2} (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A{sub V} -N{sub H} relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E{sub {gamma}} + E{sub K} Almost-Equal-To (7-9) Multiplication-Sign 10{sup 51} erg (z = 2) expanding into a wind medium with a high density, M Almost-Equal-To (6-20) Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1} (n Almost-Equal-To 100-350 cm{sup -3} at Almost-Equal-To 10{sup 17} cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors.

  4. The 21 cm signature of shock heated and diffuse cosmic string wakes

    SciTech Connect (OSTI)

    Hernndez, Oscar F.; Brandenberger, Robert H. E-mail: rhb@physics.mcgill.ca

    2012-07-01

    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on G? from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions G? > 2.5 10{sup ?8}.

  5. The first gamma-ray bursts in the universe

    SciTech Connect (OSTI)

    Mesler, R. A.; Pihlstrm, Y. M. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Whalen, Daniel J.; Smidt, Joseph [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fryer, Chris L.; Lloyd-Ronning, N. M. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-20

    Gamma-ray bursts (GRBs) are the ultimate cosmic lighthouses, capable of illuminating the universe at its earliest epochs. Could such events probe the properties of the first stars at z ? 20, the end of the cosmic Dark Ages? Previous studies of Population III (Pop III) GRBs only considered explosions in the diffuse relic H II regions of their progenitors or bursts that are far more energetic than those observed to date. However, the processes that produce GRBs at the highest redshifts likely reset their local environments, creating much more complicated structures than those in which relativistic jets have been modeled so far. These structures can greatly affect the luminosity of the afterglow and hence the redshift at which it can be detected. We have now simulated Pop III GRB afterglows in H II regions, winds, and dense shells ejected by the star during the processes that produce the burst. We find that GRBs with E {sub iso,?} = 10{sup 51}-10{sup 53} erg will be visible at z ? 20 to the next generation of near infrared and radio observatories. In many cases, the environment of the burst, and hence progenitor type, can be inferred from the afterglow light curve. Although some Pop III GRBs are visible to Swift and the Very Large Array now, the optimal strategy for their detection will be future missions like the proposed EXIST and JANUS missions with large survey areas and onboard X-ray and infrared telescopes that can track their near-infrared flux from the moment of the burst, thereby identifying their redshifts.

  6. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  7. THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS

    SciTech Connect (OSTI)

    Fernandez, Elizabeth R.; Komatsu, Eiichiro; Shapiro, Paul R.; Iliev, Ilian T.

    2010-02-20

    The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information regarding the nature of sources contributing to the cosmic reionization. The angular power spectrum of the IGM, in most cases, is much smaller than the halo angular power spectrum, except when f{sub esc} is close to unity, t{sub SF} is longer, or the minimum redshift at which the star formation is occurring is high. In addition, low levels of the observed mean background intensity tend to rule out high values of f{sub *} {approx}> 0.2.

  8. #SpaceWeek: Science on the Cosmic Frontier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the Cosmic Frontier #SpaceWeek: Science on the Cosmic Frontier March 3, 2014 - 12:00pm Addthis Join us for a Twitter <a href="https://twitter.com/search?q=%23LabChat&src=typd&f=realtime">#LabChat</a> on dark energy -- the theoretical force that is causing the universe to expand at an accelerating rate -- at 12 p.m. ET on Friday, March 7th. Submit your questions to <a href="https://twitter.com/energy">@energy</a> using <a

  9. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema (OSTI)

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  10. The Soft X-Ray Cosmos: ROSAT Science Symposium and Data Analysis Workshop

    SciTech Connect (OSTI)

    Schlegel, E.M.

    1994-12-31

    These proceedings represent papers presented at the ROSAT Science Symposium and Data Analysis Workshop held in College Park, Maryland. The aim was to showcase the results obtained thus far using ROSAT, the Roentgen Satellite, and to provide a forum for discussion regarding the means for extracting the maximum amount of information from ROSAT data. The cosmic x-ray sources discussed, included the cataclysmic variables, the Algol binary systems, the dark matter, galactic clusters, blazars, and many others. Star formation by galaxy interactions was also discussed. There were ninety one papers presented at the conference and none of these have been abstracted for the Energy Science and Technology database. (AIP)

  11. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  12. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  13. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  14. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

  15. Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history

    SciTech Connect (OSTI)

    Tamborra, Irene; Ando, Shin'ichiro; Murase, Kohta E-mail: s.ando@uva.nl

    2014-09-01

    Star-forming galaxies have been predicted to contribute considerably to the diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Assuming that the hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos and that O(100) PeV cosmic rays can be produced and confined in starburst galaxies, we here discuss the possibility that star-forming galaxies are also the main sources of the high-energy neutrinos observed by the IceCube experiment. First, we compute the diffuse gamma-ray background from star-forming galaxies, adopting the latest Herschel PEP/HerMES luminosity function and relying on the correlation between the gamma-ray and infrared luminosities reported by Fermi observations. Then we derive the expected intensity of the diffuse high-energy neutrinos from star-forming galaxies including normal and starburst galaxies. Our results indicate that starbursts, including those with active galactic nuclei and galaxy mergers, could be the main sources of the high-energy neutrinos observed by the IceCube experiment. We find that assuming a cosmic-ray spectral index of 2.12.2 for all starburst-like galaxies, our predictions can be consistent with both the Fermi and IceCube data, but larger indices readily fail to explain the observed diffuse neutrino flux. Taking the starburst high-energy spectral index as free parameter, and extrapolating from GeV to PeV energies, we find that the spectra harder than E{sup -2.15} are likely to be excluded by the IceCube data, which can be more constraining than the Fermi data for this population.

  16. Gamma ray camera

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  17. Gamma ray camera

    DOE Patents [OSTI]

    Perez-Mendez, Victor (Berkeley, CA)

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  18. Dark Matter Constraints from a Cosmic Index of Refraction

    SciTech Connect (OSTI)

    Gardner, Susan; Latimer, David C.

    2009-04-01

    The dark-matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects: the real part yields dispersive effects in propagation, and the imaginary part yields such in attenuation. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter. As a first application we use the time delay determined from radio afterglow observations of gamma-ray bursts to limit the charge-to-mass ratio of dark matter to |{var_epsilon}|/M < 1.8 x 10{sup -5} eV{sup -1} at 95% CL.

  19. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Kruehler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Zafar, Tayyaba [Laboratoire d'Astrophysique de Marseille - LAM, Universite Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, F-13388, Marseille Cedex 13 (France); Gorosabel, Javier [Instituto de Astrofisica de Andalucia (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008, Granada (Spain); Jakobsson, Pall, E-mail: darach@dark-cosmology.dk [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland)

    2013-05-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N{sub H{sub X}}) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A{sub V} ). This correlation explains the connection between dark bursts and bursts with high N{sub H{sub X}} values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N{sub H{sub X}}/A{sub V} is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well as the absence of dust, metal or hydrogen absorption features in the optical-UV spectra.

  20. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  1. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  2. Cosmography with the Sunyaev-Zeldovich effect and X-ray data

    SciTech Connect (OSTI)

    Holanda, R.F.L.; Alcaniz, J.S.; Carvalho, J.C. E-mail: alcaniz@on.br

    2013-06-01

    Cosmography provides a direct method to map the expansion history of the Universe in a model-independent way. Recently, different kinds of observations have been used in cosmographic analyses, such as SNe Ia and gamma ray bursts measurements, weak and strong lensing, cosmic microwave background anisotropies, etc. In this work we examine the prospects for constraining cosmographic parameters from current and future measurements of galaxy clusters distances based on their Sunyaev-Zeldovich effect (SZE) and X-ray observations. By assuming the current observational error distribution, we perform Monte Carlo simulations based on a well-behaved parameterization for the deceleration parameter to generate samples with different characteristics and study the improvement on the determination of the cosmographic parameters from upcoming data. The influence of galaxy clusters (GC) morphologies on the H{sub 0}?q{sub 0} plane is also investigated.

  3. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect (OSTI)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ?35% at redshift z ? 7 to ? 65% at z ? 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  4. Microsoft Word - Int_blends_Rpt1_Updated.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL/TP-540-43543 ORNL/TM-2008/117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark Ronald Graves John Orban Steve Przesmitzki Timothy Theiss DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be

  5. EIS-0283-S2-IntActDet-2011.pdf

    Office of Environmental Management (EM)

  6. A HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH SEARCH FOR WARM-HOT BARYONS IN THE Mrk 421 SIGHT LINE

    SciTech Connect (OSTI)

    Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.; Penton, Steven V.; Shull, J. Michael; Yao Yangsen; Green, James C., E-mail: danforth@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2011-12-10

    Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas with unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.

  7. Ray On | Open Energy Information

    Open Energy Info (EERE)

    On Jump to: navigation, search Name: Ray On Place: ehlovice, Czech Republic Zip: 403 13 Product: Czech developer of PV projects. References: Ray On1 This article is a stub. You...

  8. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    SciTech Connect (OSTI)

    Akarsu, zgr [Department of Physics, Ko University, 34450 Sariyer, ?stanbul (Turkey); Kumar, Suresh [Department of Mathematics, BITS Pilani, Pilani Campus, Rajasthan-333031 (India); Myrzakulov, R.; Sami, M. [Centre of Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Xu, Lixin, E-mail: oakarsu@ku.edu.tr, E-mail: sukuyd@gmail.com, E-mail: rmyrzakulov@gmail.com, E-mail: samijamia@gmail.com, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, Dalian University of Technology, Dalian, 116024 (China)

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis.

  9. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect (OSTI)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z?>10), even if the string tension is below the current upper bound, G? < 1.5 10{sup ?7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with G? ? 7.5 10{sup ?8} for the single frequency band case and 4.0 10{sup ?8} for the multi-frequency band case.

  10. Virtual impact: visualizing the potential effects of cosmic impact in human history

    SciTech Connect (OSTI)

    Masse, W Bruce; Janecky, David R; Forte, Maurizio; Barrientos, Gustavo

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools based on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.

  11. Magnetic Amplification in Cosmic Field Explained | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Magnetic Amplification in Cosmic Field Explained Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More

  12. Magnetic Amplification in Cosmic Field Explained | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Magnetic Amplification in Cosmic Field Explained Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » 08.01.15 Magnetic Amplification

  13. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  14. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  16. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  17. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect (OSTI)

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  18. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    SciTech Connect (OSTI)

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  19. Apparatus and method for reading two-dimensional electrophoretograms containing .beta.-ray-emitting labeled compounds

    DOE Patents [OSTI]

    Anderson, Herbert L. (Santa Fe, NM); Kinnison, W. Wayne (Los Alamos, NM); Lillberg, John W. (Los Alamos, NM)

    1987-01-01

    Apparatus and method for electronically reading planar two dimensional .beta.-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge of the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the .beta.-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700 .mu.m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  20. Apparatus for reading two-dimensional electrophoretograms containing. beta. -ray-emitting labeled compounds

    DOE Patents [OSTI]

    Anderson, H.L.; Kinnison, W.W.; Lillberg, J.W.

    1985-04-30

    An apparatus and method for electronically reading planar two-dimensional ..beta..-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the ..beta..-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700-..mu..m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  1. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect (OSTI)

    Wang, Wei [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Li, Zhuo, E-mail: wangwei@bao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ? 0.81 0.45 keV plus a power-law model of ? ? 3.01 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ?2.6?. The corresponding 3? upper limit on the {sup 44}Ti line flux amounts to 1.5 10{sup 5} photon cm{sup 2} s{sup 1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  2. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  3. SYNTH - Gamma Ray Spectrum Synthesizer

    Energy Science and Technology Software Center (OSTI)

    2009-05-18

    SYNTH was designed to synthesize the results of typical gamma-ray spectroscopy experiments. The code allows a user to specify the physical characteristics of a gamma-ray source, the quantity of radionuclides emitting gamma radiation, the source-to-detector distance and the presence and type of any intervening absorbers, the size and type of the gamma-ray detector, and the electronic set-up used to gather the data.

  4. Karen Ray | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Karen Ray About Us Karen Ray - Budget Director for the Office of Energy Efficiency and Renewable Energy Karen Ray serves as the Budget Director for the Office of Energy Efficiency and Renewable Energy (EERE). In this role, she leads EERE's budget development and oversees how the budget is executed. Her team performs these tasks by applying strategic principles and portfolio analysis. The budget formulation culminates in the Congressional Budget Justification and its defense to Appropriation

  5. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  6. CLUSTERING OF OBSCURED AND UNOBSCURED QUASARS IN THE BOOeTES FIELD: PLACING RAPIDLY GROWING BLACK HOLES IN THE COSMIC WEB

    SciTech Connect (OSTI)

    Hickox, Ryan C.; Alexander, David M.; Goulding, Andrew D.; Myers, Adam D.; Brodwin, Mark; Forman, William R.; Jones, Christine; Murray, Stephen S.; Eisenstein, Daniel; Caldwell, Nelson; Brown, Michael J. I.; Cool, Richard J.; Kochanek, Christopher S.; Dey, Arjun; Jannuzi, Buell T.; Assef, Roberto J.; Eisenhardt, Peter R.; Gorjian, Varoujan; Stern, Daniel; Le Floc'h, Emeric

    2011-04-20

    We present the first measurement of the spatial clustering of mid-infrared-selected obscured and unobscured quasars, using a sample in the redshift range 0.7 < z < 1.8 selected from the 9 deg{sup 2} Booetes multiwavelength survey. Recently, the Spitzer Space Telescope and X-ray observations have revealed large populations of obscured quasars that have been inferred from models of the X-ray background and supermassive black hole evolution. To date, little is known about obscured quasar clustering, which allows us to measure the masses of their host dark matter halos and explore their role in the cosmic evolution of black holes and galaxies. In this study, we use a sample of 806 mid-infrared-selected quasars and {approx}250,000 galaxies to calculate the projected quasar-galaxy cross-correlation function w{sub p} (R). The observed clustering yields characteristic dark matter halo masses of log(M{sub halo} [h {sup -1} M{sub sun}]) = 12.7{sup +0.4}{sub -0.6} and 13.3{sup +0.3}{sub -0.4} for unobscured quasars (QSO-1s) and obscured quasars (Obs-QSOs), respectively. The results for QSO-1s are in excellent agreement with previous measurements for optically selected quasars, while we conclude that the Obs-QSOs are at least as strongly clustered as the QSO-1s. We test for the effects of photometric redshift errors on the optically faint Obs-QSOs, and find that our method yields a robust lower limit on the clustering; photo-z errors may cause us to underestimate the clustering amplitude of the Obs-QSOs by at most {approx}20%. We compare our results to previous studies, and speculate on physical implications of stronger clustering for obscured quasars.

  7. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, Kenneth J.

    1997-01-01

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  8. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A

    SciTech Connect (OSTI)

    Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W. [Department of Astrophysical and Planetary Sciences, Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, Campus Box 389, Boulder, CO 80309-0389 (United States); Cordiner, Martin, E-mail: tsnow@casa.colorado.ed, E-mail: destree@colorado.ed, E-mail: eric.burgh@colorado.ed, E-mail: ryan.m.ferguson@colorado.ed, E-mail: danforth@casa.colorado.ed, E-mail: martin.cordiner@nasa.go [The Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2010-09-10

    Data from the Cosmic Origins Spectrograph (COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.

  9. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, K.J.

    1997-01-14

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  10. IS THE METALLICITY OF THE PROGENITOR OF LONG GAMMA-RAY BURSTS REALLY LOW?

    SciTech Connect (OSTI)

    Hao Jingmeng; Yuan Yefei, E-mail: yfyuan@ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology CAS, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2013-07-20

    Observations of long gamma-ray bursts (LGRBs) offer a unique opportunity to probe the history of cosmic star formation, although whether LGRBs are biased tracers remains highly debated. Based on an extensive sample of LGRBs compiled by Robertson and Ellis, we analyze various models of star formation rate, combining the possible effect of the cosmic metallicity evolution under the assumption that LGRBs preferentially occur in low-metallicity galaxies. The models of star formation rate tested in this work include empirical fits from observational data as well as a self-consistent model calculated from the hierarchical structure formation scenario. Comparing with the observational data, we find a relatively higher metallicity cut of Z {approx}> 0.6 Z{sub Sun} for the empirical fits and no metallicity cut for the self-consistent model. These results imply that there is no strong bias toward low metallicity in LGRB host galaxies, in contrast to previous studies suggesting a cut of Z {approx} 0.1-0.3 Z{sub Sun }, and that the inferred low-metallicity dependencies of LGRBs are strongly related to the specific models of star formation rate. Furthermore, a significant fraction of LGRBs that occur in small halos down to 3 Multiplication-Sign 10{sup 8} M{sub Sun} can provide an alternative explanation for the difference between the star formation rate and the LGRB rate.

  11. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A. (Livermore, CA)

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  12. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM

    SciTech Connect (OSTI)

    Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K.; Amblard, A.; Auld, R.; Eales, S.; Pascale, E.; Baes, M.; Michalowski, M. J.; Clements, D. L.; Dariush, A.; Hopwood, R.; De Zotti, G.; Dunne, L.; Maddox, S.; Hoyos, C.; Ibar, E.; Jarvis, M.; and others

    2013-05-01

    We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.

  13. Cosmic web and star formation activity in galaxies at z ? 1

    SciTech Connect (OSTI)

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected H? emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both H? emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H? emitters varies with environment and is enhanced in filamentary structures at z ? 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H? star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  14. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect (OSTI)

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two modelsthe accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ?10{sup 6} G for the disk and ?6 10{sup 8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  15. ON MEASURING THE COSMIC MICROWAVE BACKGROUND TEMPERATURE AT REDSHIFT 0.89

    SciTech Connect (OSTI)

    Sato, M.; Menten, K. M.; Reid, M. J.; Carilli, C. L.

    2013-02-20

    We report on a measurement of the temperature of the cosmic microwave background radiation field, T {sub CMB}, at z = 0.88582 by imaging HC{sub 3}N(3 <- 2) and (5 <- 4) absorption in the foreground galaxy of the gravitationally lens magnified radio source PKS 1830-211 using the Very Long Baseline Array and the phased Very Large Array. Low-resolution imaging of the data yields a value of T {sub rot} = 5.6{sup +2.5} {sub -0.9} K for the rotational temperature, T {sub rot}, which is consistent with the temperature of the cosmic microwave background at the absorber's redshift of 2.73(1 + z) K. However, our high-resolution imaging reveals that the absorption peak position of the foreground gas is offset from the continuum peak position of the synchrotron radiation from PKS 1830-211SW, which indicates that the absorbing cloud is covering only part of the emission from PKS 1830-211, rather than the entire core-jet region. This changes the line-to-continuum ratios, and we find T {sub rot} between 1.1 and 2.5 K, which is lower than the expected value. This shows that previous T {sub rot} measurements could be biased due to unresolved structure.

  16. FERMI LARGE AREA TELESCOPE DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE VICINITY OF SNR W44

    SciTech Connect (OSTI)

    Uchiyama, Yasunobu; Funk, Stefan; Katsuta, Junichiro; Lemoine-Goumard, Marianne; Torres, Diego F.

    2012-04-20

    We report the detection of GeV {gamma}-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope on board Fermi. While the previously reported {gamma}-ray emission from SNR W44 is likely to arise from the dense radio-emitting filaments within the remnant, the {gamma}-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of {pi}{sup 0} mesons produced in hadronic collisions as the {gamma}-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be W{sub esc} {approx} (0.3-3) Multiplication-Sign 10{sup 50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.

  17. Patent: High resolution x-ray and gamma ray imaging using diffraction...

    Office of Scientific and Technical Information (OSTI)

    High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals Citation Details Title: High resolution x-ray and gamma ray imaging using...

  18. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  19. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

  1. A Proposal for Study of Structure and Dynamics of Energy/Matter Based on Production of Gamma-Ray at SLAC Facility

    SciTech Connect (OSTI)

    Decker, F.-J.; Krasnykh, Anatoly; Perelstein, M.; Shramenko, B.; /Kharkov, KIPT

    2011-12-13

    The success of this proposal will open new areas of Chemistry with antimatter: (1) new chemical dynamics; (2) exclusive production of parent ions by energy-tuning the positrons; (3) formation of antimatter compounds; (4) nano- and microscopic imaging of molecules, cells, and tumors (5) multi-positron systems and their thermodynamics and chemical kinetics. Also with o-Ps and p-Ps physics including speculations of dark mater (PAMELA & ATIC reported excesses in the e{sup +}e{sup -} cosmic rays).

  2. THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS

    SciTech Connect (OSTI)

    Zhang Youcai; Yang Xiaohu; Lin Weipeng; Faltenbacher, Andreas; Springel, Volker; Wang Huiyuan

    2009-11-20

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses approx<10{sup 13} h {sup -1} M{sub sun} are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at small separation. Overall, the two algorithms for filament/sheet identification investigated here agree well with each other. The method based on halos alone can be easily adapted for use with observational data sets.

  3. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  4. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

  5. Ray Smith | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ray Smith Ray Smith Oral History Videos Speakers INTRODUCTION Ed Bailey Jim Bailey Kay Bailey Ken Bernander Willard Brock Wilma Brooks Elmer Brummitt Naomi Brummitt Blake Case ...

  6. SciTech Connect: "gamma ray bursts"

    Office of Scientific and Technical Information (OSTI)

    gamma ray bursts" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "gamma ray bursts" Semantic Semantic Term Title: Full Text: Bibliographic Data:...

  7. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    SciTech Connect (OSTI)

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-08-15

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  8. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect (OSTI)

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  9. IS THE COSMIC MICROWAVE BACKGROUND ASYMMETRY DUE TO THE KINEMATIC DIPOLE?

    SciTech Connect (OSTI)

    Naselsky, P.; Zhao, W.; Kim, J.; Chen, S.

    2012-04-10

    Parity violation found in the cosmic microwave background (CMB) radiation is a crucial clue for the non-standard cosmological model or the possible contamination of various foreground residuals and/or calibration of the CMB data sets. In this paper, we study the directional properties of the CMB parity asymmetry by excluding the m = 0 modes in the definition of parity parameters. We find that the preferred directions of the parity parameters coincide with the CMB kinematic dipole, which implies that the CMB parity asymmetry may be connected with the possible contamination of the residual dipole component. We also find that such tendency is not only localized at l = 2, 3, but in the extended multipole ranges up to l {approx} 22.

  10. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect (OSTI)

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  11. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas

    SciTech Connect (OSTI)

    Tishchenko, V N; Shaikhislamov, I F

    2014-02-28

    We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)

  12. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    SciTech Connect (OSTI)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  13. A HEURISTIC PREDICTION OF THE COSMIC EVOLUTION OF THE CO-LUMINOSITY FUNCTIONS

    SciTech Connect (OSTI)

    Obreschkow, D.; Heywood, I.; Kloeckner, H.-R.; Rawlings, S.

    2009-09-10

    We predict the emission line luminosity functions (LFs) of the first 10 rotational transitions of {sup 12}C{sup 16}O in galaxies at redshift z = 0 to z = 10. This prediction relies on a recently presented simulation of the molecular cold gas content in {approx}3 x 10{sup 7} evolving galaxies based on the Millennium Simulation. We combine this simulation with a model for the conversion between molecular mass and CO-line intensities, which incorporates the following mechanisms: (1) molecular gas is heated by the cosmic microwave background (CMB), starbursts (SBs), and active galactic nuclei (AGNs); (2) molecular clouds in dense or inclined galaxies can overlap; (3) compact gas can attain a smooth distribution in the densest part of disks; (4) CO luminosities scale with metallicity changes between galaxies; and (5) CO luminosities are always detected against the CMB. We analyze the relative importance of these effects and predict the cosmic evolution of the CO-LFs. The most notable conclusion is that the detection of regular galaxies (i.e., no AGN, no massive SB) at high z {approx}> 7 in CO emission will be dramatically hindered by the weak contrast against the CMB, in contradiction to earlier claims that CMB heating will ease the detection of high-redshift CO. The full simulation of extragalactic CO lines and the predicted CO-LFs at any redshift can be accessed online (http://s-cubed.physics.ox.ac.uk/, go to {sup S3}-SAX) and they should be useful for the modeling of CO-line surveys with future telescopes, such as the Atacama Large Millimeter/submillimeter Array or the Square Kilometre Array.

  14. CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies

    SciTech Connect (OSTI)

    Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal; Brusa, Marcella; Bender, Ralf; Buchner, Johannes; Brightman, Murray; Georgakakis, Antonis; Donley, Jennifer L.; Kocevski, Dale D.; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Rangel, Cyprian; Willner, S. P.; Ashby, Matthew L. N.; Budavri, Tams; Szalay, Alexander S.; Dahlen, Tomas; and others

    2014-11-20

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (?96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.

  15. MODELING PHOTODISINTEGRATION-INDUCED TeV PHOTON EMISSION FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu Xuewen [Physics Department, Sichuan University, Chengdu 610065 (China); Wu Xuefeng; Lu Tan, E-mail: astrolxw@gmail.com, E-mail: xfwu@pmo.ac.cn, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-05-15

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like {gamma}-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  16. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  17. Gamma-ray Imaging Methods

    SciTech Connect (OSTI)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  18. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  19. COSMIC FLOW FROM TWO MICRON ALL-SKY REDSHIFT SURVEY: THE ORIGIN OF COSMIC MICROWAVE BACKGROUND DIPOLE AND IMPLICATIONS FOR LAMBDACDM COSMOLOGY

    SciTech Connect (OSTI)

    Lavaux, Guilhem; Mohayaee, Roya; Colombi, Stephane

    2010-01-20

    We generate the peculiar velocity field for the Two Micron All-Sky Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well correlated with the peculiar velocities obtained from high-precision observed distances within 3000 km s{sup -1}. We estimate the mean matter density to be OMEGA{sub m} = 0.31 +- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3000 km s{sup -1} agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Having tested our method against observed distances, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence toward the cosmic microwave background (CMB) dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 h {sup -1} Mpc. Although most of the amplitude of the CMB dipole seems to be recovered by 120 h {sup -1} Mpc, the direction does not agree and hence we observe no convergence up to this scale. Due to dominant superclusters such as Shapley or Horologium-Reticulum in the southern hemisphere at scales above 120 h {sup -1} Mpc, one might need to go well beyond 200 h {sup -1} Mpc to fully recover the dipole vector. We develop a statistical model which allows us to estimate cosmological parameters from the reconstructed growth of convergence of the velocity of the Local Group toward the CMB dipole motion. For scales up to 60 h {sup -1} Mpc, assuming a Local Group velocity of 627 km s{sup -1}, we estimate OMEGA{sub m} h {sup 2} = 0.11 +- 0.06 and sigma{sub 8} = 0.9 +- 0.4, in agreement with WMAP5 measurements at the 1sigma level. However, for scales up to 100 h {sup -1} Mpc, we obtain OMEGA{sub m} h {sup 2} = 0.08 +- 0.03 and sigma{sub 8} = 1.0 +- 0.4, which agrees at the 1sigma to 2sigma level with WMAP5 results.

  20. Signatures of anisotropic sources in the trispectrum of the cosmic microwave background

    SciTech Connect (OSTI)

    Shiraishi, Maresuke; Komatsu, Eiichiro; Peloso, Marco E-mail: komatsu@mpa-garching.mpg.de

    2014-04-01

    Soft limits of N-point correlation functions, in which one wavenumber is much smaller than the others, play a special role in constraining the physics of inflation. Anisotropic sources such as a vector field during inflation generate distinct angular dependence in all these correlators, and introduce a fix privileged direction in our sky. In this paper we focus on the four-point correlator (the trispectrum T). We adopt a parametrization motivated by models in which the inflaton ? is coupled to a vector field through a I{sup 2}(?)F{sup 2} interaction, namely T{sub ?}(k{sub 1},k{sub 2},k{sub 3},k{sub 4})??{sub n}d{sub n}[P{sub n}( k-circumflex {sub 1}? k-circumflex {sub 3})+P{sub n}( k-circumflex {sub 1}? k-circumflex {sub 12})+P{sub n}( k-circumflex {sub 3}? k-circumflex {sub 12})]P{sub ?}(k{sub 1})P{sub ?}(k{sub 3})P{sub ?}(k{sub 12})+(23perm), where P{sub n} denotes the Legendre polynomials. This shape is enhanced when the wavenumbers of the diagonals of the quadrilateral are much smaller than the sides, k{sub i}. The coefficient of the isotropic part, d{sub 0}, is equal to ?{sub NL}/6 discussed in the literature. A I{sup 2}(?)F{sup 2} interaction generates d{sub 2} = 2d{sub 0} which is, in turn, related to the quadrupole modulation parameter of the power spectrum, g{sub *}, as d{sub 2} ? 14|g{sub *}|N{sup 2} with N ? 60. We show that d{sub 0} and d{sub 2} can be equally well-constrained: the expected 68% CL error bars on these coefficients from a cosmic-variance-limited experiment measuring temperature anisotropy of the cosmic microwave background up to ?{sub max} = 2000 are ?d{sub 2} ? 4?d{sub 0} = 105. Therefore, we can reach |g{sub *}| = 10{sup ?3} by measuring the angle-dependent trispectrum. The current upper limit on ?{sub NL} from the Planck temperature maps yields |g{sub *}| < 0.02 (95% CL)

  1. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  2. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary I. (Sunnyvale, CA); Maccagno, Pierre (Stanford, CA)

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  3. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  4. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray emission...

  5. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  6. A guide to designing future ground-based cosmic microwave background experiments

    SciTech Connect (OSTI)

    Wu, W. L. K.; Kuo, C. L.; Errard, J.; Dvorkin, C.; Lee, A. T.; McDonald, P.; Zahn, O.; Slosar, A.

    2014-06-20

    In this follow-up work to the high energy physics Community Summer Study 2013 (aka SNOWMASS), we explore the scientific capabilities of a future Stage IV cosmic microwave background polarization experiment under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties of cosmological parameters in ??CDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark energy equation of state, dark matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the baryon acoustic oscillation signal as measured by Dark Energy Spectroscopic Instrument to constrain parameters that would benefit from low redshift information. We find the following best 1? constraints: ?(M {sub ?}) = 15 meV, ?(N {sub eff}) = 0.0156, dark energy figure of merit = 303, ?(p {sub ann}) = 0.00588 3 10{sup 26} cm{sup 3} s{sup 1} GeV{sup 1}, ?(? {sub K}) = 0.00074, ?(n{sub s} ) = 0.00110, ?(? {sub s}) = 0.00145, and ?(r) = 0.00009. We also detail the dependencies of the parameter constraints on detector count, resolution, and sky coverage.

  7. Cosmic histories of star formation and reionization: an analysis with a power-law approximation

    SciTech Connect (OSTI)

    Yu, Yun-Wei; Cheng, K.S.; Chu, M.C.; Yeung, S. E-mail: hrspksc@hku.hk E-mail: terryys@gmail.com

    2012-07-01

    With a simple power-law approximation of high-redshift (?>3.5) star formation history, i.e., ?-dot {sub *}(z)?[(1+z)/4.5]{sup ??}, we investigate the reionization of intergalactic medium (IGM) and the consequent Thomson scattering optical depth for cosmic microwave background (CMB) photons. A constraint on the evolution index ? is derived from the CMB optical depth measured by the Wilkinson Microwave Anisotropy Probe (WMAP) experiment, which reads ? ? 2.18 lg N{sub ?}?3.89, where the free parameter N{sub ?} is the number of the escaped ionizing ultraviolet photons per baryon. At the same time, the redshift z{sub f} at which the IGM is fully ionized can also be expressed as a function of ? as well as N{sub ?}. By further taking into account the implication of the Gunn-Peterson trough observations to quasars for the full reionization redshift, i.e., 6?

  8. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    SciTech Connect (OSTI)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-03-15

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  9. Finding the first cosmic explosions. IV. 90–140 $$\\;{{M}_{\\odot }}$$ pair-stability supernovae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smidt, Joseph; Whalen, Daniel J.; Chatzopoulos, E.; Wiggins, Brandon; Chen, Ke-Jung; Kozyreva, Alexandra; Even, Wesley

    2015-05-19

    Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M⊙. However, several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instability at stellar masses as low as 90 M⊙. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 M⊙ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instability explosions of suchmore » stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z ~ 1-2 and JWST and the 30 m-class telescopes in the NIR out to z ~ 7-10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.« less

  10. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  11. Neutrino physics from the cosmic microwave background and large scale structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?m?)(?m?) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  12. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  13. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  14. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  15. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  16. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  17. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  18. Offsets between the X-ray and the Sunyaev-Zel'Dovich-effect peaks in merging galaxy clusters and their cosmological implications

    SciTech Connect (OSTI)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2014-12-01

    Observations reveal that the peaks of the X-ray map and the Sunyaev-Zel'dovich (SZ) effect map of some galaxy clusters are offset from each other. In this paper, we perform a set of hydrodynamical simulations of mergers of two galaxy clusters to investigate the spatial offset between the maxima of the X-ray and the SZ surface brightness of the merging clusters. We find that significantly large SZ-X-ray offsets (>100 kpc) can be produced during the major mergers of galaxy clusters (with mass > 1 10{sup 14} M {sub ?}). The significantly large offsets are mainly caused by a 'jump effect' that occurs between the primary and secondary pericentric passages of the two merging clusters, during which the X-ray peak may jump to the densest gas region located near the center of the small cluster, but the SZ peak remains near the center of the large one. Our simulations show that merging systems with higher masses and larger initial relative velocities may result in larger offset sizes and longer offset time durations; and only nearly head-on mergers are likely to produce significantly large offsets. We further investigate the statistical distribution of the SZ-X-ray offset sizes and find that (1) the number distribution of the offset sizes is bimodal with one peak located at low offsets ?0 and the other at large offsets ?350-450 h {sup 1} kpc, but the objects with intermediate offsets are scarce; and (2) the probabilities of the clusters in the mass range higher than 2 10{sup 14} h {sup 1} M {sub ?} that have offsets larger than 20, 50, 200, 300, and 500 h {sup 1} kpc are 34.0%, 11.1%, 8.0%, 6.5%, and 2.0%, respectively, at z = 0.7. The probability is sensitive to the underlying pairwise velocity distribution and the merger rate of clusters. We suggest that the SZ-X-ray offsets provide a probe to the cosmic velocity fields on the cluster scale and the cluster merger rate, and future observations on the SZ-X-ray offsets for a large number of clusters may put strong constraints on them. Our simulation results suggest that the SZ-X-ray offset in the Bullet Cluster, together with the mass ratio of the two merging clusters, requires a relative velocity larger than 3000 km s{sup 1} at an initial separation 5 Mpc. The cosmic velocity distribution at the high-velocity end is expected to be crucial in determining whether there exists an incompatibility between the existence of the Bullet Cluster and the prediction of a ?CDM model.

  19. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect (OSTI)

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R., E-mail: fe.fisica@gmail.com, E-mail: jorge.rueda@icra.it, E-mail: ruffini@icra.it [Dipartimento di Fisica and ICRA, Sapienza Universit di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy)

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless...

  2. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  3. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  4. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  5. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  6. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  7. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  8. Portable compton gamma-ray detection system

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Oldaker, Mark E. (Pleasanton, CA)

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  12. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  13. Microsoft Word - ray_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electron capture nuclear decay rate in different media and under compression Amlan Ray Variable Energy Cyclotron Center 1/AF, Bidhan Nagar Kolkata - 700064 India The study of electron capture nuclear decay rate in different media and under compression is interesting and has implications in many areas. It was known for a long time that the electron capture decay rate of 7 Be was slightly different for different 7 Be compounds. Recently relatively larger effects (1%) were seen by comparing

  14. Cryotomography x-ray microscopy state

    DOE Patents [OSTI]

    Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  15. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  16. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy X-Ray Microscopy This group exploits the unique capabilities of hard X-ray microscopy to visualize and understand the structure and behavior of hybrid, energy-related, and tailored nanomaterials The Hard X-Ray Nanoprobe, located at Sector 26 of the Advanced Photon Source (APS) and operated by our group and APS, is the only dedicated X-ray microscopy beamline within the portfolios of the nation's Nanoscale Science Research Centers. Our scientific program seeks to understand

  18. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  19. Quantum chaos in systems with ray splitting

    SciTech Connect (OSTI)

    Couchman, L. (Acoustics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States)); Ott, E.; Antonsen, T.M. Jr. (Laboratory for Plasma Research, Department of Electrical Engineering, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States))

    1992-11-15

    We consider wave systems in which rays split on reflection from sharp boundaries. Examples include the Schroedinger equation with the potential changing discontinuously across a surface, electromagnetic waves in a region with a discontinuous dielectric constant, elastic media with a clamped or free boundary, etc. By introducing a Monte Carlo treatment of the rays, it is possible to define chaotic rays via the standard Lyapunov number criterion. Numerical implementation of the Monte Carlo ray technique is carried out for the example of elastic media, and is utilized to investigate the extent to which these systems are globally ergodic. It is suggested that results from previous extensive work on quantum chaos without ray splitting can be extended to these ray splitting problems. In particular, we indicate a generalization of the Gutzwiller trace formula to cover ray splitting.

  20. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect (OSTI)

    Swenson, C. A.; Roming, P. W. A., E-mail: cswenson@astro.psu.edu [Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ?1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ?50% of the detected flares follow the 'classical' definition of ?t/t ? 0.5, with many of the largest flares exceeding this value.

  1. SPATIALLY RESOLVING A STARBURST GALAXY AT HARD X-RAY ENERGIES: NuSTAR, CHANDRA, AND VLBA OBSERVATIONS OF NGC253

    SciTech Connect (OSTI)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.; Yukita, M.; Ptak, A.; Venters, T.; Zhang, W. W.; Zezas, A.; Antoniou, V.; Argo, M. K.; Bechtol, K.; Boggs, S.; Craig, W.; Krivonos, R.; Christensen, F.; Hailey, C.; Harrison, F.; Maccarone, T. J.; Stern, D.

    2014-12-20

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR data set, comprised of three ?165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC253. Above ?10 keV, nearly all the emission is concentrated within 100'' of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxydominated by the off-nuclear ULX and nuclear sources, which are also likely ULXsfalls steeply (photon index ? 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the ?-ray emission detected with Fermi and H.E.S.S. If NGC253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is <1%.

  2. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  3. Expectations for the hard x-ray continuum and gamma-ray line fluxes from

    Office of Scientific and Technical Information (OSTI)

    the typE IA supernova SN 2014J in M82 (Journal Article) | SciTech Connect Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 Citation Details In-Document Search Title: Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass

  4. HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect (OSTI)

    Viero, M. P.; Zemcov, M.; Bock, J.; Cooray, A.; Dowell, C. D.; Wang, L.; Addison, G.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Casey, C. M.; Clements, D. L.; Conley, A.; Conversi, L.; De Zotti, G.; Farrah, D.; and others

    2013-07-20

    We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations totaling {approx}70 deg{sup 2} made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy {delta}I/I = 14% {+-} 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k{sub {theta}} {approx} 0.10-0.12 arcmin{sup -1} (l {approx} 2160-2380), from 250 to 500 {mu}m. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources-suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z {approx} 1-3, is log(M{sub peak}/M{sub Sun }) {approx} 12.1 {+-} 0.5, and that the minimum halo mass to host infrared galaxies is log(M{sub min}/M{sub Sun }) {approx} 10.1 {+-} 0.6.

  5. DETECTION OF THE COSMIC FAR-INFRARED BACKGROUND IN AKARI DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Matsuura, S.; Shirahata, M.; Kawada, M.; Matsuhara, H.; Nakagawa, T.; Oyabu, S.; Takagi, T.; Takeuchi, T. T.; Burgarella, D.; Clements, D. L.; Jeong, W.-S.; Hanami, H.; Khan, S. A.; Pearson, C. P.; White, G. J.; Pollo, A.; Serjeant, S.

    2011-08-10

    We report new limits on the absolute brightness and spatial fluctuations of the cosmic infrared background (CIB) via the AKARI satellite. We carried out observations at 65, 90, 140, and 160 {mu}m as a cosmological survey in AKARI Deep Field South, which is one of the lowest cirrus regions with a contiguous area of the sky. After removing bright galaxies and subtracting zodiacal and Galactic foregrounds from the measured sky brightness, we successfully measured the CIB brightness and its fluctuations across a wide range of angular scales, from arcminutes to degrees. The measured CIB brightness is consistent with previous results reported from COBE data, but significantly higher than the lower limits at 70 and 160 {mu}m obtained via Spitzer from the stacking analysis of selected 24 {mu}m sources. The discrepancy with the Spitzer result is possibly due to a new galaxy population at high redshift obscured by hot dust or unknown diffuse emission. From a power spectrum analysis at 90 {mu}m, two components were identified: the CIB fluctuations with shot noise due to individual galaxies in a small angular scale from the beam size up to 10 arcminutes, and Galactic cirrus emission dominating at the largest angular scales of a few degrees. The overall shape of the power spectrum at 90 {mu}m is very similar to that at longer wavelengths, as observed by Spitzer and the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST). Our power spectrum, with an intermediate angular scale of 10-30 arcminutes, gives a firm upper limit for galaxy clustering, which was found by Spitzer and BLAST. Moreover, the color of the CIB fluctuations, which is obtained by combining our data with the previous results, is as red as ultra-luminous infrared galaxies at high redshift. These galaxies are not likely to provide the majority of the CIB emission at 90 {mu}m, but are responsible for the fluctuations. Our results provide new constraints on the evolution and clustering properties of distant infrared galaxies and any diffuse emission from the early universe.

  6. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    SciTech Connect (OSTI)

    Finkelstein, Steven L.; Pawlik, Andreas H.; Papovich, Casey; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Finlator, Kristian; Giavalisco, Mauro; Cooray, Asantha; Dunlop, James S.; Faber, Sandy M.; Kocevski, Dale D.

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to reionization, or <13% (2{sigma}) if the luminosity function extends to a limiting magnitude of M {sub UV} = -13. These escape fractions are sufficient to sustain an ionized IGM by z = 6. Current constraints on the high-redshift galaxy population imply that the volume ionized fraction of the IGM, while consistent with unity at z {<=} 6, appears to drop at redshifts not much higher than 7, consistent with a number of complementary reionization probes. If faint galaxies dominated the ionizing photon budget at z = 6-7, future extremely deep observations with the James Webb Space Telescope will probe deep enough to directly observe them, providing an indirect constraint on the global ionizing photon escape fraction.

  7. Mapping compound cosmic telescopes containing multiple projected cluster-scale halos

    SciTech Connect (OSTI)

    Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R. E-mail: kwong@as.arizona.edu E-mail: keeton@physics.rutgers.edu

    2014-01-20

    Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or tendue, making detection of faint background sources more likely than elsewhere. To identify these new 'compound' cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ?3 10{sup 15} M {sub ?}. From 1151 MMT Hectospec spectra of galaxies down to i {sub AB} = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 10{sup 14}-2 10{sup 15} M {sub ?}, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial tendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of z{sub s} = 10 are [1.2, 3.8] arcmin{sup 2} for 0850 and [2.3, 6.7] arcmin{sup 2} for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at z {sub phot} = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with ? > 10 and z{sub s} = 10 to [1.8, 4.2] arcmin{sup 2}, an tendue range comparable to that of MACS 0717+3745 and El Gordo, two of the most powerful single cluster lenses known. The significant lensing power of our beams makes them powerful probes of reionization and galaxy formation in the early universe.

  8. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  9. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  10. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect (OSTI)

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ?5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ? 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (?? ? 0.05) and the temperature of the IGM (up to ?10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  11. A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR

    SciTech Connect (OSTI)

    Ade, P. A. R.; Akiba, Y.; Hasegawa, M.; Anthony, A. E.; Halverson, N. W.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Borrill, J.; Errard, J.; Chapman, S.; Chinone, Y.; Flanigan, D.; Dobbs, M.; Gilbert, A.; Fabbian, G.; Collaboration: Polarbear Collaboration; and others

    2014-10-20

    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 < ? < 2100 and is based on observations of an effective sky area of 25 deg{sup 2} with 3.'5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A{sub BB} to the measured band powers, A{sub BB}=1.120.61(stat){sub ?0.12}{sup +0.04}(sys)0.07(multi), where A{sub BB} = 1 is the fiducial WMAP-9 ?CDM value. In this expression, 'stat' refers to the statistical uncertainty, 'sys' to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and 'multi' to the calibration uncertainties that have a multiplicative effect on the measured amplitude A{sub BB}.

  12. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  13. Ray Sun Energy | Open Energy Information

    Open Energy Info (EERE)

    Sun Energy Jump to: navigation, search Name: Ray Sun Energy Place: Florence, Italy Zip: 50032 Product: Installs PV systems mostly for residential and small commercial customers....

  14. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  15. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect (OSTI)

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  16. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are

  19. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  20. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Eichler, David, E-mail: eichler.david@gmail.com [Physics Department, Ben-Gurion University, Be'er-Sheva 84105 (Israel)

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    blue, violet or ultraviolet cone. The Pierre Auger Cosmic Ray Observatory in western Argentina, in operation since 2004, uses similar surface detector tanks to catch cosmic rays,...

  2. DARK MATTER IN THE CLASSICAL DWARF SPHEROIDAL GALAXIES: A ROBUST CONSTRAINT ON THE ASTROPHYSICAL FACTOR FOR {gamma}-RAY FLUX CALCULATIONS

    SciTech Connect (OSTI)

    Walker, M. G.; Combet, C.; Hinton, J. A.; Maurin, D.; Wilkinson, M. I. E-mail: dmaurin@lspc.in2p3.fr

    2011-06-01

    We present a new analysis of the relative detectability of dark matter annihilation in the Milky Way's eight 'classical' dwarf spheroidal (dSph) satellite galaxies. Ours is similar to previous analyses in that we use Markov-Chain Monte Carlo techniques to fit dark matter halo parameters to empirical velocity dispersion profiles via the spherical Jeans equation, but more general in the sense that we do not adopt priors derived from cosmological simulations. We show that even without strong constraints on the shapes of dSph dark matter density profiles (we require only that the inner profile satisfies -liM{sub r {yields} 0} dln {rho}/dln r {<=} 1), we obtain a robust and accurate constraint on the astrophysical component of a prospective dark matter annihilation signal, provided that the integration angle is approximately twice the projected half-light radius of the dSph divided by distance to the observer, {alpha}{sub int} {approx} 2r{sub h} /d. Using this integration angle, which represents a compromise between maximizing prospective flux and minimizing uncertainty in the dSph's dark matter distribution, we calculate the relative detectability of the classical dSphs by ground- and space-based {gamma}-ray observatories.

  3. ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Dado, Shlomo; Dar, Arnon [Physics Department, Technion, Haifa 32000 (Israel)

    2013-09-20

    Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

  4. Ray tracing flux calculation for the small and wide angle x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    diffraction station at the SESAME synchrotron radiation facility (Journal Article) | SciTech Connect Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search Title: Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility The calculation for the optics of the synchrotron radiation small and

  5. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser

    Office of Scientific and Technical Information (OSTI)

    Fluences (Journal Article) | SciTech Connect Journal Article: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Citation Details In-Document Search Title: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Authors: Schreck, Simon ; Beye, Martin ; Sellberg, Jonas A. ; McQueen, Trevor ; Laksmono, Hartawan ; Kennedy, Brian ; Eckert, Sebastian ; Schlesinger, Daniel ; Nordlund, Dennis ; Ogasawara, Hirohito ; Sierra, Raymond G. ; Segtnan,

  6. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect (OSTI)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Perley, R. A., E-mail: dperley@astro.caltech.edu [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscuredsuggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  7. FERMI RULES OUT THE INVERSE COMPTON/CMB MODEL FOR THE LARGE-SCALE JET X-RAY EMISSION OF 3C 273

    SciTech Connect (OSTI)

    Meyer, Eileen T.; Georganopoulos, Markos

    2014-01-10

    The X-ray emission mechanism in large-scale jets of powerful radio quasars has been a source of debate in recent years, with two competing interpretations: either the X-rays are of synchrotron origin, arising from a different electron energy distribution than that producing the radio to optical synchrotron component, or they are due to inverse Compton scattering of cosmic microwave background photons (IC/CMB) by relativistic electrons in a powerful relativistic jet with bulk Lorentz factor ? ? 10-20. These two models imply radically different conditions in the large-scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the large-scale environment. A large part of the X-ray origin debate has centered on the well-studied source 3C 273. Here we present new observations from Fermi which put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that violates at a confidence greater that 99.9% the flux expected from the IC/CMB X-ray model found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source when combined with previous work. Further, this upper limit from Fermi puts a limit on the Doppler beaming factor of at least ? <9, assuming equipartition fields, and possibly as low as ? <5, assuming no major deceleration of the jet from knots A throughD1.

  8. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (OSTI)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  9. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (OSTI)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  10. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  11. The {ital COBE} Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections

    SciTech Connect (OSTI)

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; Dwek, E.; Odegard, N.; Weiland, J.L.; Freudenreich, H.T.; Reach, W.T.; Pei, Y.C.; Lubin, P.; Mather, J.C.; Shafer, R.A.; Smoot, G.F.; Weiss, R.; Wilkinson, D.T.; Wright, E.L.

    1998-11-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer ({ital COBE}) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 {mu}m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 {mu}m ({nu}{ital I}{sub {nu}} {lt} 64 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level) and at 240 {mu}m ({nu}{ital I}{sub {nu}} {lt} 28 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 {mu}m data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 {mu}m. No plausible solar system or Galactic source of the observed 140 and 240 {mu}m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of {nu}{ital I}{sub {nu}} = 25 {plus_minus} 7 and 14 {plus_minus} 3 nW m{sup {minus}2} sr{sup {minus}1} at 140 and 240 {mu}m, respectively. The integrated energy from 140 to 240 {mu}m, 10.3 nW m{sup {minus}2} sr{sup {minus}1}, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  12. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  13. Subject: Ames Blue Alert - X-ray Shutter Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert - X-ray Shutter Maintenance Statement: This lesson learned involves an Ames Laboratory x-ray system. Prior to starting x- ray experiments checking the operability...

  14. Femtosecond Time-Delay X-ray Holography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow...

  15. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  16. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    SciTech Connect (OSTI)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the {gamma}-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and {gamma}-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient {gamma}-ray emitters. We divided the X-ray sample in a young ({tau}{sub c} < 1.7 x 10{sup 4} yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and {gamma}-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L{sub X}{proportional_to} P-dot{sup 3}/P{sup 6}. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency {eta}{identical_to}L{sub X}/ E-dot{sub rot}{approx}8x10{sup -5}. For the {gamma}-ray luminosity we confirm that L{sub {gamma}} {proportional_to} {radical}E-dot{sub rot}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  17. Gamma-Ray Logging Workshop (February 1981) | Department of Energy

    Office of Environmental Management (EM)

    Gamma-Ray Logging Workshop (February 1981) Gamma-Ray Logging Workshop (February 1981) Gamma-Ray Logging Workshop (February 1981) PDF icon Gamma-Ray Logging Workshop (February 1981) More Documents & Publications Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984)

  18. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  19. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  20. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  1. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

  2. Ray Energy Srl | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Ray Energy Srl Place: Milan, Italy Zip: 02-20121 Product: Italian PV system installer. Coordinates: 45.468945, 9.18103 Show Map Loading map......

  3. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  4. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  5. Femtosecond X-ray protein nanocrystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond X-ray protein nanocrystallography Authors: Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P.,...

  6. X-ray Tube with Magnetic Electron Steering - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increases the proportion of electrons emitted from the cathode that contribute to X-ray production in a compact geometry Provides increased X-ray generation efficiency by...

  7. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  8. X-ray transient absorption and picosecond IR spectroscopy of...

    Office of Scientific and Technical Information (OSTI)

    X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation Citation Details In-Document Search Title: X-ray transient ...

  9. Generation of Coherent X-Ray Radiation through Modulation Compression...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Generation of Coherent X-Ray Radiation through Modulation Compression Citation Details In-Document Search Title: Generation of Coherent X-Ray Radiation through...

  10. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the X-Ray Diffraction (XRD) page? For detailed information on...

  11. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  12. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  13. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  14. Exotic X-ray back-diffraction: a path toward a softinelastic X-ray

    Office of Scientific and Technical Information (OSTI)

    scattering spectrometer (Journal Article) | SciTech Connect Exotic X-ray back-diffraction: a path toward a softinelastic X-ray scattering spectrometer Citation Details In-Document Search Title: Exotic X-ray back-diffraction: a path toward a softinelastic X-ray scattering spectrometer Authors: Hoennicke M. ; Zhou J. ; Conley,R. ; Cusatis,C. ; Kakuno,E.M. ; Bouet,N. ; Marques,J.B. ; Vicentin,F.C. Publication Date: 2014-09-20 OSTI Identifier: 1165974 Report Number(s): BNL--107230-2014-JA

  15. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  16. Chemical constraints on the contribution of population III stars to cosmic reionization

    SciTech Connect (OSTI)

    Kulkarni, Girish; Hennawi, Joseph F. [Max Planck Institute for Astronomy, Knigstuhl 17, D-69117 Heidelberg (Germany); Rollinde, Emmanuel; Vangioni, Elisabeth, E-mail: girish@mpia-hd.mpg.de [Institut d'Astrophysique de Paris, UMR 7095, UPMC, Paris VI, 98 bis boulevard Arago, F-75014 Paris (France)

    2014-05-20

    Recent studies have highlighted that galaxies at z = 6-8 fall short of producing enough ionizing photons to reionize the intergalactic medium, and suggest that Population III stars could resolve this tension, because their harder spectra can produce ?10 more ionizing photons than Population II. We use a semi-analytic model of galaxy formation, which tracks galactic chemical evolution, to gauge the impact of Population III stars on reionization. Population III supernovae produce distinct metal abundances, and we argue that the duration of the Population III era can be constrained by precise relative abundance measurements in high-z damped Ly? absorbers (DLAs), which provide a chemical record of past star formation. We find that a single generation of Population III stars can self-enrich galaxies above the critical metallicity Z {sub crit} = 10{sup 4} Z {sub ?} for the Population III-to-II transition, on a very short timescale t {sub self-enrich} ? 10{sup 6} yr, owing to the large metal yields and short lifetimes of Population III stars. This subsequently terminates the Population III era, so they contribute ? 50% of the ionizing photons only for z ? 30, and at z = 10 contribute <1%. The Population III contribution can be increased by delaying metal mixing into the interstellar medium. However, comparing the resulting metal abundance pattern to existing measurements in z ? 6 DLAs, we show that the observed [O/Si] ratios of absorbers rule out Population III stars being a major contributor to reionization. Future abundance measurements of z ? 7-8 QSOs and gamma-ray bursts should probe the era when the chemical vestiges of Population III star formation become detectable.

  17. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  18. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ); Rosser, Roy (Princeton, NJ)

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  19. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  20. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  1. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  2. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  3. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  4. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  5. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  6. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W. (Cedar Crest, NM)

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  7. PROPX: An X-ray Manipulation Program

    SciTech Connect (OSTI)

    Kyrala, G.A.

    1992-05-01

    An interactive micro-computer program that performs some manipulations on an input x-ray spectrum is introduced and described. The program is used to calculate the effect of absorption of filters, transmission through fibers, responsivity of photocathodes, responsivity of absorptive detectors, folding of responses, plotting of cross sections, and calculation, as a function of electron temperature, of the response due to a bremsstrahlung spectrum. Fluorescence from the targets is not included. Two different x-ray libraries are offered, one covers the x-ray range 30--10,000 eV with 288 energy points, and the other covers the energy range 10 eV to 1 MeV with 250 energy points per decade. 7 refs.

  8. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Norris, Jay P. [Physics and Astronomy Department, University of Denver, Denver, CO 80208 (United States); Gehrels, Neil [Astroparticle Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Scargle, Jeffrey D. [Space Science and Astrobiology Division, NASA/Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  9. HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING

    SciTech Connect (OSTI)

    Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Blain, A.; Bethermin, M.; Conley, A.; Glenn, J.; Conversi, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Griffin, M.; Halpern, M.; Marsden, G.; Jullo, E.; Kneib, J.-P.; Richard, J.; and others

    2013-06-01

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.

  10. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; et al

    2015-06-22

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M200,lens = 0.83+0.38-0.37 M200,SZ (68% C.L., statistical error only).« less

  11. REVISITING THE COSMIC STAR FORMATION HISTORY: CAUTION ON THE UNCERTAINTIES IN DUST CORRECTION AND STAR FORMATION RATE CONVERSION

    SciTech Connect (OSTI)

    Kobayashi, Masakazu A. R.; Inoue, Yoshiyuki; Inoue, Akio K.

    2013-01-20

    The cosmic star formation rate density (CSFRD) has been observationally investigated out to redshift z {approx_equal} 10. However, most of the theoretical models for galaxy formation underpredict the CSFRD at z {approx}> 1. Since the theoretical models reproduce the observed luminosity functions (LFs), luminosity densities (LDs), and stellar mass density at each redshift, this inconsistency does not simply imply that theoretical models should incorporate some missing unknown physical processes in galaxy formation. Here, we examine the cause of this inconsistency at UV wavelengths by using a mock catalog of galaxies generated by a semi-analytic model of galaxy formation. We find that this inconsistency is due to two observational uncertainties: the dust obscuration correction and the conversion from UV luminosity to star formation rate (SFR). The methods for correction of obscuration and SFR conversion used in observational studies result in the overestimation of the CSFRD by {approx}0.1-0.3 dex and {approx}0.1-0.2 dex, respectively, compared to the results obtained directly from our mock catalog. We present new empirical calibrations for dust attenuation and conversion from observed UV LFs and LDs into the CSFRD.

  12. Accounting for baryonic effects in cosmic shear tomography: Determining a minimal set of nuisance parameters using PCA

    SciTech Connect (OSTI)

    Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay

    2014-05-28

    Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.

  13. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  14. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  15. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  16. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  17. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  18. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  19. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    SciTech Connect (OSTI)

    Kharb, P.; Lister, M. L.; Hogan, B. S.; Marshall, H. L.

    2012-04-01

    We present results from deep ({approx}70 ks) Chandra/ACIS observations and Hubble Space Telescope (HST) Advanced Camera for Surveys F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C 345). These observations reveal X-ray and optical emissions from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles-the X-ray emission is brightest at the first prominent kiloparsec jet bend. A picture of a helical kiloparsec jet with the first kiloparsec-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end, however, peaks at about 0.''4 ({approx}3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.''2 ({approx}1.3 kpc) in the short projected jet of 3C 345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1'' downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the parsec-scale radio and the kiloparsec-scale radio/X-ray data, we derive constraints on the jet Lorentz factors ({Gamma}{sub jet}) and inclination angles ({theta}): for a constant jet speed from parsec to kiloparsec scales, we obtain a {Gamma}{sub jet} of {approx}70 for 0106+013 and {approx}40 for 3C 345. On relaxing this assumption, we derive a {Gamma}{sub jet} of {approx}2.5 for both the sources. Upper limits on {theta} of {approx}13 Degree-Sign are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral energy distribution (SED) modeling of individual jet components in both quasars suggests that the optical emission is from the synchrotron mechanism, while the X-rays are produced via the inverse Compton mechanism from relativistically boosted cosmic microwave background seed photons. The locations of the upstream X-ray termination peaks strongly suggest that the sites of bulk jet deceleration lie upstream (by a few kiloparsecs) of the radio hot spots in these quasars. These regions are also the sites of shocks or magnetic field dissipation, which reaccelerate charged particles and produce high-energy optical and X-ray photons. This is consistent with the best-fit SED modeling parameters of magnetic field strength and electron power-law indices being higher in the jet termination regions compared to the cores. The shocked jet regions upstream of the radio hot spots, the kiloparsec-scale jet wiggles and a 'nose cone'-like jet structure in 0106+013, and the V-shaped radio structure in 3C 345, are all broadly consistent with instabilities associated with Poynting-flux-dominated jets. A greater theoretical understanding and more sensitive numerical simulations of jets spanning parsec to kiloparsec scales are needed, however, to make direct quantitative comparisons.

  20. A COMPLETE SAMPLE OF BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION

    SciTech Connect (OSTI)

    Salvaterra, R. [INAF, IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Campana, S.; Vergani, S. D.; Covino, S.; D'Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Sbarufatti, B.; Tagliaferri, G. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy); Nava, L. [SISSA, via Bonomea 265, I-34136 Trieste (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Univ. Paris-Diderot 5 place Jules Janssen, 92195 Meudon (France); Piranomonte, S., E-mail: ruben@lambrate.inaf.it [INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Rome (Italy)

    2012-04-10

    We present a carefully selected sub-sample of Swift long gamma-ray bursts (GRBs) that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, which are bright in the 15-150 keV Swift/BAT band, i.e., with 1-s peak photon fluxes in excess to 2.6 photons s{sup -1} cm{sup -2}. The sample is composed of 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in an unbiased way. We find that strong evolution in luminosity ({delta}{sub l} = 2.3 {+-} 0.6) or in density ({delta}{sub d} = 1.7 {+-} 0.5) is required in order to account for the observations. The derived redshift distributions in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distributions. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.

  1. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  2. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  3. Expectations for the hard x-ray continuum and gamma-ray line...

    Office of Scientific and Technical Information (OSTI)

    In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the ...

  4. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  5. NEW MEASUREMENTS OF THE COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER/IRAC SURVEY DATA AND THEIR COSMOLOGICAL IMPLICATIONS

    SciTech Connect (OSTI)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.; Ashby, M. L. N.; Fazio, G. G.

    2012-07-01

    We extend previous measurements of cosmic infrared background (CIB) fluctuations to {approx}< 1 Degree-Sign using new data from the Spitzer Extended Deep Survey. Two fields with depths of {approx_equal} 12 hr pixel{sup -1} over three epochs are analyzed at 3.6 and 4.5 {mu}m. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of mag{sub AB} {approx_equal} 25, as indicated by the level of the remaining shot noise. The maps were then Fourier transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 {mu}m power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to >10 times those of known galaxy populations on angular scales out to {approx}< 1 Degree-Sign . The low shot-noise levels remaining in the diffuse maps indicate that the large-scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model ({Lambda}CDM) at epochs coinciding with the first stars era.

  6. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect (OSTI)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  7. X-ray Science Division (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD Groups XSD Safety and Training XSD Strategic Plan XSD Visitor Program XSD Intranet X-ray Science Division (XSD) XSD enables world-class research using x-rays by developing...

  8. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in...

  9. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can be controlled by varying the properties of the optical control beam. Problems arise, however, when the probe pulse lies in the x-ray regime because x rays interact...

  10. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and ... Title: A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature ...

  11. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  13. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary You are accessing a document from...

  14. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

  15. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  16. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  17. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  18. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear...

  19. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary Abstract not provided. Authors: Fournier, K. B. 1 + ...

  20. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I.; Morris, Christopher L.

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.