National Library of Energy BETA

Sample records for insulating glazing systems

  1. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  2. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  3. Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers

    SciTech Connect (OSTI)

    Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian

    2008-04-09

    Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.

  4. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  5. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  6. Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit

    DOE Patents [OSTI]

    Francis, IV, William H.; Freebury, Gregg E.; Beidleman, Neal J.; Hulse, Michael

    2016-05-03

    A Vacuum Insulating Glazing Unit (VIGU) comprises two or more glass lites (panes) spaced apart from one another and hermetically bonded to an edge seal assembly therebetween. The resulting cavity between the lites is evacuated to create at least one insulating vacuum cavity within which are disposed a plurality of stand-off members to maintain separation between the lites. The edge seal assembly is preferably compliant in the longitudinal (i.e., edgewise) direction to allow longitudinal relative motion between the two lites (e.g., from thermal expansion). The longitudinal compliance may be obtained by imprinting a three-dimensional pattern into the edge seal material. The edge seal assembly is preferably bonded to the lites with a first bond portion that is hermetic and a second bond portion that is load-resistant. Methods for producing VIGUs and/or compliant edge seal assemblies and VIGU and edge seal apparatus are disclosed.

  7. Flexible edge seal for vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  8. Dynamic measurement of heat loss coefficients through Trombe wall glazing systems

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    A Trombe wall presents a unique opportunity to measure the heat-loss coefficient through the glazing system because the wall itself can be used as a heat meter. Since the instantaneous heat flux through the outer wall surface can be determined, the heat loss coefficient at night can be calculated by dividing by the wall surface-to-ambient temperature difference. This technique has been used to determine heat-loss coefficients for Los Alamos test rooms during the winter of 1980-1981. Glazing systems studied include single and double glazing both with and without night insulation used in conjunction with a flat black paint, and both single and double glazing used in conjunction with a selective surface.

  9. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect (OSTI)

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  10. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  11. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  12. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, Dariush K. (Oakland, CA)

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  13. Basement Insulation Systems - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation ...

  14. Vacuum foil insulation system

    DOE Patents [OSTI]

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  15. Slab edge insulating form system and methods

    DOE Patents [OSTI]

    Lee, Brain E.; Barsun, Stephan K.; Bourne, Richard C.; Hoeschele, Marc A.; Springer, David A.

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  16. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan; Gaskin, Sally

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  17. Evaluation of solar heat gain coefficient for solar-control glazings and shading devices

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van

    1998-10-01

    The determination of solar heat gain coefficient (SHGC) values for complex fenestration systems is required to evaluate building energy performance, to estimate peak electrical loads, and to ensure occupant comfort. In the past, simplified techniques have been used to calculate the values of SHGC for fenestration systems. As glazing systems that incorporate complex geometries become more common, test methods are required to evaluate these products and to aid in the development of new computational tools. Recently, a unique facility and test method for the experimental determination of SHGC values were developed and demonstrated for simple fenestration systems. The study described in this paper further applies this method to a variety of commercially available glazing and shading systems (e.g., heat-absorbing insulated glazing units (IGUs), reflective film and suspended film IGUs), and shading devices (i.e., slat blinds and shades). Testing was conducted in a solar simulator facility using a specially designed window calorimeter. The results of this study demonstrate the feasibility of the solar simulator-based test method for the evaluation of SHGC values for solar-control glazings and shading devices.

  18. High-Performance External Insulation and Finish System Incorporating Vacuum

    Office of Scientific and Technical Information (OSTI)

    Insulation Panels Foam Panel Composite and Hot Box Testing (Conference) | SciTech Connect High-Performance External Insulation and Finish System Incorporating Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Citation Details In-Document Search Title: High-Performance External Insulation and Finish System Incorporating Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Authors: Seitz, Aaron J [1] ; Carbary, Lawrence D [2] ; Serino, Roland [1] ; Biswas, Kaushik

  19. Predicted thermal performance of triple vacuum glazing

    SciTech Connect (OSTI)

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  20. Convective heat transfer correlations for fenestration glazing cavities: A review

    SciTech Connect (OSTI)

    Zhao, Y.; Curcija, D.; Goss, W.P.

    1999-07-01

    Convective heat transfer in insulated glazing unit (IGU) cavities is a major component of the overall heat transfer in fenestration systems. Accurately quantifying the heat-transfer coefficient within the cavity is of great significance in calculating the center-of-glass U factor, the edge-of-glass U factor, and therefore the overall U factor. Over the past 40 years, along with the rapid development of experimental techniques and numerical methods as well as the powerful computer systems, the heat-transfer correlations have been updated either from experimental data or from numerical data from time to time. The literature reviewed here covers correlations based on simplified analytical studies, on the experimental data, and on the numerical results. In addition, most of the correlation equations cover the typical design range of fenestration glazing cavities, e.g., Ra < 20,000. Inconsistencies and discrepancies existing between different experimental observations, and between derived numerical/analytical correlations and available experimental data, are discussed.

  1. Nuclear reactor insulation and preheat system

    DOE Patents [OSTI]

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  2. Thermal Performance of Exterior Insulation and Finish Systems Containing

    Office of Scientific and Technical Information (OSTI)

    Vacuum Insulation Panels (Conference) | SciTech Connect Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels Citation Details In-Document Search Title: Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum

  3. Basement Insulation Systems - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation in between the studs. Efficient and durable construction practices for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. For this Top Innovation award,

  4. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  5. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells. All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices. (author)

  6. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  7. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  8. High-Performance External Insulation and Finish System Incorporating...

    Office of Scientific and Technical Information (OSTI)

    Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Citation ... Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Authors: ...

  9. BOA II: pipe-asbestos insulation removal system

    SciTech Connect (OSTI)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-12-31

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  10. Glazing materials for solar and architectural applications. Final report

    SciTech Connect (OSTI)

    Lampert, C.M. [ed.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  11. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  12. Solar controlled glazing and method of producing glazing

    SciTech Connect (OSTI)

    Hartig, K.; Dietrich, A.; Scherer, M.

    1985-08-13

    Solar-controlled glazing having a transmission of between 5 and 40% in the visible spectrum range and having heat-reflection properties is produced by applying an oxide layer having an optical thickness of between 20 and 280 nm directly to a transparent substrate by cathodic evaporation in an oxygen-containing atmosphere to form a first layer. A chromium nitride layer having a geometric thickness of between 10 and 40 nm is then applied in an atmosphere consisting of inert gas and nitrogen to provide a second layer. An optical third dielectric layer may be applied to the second layer. The oxide layer is selected from oxides of tin, titanium and aluminium.

  13. BOA: Asbestos Pipe-Insulation Abatement Robot System

    SciTech Connect (OSTI)

    Schempf, H.

    1996-06-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  14. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  15. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Broader source: Energy.gov [DOE]

    New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability

  16. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  17. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to improve the high-temperature performance, durability, and life expectancy of aerogel insulation materials.

  18. Entanglement of strongly interacting low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating systems

    SciTech Connect (OSTI)

    Franca, V. V.; Capelle, K.

    2006-10-15

    We calculate the entanglement entropy of strongly correlated low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating phases. The entanglement entropy reflects the degrees of freedom available in each phase for storing and processing information, but is found not to be a state function in the thermodynamic sense. The role of critical points, smooth crossovers, and Hilbert space restrictions in shaping the dependence of the entanglement entropy on the system parameters is illustrated for metallic, insulating, and superfluid systems. The dependence of the spin susceptibility on entanglement in antiferromagnetic insulators is obtained quantitatively. The opening of spin gaps in antiferromagnetic insulators is associated with enhanced entanglement near quantum critical points.

  19. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  20. Simulation of complex glazing products; from optical data measurements to model based predictive controls

    SciTech Connect (OSTI)

    Kohler, Christian

    2012-08-01

    Complex glazing systems such as venetian blinds, fritted glass and woven shades require more detailed optical and thermal input data for their components than specular non light-redirecting glazing systems. Various methods for measuring these data sets are described in this paper. These data sets are used in multiple simulation tools to model the thermal and optical properties of complex glazing systems. The output from these tools can be used to generate simplified rating values or as an input to other simulation tools such as whole building annual energy programs, or lighting analysis tools. I also describe some of the challenges of creating a rating system for these products and which factors affect this rating. A potential future direction of simulation and building operations is model based predictive controls, where detailed computer models are run in real-time, receiving data for an actual building and providing control input to building elements such as shades.

  1. Optical properties database for high performance glazings. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing

    SciTech Connect (OSTI)

    Reilly, S.; Selkowitz, S.; Winkelmann, F.

    1992-06-30

    The framework used for the data is described; maintain and updating the database is addressed; and covers extensions of the database are covered. The appendices include the glass library (Appendix A) and the glazing system library (Appendix B) which for the foundation of the optical property database, and a spectral data reporting format (Appendix C).

  2. Prediction of the multicellular flow regime of natural convection in fenestration glazing cavities

    SciTech Connect (OSTI)

    Zhao, Y.; Goss, W.P.; Curcija, D.

    1997-12-31

    In this work, gas-filled tall rectangular cavities, typically found in insulating glazing units (IGUs) of fenestration systems, with constant temperatures at the side walls and zero heat flux at the top and bottom, were investigated. Critical Rayleigh numbers, Ra{sub c}, at which multicellular flow begins to form were determined for aspect ratios from 10.7 to 80. Using a general-purpose fluid flow and heat transfer finite-element analysis computer program (FDI 1993), numerical calculations were performed over the range of aspect ratios, A, from 10 to 80 with Rayleigh numbers, Ra, varying within the laminar flow regime. The calculations revealed that for aspect ratios between 10.7 and 30, the multicellular flow pattern dies out before the flow enters the turbulent flow regime. In addition, the lowest aspect ratio at which multicellular flow patterns existed was 10.7, which is lower than the lowest limit (A = 12) published by other researchers. The resulting critical Rayleigh numbers are plotted on a graph as a function of the aspect ratio and the Rayleigh numbers. The overall heat transfer results in terms of the average, or integrated, Nusselt numbers, Nu, are compared with available numerical and experimental data on multicellular flow in rectangular cavities, and good agreement was found. Also, streamline contour plots and temperature profiles are plotted for selected cases.

  3. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  4. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  5. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  6. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, Jordan; Podorson, David

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  7. Low-cost solar collectors using thin-film plastics absorbers and glazings

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  8. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, A.H.

    1984-04-26

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  9. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, Alan H.

    1985-01-01

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  10. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    SciTech Connect (OSTI)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  11. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    SciTech Connect (OSTI)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  12. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect (OSTI)

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  13. Emergent topological mirror insulator in t 2 g -orbital systems (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Emergent topological mirror insulator in t 2 g -orbital systems Citation Details In-Document Search Title: Emergent topological mirror insulator in t 2 g -orbital systems Authors: Tai, Yuan-Yen ; Wang, C.-C. Joseph ; Graf, Matthias J. ; Zhu, Jian-Xin ; Ting, C. S. Publication Date: 2015-01-15 OSTI Identifier: 1180575 Grant/Contract Number: AC52-06NA25396 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal

  14. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  15. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  16. Thermal Performance of Exterior Insulation and Finish Systems...

    Office of Scientific and Technical Information (OSTI)

    Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. ...

  17. Fourier analysis of conductive heat transfer for glazed roofing materials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Fourier analysis of conductive heat transfer for glazed roofing materials Citation Details In-Document Search Title: Fourier analysis of conductive heat transfer for glazed roofing materials For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials.

  18. Development of a Leave-in-Place Slab Edge Insulating Form System

    SciTech Connect (OSTI)

    Marc Hoeschele; Eric Lee

    2009-08-31

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

  19. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOE Patents [OSTI]

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  20. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  1. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  2. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  3. Wall Insulation

    SciTech Connect (OSTI)

    2000-10-01

    This fact sheet provides information on advanced wall framing, including insulating walls, airtight construction, and moisture control.

  4. Physical properties of residential insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.

    1980-01-01

    Research to evaluate properties, test methods and operating environments for thermal insulations used in residences is an important part of the Building Thermal Envelope Systems and Insulating Materials (BTESIM) program sponsored by the US DOE. Three projects were carried out under the Insulating Materials part of BTESIM. The areas discussed are: (1) the thermal performance of mineral fiber insulating batts, (2) the design density for loose-fill insulations, and (3) the operatio of recesses light fixtures covered by loose-fill cellulosic insulation.

  5. Gas impermeable glaze for sealing a porous ceramic surface

    DOE Patents [OSTI]

    Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.

    2004-04-06

    A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.

  6. Seasonal control skylight glazing panel with passive solar energy switching

    SciTech Connect (OSTI)

    Miller, J.V.

    1983-10-25

    A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.

  7. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  8. Slab Insulation

    SciTech Connect (OSTI)

    2000-12-01

    Fact sheet for homeowners and contractors on how to insulate slab-on-grade floors and control moisture, air leakage, termites, and radon.

  9. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOE Patents [OSTI]

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  10. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect (OSTI)

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  11. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Insulation Where to Insulate Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Insulation Get the facts about how insulation works. Read more Moisture Control Moisture Control Learn how to control moisture in your home to improve the effectiveness of your insulation and air sealing strategies. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques

  12. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  13. Fabrication of A Quantum Well Based System for Truck HVAC | Department of

    Broader source: Energy.gov (indexed) [DOE]

    1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image: PPGGLASS.COM 2 of 3 In 2011, PPG was the first to commission and install GED's Automated

  14. Lintel testing for reduced shear reinforcement in insulation concrete form systems

    SciTech Connect (OSTI)

    1998-05-01

    Historically, cast-in-place concrete for residential construction has been primarily limited to below grade applications such as footings and foundation walls. Such construction was relatively labor intensive, and, therefore was not considered a viable alternative for other parts of the building. However, the recent advent of insulating concrete form (ICF) wall construction and the Prescriptive Method for Insulating Concrete Forms in Residential Construction (Prescriptive Method) has resulted in a competitive and energy efficient alternative for above grade walls in residential construction. The purpose of this test program is to investigate the structural capacity and performance of the concrete lintels typically used in ICF construction. Lintels are reinforced concrete structural elements that support loads above openings in concrete walls.

  15. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension Part 2: Laboratory results (300K--80K). 13 refs., 7 figs.

  16. Aerogel: a transparent insulator for solar applications

    SciTech Connect (OSTI)

    Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

    1985-06-01

    Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

  17. Cooling energy performance and installation of a retrofitted exterior insulation and finish system on masonry residences in the southwestern United States

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.; McLain, H.A.

    1992-12-31

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls using a site-fabricated (non-commercially available) insulation and finish system. The exterior insulation system developed for the field test was easily performed and should result in a durable installation. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation offers the greatest potential for air-conditioning electricity savings and peak demand reductions in hot, dry climates similar to that of Phoenix. Retrofit economics need to be thoroughly examined from societal, utility, and consumer perspectives and must consider other benefits such as space-heating energy savings and improved house value.

  18. Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems

    SciTech Connect (OSTI)

    Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

    2011-07-11

    We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

  19. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation Insulation Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a

  20. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a...

  1. Install Removable Insulation on Valves and Fittings

    Broader source: Energy.gov [DOE]

    This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

  2. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  3. An overview of the multilayer insulation system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Boroski, W.; Nicol, T.; Schoo, C.J.

    1991-08-01

    The MLI system for the SSC is designed to meet strict performance requirements over the 25 year life of the accelerator. Thermal measurements at 80K and 20K have been used to create an MLI system that limits heat flow to design values while incorporating features that permit the use of large-scale fabrication techniques. The result is a cost-effective means of mass-producing MLI blankets of consistent geometry and thermal performance.

  4. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  5. Calcium silicate insulation structure

    DOE Patents [OSTI]

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  6. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  7. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  8. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  9. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  10. Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price

    SciTech Connect (OSTI)

    Burdis, Mark; Sbar, Neil

    2012-06-30

    The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was largely unaffected by the changes made here, and so we can conclude that the objectives of Task 5 have also been fulfilled. As a result, the future production of EC windows has benefited greatly from this work. We anticipate higher volumes and better yields for devices with an improved EC performance from the new high volume manufacturing facility currently under construction at SAGE.

  11. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter; Fontana, Jack J.; Steinberg, Meyer

    1987-01-01

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  12. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs.

  13. Insulation and Air Sealing Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems EPS Industry Alliance Information on expanded polystyrene manufacturing, use, and

  14. Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Meyer, J.; Rustagi, M.; Olson, K.; Kogler, R.

    2007-05-01

    An analysis to determine the impact of reducing the thermal load on a vehicle using solar-reflective paint and glazing.

  15. Composite multilayer insulations for thermal protection of aerospace vehicles

    SciTech Connect (OSTI)

    Kourtides, D.A.; Pitts, W.C.

    1989-02-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of alumininum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  16. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual

  17. Vacuum Insulation for Window

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 29 Highly Insulating Transparent Fenestration Testing * Ultimately need to perform ASTM standards to compare VI with other products * ASTM Standard C1199 - 12 "Standard Test ...

  18. Loose-fill insulations

    SciTech Connect (OSTI)

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  19. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  20. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  1. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Insulation Materials Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass

  2. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as rigid boards and duct insulation. Manufacturers now produce medium- and high-density fiberglass batt insulation products that have slightly higher R-values than the...

  3. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  4. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  5. Multilayer insulation for the interconnect region in the Accelerator System String Test: A practical engineering approach for a new scheme of design and installation bridges

    SciTech Connect (OSTI)

    Baritchi, D.; Jalloh, A.

    1993-04-01

    In order to minimize the heat leak in the Accelerator System String Test (ASST) inter-connect region, shield bridges and multilayer insulation (MLI) are provided. A sliding joint between shield bridges on adjacent magnets accommodates the contraction that occurs during cooldown. In the original design of the MLI bridges, thermal contraction was provided for by compressing the MLI. During assembly of the interconnect region, it was realized that there was not enough room for the required compression. This resulted in a redesign of the MLI bridges. The new scheme involves splitting and overlapping the MLI. This scheme has worked very well in subsequent assembly of the interconnect region. In this paper, we are going to present the new design scheme. We will also compare this design with the original design and present its advantages.

  6. Dielectric insulating polyolefin compounds and conductor products insulated therewith

    DOE Patents [OSTI]

    MacKenzie, Jr., Burton T.; Prober, Maurice; Kiersztyn, Stanley E.

    1979-01-01

    Polyolefin compounds containing nitrile polysiloxane fluid which have improved electrical properties, and electrical conductors insulated therewith.

  7. Insulation fact sheet

    SciTech Connect (OSTI)

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  8. Insulation for a Thermionic Microbattery

    SciTech Connect (OSTI)

    James P. Blanchard

    2004-09-19

    Microelectronmechanical Systems (MEMS) have not gained wide use because they lack the on-device power required by many important applications. To supply this need power, on can consider power from fossil fuels, but nuclear sources provide an intriguing option in terms of power density and lifetime. In order to make use of alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alphas. One difficulty, though, is that the surface to volume ration increases as we move to smaller scales and heat losses thus become significant at MEMS scales. Hence, efficient microscale insulation is needed to permit high overall efficiencies. This research explores concepts for one variety of microscale insulation created using MEMS fabrication techniques.

  9. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Spray foam insulation fills the nooks and crannies in the...

  10. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  11. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  12. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  13. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  14. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  15. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  16. Low-vacuum SEM analyses of ceramic tiles with emphasis on glaze defects characterisation

    SciTech Connect (OSTI)

    Kopar, Tinkara Ducman, Vilma

    2007-11-15

    The behaviour of glazed building ceramics exposed to different environment (weathering, chemicals, etc.) is determined by microstructural features; in many cases structural and surface defects at the micro- or nanometre scale are crucial for the functional properties of products. Many testing methods for materials characterization of a variety of ceramic products, physical and chemical methods, are time-consuming, large quantities of samples are needed, and are usually destructive. This paper illustrates the use of low-vacuum scanning electron microscopy (LV-SEM) as fast and almost non-destructive, as only a small amount of sample is needed. Examples are given of various surface and structural properties of building ceramics, for the identification of the material deterioration process as a result of environmental impact.

  17. Explosion resistant insulator and method of making same

    DOE Patents [OSTI]

    Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.

    1983-01-01

    An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

  18. Band structure of topological insulators from noise measurements in tunnel

    Office of Scientific and Technical Information (OSTI)

    junctions (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Band structure of topological insulators from noise measurements in tunnel junctions Citation Details In-Document Search Title: Band structure of topological insulators from noise measurements in tunnel junctions The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental

  19. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which saves money. Structural Insulated Panels Structural insulated panels (SIPs) are prefabricated insulated structural elements for use in building walls, ceilings, floors,...

  20. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  1. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

  2. Tips: Insulation | Department of Energy

    Office of Environmental Management (EM)

    for recommendations. Be careful how close you place insulation next to a recessed light fixture-unless it is insulation contact (IC) rated-to avoid a fire hazard. See the...

  3. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  4. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  5. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  6. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, T.K.

    1997-08-22

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  7. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  8. Solar Heat Gain Through Fenestration Systems Containing Shading: Procedures for Estimating Performance from Minimal Data

    SciTech Connect (OSTI)

    Klems, J.H.

    2000-08-01

    The computational methods for calculating the properties of glazing systems containing shading from the properties of their components have been developed, but the measurement standards and property data bases necessary to apply them have not. It is shown that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about the shading. Detailed formulas are presented, and performance multipliers are defined for the approximate treatment of simple glazings with shading. As higher accuracy is demanded, the formulas become very complicated.

  9. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    SciTech Connect (OSTI)

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  10. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  11. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  12. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  13. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  14. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  15. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  16. Corona processing of insulating oil

    SciTech Connect (OSTI)

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  17. Solar heat gain through fenestration systems containing shading: Summary of procedures for estimating performance from minimal data

    SciTech Connect (OSTI)

    Klems, Joseph H.

    2001-03-01

    The computational methods for calculating the properties of glazing systems containing shading from the properties of their components have been developed, but the measurement standards and property data bases necessary to apply them have not. It is shown that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about the shading. Detailed formulas are presented, and performance multipliers are defined for the approximate treatment of simple glazings with shading. As higher accuracy is demanded, the formulas become very complicated.

  18. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  19. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  20. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  1. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  2. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  3. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  4. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  5. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect (OSTI)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  6. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  7. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  8. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs. Made of foam insulation sandwiched between two layers of ...

  9. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The interior bulk of a topological insulator is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized,...

  10. Anomalous energy transport across topological insulator superconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator ...

  11. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  12. SEALED INSULATOR BUSHING

    DOE Patents [OSTI]

    Carmichael, H.

    1952-11-11

    The manufacture of electrode insulators that are mechanically strong, shock-proof, vacuum tight, and are capable of withstanding gas pressures of many atmospheres under intense neutron bombardment, such as may be needed in an ionization chamber, is described. The ansulator comprises a bolt within a quartz tube, surrounded by a bushing held in place by two quartz rings, and tightened to a pressure of 1,000 pounds per square inch by a nut and washer. Quartz is the superior material to meet these conditions, however, to withstand this pressure the quartz must be fire polished, lapped to form smooth and parallel surfaces, and again fire polished to form an extremely smooth and fracture resistant mating surface.

  13. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  14. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  15. Discomfort glare with complex fenestration systems and the impact on energy use when using daylighting control

    SciTech Connect (OSTI)

    Hoffmann, Sabine; McNeil, Andrew; Lee, Eleanor S.; Kalyanam, Raghuram

    2015-11-03

    Glare is a frequent issue in highly glazed buildings. A modelling approach is presented that uses discomfort glare probability and discomfort glare index as metrics to determine occupants’ behaviour. A glare control algorithm that actuated an interior shade for glare protection based on the predicted perception was implemented in a building simulation program. A reference case with a state-of-the-art base glazing was compared to the same glazing but with five different complex fenestration systems, i.e., exterior shades. The windows with exterior shades showed significant variations in glare frequencies. Energy use intensity in a prototypical office building with daylighting controls was greatly influenced for the systems with frequent glare occurrence. While the base glazing could benefit from glare control, some of the exterior shades showed significantly greater energy use when discomfort glare-based operation of interior shades was considered.

  16. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  17. Excavationless Exterior Foundation Insulation Exploratory Study

    SciTech Connect (OSTI)

    Mosimann, Garrett; Wagner, Rachel; Schirber, Tom

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  18. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  19. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  20. Measure Guideline. Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and to be a practical resource for building contractors, designers, and also to homeowners.

  1. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  2. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  3. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  4. Insulated Concrete Homes Increase Durability and Energy Efficiency

    SciTech Connect (OSTI)

    2001-05-01

    New houses designed by Mercedes Homes in Melbourne, Florida, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  5. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  6. Insulate Steam Distribution and Condensate Return Lines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulate Steam Distribution and Condensate Return Lines This tip sheet on insulating steam ... STEAM TIP SHEET 2 PDF icon Insulate Steam Distribution and Condensate Return Lines ...

  7. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Articles Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Insulation Adding insulation in...

  8. Where to Insulate in a Home | Department of Energy

    Office of Environmental Management (EM)

    to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Tips: Insulation...

  9. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash; Balakrishnan, G. Nair

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  10. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  11. Cladding Attachment Over Thick Exterior Rigid Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vertical Displacement of Furring Strip over 4" of PIC Insulation 4" Thermax- 24" OC 4" ... Vertical Displacement of Furring Strip over 4" PIC Insulation 4" Thermax- 24" OC 4" ...

  12. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

  13. Adding Insulation to an Existing Home

    Broader source: Energy.gov [DOE]

    Adding insulation to your home is a sound investment that is likely pay for itself quickly in reduced utility bills.

  14. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  15. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the

  16. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  17. R25 Polyisocyanurate Composite Insulation Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Partners: -- NanoPore Inc. - Albuquerque, NM; -- Firestone Building Products Company - Indianapolis, IN DOE Funding:

  18. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  19. Quench from Mott Insulator to Superfluid

    SciTech Connect (OSTI)

    Zurek, Wojciech H.; Dziarmaga, Jacek; Tylutki, Marek

    2012-06-01

    We study a linear ramp of the nearest-neighbor tunneling rate in the Bose-Hubbard model driving the system from the Mott insulator state into the superfluid phase. We employ the truncated Wigner approximation to simulate linear quenches of a uniform system in 1...3 dimensions, and in a harmonic trap in 3 dimensions. In all these setups the excitation energy decays like one over third root of the quench time. The -1/3 scaling is explained by an impulse-adiabatic approximation - a variant of the Kibble-Zurek mechanism - describing a crossover from non-adiabatic to adiabatic evolution when the system begins to keep pace with the increasing tunneling rate.

  20. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  1. SUPPORTING AND HEAT INSULATING MEANS

    DOE Patents [OSTI]

    Birmingham, B.W.; Brown, H.; Scott, R.B.; Vander-arend, P.C.

    1959-01-27

    A method is described for simultaneously supporting inner and outer members spaced from each other and heat insulating them from each other comprising an inner and outer member together defining an annular cavity. Each member carries a shoulder projecting towards the other member. A stack of annular metal plates in the cavity is held between the shoulder of the outer member and the shoulder of the inner member. The edges of the metal plate forming the stack are exposed to the cavity and to evacuation conditions which may exist within thc cavity. The stack of metal plates acts to both support one of the members with respect to the other and as a heat insulator.

  2. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  3. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  4. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  5. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  6. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  7. Magnetic instability of Kondo insulators

    SciTech Connect (OSTI)

    Wang, Ziqiang [Los Alamos National Lab., NM (United States)]|[Boston Univ., MA (United States). Dept. of Physics; Li, Xiao-Ping [Rutgers--the State Univ., Piscataway, NJ (United States). Serin Physics Lab.; Lee, Dung-Hai [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    1993-09-01

    We review a number of experiments on isoelectronic, isostructural ternary compounds CeTSn (T=Ni,Pd,Sn) and alloys CeNi{sub 1-x}(Pd,Pt){sub x}Sn, and propose a finite temperature phase diagram describing the evolution of a Kondo insulator to an antiferromagnetic Kondo state with decreasing hybridization or Kondo coupling. We then provide microscopic justifications for the phase diagram by analyzing the magnetic properties of the symmetric Kondo lattice model in two dimensions.

  8. Unconventional Fermi surface in an insulating state

    SciTech Connect (OSTI)

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  9. High pressure electrical insulated feed thru connector

    DOE Patents [OSTI]

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  10. Measurement of Exterior Foundation Insulation to Assess Durability in Energy-Saving Performance

    SciTech Connect (OSTI)

    Kehrer, Manfred; Christian, Jeff

    2012-04-01

    The foundation of a house is a sometimes ignored component of the building because of its low visibility. It is increasingly evident, however, that attention to good foundation design and construction significantly benefits the homeowner and the builder by mitigating future problems. Good foundation design and construction practice involves not only insulating to save energy but also providing effective structural design as well as moisture, termite, and radon control techniques as appropriate. Energy efficiency in housing is augmented by use of exterior slab and basement insulation, but high moisture content in the insulation material has led to concerns about its durability. The activity under this task was to extract six different exterior insulation systems that were characterized at installation and have been in the ground for 9 months to 15 years. R-value and moisture content were measured and inspections conducted for evidence of termite intrusion or deterioration. Based on the results, the durability of the various systems has been documented and assessments made of which systems appear to be best practice. Heat flux and temperature measurement data had been archived for some of the exterior insulation tests, thereby providing a unique opportunity to assess energy-saving performance and durability over the long term. The results show that the durability of foundation insulation systems depends on insulation type as well as on foundation type and local boundary conditions, the latter of which may have a marked influence on the durability of energy-saving performance.

  11. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Studies Bolster Promise of Topological Insulators Print Tuesday, 27 November 2012 00:00 A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are

  12. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  13. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  14. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  15. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  16. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  17. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  18. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  19. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spintronics The ability to shine polarized light on a topological insulator (TI) and excite spin-polarization-tailored electrons has great potential for the field of spintronics - ...

  20. Connecting Thermoelectric Performance and Topological-Insulator...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: BiTe and BiTeSe from First Principles Prev Next Title: ...

  1. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  2. Training: Mechanical Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    control. In conjunction with the MIC, the 3EPlus tool is a useful resource for ensuring proper insulation usage. The tool calculates the most economic thickness of industrial ...

  3. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    states remain "topologically protected"-they can't scatter without breaking the rules of quantum mechanics. Electrons on the surface of a topological insulator can flow with...

  4. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First...

  5. How Much Insulation is Too Much?

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  6. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized, however, with their momenta (directional ribbons) and...

  7. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extensive information was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks. It ...

  8. Electrically insulating and sealing frame

    DOE Patents [OSTI]

    Guthrie, Robin J. (East Hartford, CT)

    1983-11-08

    A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

  9. Processing of insulators and semiconductors

    DOE Patents [OSTI]

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  10. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  11. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  12. Install Removable Insulation on Valves and Fittings - Steam Tip Sheet #17

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  13. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Minneapolis Residence

    SciTech Connect (OSTI)

    2013-10-01

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  14. Orbital disc insulator for SF.sub.6 gas-insulated bus

    DOE Patents [OSTI]

    Bacvarov, Dosio C.; Gomarac, Nicholas G.

    1977-01-01

    An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

  15. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  16. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect (OSTI)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  17. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  18. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  19. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun

    1999-01-01

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  20. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-08-27

    Insulation board is described which is capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  1. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  2. Kingspan Insulated Panels: Order (2013-CE-5353)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. Saving Energy and Money with Aerogel Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Money with Aerogel Insulation Saving Energy and Money with Aerogel Insulation June 7, 2012 - 11:45am Addthis Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Leo Christodoulou, Ph.D. Program

  4. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The project was conducted in three budget periods, herein called BP1, BP2 and BP3.

  5. Current–voltage characteristics of organic heterostructure devices with insulating spacer layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-05-14

    The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less

  6. Noncommutative geometry for three-dimensional topological insulators...

    Office of Scientific and Technical Information (OSTI)

    Noncommutative geometry for three-dimensional topological insulators Title: Noncommutative geometry for three-dimensional topological insulators Authors: Neupert, Titus ; Santos, ...

  7. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...

  8. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators ...

  9. Surface theory of a family of topological Kondo insulators (Journal...

    Office of Scientific and Technical Information (OSTI)

    Surface theory of a family of topological Kondo insulators Prev Next Title: Surface theory of a family of topological Kondo insulators Authors: Roy, Bitan ; Sau, Jay D. ; ...

  10. Where to Insulate in a Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in several southern U.S. states prohibit installing foam insulation in contact with the ground. Slab foundations with interior insulation provide more termite resistance, but...

  11. Computational Design of Axion Insulators Based on 5 d Spinel...

    Office of Scientific and Technical Information (OSTI)

    Computational Design of Axion Insulators Based on 5 d Spinel Compounds Title: Computational Design of Axion Insulators Based on 5 d Spinel Compounds Authors: Wan, Xiangang ; ...

  12. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; ...

  13. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  14. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  15. Topological Insulator Nanowires and Nanoribbons

    SciTech Connect (OSTI)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  16. Transpiration cooled electrodes and insulators for MHD generators

    DOE Patents [OSTI]

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  17. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  18. Measure Guideline. Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  19. Silicon on insulator self-aligned transistors

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  20. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  1. Moisture Durability of Vapor Permeable Insulating Sheathing ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drying (by virtue of its vapor permeability). However, it also allows inward-driven moisture to fow through the insulation and contact the water resisting barrier (WRB), which is ...

  2. R25 Polyisocyanurate Composite Insulation Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Project: 1. Major output: Development of R12inch composite insulation with MAI cores encapsulated by polyiso foam, produced on a manufacturing line. 2. Near-term ...

  3. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL. Icynene plastic insulation blown into the walls of a home near Denver. ...

  4. Tunable Anderson metal-insulator transition in quantum spin-Hall insulators

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Citation Details In-Document Search This content will become publicly available on June 3, 2016 Title: Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Authors: Chen, Chui-Zhen ; Liu, Haiwen ; Jiang, Hua ; Sun, Qing-feng ; Wang, Ziqiang ; Xie, X. C. Publication Date: 2015-06-04 OSTI Identifier: 1183777 Grant/Contract Number: FG02-99ER45747 Type:

  5. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect (OSTI)

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  6. Anomalous energy transport across topological insulator superconductor

    Office of Scientific and Technical Information (OSTI)

    junctions (Journal Article) | SciTech Connect Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator superconductor junctions Authors: Ren, Jie ; Zhu, Jian-Xin Publication Date: 2013-04-15 OSTI Identifier: 1102080 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 87; Journal Issue: 16; Journal ID: ISSN

  7. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  8. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  9. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  10. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  11. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  12. Measure Guideline: Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  13. Measure Guideline. Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  14. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  15. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  16. Where to Insulate in a Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation » Where to Insulate in a Home Where to Insulate in a Home Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. If the air distribution is in the attic space, then consider insulating the rafters to move the distribution into the conditioned space. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs

  17. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ​A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  18. Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (PLM-DOC-0005-2465) Report # DOEGEHB00613

    SciTech Connect (OSTI)

    Krahn, John; Reed, Claude; Loewen, Eric

    2015-10-29

    Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (Report # DOEGEHB00613) summarizes the information gathered from the analysis of the 160 m3/min EM Pump insulation that was tested in 2000-2002 and additional evaluations of new resilient, engineered insulation system evaluated and tested at both GRC and ANL. This report provides information on Tasks 1 and 2 of the entire project. This report also provides information in three broad areas: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps. The research for Task 2 builds upon Task 1: Update EM Pump Databank, which is summarized within this report. Where research for Task 3 and 4 Next-Generation EM Pump Analysis Tools identified parameters or analysis model that benefits Task 2 research, those items are noted within this report. The important design variables for the manufacture and operation of an EM Pump that the insulation research can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development summary of the Electromagnetic Pump Insulation Materials Development and Testing was completed to include: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps.

  19. Insulation for New Home Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New Home Construction Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. State and local

  20. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  1. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  2. Load-deflection characteristics of small bore insulated pipe clamps

    SciTech Connect (OSTI)

    Severud, L.K.; Clark, G.L.

    1982-01-01

    High temperature LMFBR piping is subject to rapid temperature changes during transient events. Typically, this pipe is supported by specially designed insulated pipe clamps to prevent excessive thermal stress from developing during these transients. The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427/sup 0/C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps.

  3. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, A.; Baker, R.; Prahl, D.

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  4. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, Anatasia; Baker, Richard; Prahl, Duncan

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  5. Advanced fenestration systems for improved daylight performance

    SciTech Connect (OSTI)

    Lee, E S; Selkowitz, S

    1998-03-01

    The use of daylight to replace or supplement electric lighting in commercial buildings can result in significant energy and demand savings. High performance fenestration systems area necessary, but not sufficient, element of any successful daylighting design that reduces lighting energy use. However, these savings may be reduced if the fenestration systems impose adverse thermal loads. In this paper, we review the state of the art of several advanced fenestration systems which are designed to maximize the energy-saving potential of daylighting, while improving comfort and visual performance at an "affordable" cost. We first review the key performance issues that successful fenestration systems must address, and then review several classes of fenestration systems intended to meet those performance needs. The systems are reviewed in two categories: static and dynamic. Static systems include not only glazings, such as spectrally-selective and holographic glazings, but specialized designs of light-shelves and light-pipes, while dynamic systems cover automatically-operated Venetian blinds and electrochromic glazings. We include a discussion of the research directions in this area, and how these efforts might lead to static and dynamic hardware and system solutions that fulfill the multiple roles that these systems must play in terms of energy efficiency, comfort, visual performance, health, and amenity in future buildings.

  6. Tool for cutting insulation from electrical cables

    DOE Patents [OSTI]

    Harless, Charles E.; Taylor, Ward G.

    1978-01-01

    This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.

  7. Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade- Minneapolis Residence (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  8. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, Marshall O.; Adcock, James L.; Christophorou, Loucas G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

  9. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  10. #AskEnergySaver: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation #AskEnergySaver: Insulation February 21, 2014 - 5:20pm Addthis One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. <a href="/node/366805">Learn more about insulation</a>. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab. One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. Learn more about insulation. | Photo courtesy of Dennis Schroeder,

  11. Aerogel Insulation: The Materials Science of Empty Space | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aerogel Insulation: The Materials Science of Empty Space Aerogel Insulation: The Materials Science of Empty Space October 11, 2013 - 10:11am Addthis Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame.<br/> <em>Photo Courtesy of Aspen Aerogels</em> Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held

  12. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  13. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  14. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  15. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  16. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  17. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  18. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  19. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  20. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  1. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  2. Aerogel Impregnated Polyurethane Piping and Duct Insulation

    Energy Savers [EERE]

    AeroSysNNC_3-25.pdf AeroSysNNC_3-25.pdf PDF icon AeroSysNNC_3-25.pdf More Documents & Publications AeroSys: Noncompliance Determination (2010-SE-0302) AeroSys: Test Notice (2009) AeroSys: Order (2010-CE-01/0201 and 2010-SE-0302)

    Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation

  3. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  4. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  5. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  6. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  7. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  8. Insulating Structural Ceramics Program, Final Report

    SciTech Connect (OSTI)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  9. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, Jong Hee

    1998-01-01

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound

  10. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  11. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R.

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  12. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new...

  13. Savings Project: Insulate Your Water Heater Tank | Department...

    Energy Savers [EERE]

    Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall ...

  14. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  15. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  16. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ultra-efficient home design. It is more cost-effective to add insulation during construction than to retrofit it after the house is finished. To properly insulate a new home,...

  17. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  18. Interaction Driven Subgap Spin Exciton in the Kondo Insulator...

    Office of Scientific and Technical Information (OSTI)

    Interaction Driven Subgap Spin Exciton in the Kondo Insulator SmB 6 Title: Interaction Driven Subgap Spin Exciton in the Kondo Insulator SmB 6 Authors: Fuhrman, W. T. ; Leiner, J. ...

  19. Insulator to correlated metal transition in V_1-xMo_xO_2

    SciTech Connect (OSTI)

    Klimczuk, Tomasz; Ronning, Filip; Holman, Katherine; Mcqueen, Tyrel M; Williams, Anthony J; Stephens, P W; Zandbergen, Henny W; Xu, Q; Cava, Robert J

    2009-01-01

    The change from metallic to insulating states is one of the most dramatic transitions that solids undergo on cooling or chemical doping. Many materials display this transition, but only a handful have the right combination of crystal structure and physical properties to serve as model systems. VO{sub 2} is one of those materials. Using Mo as a chemical dopant in VO{sub 2}, we find unanticipated phenomenology for both the electronic and structural characteristics of the resulting insulator to metal transition. The results support a complex, previously proposed scenario involving the coexistence of both electron repulsion and electron pairing for yielding an insulator in VO{sub 2}, but not simply; many issues are raised about local versus itinerant behavior and structure-property correlations in this most iconic ofdoped correlated electron systems.

  20. Feasibility of SF6 Gas-Insulated Transformers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ® PORTLAND DISTRICT 2 Outline  Transformer Background & Basics  Oil-filled transformers  Oil-filled transformer concerns  Gas-insulated transformers (GIT)  Gas-insulated transformer benefits  Gas-insulated transformer concerns  Risks and Unknowns  Questions? BUILDING STRONG ® PORTLAND DISTRICT

  1. Redox chemistry and metal-insulator transitions intertwined | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Redox chemistry and metal-insulator transitions intertwined

  2. Foundation Insulation for Existing Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq1_foundation_insulation_huelman.pdf More Documents & Publications Critical Question #1: How Do We Retrofit the Tough Buildings? Excavationless Exterior Foundation Insulation Exploratory Building America Technology Solutions for New and Existing Homes:

  3. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  4. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  5. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  6. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  7. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied

  8. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  9. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  10. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  11. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  12. Surprising Control over Photoelectrons from a Topological Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00 Topological insulators are insulators in the bulk but metals on the surface, and the electrons that flow swiftly across their surfaces are "spin polarized." Surface-electron spin and momentum are locked, offering new ways to control electron flow and distribution in spintronic devices. A Nature Physics paper by first

  13. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor

  14. Laminated insulators having heat dissipation means

    DOE Patents [OSTI]

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  15. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    NorthernSTAR

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  16. Integral collector storage system with heat exchange apparatus

    DOE Patents [OSTI]

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  17. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  18. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  19. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  20. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  1. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  2. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  3. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  4. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  5. Insulating concrete forms: Installed cost and acoustic performance

    SciTech Connect (OSTI)

    1999-03-01

    The NAHB Research Center conducted a study to compare the cost and performance of Insulating Concrete Form (ICF) walls to conventional wood-frame exterior walls. This report contains the results of the cost study and sound transmission tests. Three home were built and monitored. One home has an ICF plank system, one has an ICF block system, and one is of conventional 2x4 lumber construction. The homes have identical floor plans and are located side by side. The findings indicate that the labor costs for the ICFs were slightly to moderately higher than the wood framing. However, the sound tests indicate that the ICF walls perform significantly better than the wood walls when no openings were present. The report summarizes the findings and recommends ways to increase the cost-effectiveness of ICFs.

  6. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect (OSTI)

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  7. Sheath insulator final test report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  8. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    SciTech Connect (OSTI)

    Baker, Peter

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension on previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  9. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    SciTech Connect (OSTI)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  10. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Aerogel-Based Insulation for High-Temperature Industrial Processes Citation Details In-Document Search Title: Aerogel-Based Insulation for High-Temperature Industrial Processes Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature

  11. Experiments Provide First Direct Signatures of a Topological Insulator - a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Phase of Quantum Matter Experiments Provide First Direct Signatures of a Topological Insulator - a New Phase of Quantum Matter It has recently been proposed that insulators with large band gap and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator [1,2]. This exotic phase of matter is a subject of intense research because it is predicted to give rise to dissipationless spin currents [3], quantum entanglements and novel macroscopic behavior

  12. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons.

  13. Building America Technology Solutions for New and Existing Homes: Insulated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siding Retrofit in a Cold Climate, New Paltz, New York | Department of Energy Insulated Siding Retrofit in a Cold Climate, New Paltz, New York Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New Paltz, New York In this study, the U.S. Department of Energy's team Building America Partner-ship for Improved Residential Construction (BA-PIRC) worked with Kinsley Construction Company to evaluate the real-world performance of insulated

  14. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Spin injection and spin transport in paramagnetic insulators This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above

  15. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Spin injection and spin transport in paramagnetic insulators Citation Details In-Document Search This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow

  16. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  17. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  18. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and...

  19. Redox chemistry and metal-insulator transitions intertwined in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox chemistry and metal-insulator transitions intertwined in a nano-porous material Previous Next List Sergey N. Maximoff and Berend Smit, Nature Communications 5, 4032 (2014)...

  20. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more Video: Architecture, Engineering, and Construction (AEC) Hackathon PDF icon 2014 BTO Peer Review Presentation - Highly Insulating Residential Windows using Smart ...

  1. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Title: Moderate Doping Leads to High Performance of SemiconductorInsulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, ...

  2. Soitec SA Silicon on Insulator Technologies | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Soitec SA (Silicon on Insulator Technologies) Place: Bernin, France Zip: 38190 Product: Has an 'atomic scalpel' technology which allows extremely thin...

  3. Large kinetic asymmetry in the metal-insulator transition nucleated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects Citation Details In-Document Search Title: Large kinetic...

  4. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the...

  5. New classes of three-dimensional topological crystalline insulators...

    Office of Scientific and Technical Information (OSTI)

    New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Citation Details In-Document Search Title: New classes of three-dimensional ...

  6. Heavy surface state in a possible topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 This content will become publicly available on February...

  7. Adding Insulation to an Existing Home | Department of Energy

    Office of Environmental Management (EM)

    existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo...

  8. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  9. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  10. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  11. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  12. Charged particle beam scanning using deformed high gradient insulator

    DOE Patents [OSTI]

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  13. Workshop on user experience with gas-insulated substations

    SciTech Connect (OSTI)

    Graybill, H.W.

    1981-12-01

    There is widespread interest among American and Canadian utilities in the interchange of operating and maintenance experience with gas-insulated substations (GIS). Those utilities who do not yet have GIS on their systems are likewise interested in the operating experience of those who do. A two-day workshop on GIS was held in Portland, Oregon, on July 30 and 31, 1981. The first day of the workshop was open to users only, and the agenda for the day consisted of user presentations on the following subjects: GIS station design and layout; specification and acquisition of GIS equipment; installation and commissioning; and operation and maintenance. On the second day, manufacturers were invited to present their experience, status, and progress in recent developments and improvements. The session was concluded with a general discussion of experience, problems, etc. No formal written papers were presented. The highlights of each verbal presentation and of ensuing discussion are presented in this report.

  14. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built Lab Homes located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The baseline Lab Home B was retrofitted with standard double-pane clear aluminum-frame slider windows and patio doors, while the experimental Lab Home A was retrofitted with Jeld-Wen triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% 1.53% for the heating season and 18.4 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.

  15. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  16. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  17. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  18. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F.

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  19. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  20. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  1. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect (OSTI)

    White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  2. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    SciTech Connect (OSTI)

    Huelman, P.; Goldberg, L.; Jacobson, R.

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  3. Dielectrophoresis device and method having insulating ridges for manipulating particles

    DOE Patents [OSTI]

    Cummings, Eric B.; Fiechtner, Gregory J.

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  4. Design of Experiments Results for the Feedthru Insulator

    SciTech Connect (OSTI)

    BENAVIDES,GILBERT L.; VAN ORNUM,DAVID J.; BACA,MAUREEN R.; APPEL,PATRICIA E.

    1999-12-01

    A design of experiments (DoE) was performed at Ceramtec to improve the yield of a cermet part known as the feedthru insulator. The factors chosen to be varied in this DoE were syringe orifice size, fill condition, solvent, and surfactant. These factors were chosen because of their anticipated effect on the cermet slurry and its consequences to the feedthru insulator in succeeding fabrication operations. Response variables to the DoE were chosen to be indirect indicators of production yield for the feedthru insulator. The solvent amount used to mix the cermet slurry had the greatest overall effect on the response variables. Based upon this DoE, there is the potential to improve the yield not only for the feedthru insulator but for other cermet parts as well. This report thoroughly documents the DoE and contains additional information regarding the feedthru insulator.

  5. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  6. A comparative examination of the fire performance of pipe insulation

    SciTech Connect (OSTI)

    Babrauskas, V.

    1996-12-31

    A standard method for evaluating the fire performance of pipe insulation is not available in North America. In Europe, however, the regional standards organization NORDTEST has had available for several years now a method specifically designed for this purpose. The NORDTEST NT FIRE 036 test is a full-scale room fire test where the pipe insulation is installed along the ceiling and subjected to a gas burner fire. Four classes of performance (Class I through III, plus unrated) are used to evaluate the products. In the present work, 4 different pipe insulation products, representing the most common materials used for this purpose, have been examined according to this test. The results showed that rock wool insulation gave the best fire performance, with phenolic foam being in the least safe rated category. Synthetic foam rubber and polyethylene insulation products gave intermediate performance. 12 refs., 3 figs., 11 tabs.

  7. Pressure effects on the optical conductivity of Kondo insulators

    SciTech Connect (OSTI)

    Zhang, Sun

    2001-06-01

    The effects of pressure on the optical conductivity of Kondo insulators are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation. A unified picture is presented for both the hole-type Kondo insulators [H. Okamura , Phys. Rev. B >58, R7496 (1998)] and the electron-type Kondo insulators [B. Bucher , Phys. Rev. Lett. >72, 522 (1994)]. The density of states of f electrons under the applied pressure and its variation with the concentration of the impurity doping are calculated self-consistently. The Kondo temperature and the optical conductivity are obtained, in agreement with the experiments qualitatively. The two contrasting pressure-dependent effects for the hole-type Kondo insulators and the electron-type Kondo insulators are also given as predictions for further observations.

  8. Issue #5: How Much Insulation is Too Much? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: How Much Insulation is Too Much? Issue #5: How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? PDF icon issue5_enclosure_insulation.pdf PDF icon issue5_optimizing_insulation.pdf PDF icon issue5_code_cost_analy.pdf More Documents & Publications Issue 5: Optimizing High Levels of Insulation How Much Insulation is Too Much? Cost Analysis Approach for Codes

  9. Why You Might Want to Add More Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why You Might Want to Add More Insulation Why You Might Want to Add More Insulation August 19, 2014 - 10:06am Addthis Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Elizabeth Spencer Communicator, National

  10. Tunable Anderson metal-insulator transition in quantum spin-Hall...

    Office of Scientific and Technical Information (OSTI)

    Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Citation ... This content will become publicly available on June 3, 2016 Title: Tunable Anderson ...

  11. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Madison Residence

    SciTech Connect (OSTI)

    2013-10-01

    This basement insulation project included a dimple mat conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation

  12. Drapery assembly including insulated drapery liner

    DOE Patents [OSTI]

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  13. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect (OSTI)

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  14. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  15. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    SciTech Connect (OSTI)

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  16. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOE Patents [OSTI]

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  17. A spin-filter made of quantum anomalous Hall insulator nanowires

    SciTech Connect (OSTI)

    Wu, Jiansheng

    2014-07-28

    Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.

  18. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  19. Prescriptive method for insulating concrete forms in residential construction

    SciTech Connect (OSTI)

    Vrankar, A.; Elhajj, N.

    1998-05-01

    Characterized as strong, durable, and energy-efficient, a new wall system for housing called Insulating Concrete Forms (ICFs) is emerging as an alternative to lumber wall frames. Due to rising costs and varying quality of framing lumber, home builders are increasing their use of ICFs even though added engineering costs make ICF homes slightly more expensive than homes with wood framing. To improve the affordability and acceptance of ICF homes, this report sets guidelines on the design, construction and inspection of ICF wall systems in residential construction. Based on thorough testing and research, the Prescriptive Method section of the report outlines minimum requirements for ICF systems including wall thickness, termite protection, reinforcement, lintel span, and connection requirements. It highlights construction and thermal guidelines for ICFs and explains how to apply the prescriptive requirements to one- and two-family homes. The Commentary section provides supplemental information and the engineering assumptions and methods used for the prescriptive method. Appendices contain step-by-step examples on how to apply ICF requirements when designing a home. They also contain engineering technical substantiation and metric conversion factors.

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  1. Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Air Seal Floors Over Unconditioned Garages Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages Addthis Project Level Easy Energy Savings Depend on energy cost, R-value increase, and airtightness of newly insulated floor compared to existing. Time to Complete 4-8 hours Overall Cost $0.60 to $1.00 PER SQUARE FOOT FOR R-30 BATTS Careful air sealing and insulation between an unconditioned garage and the conditioned space above can increase comfort,

  2. Experimental Realization of a Three-Dimensional Topological Insulator, Bi 2Te3

    SciTech Connect (OSTI)

    Siemons, W.

    2010-02-24

    Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi{sub 2}Te{sub 3} with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi{sub 2}Te{sub 3} is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi{sub 2}Te{sub 3} also points to promising potential for high-temperature spintronics applications.

  3. Load-deflection characteristics of small-bore insulated-pipe clamps

    SciTech Connect (OSTI)

    Severud, L.K.; Clark, G.L.

    1981-12-01

    The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427/sup 0/C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps.

  4. Hygric Redistribution in Insulated Assemblies. Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. -in. foil faced polyisocyanurate) in cold climates.

  5. Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet),

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system.

  6. What to expect from a batch solar water heater

    SciTech Connect (OSTI)

    Stickney, B.

    1984-01-01

    Batch solar water heaters are becoming more popular because of their low initial cost and simplicity of operation. Batch type water heaters have the following features in common: a water tank or tanks, an insulated tank enclosure, a glazed collecter surface, and a reflector system. The advantages of this type of solar water heater are discussed.

  7. Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier...

    Office of Scientific and Technical Information (OSTI)

    Title: Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier Height Reduction Authors: Hu, J. ; Nainani, A. ; Sun, Y. ; Saraswat, K.C. ; Wong, H.-S.P. Publication Date: ...

  8. Income Tax Deduction for the Installation of Building Insulation

    Broader source: Energy.gov [DOE]

    A residential taxpayer is entitled to an Indiana income tax deduction on the materials and labor used to install insulation in a taxpayer’s principal place of residence in Indiana. 

  9. Savings Project: Insulate Hot Water Pipes for Energy Savings...

    Energy Savers [EERE]

    Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings 8-12 annually Time to Complete 3 hours ...

  10. Savings Project: Insulate and Air Seal Floors Over Unconditioned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Level Easy Energy Savings Depend on energy cost, R-value increase, and ... Calculate the amount and determine the R-value of the insulation you will need Gather all ...

  11. Insulate Steam Distribution and Condensate Return Lines, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Any surface over 120F should be insulated, including boiler surfaces, steam and ... Total Heat Loss 5,069 MMBtuyr Given a boiler effciency of 80%, the annual cost savings ...

  12. Heavy surface state in a possible topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    transport on the (011) plane of SmB 6 Citation Details In-Document Search Title: Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on ...

  13. Building America Case Study: Innovative Retrofit Foundation Insulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The strategy relies on a three-step process: 1. Fill open concrete block cores entirely with a Class II vapor-retarding solid insulating fll such as closed-cell spray polyurethane ...

  14. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  15. Exterior Rigid Insulation Best Practices- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Field and lab studies by Building America teams BSC, PHI, and Northern STAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  16. Linear particle accelerator with seal structure between electrodes and insulators

    DOE Patents [OSTI]

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  17. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans; West, Shawn Michael; Fabean, Robert J.

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  18. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  19. Gigantic Surface Lifetime of an Intrinsic Topological Insulator (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Gigantic Surface Lifetime of an Intrinsic Topological Insulator Citation Details In-Document Search This content will become publicly available on September 8, 2016 Title: Gigantic Surface Lifetime of an Intrinsic Topological Insulator Authors: Neupane, Madhab ; Xu, Su-Yang ; Ishida, Yukiaki ; Jia, Shuang ; Fregoso, Benjamin M. ; Liu, Chang ; Belopolski, Ilya ; Bian, Guang ; Alidoust, Nasser ; Durakiewicz, Tomasz ; Galitski, Victor ; Shin, Shik ; Cava, Robert J. ;

  20. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  1. Kondo Breakdown in Topological Kondo Insulators (Journal Article) | DOE

    Office of Scientific and Technical Information (OSTI)

    PAGES Kondo Breakdown in Topological Kondo Insulators « Prev Next » Title: Kondo Breakdown in Topological Kondo Insulators Authors: Alexandrov, Victor ; Coleman, Piers ; Erten, Onur Publication Date: 2015-04-28 OSTI Identifier: 1180686 Grant/Contract Number: FG02-99ER45790 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 114; Journal Issue: 17; Journal ID: ISSN 0031-9007 Publisher: American Physical Society

  2. Moderate Doping Leads to High Performance of Semiconductor/Insulator

    Office of Scientific and Technical Information (OSTI)

    Polymer Blend Transistors (Journal Article) | SciTech Connect Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Citation Details In-Document Search Title: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, Patrick ; Frisch, Johannes ; Lieberwirth, Ingo ; Salzmann, Ingo ; Oehzelt, Martin ; Pietro, Riccardo Di ; Salleo, Alberto ;

  3. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  4. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  5. DOE Issues Request for Information on Advanced Thermal Insulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Material Compatibility | Department of Energy Advanced Thermal Insulation and Composite Material Compatibility DOE Issues Request for Information on Advanced Thermal Insulation and Composite Material Compatibility October 20, 2015 - 9:58am Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders

  6. Aerogel Impregnated Polyurethane Piping and Duct Insulation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech28_hess_040413.pdf More Documents & Publications WICF Certification, Compliance and Enforcement webinar New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Building America Best Practices Series: Volume 12.

  7. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  8. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  9. New classes of three-dimensional topological crystalline insulators:

    Office of Scientific and Technical Information (OSTI)

    Nonsymmorphic and magnetic (Journal Article) | SciTech Connect New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Citation Details In-Document Search Title: New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Authors: Fang, Chen ; Fu, Liang Publication Date: 2015-04-15 OSTI Identifier: 1179956 Grant/Contract Number: SC0010526 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B

  10. Graphene physics and insulator-metal transition in compressed hydrogen

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; Cohen, R. E. ; Hemley, Russell J. Publication Date: 2013-07-22 OSTI Identifier: 1104286 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 88; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical

  11. Heavy surface state in a possible topological Kondo insulator:

    Office of Scientific and Technical Information (OSTI)

    Magnetothermoelectric transport on the (011) plane of SmB6 (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 Title: Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in

  12. Driving and detecting ferromagnetic resonance in insulators with the spin

    Office of Scientific and Technical Information (OSTI)

    Hall effect (Journal Article) | DOE PAGES Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect This content will become publicly available on November 5, 2016 « Prev Next » Title: Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect Authors: Sklenar, Joseph ; Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Chang, Houchen ; Pearson, John E. ; Wu, Mingzhong ; Ketterson, John B. ; Hoffmann, Axel Publication Date:

  13. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  14. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  15. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  16. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  17. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  18. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  19. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  20. Two-Dimensional Topological Insulator State and Topological Phase

    Office of Scientific and Technical Information (OSTI)

    Transition in Bilayer Graphene (Journal Article) | SciTech Connect Two-Dimensional Topological Insulator State and Topological Phase Transition in Bilayer Graphene Citation Details In-Document Search Title: Two-Dimensional Topological Insulator State and Topological Phase Transition in Bilayer Graphene Authors: Qiao, Zhenhua ; Tse, Wang-Kong ; Jiang, Hua ; Yao, Yugui ; Niu, Qian Publication Date: 2011-12-14 OSTI Identifier: 1098409 Type: Publisher's Accepted Manuscript Journal Name: Physical

  1. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  2. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

    1981-12-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  3. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

    1983-01-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  4. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1 to 1 ), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  5. Refrigeration system

    SciTech Connect (OSTI)

    Pagani, R.F.; Clarke, K.J.; Avon, E.J.

    1986-11-11

    This patent describes a chamber including an expandable refrigerant system associated therewith. The system comprises reservoir containing an expandable refrigerant coolant and lead piping connecting the reservoir to conduits carrying the coolant therein. The chamber comprises top, bottom and side walls, accordingly defining an interior and an exterior to the chamber, one of the walls comprises a door affording access into the chamber, each of the walls being insulated with insulating material. At least one of the walls comprises a first layer of the insulating material extending thereover adjacent the exterior and a second layer of the insulating material extending thereover adjacent the interior. The reservoir, lead piping and conduits are disposed intermediate the first and second layers of insulating material thereby isolating them from both the interior and exterior. Heat transferring through the at least one wall is substantially absorbed by the coolant and the insulating material cooled by the coolant, before it is able to penetrate through the at least one wall, permitting a product placed in the chamber to effectively maintain or substantially maintain a selected even temperature.

  6. Attic Retrofits Using Nail-Base Insulated Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Retrofits Using Nail-Base Insulated Panels Attic Retrofits Using Nail-Base Insulated Panels Photo courtesy of the Structural Insulated Panel Association. Photo courtesy of the Structural Insulated Panel Association. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: Structural Insulated Panel Association, American Chemistry Council, Forest Products Laboratory, DuPont, APA-The Engineered Wood Association, Insurance Institute for Business and Home Safety, Remodeling

  7. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  8. Phase coherence and Andreev reflection in topological insulator devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less

  9. Phase coherence and Andreev reflection in topological insulator devices

    SciTech Connect (OSTI)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Prot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.

  10. Apparatus and method for electrical insulation in plasma discharge systems

    DOE Patents [OSTI]

    Rhodes, Mark A. (Redwood City, CA); Fochs, Scott N. (Livermore, CA)

    2003-08-12

    An apparatus and method to contain plasma at optimal fill capacity of a metallic container is disclosed. The invention includes the utilization of anodized layers forming the internal surfaces of the container volume. Bias resistors are calibrated to provide constant current at variable voltage conditions. By choosing the appropriate values of the bias resistors, the voltages of the metallic container relative to the voltage of an anode are adjusted to achieve optimal plasma fill while minimizing the chance of reaching the breakdown voltage of the anodized layer.

  11. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  12. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    SciTech Connect (OSTI)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.; Katmis, Ferhat

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  13. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  14. Spokane Wall Insulation Project: a field study of moisture damage in walls insulated without a vapor barrier

    SciTech Connect (OSTI)

    Tsongas, G.

    1985-09-01

    Considerable uncertainty has existed over whether or not the addition of wall insulation without a vapor barrier might increase the risk of moisture damage to the structure. Although it was concluded from a 1979 field study that there is no such risk in mild climates like that of Portland, Oregon (4792 degree-days), it was not clear if a problem might exist in colder climates. Thus, a second major field study was undertaken in Spokane, Washington (6835 degree-days) aimed at finding out if such a moisture problem really exists. This report describes that study and its results and conclusions. During the study the exterior walls of 103 homes were opened, of which 79 had retrofitted cellulose, rock wool, or fiberglass, and 24 were uninsulated as a control group. Field and laboratory test results are presented which, contrary to diffusion theory predictions, show the absence of moisture accumulation and consequent moisture damage caused by the addition of retrofitted wall insulation. Infrared thermography results giving the percentage of wall insulation void area for 30 of the test homes are also presented. The study strongly concludes that the addition of wall insulation without a vapor barrier does not cause moisture problems in existing homes in climates similar to that of Spokane. Future research needs are described, and the overall advisability of future retrofitting of wall insulation is discussed. 23 refs., 7 figs., 16 tabs.

  15. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, Alan; Swansiger, Thomas G.

    1998-04-28

    A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

  16. Disorder and Metal-Insulator Transitions in Weyl Semimetals (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Disorder and Metal-Insulator Transitions in Weyl Semimetals Citation Details In-Document Search This content will become publicly available on December 10, 2016 Title: Disorder and Metal-Insulator Transitions in Weyl Semimetals Authors: Chen, Chui-Zhen ; Song, Juntao ; Jiang, Hua ; Sun, Qing-feng ; Wang, Ziqiang ; Xie, X. C. Publication Date: 2015-12-11 OSTI Identifier: 1228809 Grant/Contract Number: 2012CB921303; 2012CB821402; FG02-99ER45747; 2014CB920901;

  17. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  18. Technology Solutions Case Study: Durable Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota

    SciTech Connect (OSTI)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge as the exterior face of the wall is not easily or inexpensively accessible. This approach by the NorthernSTAR Building America Partnership team addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. It is effective at reducing energy loss through the wall principally during the heating season. The team conducted experiments at the Cloquet Residential Research Facility to test the heat and moisture performance of four hollow masonry block wall systems and two rim-joist systems. These systems were retrofitted with interior insulation in compliance with the 2012 IECC. The research showed for the first time that, for masonry block walls in a cold climate, a solid bond beam or equivalent provides adequate resistance to moisture transport from a hollow core to the rim-joist cavity. Thus, a solid top course is a minimum requirement for an interior retrofit insulation system.

  19. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    SciTech Connect (OSTI)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient.

  20. Asymmetric Anderson model and spin excitations in the Kondo insulator YbB{sub 12}

    SciTech Connect (OSTI)

    Barabanov, A. F.; Maksimov, L. A.

    2009-07-15

    A cluster problem is analyzed as an example demonstrating that the observed three-mode behavior of spin-triplet excitations in YbB{sub 12} can be described by the asymmetric Anderson model with insulating singlet ground state. In the case of an infinite system, it is argued that the behavior of the f subsystem can be analyzed by using an effective Hamiltonian H{sub J} with direct antiferromagnetic f-f exchange interaction. The spin excitation spectrum is shown to have a minimum at the antiferromagnetic vector, as observed experimentally. A distinctive feature of the analysis is the use of singlet and triplet basis operators.

  1. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  2. Cost-Optimized Attic Insulation Solution for Factory-Built Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    attic insulation R-value than is typically installed in manufactured homes. The simplicity of this dense-pack solution to increasing attic insulation R-value promises real hope ...

  3. In-gap collective mode spectrum of the topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Title: In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Authors: Fuhrman, W. T. ; ...

  4. EI2 Insulation Helps Anxious Pooch Find Calm in the Storm | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EI2 Insulation Helps Anxious Pooch Find Calm in the Storm EI2 Insulation Helps Anxious Pooch Find Calm in the Storm Photo of a dog sitting on a bed or couch with a stuffed toy in ...

  5. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  6. Spin-orbit tuned metal-insulator transitions in single-crystal...

    Office of Scientific and Technical Information (OSTI)

    Title: Spin-orbit tuned metal-insulator transitions in single-crystal SrIr1-xRhxO (0x1) SrIrO is a magnetic insulator driven by spin-orbit interaction (SOI) ...

  7. Cost-Optimized Attic Insulation Solution for Factory-Built Homes- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This 2014 Top Innovation describes a dense-pack solution to increasing attic insulation R-value for manufactured homes.

  8. Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall

    Office of Scientific and Technical Information (OSTI)

    effect. (Journal Article) | SciTech Connect Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall effect. Citation Details In-Document Search Title: Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall effect. Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear

  9. Insulation Project Moves Toward Higher R-value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Project Moves Toward Higher R-value Insulation Project Moves Toward Higher R-value April 26, 2016 - 3:51pm Addthis Oak Ridge National Laboratory's Kaushik Biswas analyzes small-scale modified atmospheric insulation foam composites in a multi-transducer heat flow meter apparatus. Oak Ridge National Laboratory's Kaushik Biswas analyzes small-scale modified atmospheric insulation foam composites in a multi-transducer heat flow meter apparatus. This article originally appeared in the Oak

  10. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  11. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  12. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  13. Fine tuning the spectral response of metal insulator composites for specific solar applications

    SciTech Connect (OSTI)

    Smith, G.B.; Ng, M.W.; Reuben, A.J.; Radchik, A.V.; Dligatch, S.

    1993-12-31

    Solar selective absorbers based on thin films of metal insulator composites or cermets such as black chrome and pigmented aluminum oxide on metals such as nickel and copper have proved to be the most attractive for applications. They give high solar absorptance {alpha} (>0.93), low thermal emittance {var_epsilon} ({approximately}0.1) and are readily deposited on large areas. Attempts to control the optical properties of these systems have usually involved variations in composition including metal-insulator ratio and grading in refractive index to minimize the light reflected at the front surface. Cermets have also recently been found suitable for window applications because they can be deposited to give excellent angular selectivity. These systems thus require special attention to the spectral response of the cermet as a function of angle of incidence. Furthermore the need to retain the vision and lighting functions of the window for forward and downward angles puts restraints on the amount of metal that can be included in the insulator matrix. Again the best approach appears to be tied up with utilizing a low density of metal which is distributed in such a way as to give strongly enhanced absorption only for particular directions. This paper deals with physical insights into these phenomena from both a theoretical and experimental viewpoint. Theories developed to understand angular selective films, recent new deposition procedures and the structural information on the resulting films, and new advances in effective medium theories have together provided the insights into controlling the spectral optical response of cermets to a degree not previously realized. The key is understanding the resonance characteristics of cermets. Several factors play a role, but three have a prime influence. They are the spatial distribution of the metal particles (even more important than total content), the dielectric constant of the host material and the metal itself.

  14. Analysis of multilayer insulation between 80K and 300K

    SciTech Connect (OSTI)

    Augustynowicz, S.D.; Demko, J.A.; Datskov, V.I.

    1993-07-01

    A model has been developed that can be used to determine the temperature distribution and heat transfer through a multilayer insulation (MLI) blanket. Predictions from the model were compared with a series of temperature measurements made during laboratory experiments and during a test of five superconducting magnets (dipoles) installed in a string and tested at Fermi National Accelerator Laboratory, FNAL (ER Test).

  15. Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade – Madison Residence (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This basement insulation project included a dimple map conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation.

  16. Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This project describes an innovative, minimally invasive building foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam.

  17. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    SciTech Connect (OSTI)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  18. Transition from band insulator to Bose-Einstein-condensate superfluid and Mott state of cold Fermi gases with multiband effects in optical lattices

    SciTech Connect (OSTI)

    Watanabe, Ryota; Imada, Masatoshi

    2009-10-15

    We study two models realized by two-component Fermi gases loaded in optical lattices. We clarify that multiband effects inevitably caused by the optical lattices generate a rich structure, when the systems crossover from the region of weakly bound molecular bosons to the region of strongly bound atomic bosons. Here the crossover can be controlled by attractive fermion interaction. One of the present models is a case with attractive fermion interaction, where an insulator-superfluid transition takes place. The transition is characterized as the transition between a band insulator and a Bose-Einstein condensate superfluid state. Differing from the conventional Bardeen-Cooper-Schrieffer (BCS) superfluid transition, this transition shows unconventional properties. In contrast to the one-particle excitation gap scaled by the superfluid order parameter in the conventional BCS transition, because of the multiband effects, a large gap of one-particle density of states is retained all through the transition, although the superfluid order grows continuously from zero. A re-entrant transition with lowering temperature is another unconventionality. The other model is the case with coexisting attractive and repulsive interactions. Within a mean-field treatment, we find a new insulating state, an orbital ordered insulator. This insulator is one candidate for the Mott insulator of molecular bosons and is the first example that the orbital internal degrees of freedom of molecular bosons appears explicitly. Besides the emergence of a new phase, a coexisting phase also appears where superfluidity and an orbital order coexist just by doping holes or particles. The insulating and superfluid particles show differentiation in momentum space as in the high-T{sub c} cuprate superconductors.

  19. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. Sustainable wall construction and exterior insulation retrofit technology process and structure

    DOE Patents [OSTI]

    Vohra, Arun

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  2. Supporting Documentation for the 2008 Update to the Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, Therese K

    2008-02-01

    The Insulation Fact Sheet provides consumers for general guidance and recommended insulation levels for their home. This fact sheet has been on-line since 1995 and this update addresses new insulation materials, as well as updated costs for energy and materials.

  3. A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings

    SciTech Connect (OSTI)

    Kosny, J.; Yarbrough, D.W.; Desjarlais, A.O.

    1998-11-01

    The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements.

  4. Low-cost exterior insulation process and structure

    SciTech Connect (OSTI)

    Vohra, Arun

    1997-12-01

    The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

  5. Photo Galleries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Elizabeth Sherwood-Randall Swearing-In Ceremony Fabricate-on-Demand Vacuum Insulating Glazings 2014 American Energy & Manufacturing Competitiveness Summit in...

  6. Structurally-driven metal-insulator transition in Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} (0{<=}x<0.14): A single crystal X-ray diffraction study

    SciTech Connect (OSTI)

    Qi, T.F.; Ge, M.; Korneta, O.B.; Parkin, S.; De Long, L.E.; Cao, G.

    2011-04-15

    Correlation between structure and transport properties are investigated in high-quality single-crystals of Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} with 0insulator (MI) transition at 357 K. Upon chromium doping on the ruthenium site, the metal-insulator transition temperature (T{sub MI}) was drastically reduced, and is related to the competition between structural changes that occur upon Cr doping and with decreasing temperature. A strong suppression of structural distortions with increasing Cr substitution was identified. No clear T{sub MI} can be observed when x>13.5% and the system behaves as an insulator. Such a large, sharp metal-insulator transition and tuneable transition temperature may have potential applications in electronic devices. -- Graphical abstract: The metal-insulator transition temperature (T{sub MI}) was drastically reduced by Cr doping, and is closely related to the distortion of structure. Display Omitted Research highlights: {yields} The metal-insulator transition temperature (T{sub MI}) was drastically reduced by doping Cr into Ca{sub 2}RuO{sub 4} single crystal. {yields} Detailed single crystal structural analysis provided important insight into this structurally-driven metal-insulator transition. {yields} Negative Volume Thermal Expansion (NVTE) was observed with increasing temperature.

  7. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Deaerators in Industrial Steam Systems Insulate Steam Distribution and Condensate ...

  8. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect (OSTI)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  9. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  10. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    SciTech Connect (OSTI)

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  11. Measured and theoretical characterization of the RF properties of stacked, high-gradient insulator material

    SciTech Connect (OSTI)

    Houck, T. L., LLNL

    1997-05-09

    Recent high-voltage breakdown experiments of periodic metallic-dielectric insulating structures have suggested several interesting high-gradient applications. One such area is the employment of high-gradient insulators in high-current, electron-beam, accelerating induction modules. For this application, the understanding of the rf characteristics of the insulator plays an important role in estimating beam-cavity interactions. In this paper, we examine the rf properties of the insulator comparing simulation results with experiment. Different insulator designs are examined to determine their rf transmission properties in gap geometries.

  12. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-12-01

    An apparatus to measure the heat flux through horizontally applied loosefill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  13. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  14. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Flight Test of Weapons System Body by Navy Successful April 02, 2015 Third Flight Demonstrated Dynamics and Functional Performance in Flight Environment WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the Follow-On Commander Evaluation Test-51 (FCET-51) flight body was successfully flown by the Navy recently. This test was one of several in a sequence of flight tests for the qualification efforts of the W88-0/Mk5 ALT 370 Program

  15. Electrical properties of commercial sheet insulation materials for cryogenic applications

    SciTech Connect (OSTI)

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2008-01-01

    Dielectric properties of electrical insulation materials are needed for low-temperature power applications. Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. In this work we report the dielectric properties of some commercially available materials in sheet form. The selected materials are polypropylene laminated paper from Sumitomo Electric U.S.A., Inc., porous polyethylene (Tyvek\\texttrademark) from Dupont, and polyamide paper (Nomex\\texttrademark) from Dupont. The dielectric properties are characterized with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 50 to 300 K. The dielectric breakdown characteristics of the materials are measured in a liquid nitrogen bath at atmospheric pressure.

  16. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  17. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  18. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  19. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  20. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  1. Search for exotic short-range interactions using paramagnetic insulators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; Long, J. C.

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique ormore » unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.« less

  2. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  3. Search for exotic short-range interactions using paramagnetic insulators

    SciTech Connect (OSTI)

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; Long, J. C.

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique or unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.

  4. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  5. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  6. Methodology for evaluation of insulation-debris effects. Containment emergency sump performance-unresolved safety issue A-43

    SciTech Connect (OSTI)

    Wysocki, J.; Kolbe, R.

    1982-09-01

    The postulated failure of high energy piping within a light water reactor containment has raised safety questions related to the generation of insulation debris, the migration of such debris to the containment emergency sump screens and the potential for severe screen blockages. High, or total, screen blockages could result in impairment of the long term RHR recirculation systems. Debris considerations are an integral part of the unresolved Safety Issue A-43, Containment Emergency Sump Performance. This report develops calculational methods and debris transport models which can be used for estimating the quantities of debris that might be generated by a LOCA, the transport of such debris, methods for estimating screen blockages and attendant pressure losses. Five operating plants were analyzed using this debris evaluation methodology. These calculations show the dependency on plant containment layout, sump location and design, and types and quantities of insulation employed. 9 figures, 6 tables.

  7. Assessing Foundation Insulation Strategies for the 2012 International Energy Conservation Code in Cold Climate New Home Construction

    SciTech Connect (OSTI)

    VonThoma, E.; Ojczyk, C.; Mosiman, G.

    2013-04-01

    While the International Energy Conservation Code 2012 (IECC 2012) has been adopted at a national level, only two cold climate states have adopted it as their new home energy code. Understanding the resistance to adoption is important in assisting more states accept the code and engage deep energy strategies nationwide. This three-part assessment by the NorthernSTAR Building America Partnership was focused on foundation insulation R-values for cold climates and the design, construction, and performance implications. In Part 1 a literature review and attendance at stakeholder meetings held in Minnesota were used to assess general stakeholder interest and concerns regarding proposed code changes. Part 2 includes drawings of robust foundation insulation systems that were presented at one Minnesota stakeholder meeting to address critical issues and concerns for adopting best practice strategies. In Part 3 a sampling of builders participated in a telephone interview to gain baseline knowledge on insulation systems used to meet the current energy code and how the same builders propose to meet the new proposed code.

  8. Disorder-assisted transport in topological insulators and nanocrystal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superlattices | MIT-Harvard Center for Excitonics Disorder-assisted transport in topological insulators and nanocrystal superlattices May 14, 2015 at 3pm/36-428 Brian Skinner Argonne National Laboratory Brian_Skinner abstract: In solid state materials, disorder is usually thought of as a hindrance to electron transport. But when the disorder is produced by poorly-screened charged impurities, the long-ranged nature of the disorder potential can have unexpected consequences for the electrical

  9. Insulator-based DEP with impedance measurements for analyte detection

    DOE Patents [OSTI]

    Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.; Cummings, Eric B.

    2010-03-16

    Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.

  10. "Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raitses | Princeton Plasma Physics Lab Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny Raitses This invention relates to a new plasma thruster for space applications. The key innovations of this thruster allow it to effectively ionize different propellants, including gases, liquids and solids, at different flow rates, and to operate with wallout losses. Due to these characteristics and the design simplicity, this thruster can be miniaturized to operate at low power

  11. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  12. Metal-to-insulator switching in quantum anomalous Hall states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  13. Metal-to-insulator switching in quantum anomalous Hall states

    SciTech Connect (OSTI)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  14. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect (OSTI)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  15. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    SciTech Connect (OSTI)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  16. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    SciTech Connect (OSTI)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

    2011-01-21

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  17. Technology Solutions Case Study: Stud Walls with Continuous Exterior Insulation for Factory Built Housing

    SciTech Connect (OSTI)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  18. Technology Solutions Case Study: Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. Insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. Although the approach has proven effective, there is resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly. In this project, researchers from Building Science Corporation, a Building America team, investigated these issues to better understand the mechanics behind this method of cladding attachment

  19. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect (OSTI)

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  20. Thermal-performance study of liquid metal fast breeder reactor insulation

    SciTech Connect (OSTI)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.