Powered by Deep Web Technologies
Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect (OSTI)

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

2

BOA: Pipe-asbestos insulation removal robot system  

SciTech Connect (OSTI)

This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

Schempf, H.; Bares, J.; Mutschler, E. [and others

1995-12-31T23:59:59.000Z

3

BOA: Asbestos pipe insulation removal robot system. Phase 1  

SciTech Connect (OSTI)

The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

Schempf, H.; Bares, J.E.

1995-02-01T23:59:59.000Z

4

BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995  

SciTech Connect (OSTI)

This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

Schempf, H.; Bares, J.E.

1995-06-01T23:59:59.000Z

5

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Broader source: Energy.gov (indexed) [DOE]

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

6

BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994  

SciTech Connect (OSTI)

Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

Schempf, H.; Bares, J.E.

1995-01-01T23:59:59.000Z

7

Development and Testing of Insulated Drill Pipe  

SciTech Connect (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

8

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Broader source: Energy.gov (indexed) [DOE]

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

9

Damping in LMFBR pipe systems  

SciTech Connect (OSTI)

LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems.

Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

1983-06-01T23:59:59.000Z

10

Insulation Monitoring Systems  

Science Journals Connector (OSTI)

In this chapter there is presented general information on insulation deterioration signalization systems for AC IT networks. Few systems of continuous insulation supervision are described. The old concepts includ...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

11

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

12

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

13

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

14

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on Thermal Insulation at Medium Temperature on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

15

Hot clamp design for LMFBR piping systems  

SciTech Connect (OSTI)

Thin-wall, large-diameter piping for liquid metal fast breeder reactor (LMFBR) plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulated cold clamp was designed for the fast flux test facility and was also applied to some prototype reactors thereafter. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface leaving an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp-induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event were discussed.

Kobayashi, T.; Tateishi, M. (Nippon MARC Co., Ltd., Tokyo (Japan))

1993-02-01T23:59:59.000Z

16

Pipeline system insulation: thermal insulation and corrosion prevention. December 1985-February 1988 (citations from the rubber and plastics research association data base). Report for December 1985-February 1988  

SciTech Connect (OSTI)

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 139 citations, all of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

17

Systems of Insulation Resistance Continuous Measurement  

Science Journals Connector (OSTI)

In this chapter several methods of continuous measurement of insulation resistance in AC IT systems are described. ... source is explained. Another method of continuous insulation resistance measurement is imposi...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

18

Systems of Insulation Resistance Continuous Measurement  

Science Journals Connector (OSTI)

In this chapter several methods of continuous measurement of insulation resistance in AC IT systems are described. ... source is explained. Another method of continuous insulation resistance measurement is imposi...

Piotr Olszowiec

2014-01-01T23:59:59.000Z

19

Pipeline-system insulation: Thermal insulation and corrosion prevention. December 1985-September 1989 (Citations from the Rubber and Plastics Research Association data base). Report for December 1985-September 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems utilized to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester-insulated pipeline systems are among the topics discussed. Applications in solar heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical plant pipeline system insulation are included. (This updated bibliography contains 231 citations, 92 of which are new entries to the previous edition.)

Not Available

1989-10-01T23:59:59.000Z

20

Pipeline-system insulation: thermal insulation and corrosion prevention. January 1976-November 1985 (Citations from the Rubber and Plastics Research Association data base). Report for January 1976-November 1985  

SciTech Connect (OSTI)

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot-water and cold-water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 266 citations, none of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers install or spray insulation on pipes, boilers, walls, roofs, floors, etc. to improve thermal insulation or waterproofing. Most thermal insulation is now composed of man-made mineral ... rock wo...

R. Riala

2000-01-01T23:59:59.000Z

22

A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping  

Office of Scientific and Technical Information (OSTI)

WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping Systems by K. C. Kwon Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 A document prepared for ASME CONFERENCE - HEAT EXCHANGER COMMITTEE MEETING 8 , INTERNATIONAL JOINT POWER GENERATION CONFERENCE 1998 at Baltimore, MA, USA from 8/23/98 - 8/26/98. DOE Contract No. DE-AC09-96SR18500 This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

23

Marathon pipe line's new control system  

SciTech Connect (OSTI)

A new control system for Marathon Pipe Line Company's 4200 mile long oil pipeline is described. The pipeline transports 1 1/2 million barrels/day of crude oil and refined products. A comprehensive, centralized computer control system in Findlay, Ohio was developed to provide precision control of the system. Marathon is almost finished with the supervisory control and data acquisition system which can almost instantaneously control fluid movements throughout the network with the push of a few buttons.

Ross, J.

1983-03-01T23:59:59.000Z

24

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network [OSTI]

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

25

Smoothing of pipe system completion processes in a shipyard environment/  

E-Print Network [OSTI]

Due to a number of different production issues, the manufacture of template pipes is often delayed. These delays hold up pipe system completion on board the ships in production and can delay payments from the Ministry of ...

Zojwalla, Shaheen J. (Shaheen Joyab), 1977-

2004-01-01T23:59:59.000Z

26

Statistical estimation of water distribution system pipe break risk  

E-Print Network [OSTI]

The deterioration of pipes in urban water distribution systems is of concern to water utilities throughout the world. This deterioration generally leads to pipe breaks and leaks, which may result in reduction in the water-carrying capacity...

Yamijala, Shridhar

2009-05-15T23:59:59.000Z

27

Panelized wall system with foam core insulation  

DOE Patents [OSTI]

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

28

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

29

insulation  

Science Journals Connector (OSTI)

The material used to insulate an electrical conductor, i.e., to enable a point to maintain an insulated state. Note: Insulations consist of dielectric materials. Airspace may serve...See also ...

2001-01-01T23:59:59.000Z

30

Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

1997-09-30T23:59:59.000Z

31

Subsea Malaysian waxy crude line uses single-pipe insulation coating  

SciTech Connect (OSTI)

Esso Production Malaysia, a production-sharing contractor to Petroleum National Berhad, Malaysia (Petronas), is developing the Guntong field 200 km off the east coast of peninsular Malaysia in the South China Sea. The Guntong D complex (GuD) consists of a production platform (GuD-P) and a bridge-linked compression platform (GuD-C). Crude oil from GuD has a pour point of 35 C., while the sea water temperature averages around 27 C. The predicted sea water temperature range being lower than the pour point makes possible such operational problems as high start-up pressures after a long shutdown and excessive wax deposition in the pipeline and the receiving facilities at TaP. Consequently, the GuD pipeline was designed to be thermally insulated to maintain the crude temperature at greater than the oil`s pour point and thus minimize pigging frequency and addition of wax inhibitors. The selected insulation coating is a 3-layer system consisting of fusion-bonded epoxy, syntactic polyurethane, and concrete coatings.

Jin, T.T.K.; Orgill, G.; Ahrabian, D. [Esso Production Malaysia Inc., Kuala Lumpur (Malaysia); Smith, I. [Bredero Price, Kuala Lumpur (Malaysia)

1995-09-25T23:59:59.000Z

32

Chapter Four - Cryogenic Insulation Systems for LNG Industries  

Science Journals Connector (OSTI)

Abstract The market for liquefied natural gas (LNG) is growing faster than any other market for energy resources. Since LNG is normally carried by ship at -163C, the functional requirements of a ship carrying LNG include cryogenic reliability due to thermal cyclic stresses and high thermal insulation performance for safe and efficient transportation of LNG. In order to guarantee the LNG cold temperature around -160C, high-quality insulation installation in accordance with strict specifications is essential. Cryogenic insulation restricts the inflow of atmospheric heat into the pipe or process equipment, keeping the liquid cold and allowing it to retain its form. This chapter covers fundamentals for thermal insulation for various thermal insulation materials in LNG industries.

Alireza Bahadori

2014-01-01T23:59:59.000Z

33

Characterization of pipes, drain lines, and ducts using the pipe explorer system  

SciTech Connect (OSTI)

As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer {trademark} system are presented. The heart of the system is SEA`s pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer{trademark}. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D&D. Future improvements and extensions of their capabilities are discussed.

Cremer, C.D.; Kendrick, D.T.; Cramer, E.

1997-05-01T23:59:59.000Z

34

Ground Insulation Measurement in AC IT Systems  

Science Journals Connector (OSTI)

In the chapter there is presented general information on physical nature of network-to-ground insulation. Sense of insulation equivalent resistance parameter is explained. A method of insulation resistances-to-...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

35

Insulation of the ?F Regulatory System in Bacillus subtilis  

Science Journals Connector (OSTI)

...for Microbiology NOTE GENE REGULATION Insulation of the sF Regulatory System in Bacillus...kinases and phosphatases. We report that insulation of the sF pathway from the sB pathway...the sB pathway. We propose that this insulation is achieved both by the action of the...

Karen Carniol; Tae-Jong Kim; Chester W. Price; Richard Losick

2004-07-01T23:59:59.000Z

36

Robot design for leak detection in water-pipe systems  

E-Print Network [OSTI]

Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

Choi, Changrak

2012-01-01T23:59:59.000Z

37

Basement Insulation Systems- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

38

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications  

SciTech Connect (OSTI)

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. The authors found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

Pacheco, J.E.; Kolb, W.J.

1997-03-01T23:59:59.000Z

39

Characterization of Pipes, Drain Lines, and Ducts using the Pipe Explorer System  

Office of Scientific and Technical Information (OSTI)

MC/30172-97/C0803 MC/30172-97/C0803 Title: Characterization of Pipes, Drain Lines, and Ducts Using the Pipe Explorer System TM Authors: C.D. Cremer D.T. Kendrick E. Cramer Contractor: Science and Engineering Associates, Inc. 6100 Uptown Blvd, NE Albuquerque, NM 87100 Contract Number: DE-AC21-93MC30172 Conference: Industry Partnerships to Deploy Environmental Technology Conference Location: Morgantown, West Virginia Conference Dates: October 22-24, 1996 Conference Sponsor: Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

40

Hybrid sodium heat pipe receivers for dish/Stirling systems  

SciTech Connect (OSTI)

The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

Laing, D.; Reusch, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

42

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water...

43

Heat and Mass Transfer in a Wetted Thermal Insulation of hot Water Pipes Operating Under Flooding Conditions  

Science Journals Connector (OSTI)

We present the results of numerical simulation of the thermal regimes of hot water pipes under flooding conditions with account for evaporation and diffusion ... modeling thermal regimes of hot water pipes under

V. Yu. Polovnikov; E. V. Gubina

2014-09-01T23:59:59.000Z

44

Results from dynamic tests and analyses of a medium diameter LMFBR piping system  

SciTech Connect (OSTI)

This paper presents results and observations from dynamic tests and analyses performed on a 0.20 m (8 in.) diameter, thin walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and non-integral pipe clamps. Snapback, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.

Schott, G.A.; Heberling, C.F.; Hulbert, G.M.

1984-06-01T23:59:59.000Z

45

Results from dynamic tests and analyses of a medium diameter LMFBR piping system  

SciTech Connect (OSTI)

This paper presents results and observations from dynamic tests and analyses performed on an 8-in. (0.20-m) diameter, thin-walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and nonintegral pipe clamps. Snapback, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.

Schott, G.A.; Hulbert, G.M.; Heberling, C.F. II

1986-08-01T23:59:59.000Z

46

Gas-Insulated Substation Performance in Brazilian System  

Science Journals Connector (OSTI)

This work is based on a report developed in the Working Group 2303 of CIGR-Brazil [1], about gas-insulated substations performance in the Brazilian electric system from...

H. J. A. Martins; V. R. Fernandes; R. S. Jacobsen

1991-01-01T23:59:59.000Z

47

Hot Leg Piping Materials Issues  

SciTech Connect (OSTI)

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

48

Piping network design of geothermal district heating systems: Case study for a university campus  

Science Journals Connector (OSTI)

Geothermal district heating system design consists of two parts: heating system and piping network design. District heating system design and a case study for a university campus is given in Yildirim etal. [1] in detail. In this study, piping network design optimisation is evaluated based on heat centre location depending upon the cost and common design parameters of piping networks which are pipe materials, target pressure loss (TPL) per unit length of pipes and installation type. Then a case study for the same campus is presented.

Nurdan Yildirim; Macit Toksoy; Gulden Gokcen

2010-01-01T23:59:59.000Z

49

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

50

Seismic vibration analysis of fluid-structure interaction in LMFBR piping systems  

SciTech Connect (OSTI)

This paper is a basic study on the vibrational characteristics of an LMFBR piping system containing liquid sodium under one-dimensional seismic excitation. Using Z-shaped piping, the authors formulate coupled equations for the pipe's bending vibration and pressure wave, and transform them into two-degree-of-freedom vibration equations for the first modes of the piping vibration and pressure wave. A numerical study using the vibration model shows that: 1) the coupling effect appears between piping acceleration and liquid pressure for a piping configuration having a natural frequency ratio ..nu.. = about 0.5 to 2.0; 2) the magnitude of seismically induced pressure reaches 0.7 kPa to 1 kPa per gal; and 3) the dead-mass model of liquid gives a nonconservative response depending on the pipe's geometrical configuration, compared to that from the pressure-wave-piping-interaction model.

Hara, F.

1988-05-01T23:59:59.000Z

51

Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels  

SciTech Connect (OSTI)

A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

2013-01-01T23:59:59.000Z

52

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents [OSTI]

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

53

Mechanics of Insulator Behavior in Concrete Crosstie Fastening Systems  

E-Print Network [OSTI]

gauge · Protect shoulder and attenuate load entering shoulder · Provide electrical isolation betweenMechanics of Insulator Behavior in Concrete Crosstie Fastening Systems Joint Rail Conference and causes · Relevant material properties related to failure modes · Preliminary testing and results · Future

Barkan, Christopher P.L.

54

Screening reactor steam/water piping systems for water hammer  

SciTech Connect (OSTI)

A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1997-09-01T23:59:59.000Z

55

E-Print Network 3.0 - auto-pipe design system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environment 2, 4 sup- ports the design and deployment... of streaming applications on hybrid systems. Auto-Pipe already contains a feder- ated simulation infrastructure... to...

56

Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems  

SciTech Connect (OSTI)

This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

Johnson, Rolland; Neubauer, Michael

2014-10-29T23:59:59.000Z

57

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

58

Development of pipe deterioration models for water distribution systems using EPR  

E-Print Network [OSTI]

Development of pipe deterioration models for water distribution systems using EPR L. Berardi, O diameter D, Dclass Equivalent diameter of the pipe class DSS Decision support system EPR Evolutionary polynomial regression ES Matrix of exponents of EPR input variables f, g Functions selected by user

Fernandez, Thomas

59

Seismic response and damping tests of small bore LMFBR piping and supports  

SciTech Connect (OSTI)

Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps.

Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

1984-01-01T23:59:59.000Z

60

Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems  

SciTech Connect (OSTI)

This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

Not Available

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of Insulation Systems for the Optimal Design of High Voltage Pulse Transformers  

E-Print Network [OSTI]

This paper presents a study for the design of the insulation systems of high voltage pulse transformer based on experimental tests and numerical simulations. Data of high voltage tests on solid and liquid insulation materials are presented and discussed. The understanding of each part of the insulation is supported by electrostatic fields simulations.

Sylvain, Candolfi; Davide, Aguglia; Philippe, Viarouge; Jrgen, Biela; Jerome, Cros

2015-01-01T23:59:59.000Z

62

The development of mathematical model for cool down technique in the LNG pipe-line system  

SciTech Connect (OSTI)

An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

1999-07-01T23:59:59.000Z

63

Insulation Resistance  

Science Journals Connector (OSTI)

n...(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the v...

Jan W. Gooch

2011-01-01T23:59:59.000Z

64

Insulation resistance  

Science Journals Connector (OSTI)

n....(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the ...

2007-01-01T23:59:59.000Z

65

Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system  

Science Journals Connector (OSTI)

A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system.

H.D. Fu; G. Pei; J. Ji; H. Long; T. Zhang; T.T. Chow

2012-01-01T23:59:59.000Z

66

OPTIMIZATION OF LAYER DENSITIES FOR MULTILAYERED INSULATION SYSTEMS  

SciTech Connect (OSTI)

Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using Mcintosh's algorithm.

Johnson, W. L. [NASA Kennedy Space Center, KT-E Kennedy Space Center, FL 32899 (United States)

2010-04-09T23:59:59.000Z

67

Method and apparatus for filling thermal insulating systems  

DOE Patents [OSTI]

A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

Arasteh, D.K.

1992-01-14T23:59:59.000Z

68

Seismic fragility evaluation of a piping system in a nuclear power plant by shaking table test and numerical analysis  

SciTech Connect (OSTI)

In this study, a seismic fragility evaluation of the piping system in a nuclear power plant was performed. For the evaluation of seismic fragility of the piping system, this research was progressed as three steps. At first, several piping element capacity tests were performed. The monotonic and cyclic loading tests were conducted under the same internal pressure level of actual nuclear power plants to evaluate the performance. The cracks and wall thinning were considered as degradation factors of the piping system. Second, a shaking tale test was performed for an evaluation of seismic capacity of a selected piping system. The multi-support seismic excitation was performed for the considering a difference of an elevation of support. Finally, a numerical analysis was performed for the assessment of seismic fragility of piping system. As a result, a seismic fragility for piping system of NPP in Korea by using a shaking table test and numerical analysis. (authors)

Kim, M. K.; Kim, J. H.; Choi, I. K. [Korea Atomic Energy Research Inst., Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2012-07-01T23:59:59.000Z

69

Metal-insulator transition in dilute alkali-metal systems  

Science Journals Connector (OSTI)

The metal-insulator transition is studied for dilute systems of alkali metals. Using a spin-split self-consistent band-structure approach, we find the transition density, a strikingly enhanced magnetic susceptibility, and the electron effective mass. The critical density nc is found to be given by the simple relation rsc=r0+2.8. Here rsc=[3(4?nc)]13 and r0 is the model potential radius which is roughly the radius of the neutral atom. The Mott criterion of nc13aB?0.25 (where aB is the appropriate Bohr orbit) is found to be inadequate for describing these systems. The predicted effective mass and magnetic susceptibility enhancements are largest for Li and become systematically smaller for the heavier alkalis. We compare our results for the transition density with two sets of experiments, namely the gas-liquid critical density and the metal-insulator transition for codeposited thick films of alkali-metal and rare-gas atoms. Good agreement is found in both cases.

J. H. Rose

1981-01-15T23:59:59.000Z

70

IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995  

SciTech Connect (OSTI)

This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others

1997-02-01T23:59:59.000Z

71

Pumps, pipes and valves: The heart of a system  

SciTech Connect (OSTI)

This is a guide to suppliers of pumps, pipes and valves for construction or repair of hazardous materials. The article contains a compilation of the suppliers/manufacturers and how to contact them, the corrosion resistance of the component, whether double-secondary containment is available, and the material used to construct the component.

NONE

1996-05-01T23:59:59.000Z

72

CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection -  

Broader source: Energy.gov (indexed) [DOE]

Construction - Piping and Pipe Supports Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) For the purpose of this criteria review and approach, this Criteria Review and Approach Document (CRAD) includes piping and pipe supports and attachments of the pipe supports to structures (concrete, structural steel, or embed plates). Pipe supports include rigid restraints, welded attachments to piping, struts, snubbers, spring cans, and constant supports. Inspection of pipe whip restraints are also included in this CRAD. Selection of nuclear facility piping systems for inspection should be

73

Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices  

SciTech Connect (OSTI)

Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

1995-11-01T23:59:59.000Z

74

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers apply insulation materials on objects and buildings for thermal insulation and/or waterproofing.

R. Riala

2012-01-01T23:59:59.000Z

75

Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor  

Science Journals Connector (OSTI)

Abstract On March 11th, 2011, a natural disaster created by earthquakes and Tsunami caused a serious potential of nuclear reactor meltdown in Fukushima due to the failure of Emergency Core Cooling System (ECCS) powered by diesel generators. In this paper, heat pipe based ECCS has been proposed for nuclear power plants. The designed loop type heat pipe ECCS is composed of cylindrical evaporator with 62 vertical tubes, each 150mm diameter and 6m length, mounted around the circumference of nuclear fuel assembly and 21mנ10mנ5m naturally cooled finned condenser installed outside the primary containment. Heat pipe with overall thermal resistance of 1.44נ10?5C/W will be able to reduce reactor temperature from initial working temperature of 282C to below 250C within 7h. The overall ECCS also includes feed water flooding of the core using elevated water tank for initial 10min which will accelerate cooling of the core, replenish core coolant during loss of coolant accident and avoids heat transfer crisis phenomena during heat pipe start-up process. The proposed heat pipe system will operate in fully passive mode with high runtime reliability and therefore provide safer environment to nuclear power plants.

Masataka Mochizuki; Randeep Singh; Thang Nguyen; Tien Nguyen

2014-01-01T23:59:59.000Z

76

The qualification of advanced composite pipe for use in fire water deluge systems on open type offshore oil platforms  

SciTech Connect (OSTI)

Different types of FIBERBOND{reg_sign} pipe in the dry condition and with a butt and strap joint were subjected to a controlled fire for fire endurance evaluation. Testing adheres to a modification of the ASTM 1173-95 guideline, which simulates the development of an actual hydrocarbon fire. For a fire water deluge system, the pipe is in the dry condition approximately one to three minutes during an actual hydrocarbon fire. Preliminary testing shows that composite pipe is able to withstand this exposure to fire for the five minute duration of the test. This is achieved with modifying the chemical composition of the composite pipe and in some cases, adding an additional structural component to the overall pipe. Therefore, composite pipe could be used for the deluge fire system of an offshore oil platform.

Lea, R.H. [Specialty Plastics, Inc., Baton Rouge, LA (United States); Stubblefield, M.A.; Pang, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering

1996-12-01T23:59:59.000Z

77

High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System  

SciTech Connect (OSTI)

A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

78

Evaluation of temporary non-code repairs in safety class 3 piping systems  

SciTech Connect (OSTI)

Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference.

Godha, P.C.; Kupinski, M.; Azevedo, N.F. [Northeast Utilities System, Hartford, CT (United States)

1996-12-01T23:59:59.000Z

79

Adaptive neurofuzzy inference system-based pollution severity prediction of polymeric insulators in power transmission lines  

Science Journals Connector (OSTI)

This paper presents the prediction of pollution severity of the polymeric insulators used in power transmission lines using adaptive neurofuzzy inference system (ANFIS) model. In this work, laboratory-based pollution performance tests were carried out ...

C. Muniraj; S. Chandraseka

2011-01-01T23:59:59.000Z

80

Thermal Performance Characteristics of a Combined External Insulation System under Simulated Space Vehicle Operating Conditions  

Science Journals Connector (OSTI)

The main purpose of this investigation was to determine the long-term thermal performance characteristics, with liquid hydrogen, of an externally applied combined foam/multilayer insulation system under simulated...

F. J. Muller; P. L. Klevatt

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flow Noise Prediction and Control in Steam Piping Systems for Nuclear Power Plants  

Science Journals Connector (OSTI)

The flow noise of steam in pipe lines particularly in power plants is a major noise source and contributor to OSHA noise problems. The ability to predict flow noise levels is vital to efficient and economical noise control. Octave?band measurements of flow noise in the main steam piping system of a nuclear power plant were made. To determine the effect of velocity measurements were conducted for a wide range of velocities during plant start?up. Results in the form of plots of measured flow noise as a function of velocity were compared with limited data that have been recently published. An empirical formula for prediction of flow noise and corresponding design techniques for control of noise by proper pipe sizing have been developed. Alternate methods of noise control are reviewed.

F. H. Brittain; S. W. Giampapa

1973-01-01T23:59:59.000Z

82

Analysis of chlorinated polyvinyl chloride pipe burst problems :Vasquez residence system inspection.  

SciTech Connect (OSTI)

This report documents the investigation regarding the failure of CPVC piping that was used to connect a solar hot water system to standard plumbing in a home. Details of the failure are described along with numerous pictures and diagrams. A potential failure mechanism is described and recommendations are outlined to prevent such a failure.

Black, Billy D.; Menicucci, David F.; Harrison, John (Florida Solar Energy Center)

2005-10-01T23:59:59.000Z

83

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant  

E-Print Network [OSTI]

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America from in both moisture control and insulating value. EIFS's are inherently superior on thermal performance

Oak Ridge National Laboratory

84

Heat insulating system for a fast reactor shield slab  

DOE Patents [OSTI]

Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

85

Heat insulating system for a fast reactor shield slab  

DOE Patents [OSTI]

Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

1984-04-10T23:59:59.000Z

86

Design demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Demonstration of the design of the piping systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA)-Region IV, the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE). This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems designated in the FFA as Category B (i.e., existing tank systems with secondary containment). Based on the findings of the Design Demonstrations for the Remaining 19 Category B Tank Systems, (DOE/OR/03-1150 & D2), three tank systems originally designated as Category B have been redesignated as Category C (i.e., existing tank systems without secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system and presented in Table 2.0-1.

NONE

1994-12-01T23:59:59.000Z

87

Compression of felt?type thermal insulation layer for underfloor heating system and floor impact sound  

Science Journals Connector (OSTI)

In Korea almost every house uses underfloor heating which has advantages of thermal comfort and energy efficiency. However when it is constructed for high?rise apartment houses it yields a problem in floor impact sound insulation. It accounts for the fact that a foam?type thermal insulator sandwiched between structural slab and heating floor functions as a spring and easily transmits impacts on the floor to the slab. In that case the system's transmissibility is determined by dynamic stiffness of the thermal insulation layer and the lower the dynamic stiffness is the more the floor impact is isolated. For that reason apartments construction companies are attempting to lower the dynamic stiffness of the thermal insulation layer for impact sound reduction. As part of the attempt felt?type materials with relatively low dynamic stiffness such as glass wool or polyester felt are considered as a substitution for the foam?type thermal insulator. However there is a possibility that compression of the felt?type materials would increase the dynamic stiffness and the impact sound insulation effect at early stage might be weakened in the long term. This paper investigates the correlation between gradual compression of the felt?type thermal insulation layer and the impact sound variation.

Tongjun Cho; Hyun?Min Kim

2008-01-01T23:59:59.000Z

88

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

E-Print Network [OSTI]

Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

Walker, Iain

2001-01-01T23:59:59.000Z

89

Investigation of how Insulation affects the pipe system in the soil for ice rinks.  

E-Print Network [OSTI]

?? In Sweden, ice rinks are one of the largest energy consumers in the public building sector, requiring, each ice rink, about 1050 MWh/year, from (more)

Marco Estruc, Ignacio

2014-01-01T23:59:59.000Z

90

Case study of underground pipe ground coupled heat pump system  

Science Journals Connector (OSTI)

Aiming to give some advices on the ground coupled heat pump system design in Sichuan Province, China, a typical ground source heat pump (GSHP) system in Sichuan Province was tested in a whole operational year,...

Min Zheng ??; Bai-yi Li ???; Zheng-yong Qiao ???

2012-03-01T23:59:59.000Z

91

Crustation insulation  

Science Journals Connector (OSTI)

... nervous systems by wrapping it in multilayered sheaths of a fatty material called myelin. This insulation allows electrical nerve impulses to be conveyed over long distances much more rapidly. Considering ...

Eleanor Lawrence

1999-04-15T23:59:59.000Z

92

Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report  

SciTech Connect (OSTI)

This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

1997-06-01T23:59:59.000Z

93

Insulation Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

94

Video surveillance-based insulator condition monitoring analysis for substation monitoring system (SMS)  

Science Journals Connector (OSTI)

Video surveillance (VS) of electric power lines along with its accessories such as insulators has emerged as a potential alternative for the traditional practice of on-site physical detection. There has been a paradigm shift in electric substation automation using substation monitoring system (SMS). Since the damaged insulators severely affect the distribution system performance in terms of reduction in voltage as well as flow of leakage currents, therefore, the incorporation of insulator health as an augmented feature in SMS would improve the quality and reliability of power supply. By using information technology, the automation of insulator monitoring of power system is made faster to recover the fault system immediately. This paper presents a methodology for insulator condition analysis based on VS combined with wavelet coefficient differentiator (WCD) for SMS purposes. The case studies and results contained herein corroborate the efficacy of the proposed methodology to dispense with the conventional on-site physical methods, which are not only tedious, but also time-consuming.

Velaga Sreerama Murthy; D.K. Mohanta; Sumit Gupta

2011-01-01T23:59:59.000Z

95

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

Jenkins, C.F.; Howard, B.D.

1994-01-01T23:59:59.000Z

96

W-314, waste transfer alternative piping system description  

SciTech Connect (OSTI)

It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation.

Papp, I.G.

1998-04-30T23:59:59.000Z

97

Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system  

Science Journals Connector (OSTI)

This study was performed to investigate the convective heat transfer coefficient of nanofluids made of several alumina ... transformer oil which flow through a double pipe heat exchanger system in the laminar flo...

Byung-Hee Chun; Hyun Uk Kang; Sung Hyun Kim

2008-09-01T23:59:59.000Z

98

Response of piping system with semi-active variable friction dampers under tri-directional seismic excitation  

Science Journals Connector (OSTI)

Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable friction dampers (SAVFDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. A study is also conducted on the performance of control due to variation in gain multiplier (?) in the present control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVFD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVFDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems.

Praveen Kumar; R.S. Jangid; G.R. Reddy

2013-01-01T23:59:59.000Z

99

The pipe coating as an engineered part of the cathodic protection system  

SciTech Connect (OSTI)

The basic corrosion process is reviewed and the factors influencing the thermodynamic driving forces are discussed. The roles played by both the coating and the cathodic protection system are discussed, and the relationship between the two systems relating to corrosion under a coating film is shown. The importance of treating the coating as part of the cathodic protection system is explained. The need to be aware of the engineering variables of the pipe coating, not only as applied, but also as a function of time, is presented.

Mills, G.

1988-12-01T23:59:59.000Z

100

Objective: Determine the energy use of two greenhouse insulation technologies (a bubble insulation system and an energy/shade screen) retrofitted into plastic covered greenhouses, and compare the  

E-Print Network [OSTI]

compared to the unimproved house. The bubble insulation system was more energy efficient than the other two roughly twice the savings stated above. Novel Approaches to Improve Energy Efficiency in Northern New system and an energy/shade screen) retrofitted into plastic covered greenhouses, and compare

Vermont, University of

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chapter Three - Material Selection for Thermal Insulation  

Science Journals Connector (OSTI)

Abstract This chapter covers the minimum requirements and fundamental concepts relating to the composition, size, dimensions, physical properties, inspection, packaging, and marking of a wide range of thermal insulations for use on pipe and equipment surfaces such as mineral wool insulation, rigid and semi-rigid mineral fiber block and board thermal insulation, mineral blanket and blanket-type pipe insulation, calcium silicate preformed block and pipe section thermal insulation, cellular glass, baked cork, and rigid cellular polyurethane and polyisocyanurate and filler insulation. In addition, vapor barriers, joint sealants, adhesive materials, metallic jacketing, and accessory materials are reviewed. For satisfactory performance, properly installed protective vapor barriers have to be used in low-temperature applications to prevent movement of moisture through or around the insulation towards the colder surface.

Alireza Bahadori

2014-01-01T23:59:59.000Z

102

New and Underutilized Technology: Aerogel Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Aerogel Insulation Aerogel Insulation New and Underutilized Technology: Aerogel Insulation October 8, 2013 - 2:54pm Addthis The following information outlines key deployment considerations for aerogel insulation within the Federal sector. Benefits Aerogel insulation products displace current insulation materials. The thermal conductivity of aerogel is very low, allowing it to retain insulation properties at a much thinner thickness. Application Aerogel insulation is appropriate for deployment across piping, ducts, and within most building categories. It should be considered in building design, construction, or major renovation. Key Factors for Deployment Aerogel insulations are more expensive than typical insulations. However, they are ideal for special applications, such as translucent wall panels.

103

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

104

The research of 1D / 3D coupling simulation on pump and pipe system  

Science Journals Connector (OSTI)

The research of performances of hydraulic mechanical depends on static complete characteristic curves, which have great difference compared with the actual work condition and have accidents potential. So we need a new way to compute the dynamic system, which is more reasonable. So the method to couple one dimensional simulation and three dimensional CFD analysis based on Flowmaster and Fluent is explored, and the dynamic characteristics and internal flow of the pumping system are analyzed. First, a pipe system model is created in Flowmaster and a pump model is created in Fluent; then VB code and scheme code are used to realize the automated operation for Flowmaster and Fluent; at last, the exchange of data between these two parts is realized by an interface program. In this paper, the interaction between pumps and pipe system are analyzed by coupling one-dimensional and three-dimensional simulations. This study would be helpful to identify the influences of the rapid adjustment process on stability of system and provide guides for design of pump system.

D Z Wu; Q L Liu; P Wu; L Q Wang; T Paulus; B G Wang; M Oesterle

2012-01-01T23:59:59.000Z

105

Axionic Antiferromagnetic Insulator Phase in a Correlated and Spin-Orbit Coupled System  

E-Print Network [OSTI]

We study theoretically a three-dimensional correlated and spin-orbit coupled system, the half-filled extended Fu-Kane-Mele-Hubbard model on a diamond lattice, focusing on the topological magnetoelectric response of the antiferromagnetic insulator phase. In the antiferromagnetic insulator phase, the Dirac-like low-energy effective Hamiltonian is obtained. Then the theta term, which results in the magnetoelectric response, is derived as a consequence of the chiral anomaly. The realization of the dynamical axion field in our model is discussed. The relation with a symmetry broken phase induced by interactions in lattice quantum chromodynamics is also discussed.

Akihiko Sekine; Kentaro Nomura

2014-01-18T23:59:59.000Z

106

Air-Side Energy Use Calculations for Four HVAC Systems: Dual Duct Constant Volume (DDCAV), Dual Duct Variable Volume (DDVAV), Constant Volume with Reheat (CAVRH), Variable Volume with Reheat (VAVRH), Four Pipe Fan Coil Unit (FC), Four Pipe Induction Unit (FI), and Single Zone (SZ) Systems, Revised June 2002  

E-Print Network [OSTI]

(CAVRH), and variable volume with reheat (VAVRH), four pipe fan coil unit (FC), four pipe induction unit (FI), and a single zone air conditioning system (SZ). These calculations are presented in spreadsheets that include a running commentary so...

Haberl, J. S.; Bou-Saada, T. E.; Saman, N. F.

2001-01-01T23:59:59.000Z

107

Model Based Experimental Determination of Moisture Content in Oil-Paper Insulation System Using FDS Technique  

Science Journals Connector (OSTI)

Power Transformers are significant links between HVAC/HVDC transmission systems for changing the life of such aged transformers. Sometimes failure of power transformers may lead to failure of entire power grid. At present, there is large number of transformers ... Keywords: Power transformers, Oil-Paper insulation, Polarization Depolarization Current, frequency domain spectroscopy, moisture content

Yogesh Yashwant Pundlik, Pradeep M. Nirgude

2014-04-01T23:59:59.000Z

108

Application of risk-based methods to inservice inspection of piping systems  

SciTech Connect (OSTI)

Research efforts have been underway in the American Society of Mechanical Engineers (ASME) and industry to define appropriate methods for the application of risk-based technology in the development of inservice inspection (ISI) programs for piping systems in nuclear power plants. This paper discusses a pilot application of these methods to the inservice inspection of piping systems of Northeast Utilities Millstone Unit 3 nuclear power station. This demonstration study, which has been sponsored by the Westinghouse Owners Group (WOG), applies probabilistic safety assessment (PSA) models that have already been developed to meet regulatory requirements for an individual plant examination (IPE). The approach calculates the relative importance for each component within the systems of interest. This risk-importance is based on the frequency of core damage resulting from the structural failure of the component. The process inductively determines the effects that such failures have on the desired operational characteristics of the system being analyzed. Structural reliability/risk assessment (SRRA) models based on probabilistic structural mechanics methods are used to estimate failure probabilities for important components. Locations within a system with varying failure probabilities can be defined to focus ISI resources. This paper will discuss the above process and results to show that application of risk-based methods in the development of ISI programs can potentially result in significant savings while maintaining a high level of safety.

Closky, N.B.; Balkey, K.R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Oswald, E.; West, R. [Northeast Utilities, Hartford, CT (United States)

1996-12-01T23:59:59.000Z

109

Detailed thermal performance data on conventional and highly insulating window systems  

SciTech Connect (OSTI)

Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

Arasteh, D.; Selkowitz, S.; Hartmann, J.

1986-01-01T23:59:59.000Z

110

Apparatus for moving a pipe inspection probe through piping  

DOE Patents [OSTI]

A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

1995-07-18T23:59:59.000Z

111

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

to eliminate or reduce dangerous driving conditions caused by snow and ice. The first important task in sizing of idling time, heating capacity, pipe spacing, bottom insulation, and control strategies on system snow through a pipe network embedded in the slab to melt snow and ice on the surface of the slab. The pipe

112

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network [OSTI]

cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system...

White, T. L.

1980-01-01T23:59:59.000Z

113

Foam insulation for a liquid oxygen densifier  

Science Journals Connector (OSTI)

Analyses indicated that it would not be cost effective to vacuum insulate a 7 foot diameter by 30 foot long liquid nitrogen vessel for a launch facility liquid oxygen densifier. Foam insulation appeared to be the logical choice for this infrequently used ground support equipment but the history of foam problems due to cracking, adhesive failure and internal shearing weighed against the use of commercial spray-on material. These problems were solved with a system consisting of alternate sealing and flexible foam layers: (1) an inner membrane sealed to itself but not attached to the cold shell or pipe; (2) a flexible foam insulation layer; (3) a vapor-tight sealing membrane; (4) a second flexible foam insulation layer and (5) an outer aluminized sealing membrane. The second and subsequent layers are sealed to each underlying layer by flexible foam contact adhesive. The inner sealing membrane is particularly vital in that it allows the first foam layer to expand and contract as the tank temperature changes and it also protects the tank from chloride corrosion from the foam. This paper describes preliminary testing to prove out the system and the steps taken to install flexible foam insulation on the oxygen densifier vessel.

G.E. McIntosh; R. Stuckenschmidt

2012-01-01T23:59:59.000Z

114

Building America Top Innovations Hall of Fame Profile … Basement Insulation Systems  

Broader source: Energy.gov (indexed) [DOE]

Efficient Efficient and durable construction practices are critical for basements because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Basement Insulation Systems Building America research has provided essential guidance for one of the most challenging construction assemblies in cold-climate high-performance homes. Basements can easily develop mold, rot, and odor problems if not designed properly. Building America researchers have investigated basement insulation systems that keep the space dry, healthy, and odor-free. These systems effectively address the

115

Thermally insulated pipelines successfully move high-wax-content crude offshore Gabon  

SciTech Connect (OSTI)

Three thermally insulated pipelines have been installed at a water depth of 35 m (115 ft) in Shell Gabon's Lucina Marine field. The three lines consist of two 2-km (1.24-mile) long flowlines connecting drilling and production platforms and a 3.2 km (2 mile) long loading line connecting a production platform to a storage tanker permanently moored in the field. All three pipelines are of 10.75-in. OD with rigid polyurethane-foam insulation contained in a high-density polyethylene sleeve. The pipelines have been designed with an operating temperature of 90/degree/C. (194/degree/F.). Thermal insulation was chosen because of the Lucina crude's high wax cloud point of 55/degree/C. (131/degree/F.). Without insulation, cooling of the crude in subsea pipelines would have lead to rapid wax deposition. Details of the coating and insulation of the line and riser pipe are given. For the line pipe, a thermal-insulation system consisting of polyurethane foam (PUF) within a polyethylene (PE) sleeve pipe was chosen.

Hales, M.

1982-01-25T23:59:59.000Z

116

Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System  

E-Print Network [OSTI]

The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

Shu, H.; Duanmu, L.; Hua, R.

2006-01-01T23:59:59.000Z

117

Diverless pipeline-repair system passes tests for 20-in. pipe  

SciTech Connect (OSTI)

Full-scale tests of a diverless pipeline repair system have shown its effectiveness for repairing subsea pipelines of up to 20 in. in diameter. The repair principle is based upon a metal-to-metal seal. The pipe end is cold forged to form a flare. The metal-to-metal seal is located on a cone which is part of the mechanical hydraulically actuated connector. The cone is advanced and the metal-to-metal seal is compressed between the cone and the inside diameter of the flare, forming a high integrity pipeline seal. A set of remotely controlled modules was constructed to perform the repair operations, including pipe flaring. A series of onshore and shallow water trials have demonstrated the practicability of these modules and the feasibility of the new tie-in concept for a diverless pipeline repair. A second set of tools has also been designed for pipeline tie-ins which works with the pipeline-repair spread.

Lerique, M.; Thiberge, P. (Elf Aquitaine, Pau (FR)); Wright, N. (British Gas PLC, Newcastle upon Tyne (UK))

1990-05-21T23:59:59.000Z

118

Modeling PCM-Enhanced Insulation System and Benchmarking EnergyPlus against Controlled Field Data  

SciTech Connect (OSTI)

Phase-change materials (PCM) used in building envelopes appear to be a promising technology to reduce energy consumption and reduce/shift peak load. However, due to complexity in modeling the dynamic behavior of PCMs, current modeling tools either lack an accurate way of predicting the performance and impact of PCMs in buildings or validation of predicted or measured performance is not available. This paper presents a model of a PCM-enhanced dynamic-insulation system in EnergyPlus (E+) and compares the simulation results against field-measured data. Laboratory tests to evaluate thermal properties and to characterize the PCM and PCM-enhanced cellulose insulation system are also presented in this paper. Results indicate that the predicted daily average heat flux through walls from the E+ simulation was within 9% of field measured data. Future analysis will allow us to predict annual energy savings from the use of PCM in buildings.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Childs, Kenneth W [ORNL] [ORNL; Porter, Wallace D [ORNL] [ORNL; Bhandari, Mahabir S [ORNL] [ORNL; Coley, Steven J [ORNL] [ORNL

2011-01-01T23:59:59.000Z

119

An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3Ah and 8Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

Rui Zhao; Junjie Gu; Jie Liu

2015-01-01T23:59:59.000Z

120

Rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems  

Science Journals Connector (OSTI)

This paper discusses the response of the thermal insulation lining of rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) in heat conditions, based on dynamic climate approach. Liners have been widely used, because the coverage of buildings is responsible for the greatest absorption of heat by radiation, but the use of PU foam derived from this vegetal oil is unprecedented and has the advantage of being biodegradable and renewable. The hot wire parallel method provided the thermal conductivity value of the foam. The thermogravimetric analysis enabled the study of the foam decomposition and its lifetime by kinetic evaluation that involves the decomposition process. The PU foam thermal behavior analysis was performed by collecting experimental data of internal surface temperature measured by thermocouples and assessed by representative episode of the climatic fact. The results lead to the conclusion that the PU foam derived from castor oil can be applied to thermal insulation of roof systems and is an environmentally friendly material.

Grace Tibrio Cardoso; Salvador Claro Neto; Francisco Vecchia

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect (OSTI)

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

122

Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine  

SciTech Connect (OSTI)

The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electrical protection along with testing data and material characteristics will be presented. 7 figs.

Reass, W.A.; Ballard, E.O.

1989-01-01T23:59:59.000Z

123

A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme  

SciTech Connect (OSTI)

Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

Not Available

1994-02-01T23:59:59.000Z

124

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

125

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University  

E-Print Network [OSTI]

at Oklahoma State University (http://www.hvac.okstate.edu) The correct citation for this paper is: Cremaschi conductivity of cylindrical shaped pipe insulation systems exists in the ASTM standards but it is based

126

Towards a Visual Perception System for Pipe Inspection: Monocular Visual Odometry  

E-Print Network [OSTI]

was made possible by the support of an NPRP grant from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors. #12;Keywords: oil and gas, pipe inspection

127

Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable ballast  

Science Journals Connector (OSTI)

Approximately, 20% of the electricity consumed in the world is spent for lighting. More efficient utilization of the sun, as a natural source of light, for lighting would save electricity used for lighting. The aim of this study is to illuminate a windowless room via a light-pipe and dimmable electronic ballasts. Light-pipe is used for the illumination of the space during the daytime. In case of inadequate daylight, artificial lighting is made via dimmable electronic ballasts and fluorescence lamps. Artificial lighting is supervised by a fuzzy logic control system to keep the illumination level at 350lux. When there is a motion in the room, the system works with the message of the motion sensor, which, thereby, enables energy saving. Additionally, dimming the lamps result in conversation of the electrical energy used for illumination. After the experimental studies, 350lux value targeted in the work plane is achieved with 10lux error.

Serta Grgl; Nazmi Ekren

2013-01-01T23:59:59.000Z

128

Types of Insulation | Department of Energy  

Energy Savers [EERE]

-- into insulation systems that can include a variety of backings, such as kraft paper, plastic film, polyethylene bubbles, or cardboard, as well as thermal insulation materials....

129

Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A  

SciTech Connect (OSTI)

Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

2008-07-21T23:59:59.000Z

130

Acoustical criteria in a two?parameter system for evaluating impact noise insulation.  

Science Journals Connector (OSTI)

Experience indicates that impact noise complaints in multi?family joist?framed buildings fall into two broad classes: low frequency thudding from footfalls and mid? to high frequency noise from heel clicks dragging furniture etc. The authors have developed a two?parameter system for evaluating impact noise [LoVerde and Dong J. Acoust. Soc. Am. 119 3220 (2006); 120 3206 (2006); 122 2954 (2007)] that offers considerable improvement over existing metrics (such as FIIC) in terms of both correlation with subjective reaction and comparison of materials intended for improving impact insulation. Based on this system suggested criteria for impact noise levels are presented. The effects of various design parameters on noise levels are discussed.

2009-01-01T23:59:59.000Z

131

Design and development of a special purpose SAFT system for nondestructive evaluation of nuclear reactor vessels and piping components  

SciTech Connect (OSTI)

This report describes the design details of a special purpose system for real-time nondestructive evaluation of reactor vessels and piping components. The system consists of several components and the report presents the results of the research aimed at the design of each component and recommendations based on the results. One major component of the NDE system, namely the real-time SAFT processor, was designed with sufficient details to enable the fabrications of a prototype by GARD Inc. under a subcontract from The University of Michigan and the report includes their results and conclusions.

Ganapathy, S.; Schmult, B.; Wu, W.S.; Dennehy, T.G.; Moayeri, N.; Kelly, P.

1985-08-01T23:59:59.000Z

132

Reflux heat-pipe solar receiver for a Stirling dish-electric system  

SciTech Connect (OSTI)

The feasibility of competitive, modular bulk electric power from the sun is enhanced by the use of a reflux heat-pipe receiver to combine a Stirling engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of Stirling dish-electric technology in terms of enhanced performance, lower cost, and longer life. In the reflux (i.e. gravity assisted) heat-pipe receiver, concentrated solar radiation causes liquid sodium to evaporate, the vapor flows to the Stirling engine heaters where it condenses on the heater tubes. The condensate is returned to and distributed over the receiver by gravity (refluxing) and by capillary forces in a wick lining the receiver. It is essentially an adaptation of sodium heat pipe technology to the peculiar requirements of concentrated solar flux and provides many potential advantages over conventional tube receiver technology. This paper describes the preliminary design of a reflux heat-pipe solar receiver to match the STM4-120 variable swashplate Stirling engine to a Test Bed Concentrator at Sandia National Laboratories Distributed Receiver Test Facility. Performance analysis and other design considerations are presented and discussed.

Ziph, B.; Godett, T.M.; Diver, R.B.

1987-01-01T23:59:59.000Z

133

Insulator/Chern-insulator transition in the Haldane model T. Thonhauser and David Vanderbilt  

E-Print Network [OSTI]

Insulator/Chern-insulator transition in the Haldane model T. Thonhauser and David Vanderbilt properties of the Haldane model as the system undergoes its transition from the normal-insulator to the Chern-insulator phase. We find that the density matrix has expo- nential decay in both insulating phases, while having

Vanderbilt, David

134

Compact vacuum insulation  

DOE Patents [OSTI]

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1993-01-01T23:59:59.000Z

135

Compact vacuum insulation embodiments  

DOE Patents [OSTI]

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

136

Compact vacuum insulation  

DOE Patents [OSTI]

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, D.K.; Potter, T.F.

1993-01-05T23:59:59.000Z

137

Geothermal district piping - A primer  

SciTech Connect (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

138

D0 Silicon Upgrade: Pipe Sizing for Solenoid / VLPC Cryogenic Systems  

SciTech Connect (OSTI)

The addition of a solenoid magnet and VLPC detectors are two of a number of upgrades which will occur at the D-Zero detector in the near future. Both of these upgrades will require cryogenic services for their operation. The purpose of this engineering note is to document the pipe/tube size choices made for these cryogenic services. This was done by calculating the required flow rates to cool down the magnet and VLPC's over a reasonable length of time and to determine the required piping sizes for a given allowable pressure drop. The pressure drops for steady state conditions also are addressed. The cool down requirements drove the pipe size decision. The raw engineering calculations that were done for this project are included as an appendix to this note. The body of this document discusses the methods and results of the calculations. As a quick summary, Figures 1 and 2 show the size selections. Tables 1 and 2 give a more detailed size and description of each section of Solenoid and VLPC transfer line.

Rucinski, Russ; Sakla, Steve; /Fermilab

1995-02-20T23:59:59.000Z

139

Topological insulators and superconductors  

Science Journals Connector (OSTI)

Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

Xiao-Liang Qi and Shou-Cheng Zhang

2011-10-14T23:59:59.000Z

140

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Insulated pipelines between the underwater Manifold Centre and Cormorant a platform in the northern North Sea  

SciTech Connect (OSTI)

Oil flows from the UMC to the Cormorant 'A' platform through a system of subsea pipelines. Therefore, oil from the wells must travel a considerable distance, up to ten kilometres, before reaching processing facilities on the platform. During this trip the oil could cool to the ambient seawater temperature of 5/sup 0/C. Studies have shown that the acceptance of crude oil at such a low temperature could cause unacceptable emulsion, hydrate, and wax deposition problems. To overcome these problems, a unique insulated pipeline was engineered to keep the crude oil temperature above 40/sup 0/C during production and above 13/sup 0/C for well testing. This paper describes efforts required to identify the problem and engineer a solution. The resultant pipeline incorporated an insulated pipe-withina-pipe bundle that was installed by a mid-depth tow method.

Costello, G.J.; Brink, F.I.A.; Henry, D.

1983-05-01T23:59:59.000Z

142

Sensitivity of Forced Air Distribution System Efficiency to Climate, Duct Location, Air Leakage and Insulation  

E-Print Network [OSTI]

. 94720 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy......................................................... 5 Figure 4. New plastic flexible ducts in an attic.......................................................................... 6 Figure 5. Combination of plastic insulated flexible duct and added open face glass fiber

143

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

144

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

145

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect (OSTI)

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

146

CRAD, Nuclear Facility Construction - Piping and Pipe Supports...  

Office of Environmental Management (EM)

Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012...

147

Modeling without categorical variables : a mixed-integer nonlinear program for the optimization of thermal insulation systems.  

SciTech Connect (OSTI)

Optimal design applications are often modeled by using categorical variables to express discrete design decisions, such as material types. A disadvantage of using categorical variables is the lack of continuous relaxations, which precludes the use of modern integer programming techniques. We show how to express categorical variables with standard integer modeling techniques, and we illustrate this approach on a load-bearing thermal insulation system. The system consists of a number of insulators of different materials and intercepts that minimize the heat flow from a hot surface to a cold surface. Our new model allows us to employ black-box modeling languages and solvers and illustrates the interplay between integer and nonlinear modeling techniques. We present numerical experience that illustrates the advantage of the standard integer model.

Abhishek, K.; Leyffer, S.; Linderoth, J. T.; Mathematics and Computer Science; Lehigh Univ.

2010-06-01T23:59:59.000Z

148

Magnetic insulation  

Science Journals Connector (OSTI)

... by Winterberg1, led me to look into the background of the idea of 'magnetic insulation'. The purpose of this letter is to point out that the scheme described in ... were presented earlier in a longer article2. In that article he suggested that 'magnetic insulation' might make possible a transformer for 109 V. A year later the same objections ...

JOHN P. BLEWETT

1974-06-28T23:59:59.000Z

149

Invention disclosure: modular passive solar walls with swivel types of insulation systems  

SciTech Connect (OSTI)

The invention comprises means of controlling the insulation and radiation of passive solar thermal storage columns for heating and cooling of homes and other structures. In one embodiment rotatable insulating panels control the exposure of round thermal storage columns to daytime sunlight and the nighttime sky. In a second embodiment the rotatable insulating panels are positioned in concave depressions formed in vertical thermal storage columns. These columns include individual thermal convection means formed therein and are particularly suited to precast concrete or masonry construction. The initial experimental test results of the first embodiment of the invention have been included in this report, and this invention has been studied as a possible application for the City of Ann Arbor retrofit housing project. The preliminary test results of the prototype have been achieved and reported.

Lee, K.S.

1982-01-01T23:59:59.000Z

150

In situ performance evaluation of spray polyurethane foam in the exterior insulation basement system (EIBS)  

Science Journals Connector (OSTI)

In 1995, a joint research project11The consortium included Canadian Plastics Industry Association, Expanded Polystyrene Association of Canada, Canadian Urethane Foam Contractors Association, Owens Corning Inc. and Roxul Inc. with the Institute for Research in Construction was initiated to assess the in situ thermal performance of a number of insulation products used as exterior basement insulation in contact with the ground. Sixteen insulation specimens measuring 610mm and 1220mm wide were installed on the exterior basement walls of an experimental building, test hut no. 1, located on NRC campus in Ottawa. These specimens were instrumented prior to backfilling and their thermal performance was monitored over two full years. Soil temperatures and moisture content were monitored concurrently. Weather events were recorded daily. This paper focuses on the performance of the two spray polyurethane foam (SPF) specimens assessed in this experiment. Through analysis of the surface temperatures of the specimens, water movement was detected at the insulation/soil interface through various periods of heavy rain and major thaws throughout the two-year period. Over the same period, the surface of the concrete on the inside of the insulation showed no evidence of water penetration through the SPF layer. The insulation specimens were retrieved after 31 months of exposure in the soil. Good and continuous surface adhesion was also noted on removal. Samples were taken from these exposed specimens. When tested in the lab, after recovery and drying of the specimens, the compressive strengths of the SPF samples were slightly higher than those tested at the beginning of the experiment. For the conditions recorded over two years of monitoring, the thermal performance of each insulation specimen was found to be stable through the heating season. The thermal performance appeared not to be significantly affected by water movement at the exterior face of the insulation. One SPF specimen showed steady thermal performance through two heating seasons while the other actually improved in the second year. It was concluded that the key performance factors of the 76mm thick SPF specimens sprayed on the exterior surfaces of the concrete basement wall all remained at a very good level, i.e., the in situ thermal resistance, the compressive strength, and the moisture contents of the specimens.

M.C. Swinton; W. Maref; M.T. Bomberg; M.K. Kumaran; N. Normandin

2006-01-01T23:59:59.000Z

151

Cooper Pairs in Insulators?!  

ScienceCinema (OSTI)

Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

James Valles

2010-01-08T23:59:59.000Z

152

The influence of the insulator surface in the plasma focus behavior  

Science Journals Connector (OSTI)

The insulator (Pyrex glass pipe in our system) surface alteration suffered due to successive plasma focus discharges was found to be responsible for the improvement in stabilization in the plasma focus behavior. The development of microscopic conductive sites (?1 ?m in size) observed on the insulator surface due to the accumulation of successive discharges increases the efficiency by a metal?insulator?metal process on current sheath buildup with an increment in current density during the breakdown. The influence of the surface in the early stage of the discharge and its correlation with the intensity of the pinch was studied by analyzing the Si concentration on the surface of the targets of AISI 304 exposed to the plasmas and ion beams generated in the discharge for different experimental situations.

J. N. Feugeas

1989-01-01T23:59:59.000Z

153

Chapter One - Design and Application of Thermal Insulation  

Science Journals Connector (OSTI)

Abstract This chapter covers the minimum requirements for thermal insulation of pipework, vessels, tanks, and other equipment. It is aimed at thermal insulation usage in the oil, gas, petrochemical, and other similar industries mainly for refineries, chemical, petrochemical, and natural gas processing plants. The chapter explains the fundamental requirements for insulation systems, including insulation materials of sufficient quality and thicknesses, weatherproofing, and finishing. Also, there is discussion on the design issues related to thermal insulation, including selection of the thermal insulation system, corrosion under thermal insulation, and the general applications of insulation. In addition, the characteristics and selection of insulation and accessory materials are presented.

Alireza Bahadori

2014-01-01T23:59:59.000Z

154

Equations shorten pipe collapse calculations  

SciTech Connect (OSTI)

The API suggests collapse pressure equations for long, perfectly round, steel oil field casing, tubing, drill pipe, and line pipe. Operating and service company engineers can substitute two pipe collapse pressure equations for the 12 API equations now in general use. The shorthand results are almost the same as those from the API equations. The shorthand method has the additional advantage of allowing units from any measurement system. The API equations restrict calculations to US units only. The equation box lists the API (Equations 1--12) and the shorthand (Equations 13--14) equations. The API equations are based on work started shortly after the turn of the century.

Avakov, V.A. [Halliburton Energy Services, Duncan, OK (United States)

1995-04-10T23:59:59.000Z

155

Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems  

SciTech Connect (OSTI)

Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

Griffith, B.; Arasteh, D.; Tuerler, D.

1995-01-01T23:59:59.000Z

156

insulation blocking  

Science Journals Connector (OSTI)

In a cable, such as a coaxial cable, a paired cable, a twisted pair, or a fiber optic cable, the ability of the outer covering, such as a jacket, sheath, or insulation, to withstand elevated temperatures without ...

2001-01-01T23:59:59.000Z

157

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect (OSTI)

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

158

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Broader source: Energy.gov (indexed) [DOE]

Have You Done to Ensure Your Water Pipes are Efficient and Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

159

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Broader source: Energy.gov (indexed) [DOE]

What Have You Done to Ensure Your Water Pipes are Efficient and What Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

160

Insulation and Air Sealing Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services May 30, 2012 - 9:52am Addthis Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Cellulose Facts Cellulose Insulation Manufacturers Association Information on cellulose insulation, including technical bulletins, special reports, and video Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems Cotton Insulation (PDF) Build it Green Information on cotton insulation and a comparison to conventional insulation Expanded Polystyrene Molders Association

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A  

SciTech Connect (OSTI)

Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encompasses primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

2009-11-30T23:59:59.000Z

162

Building Energy Software Tools Directory: Pipe-Flo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-Flo Pipe-Flo Pipe-flo logo Flow analysis software used to design, optimize, troubleshoot and simulate the operation of piping systems of any size or configuration. PIPE-FLO provides a total picture of the piping system including the flow and pressures in pipelines, along with the interaction of pumps, control valves, and flow meters. PIPE-FLO products are used worldwide in a variety of applications throughout many industries including HVAC, fire sprinkler, wastewater collection and treatment, mining, ultra-pure water, chemical processing, power generation, pulp & paper and general industrial. Screen Shots Keywords piping analysis, pump selection, piping design, hydraulic analysis, pump sizing, pressure drop calculator, hydraulic modeling, steam distribution,

163

Performance analysis of wick-assisted heat pipe solar collector and comparison with experimental results  

Science Journals Connector (OSTI)

The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from ... pipe temperature and also the thermal effic...

E. Azad

2009-03-01T23:59:59.000Z

164

Downhole pipe selection for acoustic telemetry  

DOE Patents [OSTI]

A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

Drumheller, D.S.

1995-12-19T23:59:59.000Z

165

Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan  

SciTech Connect (OSTI)

This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

Wellsfry, H.E.

1994-09-16T23:59:59.000Z

166

Determination of optimum pipe diameter along with energetic and exergetic evaluation of geothermal district heating systems: Modeling and application  

Science Journals Connector (OSTI)

This study deals with determination of optimum pipe diameters based on economic analysis and the performance analysis of geothermal district heating systems along with pipelines using energy and exergy analysis methods. In this regard, the Dikili geothermal district heating system (DGDHS) in Izmir, Turkey is taken as an application place, to which the methods presented here are applied with some assumptions. The system mainly consists of three cycles, namely (i) the transportation network, (ii) the Danistay region, and (iii) the Bariskent region. The thermal capacities of these regions are 21,025 and 7975kW, respectively, while the supply (flow) and return temperature values of those are 80 and 50C, respectively. Based upon the assessment of the transportation network using the optimum diameter analysis method, minimum cost is calculated to be US$ 561856.906year?1 for a nominal diameter of DN 300. The exergy destructions in the overall DGDHS are quantified and illustrated using exergy flow diagram. Furthermore, both energy and exergy flow diagrams are exhibited for comparison purposes. It is observed through analysis that the exergy destructions in the system particularly take place due to the exergy of the thermal water (geothermal fluid) reinjected, the heat exchanger losses, and all pumps losses, accounting for 38.77%, 10.34%, 0.76% of the total exergy input to the DGDHS. Exergy losses are also found to be 201.12817kW and 1.94% of the total exergy input to the DGDHS for the distribution network. For the system performance analysis and improvement, both energy and exergy efficiencies of the overall DGDHS are investigated, while they are determined to be 40.21% and 50.12%, respectively.

Yildiz Kalinci; Arif Hepbasli; Ismail Tavman

2008-01-01T23:59:59.000Z

167

Rehabilitating underground pipes  

SciTech Connect (OSTI)

Nearly 500,000 miles of industrial pipeline in the US are almost three times older than their expected usefulness. And aging pipes that are improperly maintained can cause a variety of environmental problems. It is essential for facilities to have a system of planned maintenance procedures to prevent structural failures related to inflow/infiltration and exfiltration. Trenchless repair methods, often referred to as pipeline rehabilitation, require the plant engineer to consider a range of activities, including demand projection, system performance assessment, investigation, evaluation of defects and deficiencies, remedial options, and implementation. Two methods of pipeline rehabilitation, slip lining and cured-in-place, are described.

Sorrell, P. [Insituform Technologies, Inc., Memphis, TN (United States)

1995-06-05T23:59:59.000Z

168

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

169

Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Insulation Insulation Insulation Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Get the facts about how insulation works. Read more Estimate the Payback Period for Insulation Adding insulation to your home will likely have an attractive payback. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques will also make your home more comfortable. Any air sealing efforts will complement your insulation efforts, and vice versa. Proper moisture control and ventilation strategies will improve the effectiveness of air sealing and insulation, and vice versa. Featured Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL.

170

Highly Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

171

Evaluating an experimental setup for pipe leak detection  

E-Print Network [OSTI]

An experimental setup with 4 inch inner diameter PVC pipe modules is designed to mimic a real life piping system in which to test possible leak detection mechanisms. A model leak detection mechanism is developed which ...

Garay, Luis I. (Luis Ignacio)

2010-01-01T23:59:59.000Z

172

Using Flexible Pipe (poly-pipe) with Surface Irrigation  

E-Print Network [OSTI]

Aimed at farmers and irrigators who want to irrigate their crops using flexible plastic pipes (commonly called "poly-pipe), this publication highlights (1) advantages of using poly-pipe, (2) factors to consider in selecting such pipe, and (3...

Peries, Xavier; Enciso, Juan

2005-10-05T23:59:59.000Z

173

Pipe supports and anchors - LMFBR applications  

SciTech Connect (OSTI)

Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed.

Anderson, M.J.

1983-06-01T23:59:59.000Z

174

HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS  

SciTech Connect (OSTI)

The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.

Leishear, R.

2010-05-02T23:59:59.000Z

175

A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems  

SciTech Connect (OSTI)

This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.

Biswas, Kaushik [ORNL; Miller, William A [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL; Manlove, Gary [Metanna, Monument, CO

2013-01-01T23:59:59.000Z

176

Dry Pipe Sprinkler Piping Replacement Project (4588), 4/30/2012  

Broader source: Energy.gov (indexed) [DOE]

Pipe System Sprinkler Piping Replacement Projects (4588) Pipe System Sprinkler Piping Replacement Projects (4588) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to replace sections of dry pipe system sprinkler piping which include heads, hangers, fittings, and valves. Categorical Exclusion(s) Applied: 81.3- Routine maintenance For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of I 0 CFR Part I 021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

177

Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads  

E-Print Network [OSTI]

% of energy used in the commercial sector; commercial use is about 18.2% of the total energy used (EIA, 2010). Air conditioning is becoming more widely used in commercial buildings. The chilled water system is a very important component in large air....1 Simulation baseline Total face area / Face velocity 44 ft2 / 477.3 cfm Coil FH?FL 36 inch?88 inch Rows ? FPI 8 ? 11 Fin thickness / Material 0.008 inch / AL Tube outside diameter / Wall 5/8 inch / 0.025 inch Interior tube wall area Ai 759 ft2 Exterior...

Li, Nanxi 1986-

2012-12-05T23:59:59.000Z

178

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

Zollinger, W.T.

1992-06-16T23:59:59.000Z

179

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

1992-01-01T23:59:59.000Z

180

PROPERTY CHANGES OF CYANATE ESTER/EPOXY INSULATION SYSTEMS CAUSED BY AN ITER-LIKE DOUBLE IMPREGNATION AND BY REACTOR IRRADIATION  

SciTech Connect (OSTI)

Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2x10{sup 22} m{sup -2}(E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W. [Atominstitut, Vienna University of Technology, 1020 Wien (Austria)

2010-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Install Removable Insulation on Valves and Fittings  

Broader source: Energy.gov [DOE]

This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

182

Insulation products promote thermal efficiency  

SciTech Connect (OSTI)

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

183

Insulation Monitors Settings Selection  

Science Journals Connector (OSTI)

In the chapter general requirements set to insulation monitors selection in AC and DC networks ... given. Examples of regulations requirements for circuits insulation equivalent resistance are presented. Traditio...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

184

Insulation Resistance Measurement Methods  

Science Journals Connector (OSTI)

A traditional method of insulation resistance measurement in live DC networks is ... of an ammeter is described. Formulas for insulation equivalent resistance calculation are derived with help...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

185

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network [OSTI]

Outdoor Temperature for District Heating Systems. ASHRAEAssessment of Buried District Heating Piping. ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

186

Experimental Study of a New PVC Foam Insulation System for Liquid-Hydrogen-Liquid-Oxygen Space Vehicles  

Science Journals Connector (OSTI)

This paper discusses the development of a rigid external foam insulation for liquid-hydrogen-liquid-oxygen space vehicles...1...], dealing with the use of Klegecell G 300,* a PVC closed-cell foam. This foam does ...

F. J. Muller

1971-01-01T23:59:59.000Z

187

Thermal conductivity of the insulation system of the stator winding of a high-power turbogenerator with air cooling  

Science Journals Connector (OSTI)

Values of the thermal-conductivity coefficient of specimens of the frame insulation manufactured from pre- and unimpregnated, mica-containing tapes are determined. It is established that the tape structure, te...

A. Sh. Azizov; A. M. Andreev; A. M. Kostelov

2009-03-01T23:59:59.000Z

188

Pipe crawler apparatus  

DOE Patents [OSTI]

A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

Hovis, Gregory L. (North Augusta, SC); Erickson, Scott A. (Augusta, GA); Blackmon, Bruce L. (Aiken, SC)

2002-01-01T23:59:59.000Z

189

Survey of insulation used in nuclear power plants and the potential for debris generation. Technical report  

SciTech Connect (OSTI)

In support of Unresolved Safety Issue A-43, 'Containment Emergency Sump Performance,' 11 nuclear power plants representative of different U.S. reactor manufacturers and architect-engineers were surveyed to identify and document the types and amounts of insulation used, location within containment, components insulated, material characteristics, and methods of installation and attachment. A preliminary assessment was made of the potential effects of insulation debris generated as the result of a loss-of-coolant accident (pipe break).

Reyer, R.; Gahan, E.; Riddington, J.W.

1981-10-01T23:59:59.000Z

190

Insulation for New Home Construction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Insulation for New Home Construction Insulation for New Home Construction Insulation for New Home Construction June 20, 2012 - 7:59pm Addthis Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. What does this mean for me? Adding extra insulation in a new home is more cost-effective than retrofitting insulation after the home is completed. Insulation is a key component of the systems that work together to create a comfortable, energy-efficient home that is affordable to heat and

191

The Effect of Vegetation Density on the Resilience of Coastal Dune Systems Against Wave-Induced Erosion  

E-Print Network [OSTI]

of construction grade plastic sheeting with pipe insulation foam to aid with the containment of the sand. The pipe insulation foam was placed anywhere in the system in which there was a crack or edge to prevent the plastic from wedging itself into small cracks... at different locations. The complete assembly consists of two main parts, the control box in Figure7 and probe head in Figure8. The cable running between these parts is a coaxial cable that is 3.4ft (103cm) long. The probe heads were mounted to aside...

Tyler, Robert Cory

2013-09-28T23:59:59.000Z

192

Multiple density layered insulator  

DOE Patents [OSTI]

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

193

Calcium silicate insulation structure  

DOE Patents [OSTI]

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

194

A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing  

E-Print Network [OSTI]

Until the present there has been no effective way to rapidly scan thermally insulated refinery or process piping for corrosion or thin wall. Such defects, if left unattended, can lead to wasteful losses of time, energy and money. To date the most...

Marsh, G. M.; Milewits, M.

1984-01-01T23:59:59.000Z

195

Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Mallay, D.; Wiehagen, J.

2014-09-01T23:59:59.000Z

196

Pipe crawlers: Versatile adaptations for real applications  

SciTech Connect (OSTI)

A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

Hapstack, M.; Talarek, T.R.

1990-01-01T23:59:59.000Z

197

Floating insulated conductors for heating subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

Burns, David; Goodwin, Charles R.

2014-07-29T23:59:59.000Z

198

Physica B 398 (2007) 407411 Metal-insulator transition in correlated systems  

E-Print Network [OSTI]

, CNEA, (8400) San Carlos de Bariloche, Argentina c Laboratoire de Physique des Solides, CNRS-UMR8502, Ciudad Universitaria, Pabello´n 1, Buenos Aires (1428), Argentina Abstract We study the Mott transition correlated systems in which the competition between the kinetic and Coulomb energy of electrons, which

Miranda, Eduardo

199

Modeling and analysis of water-hammer in coaxial pipes  

E-Print Network [OSTI]

The fluid-structure interaction is studied for a system composed of two coaxial pipes in an annular geometry, for both homogeneous isotropic metal pipes and fiber-reinforced (anisotropic) pipes. Multiple waves, traveling at different speeds and amplitudes, result when a projectile impacts on the water filling the annular space between the pipes. In the case of carbon fiber-reinforced plastic thin pipes we compute the wavespeeds, the fluid pressure and mechanical strains as functions of the fiber winding angle. This generalizes the single-pipe analysis of J. H. You, and K. Inaba, Fluid-structure interaction in water-filled pipes of anisotropic composite materials, J. Fl. Str. 36 (2013). Comparison with a set of experimental measurements seems to validate our models and predictions.

Cesana, Pierluigi

2015-01-01T23:59:59.000Z

200

Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Insulation Insulation Insulation May 30, 2012 - 9:14am Addthis Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler.

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Critical insulation thickness for maximum entropy generation  

Science Journals Connector (OSTI)

Critical insulation thickness is known to refer to the insulation thickness that maximises the rate of heat transfer in cylindrical and spherical systems. The same analogy is extended to the rate of entropy generation in the present study. The possible critical insulation thickness that yields a maximum rate of entropy generation is investigated. Entropy generation is related to heat transfer through and temperature distribution within the insulation material. It is found that there exists a critical insulation thickness for maximising the rate of entropy generation that is a function of the Bi number and the surface to ambient temperature ratio. The solution of such critical thickness is formulated analytically for both cylindrical and spherical geometries. It is also found that the critical insulation thickness for the rate of entropy generation does not coincide with that for the rate of heat transfer.

Ahmet Z. Sahin

2012-01-01T23:59:59.000Z

202

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

203

Foundation Insulation for Existing Homes  

Broader source: Energy.gov (indexed) [DOE]

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

204

Approximating Metal-Insulator Transitions  

E-Print Network [OSTI]

We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

2014-05-06T23:59:59.000Z

205

Building Technologies Office: Advanced Insulation for High Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

206

Optimization of the configuration and working fluid for a micro heat pipe thermal control device  

E-Print Network [OSTI]

of a micro heat pipe system containing a working fluid with physical properties having been speciffcally selected such that the heat pipes, as a whole, vary in effective thermal conductance, thereby providing a level of temperature regulation...

Coughlin, Scott Joseph

2006-04-12T23:59:59.000Z

207

International Piping Integrity Research Group (IPIRG) Program. Final report  

SciTech Connect (OSTI)

This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

Wilkowski, G.; Schmidt, R.; Scott, P. [and others

1997-06-01T23:59:59.000Z

208

ITER Central Solenoid Coil Insulation Qualification  

SciTech Connect (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials

2010-01-01T23:59:59.000Z

209

ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION  

SciTech Connect (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

2009-06-11T23:59:59.000Z

210

Composite drill pipe  

DOE Patents [OSTI]

A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

Leslie, James C. (Fountain Valley, CA); Leslie, II, James C. (Mission Viejo, CA); Heard, James (Huntington Beach, CA); Truong, Liem (Anaheim, CA), Josephson; Marvin (Huntington Beach, CA), Neubert; Hans (Anaheim, CA)

2008-12-02T23:59:59.000Z

211

Topological insulators/Isolants topologiques An introduction to topological insulators  

E-Print Network [OSTI]

Topological insulators/Isolants topologiques An introduction to topological insulators Introduction in the first Brillouin Zone, and their associated energies. In an insulator, an energy gap around the chemical topology, the insulator is called a topological insulator. We introduce this notion of topological order

Paris-Sud XI, Université de

212

Nonlinear boundary value problem of magnetic insulation  

E-Print Network [OSTI]

On the basis of generalization of upper and lower solution method to the singular two point boundary value problems, the existence theorem of solutions for the system, which models a process of magnetic insulation in plasma is proved.

A. V. Sinitsyn

2000-09-09T23:59:59.000Z

213

Insulate Steam Distribution and Condensate Return Lines  

Broader source: Energy.gov [DOE]

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

214

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

215

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

216

Variation of the metal-insulator transition and formation of bipolarons by Cd doping in the thiospinel system Cu1-xCdxIr2S4  

Science Journals Connector (OSTI)

The pseudobinary thiospinel system Cu1-xCdxIr2S4 was investigated by the x-ray-diffraction, electrical resistivity, magnetic-susceptibility, and specific-heat measurements. It was shown that the system exhibits a miscibility-gap behavior for the Cd substitution, however, nearly monophasic samples were obtained by quenching at 1373 K, except for 0.4Cd concentration, the room-temperature electrical conductivity and Pauli susceptibility decrease monotonically, consistent with the hole-filling picture. The first-order metal-insulator transition at about 230 K in the parent compound CuIr2S4 is changed into a second-order transition around 185 K when x?0.25, whereafter the second-order transition disappears at x?0.8. No superconductivity was observed down to 1.8 K. The end-member compound CdIr2S4 is shown as an insulator with a band gap of 0.3 eV. Analysis for the data of magnetic susceptibility and electrical resistivity suggests the formation of bipolarons below 185 K for 0.25

Guanghan Cao; Hideaki Kitazawa; Takehiko Matsumoto; Chunmu Feng

2004-01-15T23:59:59.000Z

217

A Simple Holographic Insulator  

E-Print Network [OSTI]

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Mefford, Eric

2014-01-01T23:59:59.000Z

218

A Simple Holographic Insulator  

E-Print Network [OSTI]

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Eric Mefford; Gary T. Horowitz

2014-06-16T23:59:59.000Z

219

Plastics and Insulation  

Science Journals Connector (OSTI)

... the Institution of Electrical Engineers on March 24 to discuss a paper on Plastics and Insulation by L. Hartshorn, N. J. L. Megson and E. Rushton. It ...

1938-04-02T23:59:59.000Z

220

Have You Looked at Your Pipes Lately? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Have You Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? March 14, 2011 - 1:27pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, it doesn't matter that some of you are probably already thinking about spring. It doesn't matter that the bulk of winter is over for a lot of you. I'm going to say this anyway, because sometime, someday, it might be useful. Or, well, it might not be if you live in Florida. But for the rest of you, I will repeat this suggestion: Check the insulation on your pipes! You see, early this February we had a nasty bit of weather here in Colorado. One day the low was somewhere near -15°F, and the high was a balmy -2°F. The next day, when it reached a scalding 6-or-so degrees, a pipe in my apartment exploded.

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Effect of Deep Traps on the Barrier Heights of Metal-Insulator-Metal Tunnel Junctions  

Science Journals Connector (OSTI)

It is shown that the potential barrier ?max in a thin-film metal-insulator-metal system increases rapidly with increasing insulator thickness when electrons are immobilized in deep traps in the insulator, and at low voltage biases d?maxdV is independent of the insulator parameters. This effect may be an explanation of the observations of Lewicki and Mead.

J. G. Simmons

1969-08-11T23:59:59.000Z

222

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

223

List of Equipment Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Insulation Incentives Insulation Incentives Jump to: navigation, search The following contains the list of 242 Equipment Insulation Incentives. CSV (rows 1 - 242) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Central Air conditioners Chillers Custom/Others pending approval Energy Mgmt. Systems/Building Controls Equipment Insulation Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

224

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents [OSTI]

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

225

Insulation failure assessment under random energization overvoltages  

SciTech Connect (OSTI)

This paper offers a new simple approach to the evaluation of the risk of failure of external insulation in view of their known probabilistic nature. This is applied to EHV transmission systems subjected to energization overvoltages. The randomness, both in the applied stresses and insulation`s withstand characteristics are numerically simulated and then integrated to assess the risk of failure. Overvoltage control methods are accounted for, such as the use of pre-insertion breaker resistors, series capacitive compensation, and the installation of shunt reactors.

Mahdy, A.M.; Anis, H.I. [Cairo Univ. (Egypt)] [Cairo Univ. (Egypt); El-Morshedy, A. [Faculty of Science for Girls, Dammam (Saudi Arabia)] [Faculty of Science for Girls, Dammam (Saudi Arabia)

1996-03-01T23:59:59.000Z

226

Electrical Strength of Multilayer Vacuum Insulators  

SciTech Connect (OSTI)

The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

2008-07-01T23:59:59.000Z

227

Tips: Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

228

Heat transfer in microsphere insulation  

Science Journals Connector (OSTI)

The results of an investigation of heat transfer in a new type of insulation (microsphere insulation) are presented. The effects of the ... gas pressure on the thermal conductivity of the insulation were investig...

R. Wawryk; J. Rafa?owicz

229

Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars  

E-Print Network [OSTI]

This paper introduces new concepts in compressed air piping, sizing, and system design beyond the conventional pipe sizing charts and standard system layout guide lines. The author shows how compressed air velocity has a very significant impact...

Van Ormer, H.

2005-01-01T23:59:59.000Z

230

Behaviour of Insulation  

Science Journals Connector (OSTI)

... to say in effect, even if I do inadvertently misquote. "The trouble with our insulation is that it is too thick". The lessons at any rate are clear: ... The book Dielectric Relaxation has certainly contributed greatly to our understanding of the behaviour of insulation for a specialist few.

COLIN ADAMSON

1968-12-07T23:59:59.000Z

231

Magnetic insulation (reply)  

Science Journals Connector (OSTI)

... DR WINTERBERG REPLIES: Contrary to Blewett's belief, magnetic insulation has not only been experimentally confirmed2 since I proposed it several years ago1, but ... generators (for example, the MJ Aurora machine). The magnetic field needed for the insulation effect in this case is generated by the strong azimuthal self-induced field of the ...

F. WINTERBERG

1974-06-28T23:59:59.000Z

232

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

233

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

234

Thermal Insulation of Clothing (Icl)  

Science Journals Connector (OSTI)

The intrinsic insulation of a clothing assembly. The effective insulation of clothing is (Icl + Ia)...2 W?1] and sometimes in [clo].

2012-01-01T23:59:59.000Z

235

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

List of Equipment Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleEquipmentInsulation&oldid267163" Category: Articles with outstanding TODO tasks...

236

Excavationless Exterior Foundation Insulation Field Study  

SciTech Connect (OSTI)

Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

Schirber, T.; Mosiman, G.; Ojczyk, C.

2014-10-01T23:59:59.000Z

237

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network [OSTI]

Four Pipe Fan Coil; Four Pipe Induction Unit; Heating andTwo Pipe Fan Coil; Two Pipe Induction Unit; Unit Heater;units (AHUs) four CAV systems, four VAV systems, and one fan coil

Zhou, Xin

2014-01-01T23:59:59.000Z

238

CRAD, Equipment and Piping Labeling Assessment Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Equipment and Piping Labeling Assessment Plan Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance with DOE requirements.

239

Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications  

SciTech Connect (OSTI)

During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

Rahman, S.; Ghadiali, N.; Wilkowski, G.

1997-04-01T23:59:59.000Z

240

Heat pipe cooling for scramjet engines. Final report  

SciTech Connect (OSTI)

Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

Silverstein, C.C.

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Guidable pipe plug  

DOE Patents [OSTI]

A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

Glassell, Richard L. (Knoxville, TN); Babcock, Scott M. (Farragut, TN); Lewis, Benjamin E. (Farragut, TN)

2001-01-01T23:59:59.000Z

242

Pipe-to-pipe impact analysis - Nuclear Engineering Multimedia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-to-pipe impact analysis Pipe-to-pipe impact analysis Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Multimedia Bookmark and Share EA Multimedia, a collection of videos and audios featuring activities related to the Engineering Analysis Department Pipe-to-pipe impact analysis Quicktime video Quicktime Format - High Bandwidth | Size: 12 MB | Bit Rate:

243

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

244

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

245

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

246

Insulation fact sheet  

SciTech Connect (OSTI)

Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

NONE

1997-08-01T23:59:59.000Z

247

Plasma Magnetic Insulation  

Science Journals Connector (OSTI)

29 June 1987 research-article Plasma Magnetic Insulation B. B. Kadomtsev Theoretically the strong magnetic field of a tokamak should confine electrons and ions in a high-temperature...

1987-01-01T23:59:59.000Z

248

Insulator for laser housing  

DOE Patents [OSTI]

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

Duncan, David B. (Auburn, CA)

1992-01-01T23:59:59.000Z

249

Insulator for laser housing  

DOE Patents [OSTI]

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

Duncan, D.B.

1992-12-29T23:59:59.000Z

250

Selection of minimum earthquake intensity in calculating pipe failure probabilities  

SciTech Connect (OSTI)

In a piping reliability analysis, it is sometimes necessary to specify a minimum ground motion intensity, usually the peak acceleration, below which the ground motions are not considered as earthquakes and, hence, are neglected. The calculated probability of failure of a piping system is dependent on this selected minimum earthquake intensity chosen for the analysis. A study was conducted to determine the effects of the minimum earthquake intensity on the probability of pipe failure. The results indicated that the probability of failure of the piping system is not very sensitive to the variations of the selected minimum peak ground acceleration. However, it does have significant effects on various scenarios that make up the system failure.

Lo, T.Y.

1985-01-01T23:59:59.000Z

251

Upgrade of the beam transport lines and the beam-abort system and development of a tune compensator in KEKB  

Science Journals Connector (OSTI)

......stacked in series. The specifications of the switch are...closed cycle. The main specifications of the warmer are...gauge pressure. Heat insulation piping The septum...25A) covered with thermal insulation connects the warmer......

Naoko Iida; Mitsuo Kikuchi; Toshihiro Mimashi; Hisayoshi Nakayama; Yutaka Sakamoto; Kotaro Satoh; Seiji Takasaki; Masafumi Tawada

2013-03-01T23:59:59.000Z

252

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

253

Acoustic imaging in a water filled metallic pipe  

SciTech Connect (OSTI)

A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1984-04-01T23:59:59.000Z

254

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

255

Insulation Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

256

Electoral Competition, Political Uncertainty and Policy Insulation  

E-Print Network [OSTI]

Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

de Figueiredo, Rui J. P. Jr.

2001-01-01T23:59:59.000Z

257

Training: Mechanical Insulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conjunction with the National Insulation Association and the International Association of Heat and Frost Insulators and Allied Workers. Mechanical insulation can play a significant...

258

Massive Dirac surface states in topological insulator/magnetic insulator heterostructures  

Science Journals Connector (OSTI)

Topological insulators are new states of matter with a bulk gap and robust gapless surface states protected by time-reversal symmetry. When time-reversal symmetry is broken, the surface states are gapped, which induces a topological response of the system to electromagnetic fieldthe topological magnetoelectric effect. In this paper we study the behavior of topological surface states in heterostructures formed by a topological insulator and a magnetic insulator. Several magnetic insulators with compatible magnetic structure and relatively good lattice matching with topological insulators Bi2Se3, Bi2Te3, Sb2Te3 are identified, and the best candidate material is found to be MnSe, an antiferromagnetic insulator. We perform first-principles calculations in Bi2Se3/MnSe superlattices and obtain the surface state band structure. The magnetic exchange coupling with MnSe induces a gap of ?54 meV at the surface states. In addition we tune the distance between Mn ions and the topological insulator surface to study the distance dependence of the exchange coupling.

Weidong Luo and Xiao-Liang Qi

2013-02-19T23:59:59.000Z

259

Subterranean well pipe guiding apparatus  

SciTech Connect (OSTI)

A pipe guiding apparatus is described for vertically aligning pipe section joints in a derrick having a worktable and an elevator for vertically suspending at least one pipe section above the worktable. The apparatus is comprised of a rotary axle for horizontal attachment in the derrick, a frame attached to the rotary axle, a power cylinder for rotating the rotary axle, a pair of guide jaws pivotally attached to the forward end of the frame, and a cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws are remotely operated so that the frame can be selectively moved to a position whereby the guide jaws are adjacent a vertically suspended pipe section and the guide jaws thereafter are closed on the pipe section. 6 claims.

Scaggs, O.C.

1981-06-23T23:59:59.000Z

260

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

Jenkins, Charles F. (Aiken, SC); Howard, Boyd D. (Augusta, GA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Probabilistic assessment of critically flawed LMFBR PHTS piping elbows  

SciTech Connect (OSTI)

One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results.

Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

1982-01-01T23:59:59.000Z

262

Calculator programs for pipe stress engineering  

SciTech Connect (OSTI)

This book contains a collection of programs for solving a wide variety of stress problems using both the TI-59 and HP-41CV calculators. Each program is prefaced with a description of the problem to be solved, nomenclature, code restrictions and program limitations. Solutions are explained analytically and then followed by the complete program listing, documentation and checklists. Topics include calculations for pipewall thickness, pressure vessel analysis, reinforcement pads, allowable span, vibration, stress, and two-anchor piping systems.

Morgan, K.S.

1985-01-01T23:59:59.000Z

263

Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet  

SciTech Connect (OSTI)

The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

Stovall, T.K.

1997-08-22T23:59:59.000Z

264

High voltage gas insulated transmission line with continuous particle trapping  

DOE Patents [OSTI]

This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

1983-01-01T23:59:59.000Z

265

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

266

Thermal Insulation for Energy Conservation  

Science Journals Connector (OSTI)

The use of thermal insulations to reduce heat flow across the building ... decades. Materials available for use as building insulation include naturally occurring fibers and particles, man ... plastics, evacuated...

Dr. David W. Yarbrough Ph.D.; PE

2012-01-01T23:59:59.000Z

267

Contaminant trap for gas-insulated apparatus  

DOE Patents [OSTI]

A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

268

Peg supported thermal insulation panel  

DOE Patents [OSTI]

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

269

Peg supported thermal insulation panel  

DOE Patents [OSTI]

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

270

Switching Surges and Air Insulation  

Science Journals Connector (OSTI)

...research-article Switching Surges and Air Insulation B. Jones Some thirteen years ago...reduction was noticed in the strength of air insulation when subjected to slowly rising positive...collected in high voltage laboratories. Insulation against switching surges is now seen...

1973-01-01T23:59:59.000Z

271

Development of Pre?Preg Ceramic Insulation for Superconducting Magnets  

Science Journals Connector (OSTI)

A new pre?impregnated (pre?preg) ceramic?based electrical insulation system capable of surviving high superconductor reaction temperatures has been developed for use in superconducting magnets. The use of Nb 3Sn superconductors holds great promise for increased magnet performance for high energy physics fusion and other applications. A robust cost?effective manufacturing process is critical to the successful implementation of these coils. Due to its embrittlement after the high temperature reaction cycle Nb 3Sn cable is usually insulated and wound into the coil prior to heat treatment. An earlier ceramic?based insulation system applied using wet?winding or vacuum impregnation has been successfully used in the wind and react fabrication process. Use of the new pre?preg system will further simplify the manufacturing process while improving control over the insulation properties. Pre?preg insulation offers several advantages including improved dimensional control of the insulation controllable and uniform fiber to matrix ratio and certainty that the insulation does not infiltrate the superconductor. This paper describes the pre?preg development process processing properties as well as insulation performance data at cryogenic temperatures.

D. E. Codell; P. E. Fabian

2004-01-01T23:59:59.000Z

272

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

273

Jamaican red clay tobacco pipes  

E-Print Network [OSTI]

JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS December 1992 Major Subject...: Anthropology JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Approved as to style and content by: Dorm L. Hamilton (Chair of Committee) Frederick H. van Doorninck, J (Member) enry C. Schmidt (Member) Vaughn M. Bryant (Head...

Heidtke, Kenan Paul

2012-06-07T23:59:59.000Z

274

STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER  

E-Print Network [OSTI]

STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER the effect of insulation layers in complex dynamical systems for low- and medium-frequency ranges such as car booming noise analysis, one introduces a sim- plified stochastic model of insulation layers based

Boyer, Edmond

275

Insulation Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

276

Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report  

SciTech Connect (OSTI)

Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds.

Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

1995-11-01T23:59:59.000Z

277

Highly Insulating Windows - Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

278

CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012  

Broader source: Energy.gov [DOE]

Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

279

Gas filled panel insulation  

DOE Patents [OSTI]

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

280

Gas filled panel insulation  

DOE Patents [OSTI]

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Superconducting Topological Insulators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

282

Superconducting Topological Insulators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

283

Superconducting Topological Insulators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

284

Highly Insulating Windows - Fram  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

285

Development of microwave foaming method for phenolic insulation foams  

Science Journals Connector (OSTI)

Many types of foams are used for thermal insulation in building, frozen food industries and LNG containment systems. Low thermal conductivity, low density and low flammability are required for thermal insulation. Among many foams, phenolic foams are preferred for thermal insulation due to its lower flammability and lower gas generation than any other polymer insulation foams. However, it takes long time to manufacture large size phenolic foams and the environmental regulation limits the use of blowing agents. Urethane foams and polystyrene foams are widely used in spite of their high flammability and toxic gas generation because conventional phenolic foams usually have higher thermal conductivity than expected. In this work, a foaming method for the resole-type phenolic foams was developed using microwave and air instead of blowing agents, and its thermal and mechanical properties were measured. From the measured results, it was found that the phenolic foams developed had low thermal conductivity and low density suitable for insulation foams.

Bu Gi Kim; Dai Gil Lee

2008-01-01T23:59:59.000Z

286

Equipment and Piping Labeling Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

EQUIPMENT AND PIPING LABELING EQUIPMENT AND PIPING LABELING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance

287

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

Kiran M. Kothari; Gerard T. Pittard

2005-07-01T23:59:59.000Z

288

Digital Analysis of PD Sources in Gas Insulated Switchgear Substation  

Science Journals Connector (OSTI)

It has been revealed that imperfection such as microscopic protrusions on the interior of the Gas Insulated Switchgear systems (GIS) metal work, foreign particles, components that float in potential and deteri...

A. H. Mufti; W. M. Al-Baiz; A. O. Arafa

1998-01-01T23:59:59.000Z

289

Measure Guideline: Sealing and Insulating of Ducts in Existing Homes  

SciTech Connect (OSTI)

This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

Aldrich, R.; Puttagunta, S.

2011-12-01T23:59:59.000Z

290

Solar and standby fireplace system  

SciTech Connect (OSTI)

A home heating system for supplying heated air and water is made up of a solar energy heating unit. The solar energy heating unit is provided with a channel in an insulating layer mounted within the housing, which channel directs heated air to the interior of the home. The interior of the housing also is provided with a plurality of water pipes for heating water. The water is preferably supplied from an indoor swimming pool and redirected back to the indoor swimming pool after being heated. A fireplace is also provided in conjunction with the solar energy heating unit, which fireplace acts as a back-up unit when the solar unit is not operable due to insufficient sunlight. The fireplace contains a conventional hearth and flue and is provided with a plurality of air conduits and water pipes within the flue so that the air and water may be heated by the fire in the hearth.

Binner, T.S.

1983-08-30T23:59:59.000Z

291

Analysis and testing of multilayer and aerogel insulation configurations  

SciTech Connect (OSTI)

Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

Johnson, W L [NASA Kennedy Space Center, Kennedy Space Center, Florida; Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida

2010-01-01T23:59:59.000Z

292

Development of design tools for ground-source heat pump piping  

SciTech Connect (OSTI)

High-density polyethylene (HDPE) piping systems with thermal fusion joints have several attractive characteristics when applied to ground-source heat pump (GSHP) systems. However, engineers may not have access to GSHP piping and fitting head loss data or to easy-to-use tools for piping design/pump sizing. Some GSHP systems have been conservatively designed with pumps that are grossly oversized. Systems have been installed in which the pump energy use exceeds heat pump energy. In some cases, engineers completely avoid the use of GSHPs because they are not comfortable with the low level of sophistication and the difficulty of using current GSHP design tools. A project has been undertaken to measure head loss in common GSHP fittings and pipe design and to develop a set of easy-to-use and accurate piping design tools. These tools will not only give designers more confidence but will reduce the cost of GSHPs by reducing oversizing and piping complexity that has been common in some installations. The results of this project are presented in a format similar to the tools currently used by practicing HVAC design engineers. Tables for fitting equivalent lengths and k-factors have been developed. Log-log plots of head loss vs. flow rate and liquid velocity are presented in a format similar to the plots appearing in the 1993 ASHRAE Handbook--Fundamentals. These tables and charts for HDPE piping components complement existing charts and tables for traditional piping systems.

Kavanaugh, S. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

293

Evaluation of IR techniques for detection of wall thinning in service water piping  

SciTech Connect (OSTI)

Service water piping systems at electric power plants provide cooling for a variety of safety and non-safety related components and systems. Assessing integrity of the service water piping system includes detection and analysis of pipe wall thinning. Conventional inspection techniques usually involve the time-intensive process of ultrasonic thickness measurements, based on a grid system, of the entire pipe length. An alternative to this process may lie in the use of active infrared thermography techniques for detection of thin wall areas in the pipe. The EPRI NDE Center participated in a preliminary evaluation of this technology at Vermont Yankee Nuclear Power Plant. Based on the promising results of the Vermont Yankee activity, the Center worked with Thermal Wave Imaging, Inc. (TWI) in an effort to optimize the IR thermal injection technique for service water piping applications. The primary goals of this effort were to determine the practical depth resolution capabilities of the thermal injection method in carbon steel, and also to minimize the effects of pipe curvature on detection capabilities. Both of these efforts were subject to the constraint that the system be sufficiently portable for use in an electrical power plant, where space and access to the pipe surface is often limited.

Zayicek, P. [EPRI NDE Center, Charlotte, NC (United States); Shepard, S.M. [Thermal Wave Imaging, Inc., Lathrup Village, MI (United States)

1996-12-31T23:59:59.000Z

294

Engineering design of the Z magnetically-insulated transmission lines and insulator stack  

SciTech Connect (OSTI)

A 3.3 m diameter cylindrical insulator stack and a set of 3 m diameter conical magnetically insulated transmission lines (MITLs) were built for the Z accelerator. The 1.7 m tall insulator stack operates at {approx}20 MA and 2.5-3.5 MV, and was instrumented with 12 current and 24 voltage monitors. The insulator stack was concentrically and azimuthally aligned within 1.5 mm. The stack, containing 22 crosslinked polystyrene insulators and 18 grading rings, was designed to provide vertical stability for the MITLs and to resist radial buckling. 2-D and 3-D static finite element analyses (FEA) were used in designing the MITLs to limit gravity deflections to less than .25 mm. 2-D FEA dynamic analyses were done to predict motion and to help design features to restrict damage. Each MITL is divided into four concentric zones which fasten together in a way which facilitates fabrication, limits the extent of possible damage and allows for future changes at minimal cost. The tapered MITLs are supported by feedthrough rings in the insulator stack so that the gaps at small radius are adjustable from 0 to 22 mm. The MITL anodes were instrumented with 24 current monitors and have 48 additional diagnostic locations available. The MITLs were fabricated from 304L stainless steel except the outer anode sections, which were made from 6061-T6 aluminum alloy. Procedures were developed for fabrication of the large and small diameter MITL cones, as well as for the feedthrough rings and grading rings of the stack. The power-flow surfaces were successfully machined to within {+-}.25 mm of the specified contours. A large, multi-trolley MITL handling system was designed to allow for removal, cleaning and replacement of the MITLs for each shot, at a shot rate of 1.5 shots/day. Additional equipment allows for cleaning of the insulators.

Ives, H.C.; Van De Valde, D.M. [EG& G MSI, Albuquerque, NM (United States); Long, F.W.; Smith, J.W. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1997-08-01T23:59:59.000Z

295

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

296

Fast ultrasonic imaging in a liquid filled pipe  

SciTech Connect (OSTI)

A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. 13 refs.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1985-10-01T23:59:59.000Z

297

Investigation of PVC Pipe Failure at Terrell State Hospital Final Report  

E-Print Network [OSTI]

At the request of Terrell State Hospital and MHMR, the Energy Systems Laboratory at Texas A&M University investigated the failure of the PVC pipes serving the chilled water loop at Terrell State Hospital. There were two PVC pipe failures where...

Wei, G.; Deng, S.; Claridge, D. E.; Turner, W. D.

2000-01-01T23:59:59.000Z

298

Heat pipe technology: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect (OSTI)

This is the second quarterly update for 1980 in the Heat Pipe Technology Bibliographic Series. In addition to the abstract and bibliographic data for each item, the following indexes are provided: authors; title/keywords; and patents by number, author or permuted title. This quarter contains a large number of citations on heat pipe applications in energy conservation and also in solar energy systems.

Srinivasan, R.; Feldman, K.T. Jr. (eds.)

1980-08-01T23:59:59.000Z

299

Geothermal energy utilization with heat pipes  

Science Journals Connector (OSTI)

Several variants of heat pipes for utilization of geothermal energy and underground rock heat are studied. An...

L. L. Vasil'ev

1990-09-01T23:59:59.000Z

300

Structural Assessment of Small Bore Feeder Piping  

E-Print Network [OSTI]

Frasheri MIE491 - Capstone Team 9 March 2012 Client: W. Reinhardt Industry Partner: Candu Energy Inc. Supervisor: A. N. Sinclair CASE ONE CANDU REACTORS HAVE 380+ SMALL BORE FEEDER PIPES. THE PIPES PIPES AND VALIDATE COMPUTATIONAL METHODS COMPARED TO FULL SCALE TESTS TO FAILURE. THE CLIENT CANDU

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Microbiological Deterioration of Rubber Insulation  

Science Journals Connector (OSTI)

...Microbiological Deterioration of Rubber Insulation John T. Blake Donald W. Kitchin Orison...Microbiological Deterioration of Rubber Insulation JOHN T. BLAKE, DONALD W. KITCHIN...By burying wire samples with thin insulation in active soil, the rate of failure...

John T. Blake; Donald W. Kitchin; Orison S. Pratt

1955-01-01T23:59:59.000Z

302

Compact vacuum insulation  

DOE Patents [OSTI]

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

Benson, D.K.; Potter, T.F.

1992-10-27T23:59:59.000Z

303

Compact vacuum insulation  

DOE Patents [OSTI]

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

304

A Plastic for Thermal Insulation  

Science Journals Connector (OSTI)

... ft. per in. thickness per 1 F. difference of temperature, so that its insulation properties compare very favourably with slab-cork (0-25 B.TH.U.), glass ... tenth that of slab-cork. This makes it of considerable interest in connexion with thermal insulation during transport. Isoflex is non-porous and non-absorbent, with the result that its ...

1941-04-26T23:59:59.000Z

305

New Technique in Insulation Testing  

Science Journals Connector (OSTI)

... THE new 'Megger' insulation tester, series 3, mark 3, manufactured by Evershed and Vignoles, Ltd., incorporates ... torque to the generator and provides remarkably smooth and consistent operation. In addition to the insulation testing range, the instrument operates over a continuity range 0-100 ohms with a ...

1960-10-22T23:59:59.000Z

306

The Insulation of Electric Machines  

Science Journals Connector (OSTI)

... the necessity of high potential differences have within recent years quite altered our ideas about insulation. Electrical engineers have come to view the subject from a different standpoint on account ... exceeding, their working limits of temperature, and the futility of baking to obtain temporary insulation unless moisture be permanently excluded. When dealing with the influence of brush discharge mention ...

ERNEST WILSON

1905-06-15T23:59:59.000Z

307

A method to define degradation mechanisms and failure rates for piping  

SciTech Connect (OSTI)

This paper describes a process currently being employed to develop an easy to use procedure for identifying degradation mechanisms and computing failure rates for piping. The procedure includes guidelines to identify degradation mechanisms that may be present in piping systems. The identified mechanisms along with other system or segment specific features of the piping determine the piping failure rate. Implementation of this procedure requires a data or knowledge base that reflects the service and operational conditions that affect piping reliability and availability. This procedure is being developed for use by plant engineers, and will not require expertise in probability, stress, or fracture mechanics analyses. The method can be used to provide input for performing plant safety assessments and defining risk based inspection programs.

Gamble, R.M. [Sartrex Corp., Rockville, MD (United States); Gosselin, S.R. [EPRI NDE Center, Charlotte, NC (United States)

1996-12-01T23:59:59.000Z

308

Excavationless Exterior Foundation Insulation Exploratory  

Broader source: Energy.gov (indexed) [DOE]

Excavationless Exterior Foundation Excavationless Exterior Foundation Insulation Exploratory Study NorthernSTAR Building America Team Garrett Mosiman Technical Approach The project begins with the concept of an "excavationless" exterior foundation insulation upgrade that is cost-competitive with current methods, and involves little impact to existing landscape and site features. Process: 1. Literature review to establish the building science case for the advantages of exterior foundation insulation vs. interior insulation 2. Presentation and analysis of two exterior, full-excavation exterior insulation upgrades to establish a base case for costs 3. Survey of five typical twin-cities neighborhoods to categorize and quantify typical obstructions 4. Web-based search to identify available materials and technologies that have

309

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Broader source: Energy.gov (indexed) [DOE]

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

310

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy Savers [EERE]

Solar Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These...

311

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect (OSTI)

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

312

Thermally Enhanced Pipe for Geothermal Applications Stphane Gonthier  

E-Print Network [OSTI]

in St-Lazare, QC, Canada · Leaders in Pipe and Tubing in Niche Markets · Over 30 years of experience in the Market : 2009 in Canada (CGC Conference, Toronto, ON) 2010 in USA (IGSHPA Technical Conference and Expo Field (2010), Designer: Ecosystem, QC · 3 Geo-Solar Hybrid Systems in NH and MA, 250 X ¾" slinkies (2011

313

Highly Insulating Windows - Publ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

314

Multiple layer insulation cover  

DOE Patents [OSTI]

A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

1981-11-03T23:59:59.000Z

315

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

316

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being placed into manufacture. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari; Gerard T. Pittard

2004-04-01T23:59:59.000Z

317

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being manufactured. The 12-inch ball valve for allowing no-blow access was also procured. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module inter-connects and of a master LabView-based system display and control software.

Kiran M Kothari; Gerard T. Pittard

2004-07-01T23:59:59.000Z

318

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to the design, fabrication and testing of a entry fitting in a 4-inch prototype and is now being used to complete drawings for use in 12-inch diameter pipe. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari, Gerard T. Pittard

2004-01-01T23:59:59.000Z

319

Insulation Saves Energy and Money at Home...and HOA from Disaster |  

Broader source: Energy.gov (indexed) [DOE]

Insulation Saves Energy and Money at Home...and HOA from Disaster Insulation Saves Energy and Money at Home...and HOA from Disaster Insulation Saves Energy and Money at Home...and HOA from Disaster December 29, 2009 - 7:30am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory Earlier this month, just one day after Denver's first cold snap of the season, I woke up and saw a new text message from my downstairs neighbor. She was writing to let me know no one in our small, six-unit condo building had water. Immediately I feared the worst: The pipes froze overnight and burst, damaging the building and causing thousands of dollars in repair work. After throwing on some warm clothes, I surveyed the basement and outside where the water enters our building. No burst was visible. Relieved, we called a plumber, who for a hefty service fee was able to come

320

Insulation Mechanisms of in vivo Biomolecular Circuits Kayzad S. Nilgiriwala, Phillip M. Rivera and Domitilla Del Vecchio  

E-Print Network [OSTI]

Insulation Mechanisms of in vivo Biomolecular Circuits Kayzad S. Nilgiriwala, Phillip M. Rivera,2,3). It has been theoretically shown that a system can be insulated from retroactivity by using high gain, effectively insulating the cycle from retroactivity by downstream DNA targets. Hence, phosphorylation cycles

Del Vecchio, Domitilla

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Broader source: Energy.gov (indexed) [DOE]

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

322

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

1994-01-01T23:59:59.000Z

323

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04T23:59:59.000Z

324

CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING  

SciTech Connect (OSTI)

The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

Rawls, G.

2012-10-10T23:59:59.000Z

325

Exterior Insulation and Overclad Retrofits  

Broader source: Energy.gov (indexed) [DOE]

Exterior Insulation & Overclad Exterior Insulation & Overclad Retrofits Residential Energy Efficiency Stakeholder Meeting March 2, 2012 - Austin, TX Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 2  Incredible practical experience:  New construction - nearly a century  Retrofit applications - many decades Exterior Insulation Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 3 1980s ON - a "weird" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 4 1990s ON - a "good" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 5 2000s ON - a "typical" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 6

326

Identification of building applications for a variable-conductance insulation  

SciTech Connect (OSTI)

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

327

Design and analysis of SMES-ETM electrical insulation  

SciTech Connect (OSTI)

The mechanical design and the electrical field analysis of the Ebasco/Westinghouse SMES-ETM coil electrical insulation system are presented. The electrical insulation design of the coil includes the turn to turn, layer to layer, and between the coil to the wall of the liquid helium vessel of the cryostat. A finite element analysis code (WEMAP) was used to obtain detailed electrical field plots of the high electrically stressed regions of the coil. These analytical results were used in conjunction with the experimental data of dielectric breakdown, available in the literature or obtained by in-house testing, to determine the optimum configuration and materials of the insulation spacers. An adequate design safety factor between the insulation capability and the maximum operating electrical stress was adopted to ensure the design integrity under all operating conditions and to allow for the uncertainties of the experimental dielectric breakdown data.

Wu, J.L.; Roach, J.F.; Johnson, D.C.; Dederer, J.T.; Singh, S.K.; Hackworth, D.T. [Westinghouse Science & Technology Center, Pittsburgh, PA (United States)

1994-12-31T23:59:59.000Z

328

Topological Response Theory of Doped Topological Insulators  

Science Journals Connector (OSTI)

We generalize the topological response theory of three-dimensional topological insulators (TI) to metallic systemsspecifically, doped TI with finite bulk carrier density and a time-reversal symmetry breaking field near the surface. We show that there is an inhomogeneity-induced Berry phase contribution to the surface Hall conductivity that is completely determined by the occupied states and is independent of other details such as band dispersion and impurities. In the limit of zero bulk carrier density, this intrinsic surface Hall conductivity reduces to the half-integer quantized surface Hall conductivity of TI. Based on our theory we predict the behavior of the surface Hall conductivity for a doped topological insulator with a top gate, which can be directly compared with experiments.

Maissam Barkeshli and Xiao-Liang Qi

2011-11-07T23:59:59.000Z

329

STATE OF CALIFORNIA INSULATION STAGE CHECKLIST  

E-Print Network [OSTI]

STATE OF CALIFORNIA INSULATION STAGE CHECKLIST CEC-CF-6R-ENV-22 (Revised 05/12) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage be insulated in a manner that resists thermal bridging of the assembly separating conditioned from

330

Chromatin insulators: lessons from the fly  

E-Print Network [OSTI]

Chromatin insulators: lessons from the fly B.V.Gurudatta and Victor G.Corces Abstract Chromatin insulators are DNA^protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components

Corces, Victor G.

331

2658 heat insulation [n] (1)  

Science Journals Connector (OSTI)

constr. (1.Protection against cold provided by cold-shielding materials in outer walls of a building to conserve heat and save energy. 2.In English, the generic term thermal insulation is used for ...

2010-01-01T23:59:59.000Z

332

Insulators for Switchgear and Busbars  

Science Journals Connector (OSTI)

... export them abroad. They now supply 132 kv. cylindrical type switchgear insulators for the substations of the latest section of the British grid. The disadvantage of the wide base ...

1932-04-23T23:59:59.000Z

333

Insulation For Earth And Space  

Science Journals Connector (OSTI)

According to National Aeronautics & Space Administration scientist Mary Ann B. Meador, before sending people or larger vehicles to Mars, scientists must develop insulating materials to counter the planets exotic environment. ...

LAUREN WOLF

2012-09-16T23:59:59.000Z

334

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

335

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

336

Fully synthetic taped insulation cables  

DOE Patents [OSTI]

A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

1984-01-01T23:59:59.000Z

337

Piping inspection carriage having axially displaceable sensor  

DOE Patents [OSTI]

A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

Zollinger, William T. (Martinez, GA); Treanor, Richard C. (Augusta, GA)

1994-01-01T23:59:59.000Z

338

Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram  

E-Print Network [OSTI]

results are given for several common material systems. Introduction Thermoelectric effects haveMinority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play

339

INSPECTION OF FUSION JOINTS IN PLASTIC PIPE  

SciTech Connect (OSTI)

The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

Alex Savitski; Connie Reichert; John Coffey

2004-07-13T23:59:59.000Z

340

Design and analysis of megawatt-class heat-pipe reactor concepts  

SciTech Connect (OSTI)

There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Engineering Aspects of Heat Transfer in Multilayer Reflective Insulation and Performance of NRC Insulation  

Science Journals Connector (OSTI)

All types of high-performance insulation, often referred to as superinsulation, ... Carbide Corporation in October, 1958, or the insulation proposed and tested in 1951 by P. ... D. Little, Inc., or the NRC insulation

M. P. Hnilicka

1960-01-01T23:59:59.000Z

342

Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors  

SciTech Connect (OSTI)

Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

2013-08-01T23:59:59.000Z

343

Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films  

E-Print Network [OSTI]

The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

Danielson, David T. (David Thomas)

2008-01-01T23:59:59.000Z

344

Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System  

SciTech Connect (OSTI)

This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

2001-01-01T23:59:59.000Z

345

Stress analysis of piping elbows  

SciTech Connect (OSTI)

The problem undertaken in this paper is the investigation of the stresses generated in circular piping elbows of variable thickness, under the influence of uniform internal pressure. It is observed now that the material region and the imposed loading conform to the same axial symmetry. This fact strongly suggests the employment of toroidal coordinates and the Boussinesq-Papkovitch-Neuber (BPN) potential function approach towards obtaining the solution to the above posed problem. The results obtained by this BPN approach are compared with the numerical solution generated by a boundary integral equation approach. The comparison yields a good agreement.

Choi, J.; Rentzepis, G.M. [Georgia Inst. of Tech., Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

1996-12-31T23:59:59.000Z

346

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protectionfollowed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

347

Typical Clothing Ensemble Insulation Levels for Sixteen Body Parts  

E-Print Network [OSTI]

Thermal Comfort.1994 CLO Insulation Levels For Sixteen Bodya mesh arm chair whose insulation level was measured. FigureExperimental Conditions. CLO Insulation Levels For Sixteen

Lee, Juyoun; Zhang, Hui; Arens, Edward

2013-01-01T23:59:59.000Z

348

GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL  

E-Print Network [OSTI]

is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

Green, M.A.

2010-01-01T23:59:59.000Z

349

Sound insulation ratingsthe STC revisited  

Science Journals Connector (OSTI)

About twenty years ago building authorities and their acoustical experts were faced with a confusing variety of schemes for rating the sound insulation of walls and floors. There was need for a definitive rating system that would digest the 16 transmission loss values that characterize a partition and produce a single number that would describe its sound insulation performance especially in respect to multi?family dwellings. Two standards committees ISO/TC 43 and ASTM E6 (now E33) began more or less together to develop a new improved rating system to fill this need. The product of these labors was what is known in North America as the ASTM sound transmission class (STC). This rating system was so successful that it was almost universally adoptedeven in applications for which it was not intended. Despite the apparent success there is now increasing awareness of imperfections in the system. These are examined in light of accumulated data and experience to see whether the system could or should be improved by certain minor changes.

T. D. Northwood

1981-01-01T23:59:59.000Z

350

Asymptotic scaling in turbulent pipe flow  

Science Journals Connector (OSTI)

...obtained in industrial piping such as a transcontinental natural gas pipelines. D is the pipe diameter and is the volume-averaged...Marati, N , C.M Casciola, and R Piva2004Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech...

2007-01-01T23:59:59.000Z

351

Heat pipe with embedded wick structure  

DOE Patents [OSTI]

A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

1998-06-23T23:59:59.000Z

352

Cost model for optimum thicknesses of insulated walls considering indirect impacts and uncertainties  

Science Journals Connector (OSTI)

Abstract Nowadays, insulation is increasingly used for houses and buildings for its economic and environmental advantages. The performance of an insulated construction depends mainly on the thickness and the properties of the used insulation material. However, this performance is subjected to various uncertainties related for instance to the manufacturing process of the material and to the different workmanship errors that affect the thermal resistance of the insulated construction. In practice, these uncertainties are still rarely considered in energy analysis. Nevertheless, beyond a given level of uncertainties, the insulation system does not perform as expected which induces additional unexpected costs related to energy and pollution. This work aims first, at showing the impact of these uncertainties on the reliability of the insulated construction and second, at developing a new formulation of the global cost for the design of insulation system considering additional costs related to user and environment. The proposed cost formulation allows us to provide a better estimation of the payback period. Three configurations are considered with different insulation schemes in order to show the impact of uncertainties and indirect costs on the insulation performance.

A. Assani; A. Chateauneuf; J.-P. Fontaine; Ph. Audebert

2014-01-01T23:59:59.000Z

353

Challenges and Capabilities for Inspection of Cast Stainless Steel Piping  

SciTech Connect (OSTI)

Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effectiveness and limitations of NDE techniques as related to the inservice inspection of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a cross point probe design operating at a frequency of 250 kHz. Results from the laboratory studies indicate that 500 kHz phased array methods are capable of detecting flaws greater than 30% through-wall in the cast specimens. Length-sizing of flaws is possible, but no diffracted signals could be observed to support time-of-flight depth sizing. The work with eddy current examinations on the inner diameter surface indicate that, while certain cast austenitic microstructures provide excessive background noise due to permeability variations, surface-breaking flaws are quite easily detected. This work was sponsored by the U.S. Nuclear Regulatory Commission under Contract DE-AC06-76RLO 1830; NRC JCN Y6604; Mr. Wallace Norris, NRC Project Monitor.

Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

2007-12-31T23:59:59.000Z

354

Stability analysis of pipe racks for industrial facilities.  

E-Print Network [OSTI]

??Pipe rack structures are used extensively throughout industrial facilities worldwide. While stability analysis is required in pipe rack design per the AISC Specification for Structural (more)

Nelson, David Aaron

2012-01-01T23:59:59.000Z

355

Effect of nanofluids on thermal performance of heat pipes.  

E-Print Network [OSTI]

?? A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat (more)

Ferizaj, Drilon

2014-01-01T23:59:59.000Z

356

Hydrogen Piping Experience in Chevron Refining  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piping Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well- defined limits H2S contamination presents many more problems, beyond the scope of this talk We will note a couple of specific vulnerabilities Refining tracks materials performance in

357

Ultrasonic guided waves in eccentric annular pipes  

SciTech Connect (OSTI)

This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu [Centre for NDE, Indian Institute of Technology - Madras Chennai 600036, T. N. (India)

2014-02-18T23:59:59.000Z

358

Process for making ceramic insulation  

DOE Patents [OSTI]

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

359

Topological insulators with SU(2) Landau levels  

E-Print Network [OSTI]

We construct continuum models of 3D and 4D topological insulators by coupling spin-1/2 fermions to an SU(2) background gauge field, which is equivalent to a spatially dependent spin-orbit coupling. Higher dimensional generalizations of flat Landau levels are obtained in the Landau-like gauge. The 2D helical Dirac modes with opposite helicities and 3D Weyl modes with opposite chiralities are spatially separated along the third and fourth dimensions, respectively. Stable 2D helical Fermi surfaces and 3D chiral Fermi surfaces appear on open boundaries, respectively. The charge pumping in 4D Landau level systems shows quantized 4D quantum Hall effect.

Yi Li; Shou-Cheng Zhang; Congjun Wu

2012-08-08T23:59:59.000Z

360

Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings  

E-Print Network [OSTI]

units hot water and space heating from flue-gas, fireplaces industrial process heat recycle utility boiler preheater aircraft wing deicing solar energy collectors warming carburetors & intakes geothermal energy recovery Sterling engines...HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT...

Cooper, J. T.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building America Technology Solutions for Existing Homes: Initial and Long-Term Cladding Over Exterior Insulation  

Broader source: Energy.gov [DOE]

This research conducted by Building Science Corporation evaluated the system mechanics and long-term performance of the use of wood furring strips attached through the insulation back to the structure to provide a convenient cladding attachment location for exterior insulation.

362

British Standard Specification for Cable Insulation  

Science Journals Connector (OSTI)

... different types of cables and cords ; and the third, with tests for thickness of insulation and sheath, voltage, ... and sheath, voltage, insulation resistance, spark testing, tinning and armouring. The numerous tables with which the specification ...

1947-02-22T23:59:59.000Z

363

Insulation board and process of making  

DOE Patents [OSTI]

Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

364

Thermal Insulation at Very Low Temperatures  

Science Journals Connector (OSTI)

24 September 1942 research-article Thermal Insulation at Very Low Temperatures A. H. Cooke R. A. Hull Various methods of insulation have been investigated at temperatures between and 1 degrees K. A simple suspension of artificial silk fibre...

1942-01-01T23:59:59.000Z

365

Vacuum Insulation for Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

evacuated materials-so small that they are invisible-integrated with low-e-coated plastic films. The materials will have better insulation values than vacuum-insulated glass...

366

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network [OSTI]

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

McIntyre, D. R.

1984-01-01T23:59:59.000Z

367

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

368

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

369

Modeling and simulation of power cable insulation  

Science Journals Connector (OSTI)

The use of power cables for transmission and distribution of electrical power have increased since the advent of suitable, reliable and economical polymeric insulating material; such as cross-linked polyethylene (XLPE). Power cables plays crucial role ... Keywords: cross-linked polyethylene (XLPE), imperfect insulation, local defects, lossy insulation, partial discharge (PD)

K. D. Patil; A. A. Bhole; W. Z. Gandhare

2010-02-01T23:59:59.000Z

370

OPTIMAL INSULATION DISTRIBUTION OVER A CONDUCTING BODY  

Science Journals Connector (OSTI)

......research-article Articles OPTIMAL INSULATION DISTRIBUTION OVER A CONDUCTING BODY...conducted. Over the rest a given amount of insulation is assumed to be spread. Its pointwise...surroundings. Observe that thickening of the insulation at one point involves thinning elsewhere......

MICHAEL BETWICH

1983-02-01T23:59:59.000Z

371

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ENVELOPE ­ INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope ­ Insulation; Roofing to be checked to ensure the mandatory measures have been met. Description of Insulation 1. RAISED FLOOR Material

372

Vacuum-insulated catalytic converter  

DOE Patents [OSTI]

A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

Benson, David K. (Golden, CO)

2001-01-01T23:59:59.000Z

373

3172, Page 1 International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012  

E-Print Network [OSTI]

insulation, thermal conductivity, heat transfer, moisture accumulation, chiller pipelines ABSTRACT Mechanical of pipe insulation systems had quite different water absorption rates due to different characteristics

Ghajar, Afshin J.

374

Cryogenic Insulation Development  

Science Journals Connector (OSTI)

Modern technology in military and commercial applications of cryogenic liquids requires low-loss or no-loss storage and transportation systems. The cryogenic engineer is faced with the necessity of designing cryo...

S. T. Stoy

1960-01-01T23:59:59.000Z

375

Fabrication of high gradient insulators by stack compression  

DOE Patents [OSTI]

Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

2014-04-29T23:59:59.000Z

376

A LOW-COST GPR GAS PIPE & LEAK DETECTOR  

SciTech Connect (OSTI)

A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

David Cist; Alan Schutz

2005-03-30T23:59:59.000Z

377

Testability of a heat pipe cooled thermionic reactor  

Science Journals Connector (OSTI)

As part of the Air Force Phillips Laboratory thermionics program Rocketdyne performed a design study for an in?core thermionic fuel element (TFE) heat pipe cooled reactor power system. This effort involved a testability evaluation that was performed starting with testing of individual components followed by testing at various stages of fabrication and concluding with full system acceptance and qualification testing. It was determined that the system could be thoroughly tested to ensure a high probability of successful operation in space after launch.

Richard E. Durand

1992-01-01T23:59:59.000Z

378

Dehumidifying Heat Pipes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dehumidifying Heat Pipes Dehumidifying Heat Pipes Dehumidifying Heat Pipes June 24, 2012 - 4:32pm Addthis In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates, even correctly sized air conditioning equipment could fail to maintain a home at a comfortable humidity level. One technology that addresses this problem is the dehumidifying heat pipe, a device that enables an air conditioner to dehumidify better and still

379

Hydraulic fracturing slurry transport in horizontal pipes  

SciTech Connect (OSTI)

Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

Shah, S.N.; Lord, D.L. (Halliburton Services (US))

1990-09-01T23:59:59.000Z

380

Hydrogen Piping Experience in Chevron Refining  

Broader source: Energy.gov [DOE]

Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Apparatus for stringing well pipe of casing  

SciTech Connect (OSTI)

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

382

Apparatus for rotating and reciprocating well pipe  

SciTech Connect (OSTI)

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

383

Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe  

SciTech Connect (OSTI)

Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need for large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.

Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher; John A. Clark; Kevin Harris

2006-06-30T23:59:59.000Z

384

Prediction of nonlinear structural response in LMFBR elevated-temperature piping  

SciTech Connect (OSTI)

The development of structural analysis capabilities to investigate possible accident initiations caused by structural degradation of liquid metal fast breeder reactor (LMFBR) piping is summarized. The ABAQUS finite element code is used to perform a nonlinear analysis of a bench mark problem proposed by the Pressure Vessel Research Committee. The problem is representative both in geometry and loading of an LMFBR elevated-temperature piping system, and published analytical results are available for comparison. Results show the system to be most sensitive to large, radial, thermal gradients that occur when the system experiences certain thermal transients. Repeated cycles of these transients will lead to thermal ratcheting, causing progressive deformation and strain accumulation in the system. Future work will verify the accuracy of the finite element model and quantify damage accumulated during the lifetime of an LMFBR elevated-temperature piping system.

Farrar, C.

1984-06-01T23:59:59.000Z

385

Crossfire calibrated exhaust system  

SciTech Connect (OSTI)

This patent describes a dual-exhaust system for an internal combustion engine having a pair of spaced-apart pipes channeling exhaust gases from the engine towards a muffler. It comprises first and second additional pipes connected between the pair of spaced-apart pipes at substantially 45[degrees] angles with respect to each of the pair of pipes and at substantially a 90[degrees] angle with respect to each other; and wherein the first and second additional pipes are also interconnected with each other substantially at the midpoints thereof, measured along their respective lengths, and substantially midway between the pair of spaced-apart pipes.

Barth, R.S.

1992-09-08T23:59:59.000Z

386

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

387

Magnetically insulated transmission line oscillator  

DOE Patents [OSTI]

A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

388

Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6  

SciTech Connect (OSTI)

The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

MOSS, TIMOTHY A.

2002-03-01T23:59:59.000Z

389

Measurement of Exterior Foundation Insulation to Assess Durability in Energy-Saving Performance  

SciTech Connect (OSTI)

The foundation of a house is a sometimes ignored component of the building because of its low visibility. It is increasingly evident, however, that attention to good foundation design and construction significantly benefits the homeowner and the builder by mitigating future problems. Good foundation design and construction practice involves not only insulating to save energy but also providing effective structural design as well as moisture, termite, and radon control techniques as appropriate. Energy efficiency in housing is augmented by use of exterior slab and basement insulation, but high moisture content in the insulation material has led to concerns about its durability. The activity under this task was to extract six different exterior insulation systems that were characterized at installation and have been in the ground for 9 months to 15 years. R-value and moisture content were measured and inspections conducted for evidence of termite intrusion or deterioration. Based on the results, the durability of the various systems has been documented and assessments made of which systems appear to be best practice. Heat flux and temperature measurement data had been archived for some of the exterior insulation tests, thereby providing a unique opportunity to assess energy-saving performance and durability over the long term. The results show that the durability of foundation insulation systems depends on insulation type as well as on foundation type and local boundary conditions, the latter of which may have a marked influence on the durability of energy-saving performance.

Kehrer, Manfred [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL)

2012-04-01T23:59:59.000Z

390

A kinetic scheme for pressurized flows in non uniform pipes  

E-Print Network [OSTI]

The aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes with variable sections. Firstly, we detail the derivation of the mathematical model in curvilinear coordinates under some hypothesis and we performe a formal asymptotic analysis. Then the obtained system is written as a conservative hyperbolic partial differential system of equations, and we recall how to obtain the corresponding kinetic formulation based on an upwinding of the source term due to the "pseudo topography" performed in a close manner described by Perthame and al.

Bourdarias, Christian; Gerbi, Stphane

2008-01-01T23:59:59.000Z

391

Superconductor-insulator transition induced by electrostatic charging in high temperature superconductors.  

E-Print Network [OSTI]

??Ultrathin YBa2Cu3O7?x films were grown on SrTiO3 substrates in a high pressure oxygen sputtering system to study the superconductor-insulator transition by electrostatic charging. While backside (more)

Leng, Xiang

2011-01-01T23:59:59.000Z

392

Types of Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Insulation Types of Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. Icynene plastic insulation blown into the walls of a home near Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL.

393

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect (OSTI)

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

394

Impact of the insulation materials features on the determination of optimum insulation thickness  

Science Journals Connector (OSTI)

The optimum thickness of the building envelope insulation materials depends on a large number of ... used in the building, and specifically the insulation ones, are included in the process to calculate the optimu...

Jrme Barrau; Manel Ibanez; Ferran Badia

2014-07-01T23:59:59.000Z

395

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

396

Thermal insulation by heat resistant polymers.  

E-Print Network [OSTI]

??Internal insulation in a solid rocket motor is a layer of heat-barrier material placed between the internal surface of the case and the propellant. The (more)

Ahmed, Ashraf Fathy

2009-01-01T23:59:59.000Z

397

Conductivity measurement on thick insulating plaque samples.  

E-Print Network [OSTI]

?? The conductivity is one of the main properties of HVDC cable insulation materials and needs to be evaluated carefully. Since measurement on cables is (more)

Huldn, Pierre

2014-01-01T23:59:59.000Z

398

Heat insulation layer of polymer composite material  

Science Journals Connector (OSTI)

A new heat insulation layer polymer composite material is developed, within whose composition there is foam polyurethane and basaltoplastic. Results are provided for...

G. P. Ponomareva; A. A. Artemenko; O. M. Sladkov

2010-05-01T23:59:59.000Z

399

Strong side of weak topological insulators  

Science Journals Connector (OSTI)

Three-dimensional topological insulators are classified into strong (STI) and weak (WTI) according to the nature of their surface states. While the surface states of the STI are topologically protected from localization, this does not hold for the WTI. In this work, we show that the surface states of the WTI are actually protected from any random perturbation that does not break time-reversal symmetry, and does not close the bulk energy gap. Consequently, the conductivity of metallic surfaces in the clean system remains finite even in the presence of strong disorder of this type. In the weak disorder limit, the surfaces are found to be perfect metals, and strong surface disorder only acts to push the metallic surfaces inwards. We find that the WTI differs from the STI primarily in its anisotropy, and that the anisotropy is not a sign of its weakness but rather of its richness.

Zohar Ringel; Yaacov E. Kraus; Ady Stern

2012-07-02T23:59:59.000Z

400

Characterization of corrosive agents in polyurethane foams for thermal insulation of pipelines  

Science Journals Connector (OSTI)

Thermal insulated pipelines consists of a pipe, an optional anticorrosive coating, covered by rigid polyurethane (PU) foam and an outer casing made of high-density polyethylene (HDPE). In this paper, a methodology to investigate corrosion under thermal insulation and the compatibility between the polyurethane foams and anticorrosive coatings was developed. It consists of chemical, electrochemical and mass loss tests in aqueous extracts of the foams. The aqueous extracts were prepared according to an adaptation of ASTM C871 standard, taking into account the temperature range commonly employed in pipes operations of heavy petroleum derivatives. The chemical analysis of the extracts included pH, conductivity, phosphate, chloride and fluoride contents. Mass loss, electrochemical impedance and linear polarization were accomplished in autoclave. The influence of temperature, flame retardant and blowing agent was considered on the generation of corrosive agents. It was verified that the content of chloride in the foams is a very important parameter that must be controlled. Still in this paper, the compatibility of polyurethane foams with anticorrosive coatings is preliminary evaluated. The results show that investments on a proper coating selection are essential to guarantee good performance.

F.V.V. de Sousa; R.O. da Mota; J.P. Quintela; M.M. Vieira; I.C.P. Margarit; O.R. Mattos

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils  

SciTech Connect (OSTI)

Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

Peter K. F. Hwang

2007-10-22T23:59:59.000Z

402

Topological Insulators in Three Dimensions  

Science Journals Connector (OSTI)

We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2DQSH states, but are destroyed by disorder. The STI are robust and lead to novel topological metal surface states. We introduce a tight binding model which realizes the WTI and STI phases, and we discuss its relevance to real materials, including bismuth.

Liang Fu; C. L. Kane; E. J. Mele

2007-03-07T23:59:59.000Z

403

Fully synthetic taped insulation cables  

DOE Patents [OSTI]

The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

Forsyth, E.B.; Muller, A.C.

1983-07-15T23:59:59.000Z

404

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

405

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Route to Nanoscale Conducting Channels in Insulating Oxides Print New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

406

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

407

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

408

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

409

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

410

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Route to Nanoscale A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

411

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss FactorsPhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

412

Hygrothermal performance of EIFS-clad walls: Effect of vapor diffusion and air leakage on the drying of construction moisture [Exterior Insulation and Finish Systems  

SciTech Connect (OSTI)

Hydrothermal performance describes the response of the material layers that make up the wall to thermal and moisture loads. Modeling can be applied to determine the drying and wetting potential of walls with various initial construction moisture loads and to test alternative innovations. This paper investigates the drying performance of a particular barrier EIFS clad wall as a function of vapor diffusion control with a specific air leakage path. This investigation was conducted with constant interior temperature and relative humidity. The LATENITE model, developed at NRD, is employed in the investigation. This advanced hydrothermal model can incorporate system and sub-system performances by introducing simulated defects and wall system details derived from laboratory and field measurements. Moisture loads available to the EIFS structure originating either from the interior, the exterior or from initial construction moisture can be included. In this paper the authors present a study to determine the drying potential of a barrier EIFS clad wall for the climate of Wilmington, NC. This climate is characterized by the ASHRAE Handbook of Fundamentals as being mixed. The effect of drying and wetting by airflow was investigated by introducing airflow paths. Hydrothermal performance with three different vapor diffusion control strategies and two air leakage conditions was simulated for a period of one year. Initial oriented strand board (OSB) moisture content was assumed to be very high. The influence of rain water, solar radiation and air movement within the cavity was included in the analysis.

Karagiozis, A.N.; Salonvaara, M.H.

1999-07-01T23:59:59.000Z

413

Neutron imaging of alkali metal heat pipes  

SciTech Connect (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

414

Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report  

SciTech Connect (OSTI)

NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

Moriarty, M.P.

1993-11-01T23:59:59.000Z

415

Piping retrofit reduces valve-damaging flow vibration  

SciTech Connect (OSTI)

This article describes how excessive flow-induced vibration was escalating safety relief valve maintenance at an alarming pace until simple piping modifications eliminated the problem. Public Service Co. of Colorado's (PSCO) Cherokee Station Unit 4 had been experiencing excessive hot and cold reheat safety valve maintenance. From 1990 through 1993, expenditures exceeded $150,000, including a complete refurbishing in 1990. Furthermore, from 1990 to 1992 the incurred costs of contracting VR certificate repairs accumulated to more than $50,000. Such exorbitant maintenance costs were unique among PSCO's generating system.

Webb, M.; Ellenberger, P.

1995-01-01T23:59:59.000Z

416

Low-cost exterior insulation process and structure  

DOE Patents [OSTI]

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

417

Low-cost exterior insulation process and structure  

DOE Patents [OSTI]

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

418

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-Print Network [OSTI]

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

419

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic  

E-Print Network [OSTI]

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic properties of optoelectronic properties of and uses for semi-insulating semiconductor heterostructures and thin films. The principal optical and optoelectronic properties of semi-insulating epilayers and heterostructures

Nolte, David D.

420

ENVIRONMENTALLY FRIENDLY PROCESSING OF POLYURETHANE FOAM FOR THERMAL INSULATION  

E-Print Network [OSTI]

ENVIRONMENTALLY FRIENDLY PROCESSING OF POLYURETHANE FOAM FOR THERMAL INSULATION CHANJOONG KIM was proposed and evaluated for the application of thermal insulation. For the production of polyurethane foam correspondence should be sent. #12;Key Words: Foam; Polyurethane; Thermal insulation; Nucleation; Growth

Kim, Chanjoong

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sizing safety valve vent pipes for saturated steam  

SciTech Connect (OSTI)

A generalized procedure based on pressure and entropy as independent variables is used to calculate choked flow conditions at the valve orifice, valve pipe outlet and vent pipe outlet. At the third location, the results are independent of whether flow in the vent pipe is supersonic or subsonic. An integral method is used to calculate the vent pipe length required to choke the flow. 16 refs.

Brandmaier, H.E.

1982-01-01T23:59:59.000Z

422

Construction integrity assessment report (ETN-98-0005) S-Farm overground transfer (OGT) system valve pit 241-S-B to valve pit 241-S-D  

SciTech Connect (OSTI)

The S-Farm overground transfer (OGT) line will bypass the existing line(s), between valve pits 241-S-B and 241-S-D that no longer meet system requirements. The new OGT line will provide a waste transfer pipeline between these valve pits in support of saltwell pumping activities. The length of the OGT line is approximately 180 ft from pit to pit. The primary pipe is nominal 1-in. diameter stainless steel (SST) braided Ethylene-propylene Diene Monomer (EPDM) hose. The encasement pipe is a nominal 3-in., flanged, SST pipe made up of several different length pipe spool pieces (drawing H-2-829564, sh. 1 and sh. 2). The OGT line slopes from valve pit 241-S-B toward valve pit 241-S-D. At each end, the primary and encasement pipe connect to a pit entry spool piece. The pit entry spool pieces are constructed of prefabricated SST materials. These spool pieces allow for the separation of the primary and encasement pipelines after the pipes have entered the valve pits (drawing H-2-818280, sh. 2). The pit entry spool pieces also allow for leak detection of the encasement pipe at each end (drawing H-2-829564, sh. 2). The OGT encasement pipeline is supported above ground by adjustable height unistrut brackets and precast concrete bases (drawing H-2-829654, sh. 1). The pipeline is heat-traced and insulated. The heat tracing and insulation supply and retain latent heat that prevents waste solidification during transfers and provides freeze protection. The total length of the pipeline is above ground, thereby negating the need for cathodic corrosion protection. This Construction Integrity Assessment Report (CIAR) is prepared by Fluor Daniel Northwest for Numatec Hanford Corporation/Lockheed Martin Hanford Corporation, the operations contractor, and the U. S. Department of Energy, the system owner. The CIAR is intended to verify that construction was performed in accordance with the provisions of Washington Administrative Code, WAC-173-303-640 (3) (c), (e), (f) and (h).

HICKS, D.F.

1999-08-12T23:59:59.000Z

423

Limitations of High-Voltage Insulation  

Science Journals Connector (OSTI)

... materials such as impregnated paper. The important electrical properties of the materials used for the insulation of high-voltage circuits are conductivity and electric strength. The conductivity measures the ability ... a million times between themselves, but they are all classified as available for high-voltage insulation.

1938-01-08T23:59:59.000Z

424

Clothing Insulation and Accidental Hypothermia in Youth  

Science Journals Connector (OSTI)

... and climbers in Britain. The effects of exercise, wind and wetting on the thermal insulation of a typical clothing assembly were observed. The clothing examined had been worn by ... ) 0-13 1-00 (b) AN ABBREVIATED TABLE or STANDARD VALUES OF AIR INSULATION (IA)4

L. G. C. PUGH

1966-03-26T23:59:59.000Z

425

Uniform insulation applied-B ion diode  

DOE Patents [OSTI]

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

426

Kingspan Insulated Panels: Order (2013-CE-5353)  

Broader source: Energy.gov [DOE]

DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

427

A Review of Irradiation Effects on Organic-Matrix Insulation  

SciTech Connect (OSTI)

This review assesses the data base on epoxy and polyimide matrix insulation to determine whether organic electric insulation systems can be used in the toroidal field (TF) magnets of next generation fusion devices such as ITER* and TPX*. Owing to the difficulties of testing insulation under fusion reactor conditions, there is a considerable mismatch between the ITER requirements and the data that are currently available. For example, nearly all of the high-dose (5 x 10{sup 7} to 10{sup 8} Gy) data obtained on epoxy and polyimide matrix insulation employed gamma irradiation, electron irradiation, or reactor irradiation with a fast neutron fluence far below 10{sup 23}/m{sup 2}, the fluence expected for the insulation at the TF magnets, as set forth in ITER conceptual design documents. Also, the neutron spectrum did not contain a very high energy (E {ge} 5 MeV) component. Such data underestimate the actual damage that would be obtained with the neutron fluence and spectrum expected at a TF magnet. Experiments on a polyimide (Kapton) indicate that gamma or electron doses or mixed gamma and neutron reactor doses would have to be downgraded by a factor of up to ten to simulate fusion neutron doses. Even when neutrons did constitute a significant portion of the total dose, B-containing E-glass reinforcement was often used; therefore, excess damage from the {sup 10}B + n {yields} {sup 7}Li + {alpha} reaction occurred near the glass-epoxy interface. This problem can easily be avoided by substituting B-free glass (R, S, or T types).

Simon, N.J.

1993-06-01T23:59:59.000Z

428

Lattice construction of pseudopotential Hamiltonians for fractional Chern insulators  

Science Journals Connector (OSTI)

Fractional Chern insulators are novel realizations of fractional quantum Hall states in lattice systems without orbital magnetic field. These states can be mapped onto conventional fractional quantum Hall states through the Wannier state representation [Qi, Phys. Rev. Lett. 107, 126803 (2011)]. In this paper, we use the Wannier state representation to construct the pseudopotential Hamiltonians for fractional Chern insulators, which are interaction Hamiltonians with certain ideal model wave functions as exact ground states. We show that these pseudopotential Hamiltonians can be approximated by short-ranged interactions in fractional Chern insulators, and that their range will be minimized by an optimal gauge choice for the Wannier states. As illustrative examples, we explicitly write down the form of the lowest pseudopotential for several fractional Chern insulator models like the lattice Dirac model, the checkerboard model with Chern number 1, the d-wave model, and the triangular lattice model with Chern number 2. The proposed pseudopotential Hamiltonians have the 1/3 Laughlin state as their ground state when the Chern number C1=1, and a topological nematic (330) state as their ground state when C1=2. Also included are the results of an interpolation between the d-wave model and two decoupled layers of lattice Dirac models, which explicitly demonstrate the relation between C1=2 fractional Chern insulators and bilayer fractional quantum Hall states. The proposed states can be verified by future numerical works and, in particular, provide a model Hamiltonian for the topological nematic states that have not been realized numerically.

Ching Hua Lee and Xiao-Liang Qi

2014-08-06T23:59:59.000Z

429

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network [OSTI]

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

430

Building Technologies Office: Vacuum Insulation Panels Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

431

Building America Expert Meeting Report: Interior Insulation Retrofit...  

Broader source: Energy.gov (indexed) [DOE]

Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce...

432

Foundation Insulation for Existing Homes | Department of Energy  

Energy Savers [EERE]

Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update...

433

Journal Article: Graphene physics and insulator-metal transition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene physics and insulator-metal transition in compressed hydrogen Citation Details Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors:...

434

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book [EERE]

3 3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2) Mineral fiber. 3) System R-Value depends on heat-flow direction and number of air spaces. ASHRAE, 1997 ASHRAE Handbook: Fundamentals, p. 24-4, 22-5; DOE, Insulation Fact Sheet, Jan. 1988, p. 6; Journal of Thermal Insulation, 1987, p. 81-95; ORNL, ORNL/SUB/88-SA835/1, 1990; ORNL, Science and Technology for a Sustainable Energy Future, Mar. 1995, p. 17; and ORNL for vacuum insulation

435

Drill pipe management extends drillstring life  

SciTech Connect (OSTI)

Better handling procedures and frequent drill pipe inspections prolong the life of a drillstring. Crews taught to make quick visual inspections during rig moves and tripping can spot problem pipe early, thus preventing downtime or extensive repairs. Because of escalating costs of drillstring repair and replacement, Global Marine Drilling Co. organized a task force in March 1989 to define problem areas and establish new handling and maintenance procedures. The task force estimated that one 20,000-ft drillstring costs abut $600,000 and has a 7-year life span. Assuming the average rig life is 21 years, each rig will wear out three strings, totaling $1.8 million. The addition of $30,000/year for full rack inspections, repairs and downhole loss brings the total to approximately $2.4 million/rig over the 21 years. A contractor with a fleet of 25 rigs could expend $60 million on drill pipe-the construction cost of a well-equipped, 300-ft jack up rig. The task force reported on in this paper identifies four basic caused of drill pipe failures: Tool joint and tube OD wear, Internal corrosion, Fatigue cracking in the slip and internal upset areas, Physical damage to the tool joint threads and shoulders, and the tube.

Shepard, J.S. (Global Marine Drilling Co., Houston, TX (US))

1991-10-28T23:59:59.000Z

436

$K$-theory on tori and topological insulators  

E-Print Network [OSTI]

We discuss means to study topological properties of wavefunctions in a time reversal invariant crystalline system through $K$-groups. The well-known methods for calculating $K$-groups of $G$-bundles over spheres are extended using earlier results in order to deal with wavefunctions defined over toroidal Brillouin zones, following a method due to Nash. The recently discovered topological insulator is considered as an illustrative example.

Ray, Koushik

2014-01-01T23:59:59.000Z

437

$K$-theory on tori and topological insulators  

E-Print Network [OSTI]

We discuss means to study topological properties of wavefunctions in a time reversal invariant crystalline system through $K$-groups. The well-known methods for calculating $K$-groups of $G$-bundles over spheres are extended using earlier results in order to deal with wavefunctions defined over toroidal Brillouin zones, following a method due to Nash. The recently discovered topological insulator is considered as an illustrative example.

Koushik Ray; Siddhartha Sen

2014-08-21T23:59:59.000Z

438

An experimental approach to compare wicking abilities of fabric materials for heat pipe applications  

SciTech Connect (OSTI)

Replacement of components of a space reactor heat pipe by advanced ceramic fabrics will decrease system mass considerably. Replacement of the metal wick by a fibrous materials makes calculation of the wicking ability difficult. An experimental approach is necessary to ensure that heat transport ability is not affected considerably and to optimize material chosen for wicking structure. Variables such as material composition, surface preparation, weave type and density, and pressure/temperature variations need to be examined. Two experiments are discussed which allow complete comparison of all these variables and measurement of the wicking ability. These experiments are unique in their approach to simulation of operating conditions of the heat pipe.

Marks, T.S.; Klein, A.C. (Department of Nuclear Engineering Radiation Center, C116 Oregon State University Corvallis, OR 97331-5902 (US))

1991-01-05T23:59:59.000Z

439

Piping benchmark problems for the General Electric Advanced Boiling Water Reactor  

SciTech Connect (OSTI)

To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set.

Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K. [Brookhaven National Lab., Upton, NY (US)

1993-08-01T23:59:59.000Z

440

A kinetic scheme for unsteady pressurised flows in closed water pipes  

E-Print Network [OSTI]

he aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes. Firstly, we detail the mathematical model written as a conservative hyperbolic partial differentiel system of equations, and the we recall how to obtain the corresponding kinetic formulation. Then we build the kinetic scheme ensuring an upwinding of the source term due to the topography performed in a close manner described by Perthame et al. using an energetic balance at microscopic level for the Shallow Water equations. The validation is lastly performed in the case of a water hammer in a uniform pipe: we compare the numerical results provided by an industrial code used at EDF-CIH (France), which solves the Allievi equation (the commonly used equation for pressurised flows in pipes) by the method of characteristics, with those of the kinetic scheme. It appears that they are in a very good agreement.

Bourdarias, Christian; Gerbi, Stphane

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of a moisture removal device for turbine steam piping. Final report  

SciTech Connect (OSTI)

Moisture-induced erosion and corrosion of nuclear power plant steam pipes is a significant and costly maintenance problem. By removing moisture from steam leaving the high-pressure turbines, high-velocity moisture separators can minimize this damage in a vulnerable system and improve plant thermal performance.

Anderson, R.E.; Draper, K.L.; Kadlec, R.A.; Stoudt, R.A.

1985-04-01T23:59:59.000Z

442

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large-diameter repair robots for cast-iron pipe to assure their commercial success. For Task 4 (Design, Fabricate and Test Patch Setting Robotic Train), work has been directed on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera), the recent field tests showed clearly that, in mains with low gas velocities, it will be necessary to improve the system's capacity to remove debris from the immediate vicinity of the bell and spigot joints. Otherwise, material removed by the cleaning flails (the flails were found to be very effective in cleaning bell and spigot joints) falls directly to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak-free repair. Similarly, it is also deemed necessary to design an assembly to capture existing service-tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; for example, one coupon lodged beneath the end of the guide shoe. Designs for new features to accomplish these goals for the large robotic system were pursued and are presented in this report. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabVIEW. However, this must now be revisited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe in the previous quarter. Field tests with the 4-inch

Kiran M. Kothari; Gerard T. Pittard

2005-01-01T23:59:59.000Z

443

Is Graphene in Vacuum an Insulator?  

Science Journals Connector (OSTI)

We present evidence, from lattice MonteCarlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at ?gcrit=1.110.06, where ?g?2.16 in vacuum, and ?g?0.79 on a SiO2 substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors 4

Joaqun E. Drut and Timo A. Lhde

2009-01-13T23:59:59.000Z

444

Measure Guideline: Hybrid Foundation Insulation Retrofits  

SciTech Connect (OSTI)

This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

Ueno, K.; Lstiburek, J.

2012-05-01T23:59:59.000Z

445

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

these windows incorporating hear mirror films are staticS. , "Thin Film Coatings for Energy Efficient Windows", LBLglazed windows with single and double plastic film inserts

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

446

Basement Insulation Systems - Building America Top Innovation...  

Broader source: Energy.gov (indexed) [DOE]

for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces...

447

Indoor Mold, Toxigenic Fungi, and Stachybotrys chartarum: Infectious Disease Perspective  

Science Journals Connector (OSTI)

...other substrates including pipe insulation, gypsum, fiberglass wallpaper...Fungal colonization of fiberglass insulation in the air distribution system...associated with urea-formaldehyde foam insulation in Canada. Mycopathologia 99...

D. M. Kuhn; M. A. Ghannoum

2003-01-01T23:59:59.000Z

448

Topological Insulators and Superconductors from D-branes  

E-Print Network [OSTI]

Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall effect and the Z_2 topological insulator, in terms of D-branes in string theory is proposed. We establish a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and TSCs beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions.

Shinsei Ryu; Tadashi Takayanagi

2010-01-05T23:59:59.000Z

449

Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus  

Science Journals Connector (OSTI)

The effect of ferroelectric lead germanate Pb 5 Ge 3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather?type plasma focus device PF?400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath that is essential for a good plasma pinching high neutron yield and X?ray emissions. For over several hundreds of electrical discharges the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible shot to shot with a clear definition of the plasma pinch on the axis of discharge. The grade of influence of the electron emission from the ferroelectric is experimentally studied.

Gustavo Sylvester; Patricio Silva; Jos Moreno; Marcelo Zambra; Leopoldo Soto

2006-01-01T23:59:59.000Z

450

From an insulating to a superfluid pair-bond liquid  

Science Journals Connector (OSTI)

We study an exchange coupled system of itinerant electrons and localized fermion pairs resulting in a resonant pairing formation. This system inherently contains resonating fermion pairs on bonds that lead to a superconducting phase, provided that long-range phase coherence between their constituents can be established. The prerequisite is that the resonating fermion pairs can become itinerant. This is rendered possible through the emergence of two kinds of bond fermions: individual and composite fermions made of one individual electron attached to a bound pair on a bond. If the strength of the exchange coupling exceeds a certain value, then the superconducting ground state undergoes a quantum phase transition into an insulating pair-bond liquid state. The gap of the superfluid phase thereby goes over continuously into a charge gap of the insulator. The changeover from the superconducting to the insulating phase is accompanied by a corresponding qualitative modification of the dispersion of the two kinds of fermionic excitations. Using a bond operator formalism, we derive the phase diagram of such a scenario together with the elementary excitations characterizing the various phases as a function of the exchange coupling and the temperature.

M. Cuoco and J. Ranninger

2006-09-20T23:59:59.000Z

451

High Reliability R-10 Windows Using Vacuum Insulating Glass Units  

SciTech Connect (OSTI)

The objective of this effort was for EverSealed Windows (EverSealed or ESW) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (VIGU or VIG) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ? 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIGs use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESWs goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

Stark, David

2012-08-16T23:59:59.000Z

452

Applications of heat pipes for high thermal load beam lines  

SciTech Connect (OSTI)

The high flux beam produced by insertion devices often requires special heat removal techniques. For the optical elements used in such high thermal load beam lines, the required precision demands a highly accurate design. Heat pipe cooling of critical elements of the X-1 beam line at the National Synchrotron Light Source is described. This method reduces vibrations caused by water cooling systems and simplifies the design. In some of these designs, deposited heat must be transferred through unbonded contact interfaces. A pinhole assembly and a beam position monitor designed for the X-1 beam line both transfer heat through such interfaces in an ultrahigh vacuum environment. The fundamental design objective is that of removing the heat with minimal interface thermal resistance. We present our test method and results for measuring the thermal resistance across metallic interfaces as a function of contact pressure. The design of some devices which utilize both heat pipes and thermal contact interfaces will also be described. 12 refs., 8 figs.

Shu, D.; Mortazavi, P.; Rarback, H.; Howells, M.R.

1985-01-01T23:59:59.000Z

453

Issue 5: Optimizing High Levels of Insulation  

Broader source: Energy.gov (indexed) [DOE]

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

454

Next Generation Insulation Materials: Challenges and Opportunities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Insulation Materials: Challenges and Opportunities Nov 14 2014 03:00 PM - 04:00 PM Kaushik Biswas, Building Technologies Research and Integration Center, Oak Ridge...

455

On Electrical Insulation in High Vacua  

Science Journals Connector (OSTI)

1 January 1878 research-article On Electrical Insulation in High Vacua William Crookes The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1878-01-01T23:59:59.000Z

456

Phosphorylation based insulation devices design and implementation  

E-Print Network [OSTI]

This thesis presents the analysis of a phosphorylation based insulation device implemented in Saccharomyces cerevisae and the minimization of the retroactivity to the input and retroactivity to the output of a single cycle ...

Rivera Ortiz, Phillip M. (Phillip Michael)

2013-01-01T23:59:59.000Z

457

Noise Absorbing High-Temperature Insulation  

Science Journals Connector (OSTI)

Until recently simple heat shields on the engine, in the engine space or on the subframe of a vehicle had given protection against radiant heat from hot components. Today, complex high-temperature insulation syst...

Peter Cappellucci

2013-07-01T23:59:59.000Z

458

Laser perforation of screen vacuum thermal insulation  

Science Journals Connector (OSTI)

This paper presents the results of the process of laser perforation of screen vacuum thermal insulation and shows that it has high efficiency. The use of various types of IR lasers...

Sysoev, V K; Vyatlev, P A; Zakharchenko, A V

2007-01-01T23:59:59.000Z

459

Environmental assessment of thermal insulation composite material  

Science Journals Connector (OSTI)

Of other thermal insulation materials, the foam glass has most similar mechanical properties (PE...2008) and use (structural details exposed to high compressive loads). Therefore, it is (to a certain extend) comp...

Karel Struhala; Zuzana Strnsk; Jan P?n?k

2014-12-01T23:59:59.000Z

460

Fire Behaviour of Rigid Foam Insulation Boards  

Science Journals Connector (OSTI)

Low density cellular polymers have established a significant share of the market for insulating materials in the building industry due to their unique combination of low density and low thermal conductivity. Manu...

P. J. Briggs

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "insulated piping systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reinforced Phenolic Foams for Thermal Insulation  

Science Journals Connector (OSTI)

The reported research is related to phenolic resins panels for thermal insulation. This research started from previous results on the fabrication of foams from powdered Novolaque phenolic resins without acid...

P. Dubois; C. Reinaudo; E. Morel; C. Chauvelier

1984-01-01T23:59:59.000Z

462

Aging Characteristics of Polyurethane Foam Insulation  

Science Journals Connector (OSTI)

Closed-cell polyurethane foam insulation displays a time-dependent thermal conductivity characteristic commonly known as aging. Freshly made foam has a relatively low thermal conductivity, which ... in order to e...

J. Navickas; R. A. Madsen

1977-01-01T23:59:59.000Z

463

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

464

Advanced materials for flexible pipe construction  

SciTech Connect (OSTI)

New materials have been developed for use in the construction of non-bonded flexible pipe for offshore oil and gas production in sever environmental conditions. Internal environmental conditions include high conveyed fluid temperatures with sour and waxy production fluids. External environmental conditions include low water temperatures and water depths of up to 2,000 m. In this paper, the results of test to verify the suitability of materials developed by Wellstream and its vendors specifically for these severe applications is presented.

Kalman, M.D.; Belcher, J.R.; Plaia, J.R. [Wellstream Company, L.P., Panama City, FL (United States). Dept. of Engineering

1995-10-01T23:59:59.000Z

465

Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions  

E-Print Network [OSTI]

Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions-Si and SiGe-on-insulator were fabricated, combining both the benefits of high-mobility strained-Si and SOI) to oxidized handle wafers. Layer transfer onto insulating handle wafers can be accomplished using grind

466

Development of insulating coatings for liquid metal blankets  

SciTech Connect (OSTI)

It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

1994-07-01T23:59:59.000Z

467

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small- and large-diameter cast iron repair robots to assure their commercial success. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module in the last quarter 5. In this quarter, work has been concentrated on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) it was observed that it will be necessary to add a stiff brush to push debris away from the immediate vicinity of the bell and spigot joints in mains having low gas velocities. Otherwise, material removed by the cleaning flails (which were found to be very effective in cleaning bell and spigot joints) simply falls to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak free repair. Similarly, it is also necessary to design a small magnet to capture existing service tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; one coupon lodged beneath the end of the guide shoe. These new features require redesign of the pipe wall cleaning train and modification to the patch setting train. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabView. However, this must now be re-visited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of th

Kiran M. Kothari; Gerard T. Pittard

2004-11-01T23:59:59.000Z

468

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair robots for cast-iron pipe to assure their commercial success. For Task 4 (Design, Fabricate and Test Patch Setting Robotic Train), previous problems with bladder design and elastomeric material expansion in the large mains were addressed. A new bladder based on a commercially available design was obtained and tested with success. Minor improvements were highlighted during patch-setting tests and are now being pursued. For Task 5 (Design and Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera), the previous field tests showed clearly that, in mains with low gas velocities, it will be necessary to improve the system's capacity to remove debris from the immediate vicinity of the bell and spigot joints. Otherwise, material removed by the cleaning flails (the flails were found to be very effective in cleaning bell and spigot joints) falls directly to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak-free repair. Similarly, it is also deemed necessary to design an assembly to capture existing servicetap coupons and allow their removal from the inside of the pipe. Task 6 (Design and Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabVIEW. However, this must now be revisited to add control routines for the coupon catcher that will be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design and Fabricate Large Diameter Live Access System) progressed to completing the detailed design for a bolt-on entry fitting for 12-inch diameter cast-iron pipe in the current quarter. The drilling assembly for cutting an access hole through the wall of the gas main was also designed, along with a plug assembly to allow removing all tools from the live main and setting a blind flange on the entry fitting prior to burial. These designs are described in detail in the report. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module i

Kiran M. Kothari; Gerard T. Pittard

2005-04-01T23:59:59.000Z

469

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide range of coiled-tubing string designs and pipe environments. Work conducted in the second quarter consisted of: (1) selecting a preferred pan/zoom/tilt camera; (2) initiating design of the digital control electronics and switching power supply for the control and operation of the in-pipe robotic modules; (3) continuing design of the repair sleeve and (4) initial testing of the wall-cleaning device. Activities in the third quarter included: (1) development of the system's pan/zoom/tilt camera control electronics and operating software, and implementing these in the surface and downhole modules and (2) further testing of the wall-cleaning elements used to clean the inside of the bell and spigot joints. Most recently, fourth quarter developments were centered on designing and testing the pipe-wall cleaning device including the selection of the drive motor and its control electronics. In addition, efforts were also focused on the design of the repair sleeve. Details of these activities are described in the body of the report along with a summary of events scheduled for the next quarter.

Kiran M. Kothari; Gerard T. Pittard

2003-06-01T23:59:59.000Z

470

Radio-transparent multi-layer insulation for radiowave receivers  

SciTech Connect (OSTI)

In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

Choi, J. [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of)] [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ishitsuka, H. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan)] [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Mima, S. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oguri, S., E-mail: shugo@post.kek.jp [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, K. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Tajima, O. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan) [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2013-11-15T23:59:59.000Z

471

Spray Foam Exterior Insulation with Stand-Off Furring  

SciTech Connect (OSTI)

IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

Herk, A.; Baker, R.; Prahl, D.

2014-03-01T23:59:59.000Z

472

Common causes of material degradation in buried piping  

SciTech Connect (OSTI)

Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

Jenkins, C.F.

1997-01-20T23:59:59.000Z

473

On the Radiation of Sound from an Unflanged Circular Pipe  

Science Journals Connector (OSTI)

A rigorous and explicit solution is obtained for the problem of sound radiation from an unflanged circular pipe, assuming axially symmetric excitation. The solution is valid throughout the wave-length range of dominant mode (plane wave) propagation in the pipe. The reflection coefficient for the velocity potential within the pipe and the power-gain function, embodying the characteristics of the radiation pattern, are evaluated numerically. The absorption cross section of the pipe for a plane wave incident from external space, and the gain function for this direction, are found to satisfy a reciprocity relation. In particular, the absorption cross section for normal incidence is just the area of the mouth. At low frequencies of vibration, the velocity potential within the pipe is the same as if the pipe were lengthened by a certain fraction of the radius and the open end behaved as a loop. The exact value of the end correction turns out to be 0.6133.

Harold Levine and Julian Schwinger

1948-02-15T23:59:59.000Z

474

Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade- Minneapolis Residence (Fact Sheet)  

Broader source: Energy.gov [DOE]

This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

475

Insoluble coatings for Stirling engine heat pipe condenser surfaces. Final report  

SciTech Connect (OSTI)

The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2