National Library of Energy BETA

Sample records for insulated glazing units

  1. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  2. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  3. Flexible edge seal for vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  4. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  5. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  6. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Environmental Management (EM)

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  7. Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers

    SciTech Connect (OSTI)

    Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian

    2008-04-09

    Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.

  8. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  9. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, Dariush K. (Oakland, CA)

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  10. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect (OSTI)

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glasss GRIPWELD process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glasss GRIPWELD will be evaluated for its potential use in highly insulating window glazing.

  11. Dynamic measurement of heat loss coefficients through Trombe wall glazing systems

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    A Trombe wall presents a unique opportunity to measure the heat-loss coefficient through the glazing system because the wall itself can be used as a heat meter. Since the instantaneous heat flux through the outer wall surface can be determined, the heat loss coefficient at night can be calculated by dividing by the wall surface-to-ambient temperature difference. This technique has been used to determine heat-loss coefficients for Los Alamos test rooms during the winter of 1980-1981. Glazing systems studied include single and double glazing both with and without night insulation used in conjunction with a flat black paint, and both single and double glazing used in conjunction with a selective surface.

  12. Glazing materials for solar and architectural applications. Final report

    SciTech Connect (OSTI)

    Lampert, C.M. [ed.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  13. Solar controlled glazing and method of producing glazing

    SciTech Connect (OSTI)

    Hartig, K.; Dietrich, A.; Scherer, M.

    1985-08-13

    Solar-controlled glazing having a transmission of between 5 and 40% in the visible spectrum range and having heat-reflection properties is produced by applying an oxide layer having an optical thickness of between 20 and 280 nm directly to a transparent substrate by cathodic evaporation in an oxygen-containing atmosphere to form a first layer. A chromium nitride layer having a geometric thickness of between 10 and 40 nm is then applied in an atmosphere consisting of inert gas and nitrogen to provide a second layer. An optical third dielectric layer may be applied to the second layer. The oxide layer is selected from oxides of tin, titanium and aluminium.

  14. Predicted thermal performance of triple vacuum glazing

    SciTech Connect (OSTI)

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  15. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    SciTech Connect (OSTI)

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology; Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  16. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  17. Low-cost solar collectors using thin-film plastics absorbers and glazings

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  18. An in-situ evaluation of the settling of loose-fill rockwool insulation in the attics of two manufactured home units

    SciTech Connect (OSTI)

    Graves, R.S.; Yarbrough, D.W.

    1987-01-01

    The effect of vibrations due to manufacturing and transport on the thickness, density, and calculated thermal resistance (R-value) of loose-fill rock wool insulation installed in two manufactured home units has been determined. Thickness and density measurements on blown attic insulation were made after installation, at the end of the manufacturing process, and after the units were towed 265 miles. These measurements were used to calculate R-values for the attic insulation. The end sections of the two units showed an overall insulation thickness decrease of about 16% and an average R-value change from 31.2 to 28.8 ft/sup 2/.h./sup 0/ F/Btu. An estimated R-value greater than 30 ftc/sup 2/.h./sup 0/ F/Btu resulted from averaging the end and middle sections of the two units. The effect of reduced thickness along the edges of the attic space was not included in the estimate. 8 refs., 2 figs., 1 tab.

  19. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  20. Gas impermeable glaze for sealing a porous ceramic surface

    DOE Patents [OSTI]

    Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.

    2004-04-06

    A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.

  1. Seasonal control skylight glazing panel with passive solar energy switching

    SciTech Connect (OSTI)

    Miller, J.V.

    1983-10-25

    A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.

  2. Wall Insulation

    SciTech Connect (OSTI)

    2000-10-01

    This fact sheet provides information on advanced wall framing, including insulating walls, airtight construction, and moisture control.

  3. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  4. Slab Insulation

    SciTech Connect (OSTI)

    2000-12-01

    Fact sheet for homeowners and contractors on how to insulate slab-on-grade floors and control moisture, air leakage, termites, and radon.

  5. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Insulation Where to Insulate Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Insulation Get the facts about how insulation works. Read more Moisture Control Moisture Control Learn how to control moisture in your home to improve the effectiveness of your insulation and air sealing strategies. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques

  6. Aerogel: a transparent insulator for solar applications

    SciTech Connect (OSTI)

    Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

    1985-06-01

    Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

  7. Optical properties database for high performance glazings. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing

    SciTech Connect (OSTI)

    Reilly, S.; Selkowitz, S.; Winkelmann, F.

    1992-06-30

    The framework used for the data is described; maintain and updating the database is addressed; and covers extensions of the database are covered. The appendices include the glass library (Appendix A) and the glazing system library (Appendix B) which for the foundation of the optical property database, and a spectral data reporting format (Appendix C).

  8. Cooling energy performance and installation of a retrofitted exterior insulation and finish system on masonry residences in the southwestern United States

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.; McLain, H.A.

    1992-12-31

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls using a site-fabricated (non-commercially available) insulation and finish system. The exterior insulation system developed for the field test was easily performed and should result in a durable installation. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation offers the greatest potential for air-conditioning electricity savings and peak demand reductions in hot, dry climates similar to that of Phoenix. Retrofit economics need to be thoroughly examined from societal, utility, and consumer perspectives and must consider other benefits such as space-heating energy savings and improved house value.

  9. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation Insulation Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a

  10. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a...

  11. Insulation and Air Sealing Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems EPS Industry Alliance Information on expanded polystyrene manufacturing, use, and

  12. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  13. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  14. Calcium silicate insulation structure

    DOE Patents [OSTI]

    Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  15. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  16. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The project was conducted in three budget periods, herein called BP1, BP2 and BP3.

  17. Tips: Insulation | Department of Energy

    Energy Savers [EERE]

    Tips: Insulation Tips: Insulation Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or

  18. Tips: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Tips: Insulation Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement

  19. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  20. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  1. Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Meyer, J.; Rustagi, M.; Olson, K.; Kogler, R.

    2007-05-01

    An analysis to determine the impact of reducing the thermal load on a vehicle using solar-reflective paint and glazing.

  2. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual

  3. Vacuum Insulation for Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lin Simpson, lin.simpson@nrel.gov National Renewable Energy Laboratory Vacuum Insulation for Windows 2014 Building Technologies Office Peer Review Picture of NREL's transparent vacuum insulation for windows. The picture demonstrates that the evacuated components are transparent while providing superior insulation in a flexible structure that can be retrofitted to installed windows. 2 Project Summary New Competively Selected Award FOA 823 Initial TRL: laboratory validation and development

  4. Loose-fill insulations

    SciTech Connect (OSTI)

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  5. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  6. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  7. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Insulation Materials Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass

  8. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as rigid boards and duct insulation. Manufacturers now produce medium- and high-density fiberglass batt insulation products that have slightly higher R-values than the...

  9. Insulation fact sheet

    SciTech Connect (OSTI)

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  10. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  11. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Spray foam insulation fills the nooks and crannies in the...

  12. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  13. Low-vacuum SEM analyses of ceramic tiles with emphasis on glaze defects characterisation

    SciTech Connect (OSTI)

    Kopar, Tinkara Ducman, Vilma

    2007-11-15

    The behaviour of glazed building ceramics exposed to different environment (weathering, chemicals, etc.) is determined by microstructural features; in many cases structural and surface defects at the micro- or nanometre scale are crucial for the functional properties of products. Many testing methods for materials characterization of a variety of ceramic products, physical and chemical methods, are time-consuming, large quantities of samples are needed, and are usually destructive. This paper illustrates the use of low-vacuum scanning electron microscopy (LV-SEM) as fast and almost non-destructive, as only a small amount of sample is needed. Examples are given of various surface and structural properties of building ceramics, for the identification of the material deterioration process as a result of environmental impact.

  14. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  15. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  16. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  17. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  18. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  19. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  20. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

  1. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which saves money. Structural Insulated Panels Structural insulated panels (SIPs) are prefabricated insulated structural elements for use in building walls, ceilings, floors,...

  2. Physical properties of residential insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.

    1980-01-01

    Research to evaluate properties, test methods and operating environments for thermal insulations used in residences is an important part of the Building Thermal Envelope Systems and Insulating Materials (BTESIM) program sponsored by the US DOE. Three projects were carried out under the Insulating Materials part of BTESIM. The areas discussed are: (1) the thermal performance of mineral fiber insulating batts, (2) the design density for loose-fill insulations, and (3) the operatio of recesses light fixtures covered by loose-fill cellulosic insulation.

  3. Vacuum Insulation for Window

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3M#Pres(ge#70# 3M#Pres(ge#90# Glass# on Vacuum I nsula4on for W indow 201 Bu uildin Te echnologie Offi ffic Pe ee Rev vie Pictures of NREL's transparent vacuum insulation for windows. The pictures show that the evacuated components are transparent while providing superior insulation in a flexible structure that can be retrofitted to installed windows. Image of vacuum capsules low-e coated films and glass, after multiple sprayed layers. Lin Simpson, lin.simpson@nrel.gov Na4ona Ren newabl En nerg

  4. Tips: Insulation | Department of Energy

    Office of Environmental Management (EM)

    for recommendations. Be careful how close you place insulation next to a recessed light fixture-unless it is insulation contact (IC) rated-to avoid a fire hazard. See the...

  5. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  6. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  7. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  8. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  9. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  11. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  12. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  13. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  14. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  15. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  16. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  17. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  18. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  19. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect (OSTI)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  20. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  1. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  2. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete formsrigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  3. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit...

  4. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The interior bulk of a topological insulator is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized,...

  5. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler)...

  6. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  7. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  8. Technology Solutions Case Study: Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls

    SciTech Connect (OSTI)

    K. Ueno

    2015-10-01

    In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to the interior side of walls of such masonry buildings.

  9. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Exterior Insulation P. Baker Building Science Corporation October 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  10. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  11. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  12. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  13. Measure Guideline. Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and to be a practical resource for building contractors, designers, and also to homeowners.

  14. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells. All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices. (author)

  15. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  16. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  17. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  18. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Articles Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Insulation Adding insulation in...

  19. Where to Insulate in a Home | Department of Energy

    Office of Environmental Management (EM)

    to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Tips: Insulation...

  20. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  1. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  2. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

  3. Training: Mechanical Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Insulation Training: Mechanical Insulation April 16, 2014 - 6:34pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional plant-wide resources. Mechanical Insulation Education and Awareness E-Learning Series Availability: Online self-paced workshop. The Mechanical Insulation Education & Awareness Campaign, or MIC, is an eLearning series offered by the U.S. Department of

  4. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the

  5. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  6. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Types of Insulation Types of Insulation In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes

  7. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  8. R25 Polyisocyanurate Composite Insulation Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Partners: -- NanoPore, Inc. - Albuquerque, NM; -- Firestone Building Products Company - Indianapolis, IN DOE Funding:

  9. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  10. Effectiveness of thermal insulation in the attic spaces of manufactured homes

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Graves, R.S.; McElroy, D.L.

    1988-01-01

    The thermal resistance of loose-fill insulations is reduced by settling that occurs after installation. The use of loose-fill insulation in manufactured homes is increasing and a need exists to evaluate the effectiveness of this application. Settling of loose- fill insulation in manufactured homes occurs during construction and over-the-road delivery. Measurements of the settling of a stabilized cellulosic insulation in four units has shown that a small amount of adhesive results in a product exhibiting 3 to 5% loss of thickness during manufacture and less than 2% additional settling during delivery. This thickness loss of about 6% is small in comparison with the unstabilized loose-fill rock wool that was observed in two units. The effectiveness of attic insulations in manufactured home units is significantly affected by the limited space available in many designs. Calculations of the thermal resistance that can be achieved in typical attics will be discussed. The results are that loose-fill materials are a better choice than batts for manufactured home attic insulation when truss design prevents complete coverage and that attic design must be improved in many cases in order to achieve specified R-values. 6 refs., 14 figs., 2 tabs.

  11. Insulation for a Thermionic Microbattery

    SciTech Connect (OSTI)

    James P. Blanchard

    2004-09-19

    Microelectronmechanical Systems (MEMS) have not gained wide use because they lack the on-device power required by many important applications. To supply this need power, on can consider power from fossil fuels, but nuclear sources provide an intriguing option in terms of power density and lifetime. In order to make use of alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alphas. One difficulty, though, is that the surface to volume ration increases as we move to smaller scales and heat losses thus become significant at MEMS scales. Hence, efficient microscale insulation is needed to permit high overall efficiencies. This research explores concepts for one variety of microscale insulation created using MEMS fabrication techniques.

  12. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  15. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  16. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  17. Magnetic instability of Kondo insulators

    SciTech Connect (OSTI)

    Wang, Ziqiang [Los Alamos National Lab., NM (United States)]|[Boston Univ., MA (United States). Dept. of Physics; Li, Xiao-Ping [Rutgers--the State Univ., Piscataway, NJ (United States). Serin Physics Lab.; Lee, Dung-Hai [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    1993-09-01

    We review a number of experiments on isoelectronic, isostructural ternary compounds CeTSn (T=Ni,Pd,Sn) and alloys CeNi{sub 1-x}(Pd,Pt){sub x}Sn, and propose a finite temperature phase diagram describing the evolution of a Kondo insulator to an antiferromagnetic Kondo state with decreasing hybridization or Kondo coupling. We then provide microscopic justifications for the phase diagram by analyzing the magnetic properties of the symmetric Kondo lattice model in two dimensions.

  18. Unconventional Fermi surface in an insulating state

    SciTech Connect (OSTI)

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  19. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  20. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Studies Bolster Promise of Topological Insulators Print Tuesday, 27 November 2012 00:00 A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are

  1. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  2. Aerogel Impregnated Polyurethane Piping and Duct Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures. Impact of

  3. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  4. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  5. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  6. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  7. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  8. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  9. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  10. Excavationless Exterior Foundation Insulation Exploratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Excavationless Exterior Foundation Insulation Exploratory Excavationless Exterior Foundation Insulation Exploratory This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What emerging innovations are the key to future homes?" PDF icon issue2_excavationless_foundation.pdf More Documents & Publications Issue #2: What Emerging Innovations are the Key to Future Homes? Foundation Insulation for Existing Homes

  11. Cladding Attachment Over Thick Exterior Rigid Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Thick Exterior Rigid Insulation Peter Baker, P.Eng. BA Webinar: High Performance Enclosure Strategies: Part II, New Construction Cladding Attachment Over Thick Exterior Rigid Insulation Background  Industry trend to using exterior rigid insulation  Increased thermal value  Condensation resistance  Increased air tightness (possibly)  Increased rainwater management (possibly)  Need to develop a means to attach cladding over thick layers of exterior

  12. Basement Insulation Systems - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate advanced basement insulation systems. View ...

  13. Connecting Thermoelectric Performance and Topological-Insulator...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: BiTe and BiTeSe from First Principles Prev Next Title: ...

  14. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized, however, with their momenta (directional ribbons) and...

  15. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  16. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First...

  17. How Much Insulation is Too Much?

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  18. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    states remain "topologically protected"-they can't scatter without breaking the rules of quantum mechanics. Electrons on the surface of a topological insulator can flow with...

  19. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  20. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spintronics The ability to shine polarized light on a topological insulator (TI) and excite spin-polarization-tailored electrons has great potential for the field of spintronics - ...

  1. Install Removable Insulation on Valves and Fittings

    Broader source: Energy.gov [DOE]

    This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

  2. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  3. Electrically insulating and sealing frame

    DOE Patents [OSTI]

    Guthrie, Robin J. (East Hartford, CT)

    1983-11-08

    A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

  4. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  5. Processing of insulators and semiconductors

    DOE Patents [OSTI]

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  6. Corona processing of insulating oil

    SciTech Connect (OSTI)

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  7. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  8. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  9. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-08-27

    Insulation board is described which is capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  10. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  11. Kingspan Insulated Panels: Order (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  12. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect (OSTI)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  13. Saving Energy and Money with Aerogel Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Aerogel Insulation Saving Energy and Money with Aerogel Insulation June 7, 2012 - 11:45am Addthis Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Leo Christodoulou, Ph.D. Program Manager,

  14. Adding Insulation to an Existing Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older homes have less

  15. Memristor using a transition metal nitride insulator (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Memristor using a transition metal nitride insulator Citation Details In-Document Search Title: Memristor using a transition metal nitride insulator You are accessing a...

  16. Where to Insulate in a Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in several southern U.S. states prohibit installing foam insulation in contact with the ground. Slab foundations with interior insulation provide more termite resistance, but...

  17. Computational Design of Axion Insulators Based on 5 d Spinel...

    Office of Scientific and Technical Information (OSTI)

    Computational Design of Axion Insulators Based on 5 d Spinel Compounds Citation Details In-Document Search Title: Computational Design of Axion Insulators Based on 5 d Spinel ...

  18. Computational Design of Axion Insulators Based on 5 d Spinel...

    Office of Scientific and Technical Information (OSTI)

    Computational Design of Axion Insulators Based on 5 d Spinel Compounds Prev Next Title: Computational Design of Axion Insulators Based on 5 d Spinel Compounds Authors: Wan, ...

  19. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; ...

  20. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators ...

  1. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Citation Details In-Document Search Title: Aerogel-Based Insulation for High-Temperature Industrial Processes ...

  2. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...

  3. Scientists Find Asymmetry in Topological Insulators - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... But the topological insulators could be very useful for other kinds of electronics-spintronics. The electrons of topological insulators will self-polarize at opposite device edges. ...

  4. Topological Insulator Nanowires and Nanoribbons

    SciTech Connect (OSTI)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  5. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  6. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  7. Slab edge insulating form system and methods

    DOE Patents [OSTI]

    Lee, Brain E.; Barsun, Stephan K.; Bourne, Richard C.; Hoeschele, Marc A.; Springer, David A.

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  8. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interior Insulation Retrofit of Mass Masonry Wall Assemblies K. Ueno and R. Van Straaten Building Science Corporation (BSC) February 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  9. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  10. Measure Guideline. Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a partial drainage detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  11. Silicon on insulator self-aligned transistors

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  12. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  13. Where to Insulate in a Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation » Where to Insulate in a Home Where to Insulate in a Home Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. If the air distribution is in the attic space, then consider insulating the rafters to move the distribution into the conditioned space. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs

  14. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  15. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  16. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  17. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  18. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  19. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  20. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  1. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  2. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulation for Windows Vacuum Insulation for Windows Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using

  3. Measure Guideline: Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  4. Measure Guideline. Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  5. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  6. Insulation for New Home Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New Home Construction Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. State and local

  7. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  8. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  9. Savings Project: Insulate Your Water Heater Tank | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve

  10. #AskEnergySaver: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation #AskEnergySaver: Insulation February 21, 2014 - 5:20pm Addthis One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. <a href="/node/366805">Learn more about insulation</a>. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab. One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. Learn more about insulation. | Photo courtesy of Dennis Schroeder,

  11. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  12. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H. (Milpitas, CA); Hunt, Arlon J. (Oakland, CA)

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  13. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  14. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  15. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  16. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  17. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  18. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  19. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  20. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  1. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  2. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  3. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  4. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  5. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  6. CALiPER Application Summary Report 14. LED Downlight Retrofit Units

    SciTech Connect (OSTI)

    none,

    2012-03-01

    This CALiPER report analyzes the independently tested performance of 11 anonymously purchased LED downlight retrofit units—referred to as the Series 14 products. All the units were tested in a 6-inch insulation contact (IC) rated downlight housing mounted in a 24-inch by 24-inch insulated enclosure.

  7. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect (OSTI)

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  8. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  9. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ultra-efficient home design. It is more cost-effective to add insulation during construction than to retrofit it after the house is finished. To properly insulate a new home,...

  10. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new...

  11. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  12. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  13. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  14. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  15. Insulate Steam Distribution and Condensate Return Lines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Insulate Steam Distribution and Condensate Return Lines Insulate Steam Distribution and Condensate Return Lines This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #2 PDF icon Insulate Steam Distribution and Condensate Return Lines (January 2012) More Documents & Publications Use a Vent Condenser to Recover Flash Steam Energy

  16. Surprising Control over Photoelectrons from a Topological Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00 Topological insulators are insulators in the bulk but metals on the surface, and the electrons that flow swiftly across their surfaces are "spin polarized." Surface-electron spin and momentum are locked, offering new ways to control electron flow and distribution in spintronic devices. A Nature Physics paper by first

  17. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  18. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  19. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  20. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  1. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  2. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  3. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied

  4. Aerogel-Based Insulation for Industrial Steam Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aerogel-Based Insulation for Industrial Steam Distribution Systems Aerogel-Based Insulation for Industrial Steam Distribution Systems New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability Thermal loss through steam distribution systems is a significant source of wasted energy in the U.S. industrial sector. Traditional pipe insulation employs mineral wool, fiberglass, calcium silicate, perlite, and various foams. Annular

  5. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  6. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  7. Feasibility of SF6 Gas-Insulated Transformers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ® PORTLAND DISTRICT 2 Outline  Transformer Background & Basics  Oil-filled transformers  Oil-filled transformer concerns  Gas-insulated transformers (GIT)  Gas-insulated transformer benefits  Gas-insulated transformer concerns  Risks and Unknowns  Questions? BUILDING STRONG ® PORTLAND DISTRICT

  8. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  9. Redox chemistry and metal-insulator transitions intertwined | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Redox chemistry and metal-insulator transitions intertwined

  10. Exterior Rigid Insulation Best Practices - Building America Top Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exterior Rigid Insulation Best Practices - Building America Top Innovation Exterior Rigid Insulation Best Practices - Building America Top Innovation Effec guid-exterior rigid insulation.jpg For years, Building America research teams have advocated using the thermal, air, and vapor properties of rigid foam sheathing insulation to improve walls. Several teams earned a 2013 Top Innovation award for their research into this technology. The NorthernSTAR team's

  11. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor

  12. Foundation Insulation for Existing Homes | Department of Energy

    Energy Savers [EERE]

    Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq1_foundation_insulation_huelman.pdf More Documents & Publications Critical Question #1: How Do We Retrofit the Tough Buildings? Excavationless Exterior Foundation Insulation Exploratory Building America Technology Solutions for New and Existing Homes:

  13. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  14. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  15. Laminated insulators having heat dissipation means

    DOE Patents [OSTI]

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  16. Composite multilayer insulations for thermal protection of aerospace vehicles

    SciTech Connect (OSTI)

    Kourtides, D.A.; Pitts, W.C.

    1989-02-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of alumininum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  17. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  18. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  19. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  20. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  1. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  2. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  3. Excavationless Exterior Foundation Insulation Exploratory Study

    SciTech Connect (OSTI)

    Mosimann, Garrett; Wagner, Rachel; Schirber, Tom

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  4. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  5. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  6. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect (OSTI)

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  7. Development of a Leave-in-Place Slab Edge Insulating Form System

    SciTech Connect (OSTI)

    Marc Hoeschele; Eric Lee

    2009-08-31

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

  8. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  9. Sheath insulator final test report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  10. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons.

  11. Explosion resistant insulator and method of making same

    DOE Patents [OSTI]

    Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.

    1983-01-01

    An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

  12. Experiments Provide First Direct Signatures of a Topological Insulator - a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Phase of Quantum Matter Experiments Provide First Direct Signatures of a Topological Insulator - a New Phase of Quantum Matter It has recently been proposed that insulators with large band gap and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator [1,2]. This exotic phase of matter is a subject of intense research because it is predicted to give rise to dissipationless spin currents [3], quantum entanglements and novel macroscopic behavior

  13. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  14. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  15. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Energy Savers [EERE]

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  16. Building America Technology Solutions for New and Existing Homes: Insulated

    Energy Savers [EERE]

    Siding Retrofit in a Cold Climate, New Paltz, New York | Department of Energy Insulated Siding Retrofit in a Cold Climate, New Paltz, New York Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New Paltz, New York In this study, the U.S. Department of Energy's team Building America Partner-ship for Improved Residential Construction (BA-PIRC) worked with Kinsley Construction Company to evaluate the real-world performance of insulated

  17. Basement Insulation Systems - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation in between the studs. Efficient and durable construction practices for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. For this Top Innovation award,

  18. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  19. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  20. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and...

  1. Soitec SA Silicon on Insulator Technologies | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Soitec SA (Silicon on Insulator Technologies) Place: Bernin, France Zip: 38190 Product: Has an 'atomic scalpel' technology which allows extremely thin...

  2. Savings Project: Insulate and Air Seal Floors Over Unconditioned...

    Office of Environmental Management (EM)

    Blanket insulation Wire fasteners Tape measure Sharp utility knife Caulk and foam sealant Caulk gun Stepladder Straightedge Respirator or dust mask Eye protection Protective ...

  3. Heavy surface state in a possible topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 This content will become publicly available on February...

  4. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  5. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  6. Adding Insulation to an Existing Home | Department of Energy

    Office of Environmental Management (EM)

    existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo...

  7. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: Energy.gov (indexed) [DOE]

    cost) across a variety of thermal insulating applications, such as building foundations and walls, and refrigeration and heating, ventilation, and air conditioning applications. ...

  8. Large kinetic asymmetry in the metal-insulator transition nucleated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects Citation Details In-Document Search Title: Large kinetic...

  9. Spin injection and spin transport in paramagnetic insulators...

    Office of Scientific and Technical Information (OSTI)

    These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators. Authors: Okamoto, ...

  10. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to improve the high-temperature performance, durability, and life expectancy of aerogel insulation materials.

  11. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the...

  12. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat

  13. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  14. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO)

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  15. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  16. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  17. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  18. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  19. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  20. Thickness-dependent metal-insulator transition in epitaxial SrRuO? ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li., Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemorerange hopping model, indicating a strongly localized state. Magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.less

  1. Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li, Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO₃ films, deposited epitaxially on TiO₂-terminated SrTiO₃ (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemore » range hopping model, indicating a strongly localized state. As a result, magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.« less

  2. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    SciTech Connect (OSTI)

    Huelman, P.; Goldberg, L.; Jacobson, R.

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  3. Dielectrophoresis device and method having insulating ridges for manipulating particles

    DOE Patents [OSTI]

    Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Livermore, CA)

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  4. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  5. Issue #5: How Much Insulation is Too Much? | Department of Energy

    Energy Savers [EERE]

    5: How Much Insulation is Too Much? Issue #5: How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? PDF icon issue5_enclosure_insulation.pdf PDF icon issue5_optimizing_insulation.pdf PDF icon issue5_code_cost_analy.pdf More Documents & Publications Issue 5: Optimizing High Levels of Insulation How Much Insulation is Too Much? Cost Analysis Approach for Codes

  6. Why You Might Want to Add More Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why You Might Want to Add More Insulation Why You Might Want to Add More Insulation August 19, 2014 - 10:06am Addthis Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Elizabeth Spencer Communicator, National

  7. Pressure effects on the optical conductivity of Kondo insulators

    SciTech Connect (OSTI)

    Zhang, Sun

    2001-06-01

    The effects of pressure on the optical conductivity of Kondo insulators are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation. A unified picture is presented for both the hole-type Kondo insulators [H. Okamura , Phys. Rev. B >58, R7496 (1998)] and the electron-type Kondo insulators [B. Bucher , Phys. Rev. Lett. >72, 522 (1994)]. The density of states of f electrons under the applied pressure and its variation with the concentration of the impurity doping are calculated self-consistently. The Kondo temperature and the optical conductivity are obtained, in agreement with the experiments qualitatively. The two contrasting pressure-dependent effects for the hole-type Kondo insulators and the electron-type Kondo insulators are also given as predictions for further observations.

  8. Design of Experiments Results for the Feedthru Insulator

    SciTech Connect (OSTI)

    BENAVIDES,GILBERT L.; VAN ORNUM,DAVID J.; BACA,MAUREEN R.; APPEL,PATRICIA E.

    1999-12-01

    A design of experiments (DoE) was performed at Ceramtec to improve the yield of a cermet part known as the feedthru insulator. The factors chosen to be varied in this DoE were syringe orifice size, fill condition, solvent, and surfactant. These factors were chosen because of their anticipated effect on the cermet slurry and its consequences to the feedthru insulator in succeeding fabrication operations. Response variables to the DoE were chosen to be indirect indicators of production yield for the feedthru insulator. The solvent amount used to mix the cermet slurry had the greatest overall effect on the response variables. Based upon this DoE, there is the potential to improve the yield not only for the feedthru insulator but for other cermet parts as well. This report thoroughly documents the DoE and contains additional information regarding the feedthru insulator.

  9. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  10. A comparative examination of the fire performance of pipe insulation

    SciTech Connect (OSTI)

    Babrauskas, V.

    1996-12-31

    A standard method for evaluating the fire performance of pipe insulation is not available in North America. In Europe, however, the regional standards organization NORDTEST has had available for several years now a method specifically designed for this purpose. The NORDTEST NT FIRE 036 test is a full-scale room fire test where the pipe insulation is installed along the ceiling and subjected to a gas burner fire. Four classes of performance (Class I through III, plus unrated) are used to evaluate the products. In the present work, 4 different pipe insulation products, representing the most common materials used for this purpose, have been examined according to this test. The results showed that rock wool insulation gave the best fire performance, with phenolic foam being in the least safe rated category. Synthetic foam rubber and polyethylene insulation products gave intermediate performance. 12 refs., 3 figs., 11 tabs.

  11. Field study of moisture damage in walls insulated without a vapor barrier. Final report for the Oregon Department of Energy

    SciTech Connect (OSTI)

    Tsongas, G.A.

    1980-05-01

    Considerable uncertainty has existed over whether or not wall insulation installed without a vapor barrier causes an increased risk of moisture damage (wood decay) within walls. This report describes the results of one of the first major studies in the country aimed at finding out if such a moisture problem really exists. The exterior walls of a total of 96 homes in Portland, Oregon were opened, of which 70 had retrofitted insulation and 26 were uninsulated and were a control group. The types of insulation included urea-formaldehyde foam (44), mineral wool (16), and cellulose (10). In each opened wall cavity the moisture content of wood was measured and insulation and wood samples were taken for laboratory analysis of moisture content and for the determination of the presence of absence of decay fungi. Foam shrinkage was also measured. To evaluate the possible influence of the relative air tightness of the homes, fan depressurization tests were run using a door blower unit. The field and laboratory test results indicating the lack of a moisture damage problem in existing homes with wood siding in climates similar to that of western Oregon are described along with results of a statistical analysis of the data. Related problems of interest to homeowners and insulation installers are noted. The standard operating procedures used throughout the study are discussed, including the home selection process, quantitative and qualitative techniques used to identify wall locations with the highest moisture content, wall opening and data/sample collection methodology, laboratory analysis of samples, data processing and analysis, and applicability of the results. Recommendations for furutre tests are made. Finally, the potential and desirability for future retrofitting of wall insulation is explored.

  12. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  13. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Madison Residence

    SciTech Connect (OSTI)

    2013-10-01

    This basement insulation project included a dimple mat conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation

  14. Cost-Optimized Attic Insulation Solution for Factory-Built Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimized Attic Insulation Solution for Factory-Built Homes - Building America Top Innovation Cost-Optimized Attic Insulation Solution for Factory-Built Homes - Building America ...

  15. New insulating antiferromagnetic quaternary iridates MLa10Ir4O24...

    Office of Scientific and Technical Information (OSTI)

    New insulating antiferromagnetic quaternary iridates MLa10Ir4O24 (MSr, Ba) Citation Details In-Document Search Title: New insulating antiferromagnetic quaternary iridates ...

  16. Drapery assembly including insulated drapery liner

    DOE Patents [OSTI]

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  17. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  18. United States

    Office of Legacy Management (LM)

    ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr.

  19. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  20. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  1. United States

    Office of Legacy Management (LM)

    WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr.

  2. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  3. Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Air Seal Floors Over Unconditioned Garages Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages Addthis Project Level Easy Energy Savings Depend on energy cost, R-value increase, and airtightness of newly insulated floor compared to existing. Time to Complete 4-8 hours Overall Cost $0.60 to $1.00 PER SQUARE FOOT FOR R-30 BATTS Careful air sealing and insulation between an unconditioned garage and the conditioned space above can increase comfort,

  4. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  5. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  6. Income Tax Deduction for the Installation of Building Insulation

    Broader source: Energy.gov [DOE]

    A residential taxpayer is entitled to an Indiana income tax deduction on the materials and labor used to install insulation in a taxpayer’s principal place of residence in Indiana. 

  7. Aerogel Insulation: The Materials Science of Empty Space

    Broader source: Energy.gov [DOE]

    Empty space can be good, like a blank canvas for an artist, or it can be bad, like an attic without insulation for a homeowner.  But when a technological breakthrough provides just the right amount...

  8. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  9. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, Gerald J. (Albuquerque, NM)

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  10. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  11. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  12. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  13. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  14. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  15. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  16. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  17. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  18. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  19. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  1. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  2. Heat transfer model of above and underground insulated piping systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Heat transfer model of above and underground insulated piping systems Citation Details In-Document Search Title: Heat transfer model of above and underground insulated piping systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  3. Graphene physics and insulator-metal transition in compressed hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Journal Article) | DOE PAGES Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; Cohen, R. E. ; Hemley, Russell J. Publication Date: 2013-07-22 OSTI Identifier: 1104286 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 88; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical

  4. New classes of three-dimensional topological crystalline insulators:

    Office of Scientific and Technical Information (OSTI)

    Nonsymmorphic and magnetic (Journal Article) | SciTech Connect New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Citation Details In-Document Search This content will become publicly available on April 14, 2016 Title: New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Authors: Fang, Chen ; Fu, Liang Publication Date: 2015-04-15 OSTI Identifier: 1179956 Grant/Contract Number: SC0010526 Type: Publisher's

  5. Connecting Thermoelectric Performance and Topological-Insulator Behavior:

    Office of Scientific and Technical Information (OSTI)

    Bi₂Te₃ and Bi₂Te₂Se from First Principles (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: Bi₂Te₃ and Bi₂Te₂Se from First Principles « Prev Next » Title: Connecting Thermoelectric Performance and Topological-Insulator Behavior: Bi₂Te₃ and Bi₂Te₂Se from First Principles Authors: Shi, Hongliang ; Parker, David ; Du, Mao-Hua ; Singh, David J. Publication Date: 2015-01-20 OSTI

  6. Driving and detecting ferromagnetic resonance in insulators with the spin

    Office of Scientific and Technical Information (OSTI)

    Hall effect (Journal Article) | DOE PAGES DOE PAGES Search Results Publisher's Accepted Manuscript: Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect This content will become publicly available on November 5, 2016 Title: Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect Authors: Sklenar, Joseph ; Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Chang, Houchen ; Pearson, John E. ; Wu, Mingzhong ; Ketterson, John B.

  7. Graphene physics and insulator-metal transition in compressed hydrogen

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; Cohen, R. E. ; Hemley, Russell J. Publication Date: 2013-07-22 OSTI Identifier: 1104286 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 88; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical

  8. Moderate Doping Leads to High Performance of Semiconductor/Insulator

    Office of Scientific and Technical Information (OSTI)

    Polymer Blend Transistors (Journal Article) | SciTech Connect Journal Article: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Citation Details In-Document Search Title: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, Patrick ; Frisch, Johannes ; Lieberwirth, Ingo ; Salzmann, Ingo ; Oehzelt, Martin ; Pietro, Riccardo Di ;

  9. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  10. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  11. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  12. Reduce Your Heating Bills with Better Insulation | Department of Energy

    Energy Savers [EERE]

    Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an

  13. Aerogel Impregnated Polyurethane Piping and Duct Insulation | Department of

    Energy Savers [EERE]

    Energy Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech28_hess_040413.pdf More Documents & Publications WICF Certification, Compliance and Enforcement webinar New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Building America Best Practices Series: Volume 12.

  14. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Environmental Management (EM)

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  15. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CBR-1-H Availability: This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky (hereinafter called the Customer). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all

  16. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the

  17. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and

  18. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

    1981-12-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  19. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

    1983-01-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  20. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1 to 1 ), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  1. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  2. Attic Retrofits Using Nail-Base Insulated Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Retrofits Using Nail-Base Insulated Panels Attic Retrofits Using Nail-Base Insulated Panels Photo courtesy of the Structural Insulated Panel Association. Photo courtesy of the Structural Insulated Panel Association. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: Structural Insulated Panel Association, American Chemistry Council, Forest Products Laboratory, DuPont, APA-The Engineered Wood Association, Insurance Institute for Business and Home Safety, Remodeling

  3. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  4. Insulating Structural Ceramics Program, Final Report

    SciTech Connect (OSTI)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  5. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  6. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  7. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  8. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  10. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    SciTech Connect (OSTI)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.; Katmis, Ferhat

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  11. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  12. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect (OSTI)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  13. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, T.K.

    1997-08-22

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  14. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  15. Spokane Wall Insulation Project: a field study of moisture damage in walls insulated without a vapor barrier

    SciTech Connect (OSTI)

    Tsongas, G.

    1985-09-01

    Considerable uncertainty has existed over whether or not the addition of wall insulation without a vapor barrier might increase the risk of moisture damage to the structure. Although it was concluded from a 1979 field study that there is no such risk in mild climates like that of Portland, Oregon (4792 degree-days), it was not clear if a problem might exist in colder climates. Thus, a second major field study was undertaken in Spokane, Washington (6835 degree-days) aimed at finding out if such a moisture problem really exists. This report describes that study and its results and conclusions. During the study the exterior walls of 103 homes were opened, of which 79 had retrofitted cellulose, rock wool, or fiberglass, and 24 were uninsulated as a control group. Field and laboratory test results are presented which, contrary to diffusion theory predictions, show the absence of moisture accumulation and consequent moisture damage caused by the addition of retrofitted wall insulation. Infrared thermography results giving the percentage of wall insulation void area for 30 of the test homes are also presented. The study strongly concludes that the addition of wall insulation without a vapor barrier does not cause moisture problems in existing homes in climates similar to that of Spokane. Future research needs are described, and the overall advisability of future retrofitting of wall insulation is discussed. 23 refs., 7 figs., 16 tabs.

  16. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, Alan (Murrysville, PA); Swansiger, Thomas G. (Apollo, PA)

    1998-04-28

    A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

  17. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  18. Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films

    SciTech Connect (OSTI)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li, Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variable range hopping model, indicating a strongly localized state. As a result, magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.

  19. Migration of Bosonic Particles across a Mott Insulator to a Superfluid Phase Interface

    SciTech Connect (OSTI)

    Hartmann, Michael J.; Plenio, Martin B.

    2008-02-22

    We consider a boundary between a Mott insulator and a superfluid region of a Bose-Hubbard model at unit filling. Initially both regions are decoupled and cooled to their respective ground states. We show that, after switching on a small tunneling rate between both regions, all particles of the Mott region migrate to the superfluid area. This migration takes place whenever the difference between the chemical potentials of both regions is less than the maximal energy of any eigenmode of the superfluid. We verify our results numerically with density matrix renormalization group simulations and explain them analytically with a master equation approximation, finding good agreement between both approaches. Finally we carry out a feasibility study for the observation of the effect in coupled arrays of microcavities and optical lattices.

  20. Photo Galleries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Elizabeth Sherwood-Randall Swearing-In Ceremony Fabricate-on-Demand Vacuum Insulating Glazings 2014 American Energy & Manufacturing Competitiveness Summit in...

  1. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect (OSTI)

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  2. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  3. NMR relaxation in the topological Kondo insulator SmB 6 (Journal...

    Office of Scientific and Technical Information (OSTI)

    NMR relaxation in the topological Kondo insulator SmB 6 Prev Next Title: NMR relaxation in the topological Kondo insulator SmB 6 Authors: Schlottmann, P. Publication Date: ...

  4. Tuning the metal-insulator crossover and magnetism in SrRuO3...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating Citation Details In-Document Search Title: Tuning the metal-insulator crossover and ...

  5. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  6. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  7. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Cost-Optimized Attic Insulation Solution for Factory-Built Homes- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This 2014 Top Innovation describes a dense-pack solution to increasing attic insulation R-value for manufactured homes.

  9. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  10. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  11. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  12. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  13. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  14. Analysis of multilayer insulation between 80K and 300K

    SciTech Connect (OSTI)

    Augustynowicz, S.D.; Demko, J.A.; Datskov, V.I.

    1993-07-01

    A model has been developed that can be used to determine the temperature distribution and heat transfer through a multilayer insulation (MLI) blanket. Predictions from the model were compared with a series of temperature measurements made during laboratory experiments and during a test of five superconducting magnets (dipoles) installed in a string and tested at Fermi National Accelerator Laboratory, FNAL (ER Test).

  15. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ... Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19...

  17. Supporting Documentation for the 2008 Update to the Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, Therese K

    2008-02-01

    The Insulation Fact Sheet provides consumers for general guidance and recommended insulation levels for their home. This fact sheet has been on-line since 1995 and this update addresses new insulation materials, as well as updated costs for energy and materials.

  18. Sustainable wall construction and exterior insulation retrofit technology process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  19. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. Low-cost exterior insulation process and structure

    SciTech Connect (OSTI)

    Vohra, Arun

    1997-12-01

    The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

  2. Measured and theoretical characterization of the RF properties of stacked, high-gradient insulator material

    SciTech Connect (OSTI)

    Houck, T. L., LLNL

    1997-05-09

    Recent high-voltage breakdown experiments of periodic metallic-dielectric insulating structures have suggested several interesting high-gradient applications. One such area is the employment of high-gradient insulators in high-current, electron-beam, accelerating induction modules. For this application, the understanding of the rf characteristics of the insulator plays an important role in estimating beam-cavity interactions. In this paper, we examine the rf properties of the insulator comparing simulation results with experiment. Different insulator designs are examined to determine their rf transmission properties in gap geometries.

  3. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-12-01

    An apparatus to measure the heat flux through horizontally applied loosefill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  4. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  5. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  6. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R. (Lenoir City, TN); Shapira, Hanna B. (Oak Ridge, TN)

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  7. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  8. Transpiration cooled electrodes and insulators for MHD generators

    DOE Patents [OSTI]

    Hoover, Jr., Delmer Q. (Churchill Boro, PA)

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  9. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  10. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  11. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  12. Spin injection and spin transport in paramagnetic insulators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  13. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  14. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  15. High-Voltage Insulators and Components - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search High-Voltage Insulators and Components Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary One of the ongoing challenges to improving performance in capacitors and other high-voltage electrical structures is to identify and reduce the factors that cause failure. High-voltage devices typically fail following excessive

  16. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, A.; Baker, R.; Prahl, D.

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  17. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, Anatasia; Baker, Richard; Prahl, Duncan

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  18. Insulator-based DEP with impedance measurements for analyte detection

    DOE Patents [OSTI]

    Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.; Cummings, Eric B.

    2010-03-16

    Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.

  19. Redox chemistry and metal-insulator transitions intertwined in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nano-porous material | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Redox chemistry and metal-insulator transitions intertwined in a nano-porous material Previous Next List Sergey N. Maximoff and Berend Smit, Nature Communications 5, 4032 (2014) DOI: 10.1038/ncomms5032 Abstract: Metal-organic frameworks are nano-porous adsorbents of relevance to gas separation and catalysis, and separation of oxygen from air is essential to diverse industrial

  20. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  1. Metal-to-insulator switching in quantum anomalous Hall states

    SciTech Connect (OSTI)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  2. Metal-to-insulator switching in quantum anomalous Hall states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  3. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    SciTech Connect (OSTI)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  4. Thermal-performance study of liquid metal fast breeder reactor insulation

    SciTech Connect (OSTI)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  5. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber

  6. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  7. Method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple

    DOE Patents [OSTI]

    Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  8. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated

  9. Building America Top Innovations 2013 Profile … Exterior Rigid Insulation Best Practices

    Energy Savers [EERE]

    Exterior Rigid Insulation Best Practices TOP INNOVATOR: BSC, PHI, NorthernSTAR Field studies by Building America's research teams show the most effective ways to take advantage of the thermal, air, and vapor resistance properties of rigid foam insulation on walls, roofs, and foundations. Building America has been advocating the use of rigid foam sheathing insulation for years as a means to improve the home's thermal envelope by increasing R-value while minimizing thermal bridging in wood-framed

  10. Thermal properties and use of cellulosic insulation produced from recycled paper

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wilkes, K.E.

    1996-10-01

    Information regarding the use of building insulation made from recycled paper is summarized. Results of previous experimental studies to determine thermal conductivities, settled density, and flammability are outlined, and calculation methods for thermal resistivity are presented in detail. Other performance factors affecting installed insulation are discussed. Industry data and information on the production, use, and economics of cellulosic insulation for residential and commercial buildings are provided. 34 refs., 4 figs., 1 tab.

  11. Evaluation of Magnetic Insulation in SF6 Filled Regions

    SciTech Connect (OSTI)

    Houck, T; Ferriera, T; Goerz, D; Javedani, J; Speer, R; Tully, L; Vogtlin, G

    2009-06-08

    The use of magnetic fields perpendicular to quasistatic electric fields to deter electrical breakdown in vacuum, referred to as magnetic insulation, is well understood and used in numerous applications. Here we define quasi-static as applied high-voltage pulse widths much longer than the transit time of light across the electrode gap. For this report we extend the concept of magnetic insulation to include the inhibition of electrical breakdown in gases. Ionization and electrical breakdown of gases in crossed electric and magnetic fields is only a moderately explored research area. For sufficiently large magnetic fields an electron does not gain sufficient energy over a single cycloidal path to ionize the gas molecules. However, it may be possible for the electron to gain sufficient energy for ionization over a number of collisions. To study breakdown in a gas, the collective behavior of an avalanche of electrons in the formation of a streamer in the gas is required. Effective reduced electric field (EREF) theory, which considers the bulk properties of an electron avalanche, has been successful at describing the influence of a crossed magnetic field on the electric field required for breakdown in gases; however, available data to verify the theory has been limited to low gas pressures and weak electronegative gases. High power devices, for example explosively driven magnetic flux compressors, operate at electrical field stresses, magnetic fields, and insulating gas pressures nearly two orders of magnitude greater than published research for crossed fields in gases. The primary limitation of conducting experiments at higher pressures, e.g. atmospheric, is generating the large magnetic fields, 10's Tesla, and electric fields, >100 kV/cm, required to see a significant effect. In this paper we describe measurements made with a coaxial geometry diode, form factor of 1.2, operating at peak electrical field stress of 220 kV/cm, maximum magnetic field of 20 Tesla, and SF{sub 6} pressure of 760 torr.

  12. Apparatus and method for fast recovery and charge of insulation gas

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-09-03

    An insulation gas recovery and charge apparatus is provided comprising a pump, a connect, an inflatable collection device and at least one valve.

  13. Entanglement of strongly interacting low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating systems

    SciTech Connect (OSTI)

    Franca, V. V.; Capelle, K.

    2006-10-15

    We calculate the entanglement entropy of strongly correlated low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating phases. The entanglement entropy reflects the degrees of freedom available in each phase for storing and processing information, but is found not to be a state function in the thermodynamic sense. The role of critical points, smooth crossovers, and Hilbert space restrictions in shaping the dependence of the entanglement entropy on the system parameters is illustrated for metallic, insulating, and superfluid systems. The dependence of the spin susceptibility on entanglement in antiferromagnetic insulators is obtained quantitatively. The opening of spin gaps in antiferromagnetic insulators is associated with enhanced entanglement near quantum critical points.

  14. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S; Biswas, Kaushik; Desjarlais, Andre Omer

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  15. Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 November 10, 2015 - 4:37pm Addthis An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer Our contractors layered radiant barriers with dense-pack insulation and sealed air vents. Photo by Elizabeth

  16. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    1 U.S. Insulation Demand, by Type (Million Pounds) (1) Insulation Type 1992 2001 2006 (1) Fiberglass 2,938 55% 3,760 54% 4,085 53% Foamed Plastic 1,223 23% 1,775 25% 1,955 26% Cellulose 485 9% 665 9% 730 10% Mineral Wool 402 8% 445 6% 480 6% Other 309 6% 370 5% 395 5% Total 5,357 100% 7,015 100% 7,645 100% Note(s): 1) Projected. Source(s): National Insulation Association, www.insulation.org, Aug. 2006.

  17. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, George C. (Oak Ridge, TN)

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  18. Self-monitoring high voltage transmission line suspension insulator

    DOE Patents [OSTI]

    Stemler, Gary E. (Vancouver, WA); Scott, Donald N. (Vancouver, WA)

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  19. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  20. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect (OSTI)

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  1. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Environmental Management (EM)

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  2. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Environmental Management (EM)

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  3. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Decker, Derek E. (Livermore, CA)

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  4. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  5. Intrinsic metallic behavior above 50 tesla in a Kondo insulator

    SciTech Connect (OSTI)

    Boebinger, G.S.; Passner, A.; Canfield, P.C.; Fisk, Z.

    1996-12-31

    Interactions between localized and itinerant electrons give rise to a variety of classes of materials, including the heavy fermion metals and the Kondo insulators. In the Kondo insulators, a broad, half-filled conduction band is intersected by a nearly dispersionless f-level. Hybridization and correlations give rise to a low temperature quenching of the localized spins accompanied by a loss of carriers. Extremely high magnetic fields should destroy the Kondo interaction (antiferromagnetic coupling to the localized moment). For this reason, the authors have measured, in pulsed magnetic fields of 61 T, the longitudinal, transverse, and Hall resistivity of Ce{sub 3}Bi{sub 4}Pt{sub 3}. Samples with very different disorder reveal that magnetic fields above {approximately}20T suppress extrinsic low temperature behavior. A large negative magnetoresistance is found to be governed by spin interactions (longitudinal and transverse magnetoresistance are essentially identical). The negative magnetic resistance is accompanied by an equally dramatic increase in the number of carriers measured by the Hall resistivity. The data are consistent with the linear collapse of a spin excitation gap which closes at {approximately}50T. However, roughly constant carrier density from {approximately}50T to 61T suggests that the metallic behavior above 50T results from collapse of a coherence gap rather than simple energy band crossing.

  6. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1985-01-01

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  7. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, A.H.

    1984-04-26

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  8. Requirements for self-magnetically insulated transmission lines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closuremore » and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.« less

  9. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  10. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J.; Goerz, David A.

    2004-08-31

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  11. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  12. Requirements for self-magnetically insulated transmission lines

    SciTech Connect (OSTI)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closure and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.

  13. Insulation from basaltic stamp sand. Final technical report

    SciTech Connect (OSTI)

    Williams, F. D.

    1981-04-01

    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  14. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  15. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    SciTech Connect (OSTI)

    Shrestha, Som S. Biswas, Kaushik; Desjarlais, Andre O.

    2014-04-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: We proposed a protocol to evaluate the environmental impacts of insulation materials. The protocol considers all life cycle stages of an insulation material. Both the direct environmental impacts and the indirect impacts are defined. Standardized calculation methods for the avoided operational energy is defined. Standardized calculation methods for the avoided environmental impact is defined.

  16. Experimental study of a fiber absorber-suppressor modified Trombe wall

    SciTech Connect (OSTI)

    Choudhury, D; Birkebak, R C

    1982-12-01

    An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

  17. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect (OSTI)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  18. Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board

    SciTech Connect (OSTI)

    2015-03-01

    Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.

  19. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOEs Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  20. HYDROPHOBIC CHARACTERISTICS OF COMPOSITE INSULATORS IN SIMULATED INLAND ARID DESERT ENVIRONMENT

    SciTech Connect (OSTI)

    Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain; Qureshi, Muhammad Iqbal

    2010-06-15

    Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.

  1. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect (OSTI)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  2. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    SciTech Connect (OSTI)

    2015-11-01

    This case study by the U.S. Department of Energys Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  4. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  5. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  6. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    SciTech Connect (OSTI)

    Natarajan, Hariharan; Klocke, Steve; Puttagunta, Srikanth

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  7. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  8. Insulating and metallic spin glass in Ni-doped KxFe2-ySe? single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-?-yNiySe? (0.06 ? y ? 1.44) single crystal alloys. A rich ground state phase diagram is observed. A small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni morewith the absence of crystalline Fe vacancy order.less

  9. Technology Solutions Case Study: Excavationless: Exterior-Side Foundation Insulation for Existing Homes

    SciTech Connect (OSTI)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. This project describes an innovative, minimally invasive foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  10. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  11. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, Prasad R. (Westboro, MA)

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section.

  12. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  13. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  14. Technology Solutions Case Study: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    2014-11-01

    The energy efficiency-based financial benefits of adding exterior insulation are well accepted by the building industry, and using exterior insulation as the drainage plane is the next logical step. This case study focuses on the field implementation of taped board insulation as the drainage plane in both new and retrofit residential applications, and provides information and recommendations for insulation contractors, general contractors, builders, remodelers, mechanical contractors, and homeowners. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues, and durability issues are more important than saving energy. Three significant items are required to make taped insulating sheathing a simple, long term, and durable drainage plane: first, horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists, use superior materials; and, frequent installation inspection and regular trade training are required to maintain proper installation.

  15. Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  16. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect (OSTI)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  17. Emergent topological mirror insulator in t 2 g -orbital systems...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) Country of Publication: United States Language: English Word ...

  18. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Accepted...

  19. Noncommutative geometry for three-dimensional topological insulators...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Publisher's Accepted Manuscript at...

  20. Thermal insulation for Buildings. September 1982-September 1988 (Citations from the COMPENDEX data base). Report for September 1982-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 244 citations, 92 of which are new entries to the previous edition.)

  1. Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process

    SciTech Connect (OSTI)

    Roberts, S.; Stephenson, R.

    2012-09-01

    This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

  2. Insulating concrete forms: Installed cost and acoustic performance

    SciTech Connect (OSTI)

    1999-03-01

    The NAHB Research Center conducted a study to compare the cost and performance of Insulating Concrete Form (ICF) walls to conventional wood-frame exterior walls. This report contains the results of the cost study and sound transmission tests. Three home were built and monitored. One home has an ICF plank system, one has an ICF block system, and one is of conventional 2x4 lumber construction. The homes have identical floor plans and are located side by side. The findings indicate that the labor costs for the ICFs were slightly to moderately higher than the wood framing. However, the sound tests indicate that the ICF walls perform significantly better than the wood walls when no openings were present. The report summarizes the findings and recommends ways to increase the cost-effectiveness of ICFs.

  3. Workshop on user experience with gas-insulated substations

    SciTech Connect (OSTI)

    Graybill, H.W.

    1981-12-01

    There is widespread interest among American and Canadian utilities in the interchange of operating and maintenance experience with gas-insulated substations (GIS). Those utilities who do not yet have GIS on their systems are likewise interested in the operating experience of those who do. A two-day workshop on GIS was held in Portland, Oregon, on July 30 and 31, 1981. The first day of the workshop was open to users only, and the agenda for the day consisted of user presentations on the following subjects: GIS station design and layout; specification and acquisition of GIS equipment; installation and commissioning; and operation and maintenance. On the second day, manufacturers were invited to present their experience, status, and progress in recent developments and improvements. The session was concluded with a general discussion of experience, problems, etc. No formal written papers were presented. The highlights of each verbal presentation and of ensuing discussion are presented in this report.

  4. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  5. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  6. Charged particle beam scanning using deformed high gradient insulator

    DOE Patents [OSTI]

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  7. Leaky insulating paint for preventing discharge anomalies on circuit boards

    SciTech Connect (OSTI)

    Frederickson, A.R.; Enloe, C.L.; Mullen, E.G. ); Nanevicz, J.E.; Thayer, J.S. )

    1989-12-01

    This paper reports on a semi-insulating paint formulated and tested for preventing pulse discharges from causing damage to circuits on heavily irradiated circuit boards. The paint is tin oxide filled phenoxy resin with a bulk resistivity of 10{sup 8} ohm-cm. A typical coating is then 10{sup 10} ohms per square. It is applied over the finished, conformally coated circuit board and connected to ground where possible on the board. It works by minimizing the stored electric field energy prior to the discharge. With such high resistivity it can not load down most circuits. Tests were performed on circuit boards with and without the paint using energetic electron beams to simulate very high space exposure levels. Many potentially damaging pulses were seen without the paint, but application of the paint removed all large pulses and only a few small pulses were seen.

  8. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOE Patents [OSTI]

    Lemke, R.W.; Clark, M.C.; Calico, S.E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.

  9. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOE Patents [OSTI]

    Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.

  10. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  11. Process for manufacturing hollow fused-silica insulator cylinder

    DOE Patents [OSTI]

    Sampayan, Stephen E. (Manteca, CA); Krogh, Michael L. (Lee's Summit, MO); Davis, Steven C. (Lee's Summit, MO); Decker, Derek E. (Discovery Bay, CA); Rosenblum, Ben Z. (Overland Park, KS); Sanders, David M. (Livermore, CA); Elizondo-Decanini, Juan M. (Albuquerque, NM)

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  12. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  13. Window Types | Department of Energy

    Energy Savers [EERE]

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  14. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  15. Measurement of Exterior Foundation Insulation to Assess Durability in Energy-Saving Performance

    SciTech Connect (OSTI)

    Kehrer, Manfred; Christian, Jeff

    2012-04-01

    The foundation of a house is a sometimes ignored component of the building because of its low visibility. It is increasingly evident, however, that attention to good foundation design and construction significantly benefits the homeowner and the builder by mitigating future problems. Good foundation design and construction practice involves not only insulating to save energy but also providing effective structural design as well as moisture, termite, and radon control techniques as appropriate. Energy efficiency in housing is augmented by use of exterior slab and basement insulation, but high moisture content in the insulation material has led to concerns about its durability. The activity under this task was to extract six different exterior insulation systems that were characterized at installation and have been in the ground for 9 months to 15 years. R-value and moisture content were measured and inspections conducted for evidence of termite intrusion or deterioration. Based on the results, the durability of the various systems has been documented and assessments made of which systems appear to be best practice. Heat flux and temperature measurement data had been archived for some of the exterior insulation tests, thereby providing a unique opportunity to assess energy-saving performance and durability over the long term. The results show that the durability of foundation insulation systems depends on insulation type as well as on foundation type and local boundary conditions, the latter of which may have a marked influence on the durability of energy-saving performance.

  16. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect (OSTI)

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  17. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA); Yoon, Kue H. (Pittsburgh, PA)

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  18. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  19. High voltage capability electrical coils insulated with materials containing SF.sub.6 gas

    DOE Patents [OSTI]

    Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

    1988-01-01

    A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

  20. Current–voltage characteristics of organic heterostructure devices with insulating spacer layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-05-14

    The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less

  1. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect (OSTI)

    Lstiburek, Joseph; Baker, Peter

    2015-04-09

    This measure guideline, written by the U.S. Department of Energys Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1- in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  2. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect (OSTI)

    Lstiburek, Joseph; Baker, Peter

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1- inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  3. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Savers [EERE]

    com Principal Investigator A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO 2 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: January 1, 2014 Planned end date: December 31, 2015 Key Milestones 1. Insulation value of R-6 per inch, pore geometry and orientation created by the foam extrusion process with 97% porosity (30 kg/m3 density) and full-scale manufacturing costs of < $0.40/ft 2 ; 12/31/14 2. Insulation value to R-9

  4. Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as

  5. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    2 Industry Use Shares of Mineral Fiber (Glass/Wool) Insulation (1) 1997 1999 2001 2003 2004 2005 Insulating Buildings (2) Industrial, Equipment, and Appliance Insulation Unknown Total Note(s): 1) Based on value of shipments. 2) Including industrial. Source(s): DOC, Annual Survey of Manufacturers: Value of Product Shipments 2005, Nov. 2006, Table 1, p. 54 for 2003-2005; and DOC, 2001 Annual Survey of Manufacturers: Value of Product Shipments, Dec. 2002, p. 65 for 1997-2001. 100% 100% 100% 100%

  6. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  7. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulationif its not kept to a low level, it could ultimately lead the insulation to fail. GEs low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  8. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: CHEM Word Cloud More Like This Full Text Journal Articles Find in ...

  9. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Minneapolis Residence

    SciTech Connect (OSTI)

    2013-10-01

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  10. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA); Cookson, Alan H. (Churchill, PA)

    1982-01-01

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  11. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Podorson, D.

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  12. Three-Dimensional Topological Insulators in I - III - VI 2 and...

    Office of Scientific and Technical Information (OSTI)

    and II - IV - V 2 Chalcopyrite Semiconductors Citation Details In-Document Search Title: Three-Dimensional Topological Insulators in I - III - VI 2 and II - IV - V 2 Chalcopyrite ...

  13. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOE Patents [OSTI]

    Blewer, Robert S. (Albuquerque, NM); Gullinger, Terry R. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  14. Compatibility of refrigerants and lubricants with electrical sheet insulation under retrofit conditions

    SciTech Connect (OSTI)

    Doerr, R.G.; Waite, T.D.

    1996-11-01

    To determine whether exposure to the original refrigerant/mineral oil would affect compatibility of sheet insulation with alternative refrigerant/lubricant after retrofit, sheet insulation was exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Most of the sheet insulation materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant at high temperature. This was attributed to incompatibility of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) sheet was initially observed, but 2048 subsequent tests under extremely dry conditions showed that embrittlement of the PET materials was attributed to moisture present during the exposure.

  15. Install Removable Insulation on Valves and Fittings - Steam Tip Sheet #17

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  16. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Broader source: Energy.gov [DOE]

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal...

  17. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2)

  18. Highly Insulating Windows for Improved Energy Efficiency and Reliability in Fenestration Applications

    SciTech Connect (OSTI)

    Stark, David

    2010-11-30

    EverSealed Windows, Inc. (ESW) agreed in early 2006, prior to the contract award, to add three additional deliverables to the Project (new Milestones 30, 31 and 32), and have the results of these three deliverables form the basis of the go/no-go decision for proceeding from BP1 to BP2. ESW completed all three milestones and the DOE agreed in November 2006 to continue the Project. ESW subsequently initiated work on BP2 and its two milestones. These were to (1) Assemble and test glass-to-metal bonded coupons to test the strength of ESW's glass-to-metal bonds (ESW's Test Vehicle 1 or TV1), and (2) to assemble and test the hermeticity of glass and metal packages (ESW's Test Vehicle 2 or TV2). ESW completed both milestones of BP2 in late 2010, demonstrating that its bonds were both strong enough and hermetic enough that vacuum insulating glass units could be assembled and survive a 40+ year service life in any climate in North America. Based on the accomplishments in BP-1, the DOE held a go/no-go meeting in Washington, DC in mid-November 2006 and moved the Project into Budget Period 2 (BP-2). During this go/no-go meeting, the DOE expressed a concern that ESW did not have a back-up plan or process should ESW be unable to make its diffusion bonding process more than adequate for the necessary bond strength and hermeticity of the seal. ESW suggested and volunteered to investigate using a glass frit (i.e., solder glass) as a back-up to its diffusion bonding of glass to oxidized metal.

  19. Phase coherence and Andreev reflection in topological insulator devices

    SciTech Connect (OSTI)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Prot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.

  20. Phase coherence and Andreev reflection in topological insulator devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less