Powered by Deep Web Technologies
Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hanford site seismic monitoring instrumentation plan  

SciTech Connect (OSTI)

This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.

Reidel, S.P.

1996-02-29T23:59:59.000Z

2

THE Q/U IMAGING EXPERIMENT INSTRUMENT  

SciTech Connect (OSTI)

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales({approx}1 Degree-Sign ). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l {approx} 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument.

Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Smith, K. M.; Bogdan, M. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K.; Reeves, R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Dumoulin, R. N.; Newburgh, L. B. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Monsalve, R.; Bustos, R. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Naess, S. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Nixon, G. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Vanderlinde, K. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Wehus, I. K. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Church, S. E. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Varian Physics Building, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Davis, R.; Dickinson, C., E-mail: newburgh@princeton.edu [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); and others

2013-05-01T23:59:59.000Z

3

Internship experience at Texas Instruments: the internship report  

E-Print Network [OSTI]

This report presents a survey of the author's internship experience with Texas Instruments from November 1980 to November 1981. The internship was spent in the Advanced Research and Development Division of the Digital Systems Group...

Glover, Kerry Cloyce, 1954-

2013-03-13T23:59:59.000Z

4

CrystalPlan: an Experiment Planning Tool for Crystallography  

SciTech Connect (OSTI)

Beam time at large user program based x-ray and neutron scattering facilities is in high demand and always at a premium. CrystalPlan, a highly efficient experiment planning software has been developed to maximize the use of available beamtime per sample per experiment. This program can calculate and optimize the data coverage of a crystal in reciprocal space in a single-crystal diffraction time-of- flight experiment. CrystalPlan can help a user build an experiment plan that will acquire the most data possible, with sufficient coverage but limited redundancy, therefore increasing scientific productivity. A user friendly GUI including a 3D viewer, an automated coverage optimizer, and an option to reorient the crystal for the measurement of selected hkls on specific detector positions are among its useful features. A sample use case of the program with the TOPAZ beamline at SNS will be presented.

Zikovsky, Janik L [ORNL; Peterson, Peter F [ORNL; Wang, Xiaoping [ORNL; Frost, Matthew J [ORNL; Hoffmann, Christina [ORNL

2011-01-01T23:59:59.000Z

5

Experiment #1 Maintenance of UV/vis Instruments  

E-Print Network [OSTI]

considerably worse than it should be. For these reasons, most companies have a preventive maintenance program that might be included in a preventive maintenance program for a UV-visible spectrometer. Your taskExperiment #1 Maintenance of UV/vis Instruments Objectives: 1. Learn how to use different UV

Nazarenko, Alexander

6

Virtual experiments: Combining realistic neutron scattering instrument and sample simulations  

SciTech Connect (OSTI)

A new sample component is presented for the Monte Carlo, ray-tracing program, McStas, which is widely used to simulate neutron scattering instruments. The new component allows the sample to be described by its material dynamic structure factor, which is separated into coherent and incoherent contributions. The effects of absorption and multiple scattering are treated and results from simulations and previous experiments are compared. The sample component can also be used to treat any scattering material which may be close to the sample and therefore contaminates the total, measured signal.

Farhi, E. [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France)], E-mail: farhi@ill.fr; Hugouvieux, V. [INRA, UR1268 Biopolymeres Interactions Assemblages, F-44300 Nantes (France); Johnson, M.R. [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Kob, W. [Laboratoire des Colloides, Verres et Nanomateriaux, Universite Montpellier II, place E. Bataillon, 34095 Montpellier Cedex 5 (France)

2009-08-01T23:59:59.000Z

7

Brookhaven National Laboratory meteorological services instrument calibration plan and procedures  

SciTech Connect (OSTI)

This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

Heiser .

2013-02-16T23:59:59.000Z

8

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

9

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

10

AGC-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

R. L. Bratton

2006-05-01T23:59:59.000Z

11

Web Service Composition as a Planning Task: Experiments using Knowledge-Based Planning  

E-Print Network [OSTI]

), in this paper, we present some empirical evidence to validate the effectiveness of us- ing knowledge-based planning techniques for solving WSC problems. In our experiments we utilize the PKS (Planning users to register/login prior to browsing resources. Some work has addressed the problem of planning un

Lespérance, Yves

12

SEA in local land use planning - first experience in the Alpine States  

SciTech Connect (OSTI)

In the Alpine area, planning decisions can result in far-reaching consequences because of the high sensitivity of the Alpine ecosystems. This article is based on two hypotheses: (1) The Alpine states/regions were aware of their sensitive environment and therefore recognized the necessity of introducing a comparable instrument to assess local land use planning. (2) By introducing this differentiated assessment tool, namely SEA, an increase in costs may be the consequence. However, better and more transparent planning can contribute to the enhancement of planning standards. To reveal the validity of these assumptions the legal implementation in the Alpine countries Austria, Germany, Italy and France was examined as well as first practical experience resulting from the determined procedures. The results of the implementation process in the four states were compared and discussed on the basis of selected process steps of SEA.

Jiricka, Alexandra [Institute of Institute of Landscape Development, Recreation and Conservation Planning (ILEN), Department of Spatial, Landscape and Infrastructure Science, University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Strasse 82, A-1190 Vienna (Austria)], E-mail: alexandra.jiricka@boku.ac.at; Proebstl, Ulrike [Institute of Institute of Landscape Development, Recreation and Conservation Planning (ILEN), Department of Spatial, Landscape and Infrastructure Science, University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Strasse 82, A-1190 Vienna (Austria)], E-mail: ulrike.proebstl@boku.ac.at

2008-05-15T23:59:59.000Z

13

Tools for Experiments in Planning Scott D. Anderson  

E-Print Network [OSTI]

Tools for Experiments in Planning Scott D. Anderson Adam Carlson David L. Westbrook David M. Hart determined by the scenario, and then travels through the network along the route speci ed by its SMR

Southern California, University of

14

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect (OSTI)

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

15

Should different impact assessment instruments be integrated? Evidence from English spatial planning  

SciTech Connect (OSTI)

This paper aims at providing empirical evidence to the question as to whether integration of different instruments is achieving its aim in supporting sustainable decision making, focusing on SEA inclusive sustainability appraisal (SA) and other impact assessments (IAs) currently used in English spatial planning. Usage of IAs in addition to SA is established and an analysis of the integration approach (in terms of process, output, and assessor) as well as its effectiveness is conducted. It is found that while integration enhances effectiveness to some extent, too much integration, especially in terms of the procedural element, appears to diminish the overall effectiveness of each IA in influencing decisions as they become captured by the balancing function of SA. -- Highlights: ? The usage of different impact assessments in English spatial planning is clarified. ? The relationship between integration approach and effectiveness is analyzed. ? Results suggest that integration does not necessarily lead to more sustainable decisions. ? Careful consideration is recommended upon process integration.

Tajima, Ryo, E-mail: tajima.ryo@nies.go.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G5-9 Nagatsuta-cho, Midori-ku, Yokoyama City, Kanagawa, 226-8502 (Japan)] [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G5-9 Nagatsuta-cho, Midori-ku, Yokoyama City, Kanagawa, 226-8502 (Japan); Fischer, Thomas B., E-mail: fischer@liverpool.ac.uk [Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, 74 Bedford Street South, Liverpool L69 7ZQ (United Kingdom)

2013-07-15T23:59:59.000Z

16

Evolving treatment plan quality criteria from institution-specific experience  

SciTech Connect (OSTI)

Purpose: The dosimetric aspects of radiation therapy treatment plan quality are usually evaluated and reported with dose volume histogram (DVH) endpoints. For clinical practicality, a small number of representative quantities derived from the DVH are often used as dose endpoints to summarize the plan quality. National guidelines on reference values for such quantities for some standard treatment approaches are often used as acceptance criteria to trigger treatment plan review. On the other hand, treatment prescription and planning approaches specific to each institution warrants the need to report plan quality in terms of practice consistency and with respect to institution-specific experience. The purpose of this study is to investigate and develop a systematic approach to record and characterize the institution-specific plan experience and use such information to guide the design of plan quality criteria. In the clinical setting, this approach will assist in (1) improving overall plan quality and consistency and (2) detecting abnormal plan behavior for retrospective analysis. Methods: The authors propose a self-evolving methodology and have developed an in-house prototype software suite that (1) extracts the dose endpoints from a treatment plan and evaluates them against both national standard and institution-specific criteria and (2) evolves the statistics for the dose endpoints and updates institution-specific criteria. Results: The validity of the proposed methodology was demonstrated with a database of prostate stereotactic body radiotherapy cases. As more data sets are accumulated, the evolving institution-specific criteria can serve as a reliable and stable consistency measure for plan quality and reveals the potential use of the ''tighter'' criteria than national standards or projected criteria, leading to practice that may push to shrink the gap between plans deemed acceptable and the underlying unknown optimality. Conclusions: The authors have developed a rationale to improve plan quality and consistency, by evolving the plan quality criteria from institution-specific experience, complementary to national standards. The validity of the proposed method was demonstrated with a prototype system on prostate stereotactic body radiotherapy (SBRT) cases. The current study uses direct and indirect DVH endpoints for plan quality evaluation, but the infrastructure proposed here applies to general outcome data as well. The authors expect forward evaluation together with intelligent update based on evidence-based learning, which will evolve the clinical practice for improved efficiency, consistency, and ultimately better treatment outcome.

Ruan, D.; Shao, W.; DeMarco, J.; Tenn, S.; King, C.; Low, D.; Kupelian, P.; Steinberg, M. [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

2012-05-15T23:59:59.000Z

17

FermiGrid - experience and future plans  

SciTech Connect (OSTI)

Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

2007-09-01T23:59:59.000Z

18

Nuclear Instruments and Methods in Physics Research A 499 (2003) 437468 The BRAHMS experiment at RHIC  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 499 (2003) 437­468 The BRAHMS experiment, USA f H. Niewodniczanski Institute of Nuclear Physics, Krak!ow, Poland g Cyclotron Institute, Texas A. Wadag , J. Westergaardb , A. Wielocha , I.S. Zgurad a M. Smoluchowski Institute of Physics, Jagiellonian

19

National Spherical Torus Experiment Upgrade Status and Plans*  

E-Print Network [OSTI]

fusion nuclear environment of copious neutrons to develop an experimental database on: ­ Nuclear is unique challenge for ST-based Fusion Nuclear Science Facility · NSTX-U goals: ­ Generate ~0.3-0.4MA fullNational Spherical Torus Experiment Upgrade ­ Status and Plans* J. Menard, PPPL For the NSTX-U Team

20

Improving Remedial Planning Performance: The Rattlesnake Creek Experience  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Planning the Next Generation of Arctic Ecosystem Experiments  

SciTech Connect (OSTI)

Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

22

ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program  

SciTech Connect (OSTI)

Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

1995-09-27T23:59:59.000Z

23

OECD MCCI project enhancing instrumentation for reactor materials experiments, Rev. 0 September 3, 2002.  

SciTech Connect (OSTI)

Reactor safety experiments for studying the reactions of a molten core (corium) with water and/or concrete involve materials at extremely high temperature. Such high temperature severely restricts the types of sensors that can be employed to measure characteristics of the corium itself. Yet there is great interest in improving instrumentation so that the state of the melt can be established with more precision. In particular, it would be beneficial to increase both the upper range limit and accuracy of temperature measurements. The poor durability of thermocouples at high temperature is also an important issue. For experiments involving a water-quenched melt, direct measurements of the growth rate of the crust separating the melt and water would be of great interest. This is a key element in determining the nature of heat transfer between the melt and coolant. Despite its importance, no one has been able to directly measure the crust thickness during such tests. This paper considers three specialized sensors that could be introduced to enhance melt characterization: (1) A commercially fabricated, single point infrared temperature measurement with the footprint of a thermowell. A lens assembly and fiber optic cable linked to a receiver and amplifier measures the temperature at the base of a tungsten thermowell. The upper range limit is 3000 C and accuracy is {+-}0.25% of the reading. (2) In-house development of an ultrasonic temperature sensor that would provide multipoint measurements at temperatures up to {approx}3000 C. The sensors are constructed from tungsten rods and have a high temperature durability that is superior to that of thermocouples. (3) In-house development of an ultrasonic probe to measure the growth rate of the corium crust. This ultrasonic sensor would include a tungsten waveguide that transmits ultrasonic pulses up through the corium melt towards the crust and detects reflections from the melt/crust interface. A measurement of the echo time delay would provide the location of the interface. These three sensors would provide a considerable upgrade of the instrumentation used in our reactor materials tests. The infracouple is a commercial product that could provide an immediate improvement in temperature measurements. The sensor could also serve to corroborate thermocouple data by providing a measurement based upon a different physical principle. The ultrasonic temperature sensor would involve a greater investment and longer time frame than the infracouple, but offers all the advantages of the infracouple along with miniaturization and the ability to measure at multiple locations. In addition, the UTS is the platform from which we would begin development of the crust detector. Of the three sensors, the crust detector requires the most effort and entails the greatest uncertainty. However, a real-time crust thickness measurement has never before been made and such data would be unique and of great benefit to reactor materials experiments.

Lomperski, S.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

24

SURA-WAVES experiments: calibration of the Cassini/RPWS/HFR instrumentation  

E-Print Network [OSTI]

by both spacecraft are well above the background noise. We use these joint measurements to calibrate by the WAVES instrument is pointed out. 1 Introduction Investigations of the near-Earth space environment/HFR instrument covers the SURA operating frequency range. Seven sessions of SURA transmissions were carried out

Cecconi, Baptiste

25

PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013  

SciTech Connect (OSTI)

The PHENIX Collaboration has developed a plan for the detailed investigation of quantum chromodynamics in the next decade. The demonstrated capabilities of the PHENIX experiment to measure rare processes in hadronic, leptonic and photonic channels, in combination with RHIC's unparalleled flexibility as a hadronic collider, provides a physics program of extraordinary breadth and depth. A superlative set of measurements to elucidate the states of both hot and cold nuclear matter, and to measure the spin structure of the proton has been identified. The components of this plan include: (1) Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium. (2) Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions. (3) Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions. Each of these fundamental fields of investigation will be addressed through a program of correlated measurements in some or all of the following channels: (1) Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production. (2) Direct photon, photon+jet and virtual photon production. (3) Light and heavy vector mesons. (4) Heavy flavor production. These measurements, together with the established PHENIX abilities to identify hadrons at low transverse momentum, to perform detailed centrality selections, and to monitor polarization and luminosity with high precision create a superb opportunity for performing world-class science with PHENIX for the next decade. A portion of this program is achievable using the present capabilities of PHENIX experimental apparatus, but the physics reach is considerably extended and the program made even more compelling by a proposed set of upgrades which include: (1) An aerogel and time-of-flight system to provide complete {pi}/K/p separation for momenta up to 10 GeV/c. (2) A vertex detector to detect displaced vertices from the decay of mesons containing charm or bottom quarks. (3) A hadron-blind detector to detect and track electrons near the vertex. (4) A micro-TPC to extend the range of PHENIX tracking in azimuth and pseudo-rapidity. (5) A forward detector upgrade for an improved muon trigger to preserve sensitivity at the highest projected RHIC luminosities. (6) A forward calorimeter to provide photon+jet studies over a wide kinematic range. The success of the proposed program is contingent upon several factors external to PHENIX. Implementation of the upgrades is predicated on the availability of R&D funds to develop the required detector technologies on a timely, and in some cases urgent, basis. The necessity for such funding, and the physics merit of the proposed PHENIX program, has been endorsed in the first meeting of BNL's Detector Advisory Committee in December, 2002. Progress towards the physics goals depends in an essential way on the development of the design values for RHIC luminosity, polarization and availability. An analysis based on the guidance from the Collider Accelerator Department indicates that moderate increases in the yearly running time lead to very considerable increases in progress toward the enunciated goals. Efficient access to the rarest probes in the proposed program is achieved via the order-of-magnitude increase in luminosity provided by RHIC-II.

ZAJC,W.ET. AL.

2003-11-30T23:59:59.000Z

26

The Knowledge Based Bio-Economy at work: from large scale experiences to instruments for rural and local development G. Henry and E.J. Trigo  

E-Print Network [OSTI]

The Knowledge Based Bio-Economy at work: from large scale experiences to instruments for rural BIO-ECONOMY AT WORK: FROM LARGE SCALE EXPERIENCES TO INSTRUMENTS FOR RURAL AND LOCAL DEVELOPMENT Guy Email: ejtrigo@gmail.com Abstract - The new bio-economy is increasingly seen as a workable alternative

Paris-Sud XI, Université de

27

Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols  

SciTech Connect (OSTI)

Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

Davidovits, Paul

2011-12-10T23:59:59.000Z

28

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

29

Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version  

SciTech Connect (OSTI)

The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the scan arm creates. Once a model, fiducial, and measurement files are created, a special program, called SScanSS combines the information and by simulation of the sample on the diffractometer can help plan the experiment before using neutron time. Finally, the sample is mounted on the relevant stress measurement instrument and the fiducial points are measured again. In the HFIR beam room, a laser tracker is used in conjunction with a program called CAM2 to measure the fiducial points in the NRSF2 instrument's sample positioner coordinate system. SScanSS is then used again to perform a coordinate system transformation of the measurement file locations to the sample positioner coordinate system. A procedure file is then written with the coordinates in the sample positioner coordinate system for the desired measurement locations. This file is often called a script or command file and can be further modified using excel. It is very important to note that this process is not a linear one, but rather, it often is iterative. Many of the steps in this guide are interdependent on one another. It is very important to discuss the process as it pertains to the specific sample being measured. What works with one sample may not necessarily work for another. This guide attempts to provide a typical work flow that has been successful in most cases.

Cornwell, Paris A [ORNL; Bunn, Jeffrey R [ORNL; Schmidlin, Joshua E [ORNL; Hubbard, Camden R [ORNL

2012-04-01T23:59:59.000Z

30

Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment  

SciTech Connect (OSTI)

This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

Allwine, K Jerry; Flaherty, Julia E.

2007-08-01T23:59:59.000Z

31

Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source  

SciTech Connect (OSTI)

The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

Zolnierczuk, Piotr A [ORNL; Vacaliuc, Bogdan [ORNL; Sundaram, Madhan [ORNL; Parizzi, Andre A [ORNL; Halbert, Candice E [ORNL; Hoffmann, Michael C [ORNL; Greene, Gayle C [ORNL; Browning, Jim [ORNL; Ankner, John Francis [ORNL

2013-01-01T23:59:59.000Z

32

Implementation Plan: Jasper Management Prestart Review (Surrogate Material Experiments)  

SciTech Connect (OSTI)

Able Site is located 24 km northwest of Mercury on the Nevada Test Site. The Nevada Test Site is approximately 105 km northwest of Las Vegas, NV. Major facilities at Able Site include Buildings 5100,5180, and 5191. Significant external interfaces for the JASPER site include the electrical system, wastewater system, communications systems, and water supply system, which provides both potable and fire-protection water. Support services, which are provided on the Nevada Test Site, include medical, emergency response (NTS Fire Department), radiation protection, industrial hygiene, and waste management. Although JASPER will ultimately be used for actinide research, the start-up process requires system demonstration using surrogates in place of the actinide targets. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. A second MPR will be conducted before actinide experiments are executed. This document addresses implementation requirements for only the first MPR. This first review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before this formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating special nuclear material (SNM) into future experiments, the team will convene again as part of the process of authorizing those activities. A summary of the review schedule is provided.

Cooper, W.E.

2000-09-29T23:59:59.000Z

33

REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor  

SciTech Connect (OSTI)

With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)

Lambert, T.; Muller, E.; Federici, E. [CEA - Nuclear Energy Div., DEN - Fuel Research Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Rosenkrantz, E.; Ferrandis, J. Y. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Tiratay, X.; Silva, V. [CEA, Nuclear Energy Div., DEN, Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France); Machard, D. [EDF, SEPTEN, F-69628 Villeurbanne (France); Trillon, G. [AREVA-NP, F-69456 Lyon (France)

2011-07-01T23:59:59.000Z

34

Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.

Cooper, W.E.

2000-09-29T23:59:59.000Z

35

Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.

Cooper, W E

2000-12-05T23:59:59.000Z

36

Experiment Science Plan D Turner D Parsons B Geerts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRDEvanExecutiveSRD-13ExperiencesReportPlains

37

National Spherical Torus Experiment (NSTX) and Planned Research  

SciTech Connect (OSTI)

The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in Fig.1. The device is designed to study plasmas with major radius up to 85 cm, minor radius up to 68 cm, elongation up to 2, with flexibility in forming double-null, single-null, and inboard limited plasmas. The nominal operation calls for a toroidal field of 0.3 T for 5 s at the major radius, and a plasma current at 1 MA with q {approximately} 10 at edge. It features a compact center stack containing the inner legs of the toroidal field coils, a full size solenoid capable of delivering 0.6 Wb induction, inboard vacuum vessel, and composite carbon tiles. The center stack can be replaced without disturbing the main device, diagnostics, and auxiliary systems. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall conditioning techniques are also planned.

Kaye, S.; Neumeyer, C.; Ono, M.; Peng, M.

1999-11-13T23:59:59.000Z

38

The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

MICE Collaboration

2012-03-23T23:59:59.000Z

39

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Hallbert, Bruce; Thomas, Ken

2014-07-01T23:59:59.000Z

40

Preparing Cities for Climate Change: An International Comparative Assessment of Urban Adaptation Planning. MIT-ICLEI Climate Adaptation Survey Instrument  

E-Print Network [OSTI]

The research objective of this project is to conduct an international comparative assessment of urban adaptation planning. Cities throughout the world are experiencing chronic problems and extreme events that are being ...

Carmin, JoAnn

2014-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Preparing Cities for Climate Change: An International Comparative Assessment of Urban Adaptation Planning. Semi-Structured Interview Instrument  

E-Print Network [OSTI]

The research objective of this project is to conduct an international comparative assessment of urban adaptation planning. Cities throughout the world are experiencing chronic problems and extreme events that are being ...

Carmin, JoAnn

2014-09-13T23:59:59.000Z

42

STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan  

SciTech Connect (OSTI)

During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

2010-09-29T23:59:59.000Z

43

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWintergovInstrumentsAirborne

44

EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY  

SciTech Connect (OSTI)

Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

Michelle D. Shinn

2007-08-26T23:59:59.000Z

45

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect (OSTI)

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

46

Nuclear Instruments and Methods in Physics Research A 577 (2007) 223230 Neutralized drift compression experiments with a  

E-Print Network [OSTI]

-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses radius and pulse length of $1 ns would be suitable as a driver for Warm Dense Matter experiments

Gilson, Erik

47

Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

NONE

1996-09-01T23:59:59.000Z

48

Exertion instruments  

E-Print Network [OSTI]

This dissertation describes the research, development and reasoning behind a family of musical instruments called Exertion Instruments. They use inline electrical generators to run a synthesizer and an amplifier while ...

Vawter, Noah (Noah Theodore)

2011-01-01T23:59:59.000Z

49

An instrumental and numerical method to determine the hydrogenic ratio in isotopic experiments in the TJ-II stellarator  

SciTech Connect (OSTI)

The isotope effect is an important topic that is relevant for future D-T fusion reactors, where the use of deuterium, rather than hydrogen, may lean to improved plasma confinement. An evaluation of the ratio of hydrogen/deuterium is needed for isotope effect studies in current isotopic experiments. Here, the spectral range around H{sub ?} and D{sub ?} lines, obtained with an intensified multi-channel detector mounted to a 1-m focal length spectrometer, is analyzed using a fit function that includes several Gaussian components. The isotopic ratio evolution for a single operational day of the TJ-II stellarator is presented. The role of injected hydrogen by Neutral Beam Injection heating is also studied.

Baciero, A., E-mail: alfonso.baciero@ciemat.es; Zurro, B. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Martínez, M. [Departamento de Física, Universidad Carlos III de Madrid, Leganés (Spain)

2014-11-15T23:59:59.000Z

50

Experiments Integrate ASP-based Planning and Diagnosis with POMDPs for  

E-Print Network [OSTI]

-POMDP: Integrating Non- monotonic Logical Reasoning and Probabilistic Planning on Mobile Robots. International. Eric Hequet, Shiqi Zhang, and Sri Harsha Atluri, as well as the REU program coordinators Dr. Susan

Sridharan, Mohan

51

Well test plan for the City of El Centro utility core field experiment  

SciTech Connect (OSTI)

The following are included in the well test plan: well test program schedule and order of work; the injection well drilling program details; the production well drilling program details; and long-term (30-day) production testing program details. (MHR)

Not Available

1981-06-15T23:59:59.000Z

52

Experiments in real time path planning for a small unmanned helicopter using mixed integer linear programming  

E-Print Network [OSTI]

We use mathematical programming to perform simulated and actual flight experiments with the MIT autonomous helicopter platform. The experimental platform mechanical hardware, avionics and software architecture are described. ...

Martinos, Ioannis, 1977-

2003-01-01T23:59:59.000Z

53

Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned  

SciTech Connect (OSTI)

Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

2012-05-15T23:59:59.000Z

54

Post-irradiation Examination of the AGR-1 Experiment: Plans and Preliminary Results  

SciTech Connect (OSTI)

Abstract – The AGR-1 irradiation experiment contains seventy-two individual cylindrical fuel compacts (25 mm long x 12.5 mm diameter) each containing approximately 4100 TRISO-coated uranium oxycarbide fuel particles. The experiment accumulated 620 effective full power days in the Advanced Test Reactor at the Idaho National Laboratory with peak burnups exceeding 19% FIMA. An extensive post-irradiation examination campaign will be performed on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature accident testing. PIE experiments will include dimensional measurements of fuel and irradiated graphite, burnup measurements, assessment of fission metals release during irradiation, evaluation of coating integrity using the leach-burn-leach technique, microscopic examination of kernel and coating microstructures, and accident testing of the fuel in helium at temperatures up to 1800°C. Activities completed to date include opening of the irradiated capsules, measurement of fuel dimensions, and gamma spectrometry of selected fuel compacts.

Paul Demkowicz

2001-10-01T23:59:59.000Z

55

ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan  

SciTech Connect (OSTI)

The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

2011-04-11T23:59:59.000Z

56

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation

57

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect (OSTI)

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

1981-09-01T23:59:59.000Z

58

A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab, aims to transform our understanding of neutrinos  

E-Print Network [OSTI]

June 2013 A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab Accelerator Laboratory (Fermilab), located in Batavia, Illinois, and the Sanford Underground Research Facility to understanding neutrinos and their role in the universe. The distance between Fermilab and the Sanford Lab is 800

Quigg, Chris

59

Semi-inclusive DIS Experiments Using Transversely Polarized Targets in Hall-A: Current Results and Future Plans  

SciTech Connect (OSTI)

Measurement of single (SSA) and double spin asymmetries (DSA) in semi-inclusive DIS reactions using polarized targets provide a powerful method to probe transverse momentum dependent parton distribution functions (TMDs). In particular, the experimentally measured SSA on nucleon targets can help in extracting the transversity and Sivers distribution functions of u and d-quarks. Similarly, the measured DSA are sensitive to the quark spin-orbital correlations, and provide an access to the TMD parton distribution function (g{sub 1T} ). A recent experiment conducted in Hall-A Jefferson Lab using transversely polarized {sup 3}He provide first such measurements on neutron target. The measurement was performed using 5.9 GeV beam from CEBAF and measured the target SSA/DSA in the SIDIS reaction {sup 3}He{sup {dagger}}(e,e'{pi}{sup {+/-}} )X. The kinematical range, x = 0.19 ~ 0.34, at Q{sup 2} = 1.77 ~ 2.73 (GeV/c){sup 2} , was focused on the valence quark region. The results from this measurement along with our plans for future high precision measurements in Hall-A are presented.

Kalyan Allada

2012-12-01T23:59:59.000Z

60

Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

62

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

63

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

64

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

65

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

66

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

67

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

68

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

69

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

70

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment

71

In Space Telescopes and Instruments V, Bely & Breckinridge, eds., Proc. SPIE 3356, Kona, HI, March 1998. A Phase Diversity Experiment to Measure Piston Misalignment on  

E-Print Network [OSTI]

1998. A Phase Diversity Experiment to Measure Piston Misalignment on the Segmented Primary Mirror of an experiment to measure piston errors on the Keck II primary segmented mirror, through atmospheric turbulence, using phase­diverse phase retrieval. The segment piston errorss are separated from the random turbulence

Löfdahl, Mats

72

ARM - Instrument -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP ARM

73

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter

74

Experiences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRDEvanExecutiveSRD-13Experiences with

75

Low activated incore instrument  

DOE Patents [OSTI]

Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

Ekeroth, Douglas E. (Delmont, PA)

1994-01-01T23:59:59.000Z

76

Low activated incore instrument  

DOE Patents [OSTI]

Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

Ekeroth, D.E.

1994-04-19T23:59:59.000Z

77

Candidate Selection Instrument  

Broader source: Energy.gov [DOE]

The candidate selection instrument is designed to take the guesswork out of selecting candidates for the various career development programs of interest. The instrument is straightforward and...

78

Evaluating musical instruments  

SciTech Connect (OSTI)

Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

Campbell, D. Murray

2014-04-01T23:59:59.000Z

79

Career Map: Instrumentation Coordinator  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

80

Employment Opportunity at Plan-It Geo Natural Resources Technician ($13-16/hour dep. on qualifications/experience)  

E-Print Network [OSTI]

, water resources analysis, and decision support systems. We are seeking a full-time, entry-level team or background in forestry, urban ecology, ecosystems management, water/natural resources inventory, or land use involving GIS, remote sensing, and web- based solutions for urban forest planning, cost/benefit analysis

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The QUIET Instrument  

SciTech Connect (OSTI)

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

Bischoff, C.; et al.

2012-07-01T23:59:59.000Z

82

The MICE PID Instrumentation  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight stations, two Aerogel Cerenkov detectors and a KLOE-like calorimeter has been constructed in order to keep beam contamination ($e, \\pi$) well below 1%. The MICE time-of-flight system will measure timing with a resolution better than 70 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and electron backgrounds from RF dark current.

M. Bonesini

2008-10-02T23:59:59.000Z

83

The MICE PID Instrumentation  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight stations, two Aerogel Cerenkov detectors and a KLOE-like calorimeter has been constructed in order to keep beam contamination ($e, \\pi$) well below 1%. The MICE time-of-flight system will measure timing with a resolution better than 70 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and electron backgrounds from RF dark current.

Bonesini, M

2008-01-01T23:59:59.000Z

84

Management Plan Management Plan  

E-Print Network [OSTI]

; and 5) consistency with the Endangered Species Act and Clean Water Act. In addition, the management plan Plan, Management Plan Page MP­ 1 #12;Management Plan water quality standards, instream flows, privateManagement Plan Management Plan "Management and restoration programs for native salmonids have

85

Applications of transputers to astronomical instruments  

SciTech Connect (OSTI)

Parallel processing techniques based on transputers are being applied to astronomical instruments under development. On the COSMOS photographic plate measuring machine, a data farm of transputers allows backgrounds to be determined in realtime instead of requiring 1.5 hours of offline VAX processing per plate. Transputers have been adopted as the embedded processors in a submillimetre bolometer array instrument and their use is planned in demanding future applications such as thermal infrared array instruments and data compression applied to remote observing. The techniques of interfacing transputers to external hardware and to VAX/VMS computers are discussed.

Stewart, J.M.; Beard, S,M.; Kelly, B.D.; Paterson, M.J. (Royal Observatory, Edinburgh (UK))

1990-04-01T23:59:59.000Z

86

Kids with disabilities inspire a musical instrument  

ScienceCinema (OSTI)

The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

Daily, Dan; Pfeifer, Kent

2014-02-10T23:59:59.000Z

87

Development of workflow planning software and a tracking study of the decay B+- --> J / Psi at the D0 Experiment  

SciTech Connect (OSTI)

A description of the development of the mc{_}runjob software package used to manage large scale computing tasks for the D0 Experiment at Fermilab is presented, along with a review of the Digital Front End Trigger electronics and the software used to control them. A tracking study is performed on detector data to determine that the D0 Experiment can detect charged B mesons, and that these results are in accordance with current results. B mesons are found by searching for the decay channel B{sup {+-}} {yields} J/{psi}K{sup {+-}}.

Evans, David Edward; /Lancaster U.

2003-09-01T23:59:59.000Z

88

AMIE (ARM MJO Investigation Experiment): Observations of the Madden-Julian Oscillation for Modeling Studies Science Plan  

SciTech Connect (OSTI)

Deep convection in the tropics plays an important role in driving global circulations and the transport of energy from the tropics to the mid-latitudes. Understanding the mechanisms that control tropical convection is a key to improving climate modeling simulations of the global energy balance. One of the dominant sources of tropical convective variability is the Madden-Julian Oscillation (MJO), which has a period of approximately 30–60 days. There is no agreed-upon explanation for the underlying physics that maintain the MJO. Many climate models do not show well-defined MJO signals, and those that do have problems accurately simulating the amplitude, propagation speed, and/or seasonality of the MJO signal. Therefore, the MJO is a very important modeling target for the ARM modeling community geared specifically toward improving climate models. The ARM MJO Investigation Experiment (AMIE) period coincides with a large international MJO initiation field campaign called CINDY2011 (Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011) that will take place in and around the Indian Ocean from October 2011 to January 2012. AMIE, in conjunction with CINDY2011 efforts, will provide an unprecedented data set that will allow investigation of the evolution of convection within the framework of the MJO. AMIE observations will also complement the long-term MJO statistics produced using ARM Manus data and will allow testing of several of the current hypotheses related to the MJO phenomenon. Taking advantage of the expected deployment of a C-POL scanning precipitation radar and an ECOR surface flux tower at the ARM Manus site, we propose to increase the number of sonde launches to eight per day starting in about mid-October of the field experiment year, which is climatologically a period of generally suppressed conditions at Manus and just prior to the climatologically strongest MJO period. The field experiment will last until the end of the MJO season (typically March), affording the documentation of conditions before, during, and after the peak MJO season. The increased frequency of sonde launches throughout the experimental period will provide better diurnal understanding of the thermodynamic profiles, and thus a better representation within the variational analysis data set. Finally, a small surface radiation and ceilometer system will be deployed at the PNG Lombrum Naval Base about 6 km away from the ARM Manus site in order to provide some documentation of scale variability with respect to the representativeness of the ARM measurements.

Long, C; Del Genio, A; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Klein, S; Leung, L Ruby; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Wu, X; Xie, S

2010-03-22T23:59:59.000Z

89

Intensity Frontier Instrumentation  

E-Print Network [OSTI]

This report summarizes findings of the 2013 Snowmass Community Summer Study Instrumentation Frontier's subgroup on the Intensity Frontier. This report is directed at identifying instrumentation R&D needed to support particle physics research over the coming decades at the Intensity Frontier.

S. H. Kettell; R. A. Rameika; R. S. Tschirhart

2013-09-26T23:59:59.000Z

90

Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

2002-02-26T23:59:59.000Z

91

Space Instrument Realization (ISR-5)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Space Instrument Realization Providing expertise to support the design and fabrication of space-based custom instrumentation Contacts Group Leader Amy Regan Email Staff...

92

Instrument Technique Staff Assisted &  

E-Print Network [OSTI]

Nanophoton Raman 11 Raman Spectroscopy $150 $175 Newport Solar Simulator Solar Simulator $150 $175 Nicolet $175 CM Furnace Furnace $65 $120 CNT Furnace Furnace $65 $120 Desert Cryo Probe Station Probe Station will be added depending on your funding instrument or agreement. #12;Lead Furnace Furnace $65 $120 Lindberg 1

Braun, Paul

93

AC resistance measuring instrument  

DOE Patents [OSTI]

An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

Hof, P.J.

1983-10-04T23:59:59.000Z

94

The localization of instrumental learning within the spinal cord  

E-Print Network [OSTI]

Spinal neurons of surgically transected rats can support a simple form of instrumental learning. Rats learn to maintain leg flexion as a response to shock. The present experiments localized the region of the spinal cord that mediates this learning...

Liu, Grace Alexandra Tsu-Chi

2013-02-22T23:59:59.000Z

95

ARM - Instrumentation Workshop 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDC documentationgovInstrumentstsigovInstrumentswsiFacilityInstrumentation

96

Response to 'Comment on 'Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS)'' [Rev. Sci. Instrum. 83, 107101 (2012)  

SciTech Connect (OSTI)

Recently [S. Magazu et al., Rev. Sci. Instrum. 82, 105115 (2011)] we have proposed a new method for characterizing, by neutron scattering, the dynamical properties of complex material systems, such as, the ones of interest in the biophysical field. This approach called Resolution Elastic Neutron Scattering, in short RENS, is based on the detection of the elastically scattered neutron intensity as a function of the instrumental energy resolution. By experimental, theoretical, and numerical findings, we have pointed out that an inflection point occurs in the elastic intensity when the system relaxation time approaches the instrumental energy resolution time. This approach, differently from quasi-elastic neutron scattering (QENS), gives the chance to evaluate the system relaxation times without using pre-defined models that can be wrong and/or misleading. Here, we reply to a Comment on the above-mentioned main paper in which Wuttke proposes a different approach to evaluate the above-mentioned inflection point; on this regard, it should be noticed that the existence of the inflection point, which is the main topic of our work, is not questioned and that the approach proposed by Wuttke in the Comment, although valid for a class of dynamical processes, is not applicable when different and distinct processes occur simultaneously at different time scale.

Magazu, Salvatore; Migliardo, Federica; Benedetto, Antonio [Dipartimento di Fisica, Universita di Messina, C.da Papardo n Degree-Sign 31, P.O. Box 55, Vill. S. Agata 98166 Messina (Italy)

2012-10-15T23:59:59.000Z

97

1) Start the Instrument and Software 2 1.1 Start the Instrument 2  

E-Print Network [OSTI]

adhesive film. ColorofLeftLED ColorofRightLED StatusofInstrument Orange *flashing* Orange *flashing on the computer workstation (if it is not already on). 2. Login to Windows. a. User name: operator b. Password: LC Window will appear. Click on New Ex- periment. 2. The software will open the New Experiment Window

Gruner, Daniel S.

98

TMT Science and Instruments  

E-Print Network [OSTI]

To meet the scientific goals of the Thirty Meter Telescope Project, full diffraction-limited performance is required from the outset and hence the entire observatory is being designed, as a system, to achieve this. The preliminary design phases of the telescope and the first light adaptive optic facility are now approaching completion so that much better predictions of the system performance are possible. The telescope design and instrumentation are summarized in this presentation, with a brief description of some of the scientific programs that are foreseen.

David Crampton; Luc Simard; David Silva

2008-01-23T23:59:59.000Z

99

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystemCentral FacilityInstruments SGP

100

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystemCentral FacilityInstruments

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Instrument Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList ofgovInstrumentsContacts

102

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

103

ARM - RHUBC II Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RHUBC-II Home RHUBC

104

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

105

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links AzoresInstruments

106

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions RelatedInactiveInstruments NSA

107

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions RelatedInactiveInstruments

108

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience QuestionsInactiveInstruments TWP Related

109

WNR Instrument Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchivesInstrument

110

ARM - Instrument - 50rwp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAXAssociatedgovInstruments50rwp

111

ACQUISITION PLANNING  

Office of Environmental Management (EM)

PLANNING Guiding Principles Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory,...

112

Instrumented Pipeline Initiative  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

113

388 Biomedical Instrumentation & Technology September/October 2011 Columns and Departments  

E-Print Network [OSTI]

388 Biomedical Instrumentation & Technology September/October 2011 Columns and Departments When) as a biomedical equipment technician in 1999, he remembers being presented with the organization's strategic plan written permission from AAMI. #12;389Biomedical Instrumentation & Technology September/October 2011

Hayden, Nancy J.

114

Radioisotope thermoelectric generator transportation system subsystem 143 software development plan  

SciTech Connect (OSTI)

This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

King, D.A.

1994-11-10T23:59:59.000Z

115

Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994  

SciTech Connect (OSTI)

The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

Schneider, J.M.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

1993-12-01T23:59:59.000Z

116

Review of Commercial Grade Dedication Plans for the Safety Instrumente...  

Broader source: Energy.gov (indexed) [DOE]

Review Board William Eckroade John Boulden Thomas Staker Michael Kilpatrick George Armstrong Al Gibson Robert Nelson Independent Oversight Site Lead for SRS Phil Aiken...

117

Open Platform of Climate-Smart Planning Instruments | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy

118

CLEAN-Linking International Instruments to Support Low Emission Planning  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: EnergyCECGSeries Jump

119

CIWS-FW: a Customizable InstrumentWorkstation Software Framework for instrument-independent data handling  

E-Print Network [OSTI]

The CIWS-FW is aimed at providing a common and standard solution for the storage, processing and quick look at the data acquired from scientific instruments for astrophysics. The target system is the instrument workstation either in the context of the Electrical Ground Support Equipment for space-borne experiments, or in the context of the data acquisition system for instrumentation. The CIWS-FW core includes software developed by team members for previous experiments and provides new components and tools that improve the software reusability, configurability and extensibility attributes. The CIWS-FW mainly consists of two packages: the data processing system and the data access system. The former provides the software components and libraries to support the data acquisition, transformation, display and storage in near real time of either a data packet stream and/or a sequence of data files generated by the instrument. The latter is a meta-data and data management system, providing a reusable solution for the...

Conforti, Vito; Bulgarelli, Andrea; Gianotti, Fulvio; Franceschi, Enrico; Nicastro, Luciano; Zoli, Andrea; Dadina, Mauro; Smart, Ricky; Morbidelli, Roberto; Frailis, Marco; Sartor, Stefano; Zacchei, Andrea; Lodi, Marcello; Cirami, Roberto; Pasian, Fabio

2014-01-01T23:59:59.000Z

120

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 1 October 6, 2011 Submitted by: R. Strykowsky NSTX Upgrade Project Manager _____________________________ M. Williams Associate Director, PPPL

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 3 October 12, 2012 Administrative Change Submitted by: ______________________________ R. Strykowsky NSTX Upgrade Project Manager Anthony Indelicato

Princeton Plasma Physics Laboratory

122

Future Cosmic Microwave Background Experiments  

E-Print Network [OSTI]

We summarise some aspects of experiments currently being built or planned, and indulge in wild speculation about possibilities on the more distant horizon.

Mark Halpern; Douglas Scott

1999-04-19T23:59:59.000Z

123

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP

124

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP

125

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP

126

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOPDatastreamsCloud

127

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM

128

ARM - Instrument Datastreams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCMDatastreamsSurface

129

BNL | ATF Specialized Instrumentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES Reports EnergyExperimentUsers'

130

BNL | ATF Specialized Instrumentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES Reports EnergyExperimentUsers'Masking

131

The Sellafield Plan - 12458  

SciTech Connect (OSTI)

The Sellafield Performance Plan represents the start of a new era for the Sellafield site. It is a key driver in the Nuclear Management Partners mission to make Sellafield safer, cleaner, more productive, more cost effective and a better neighbour. When published in summer 2011, the Sellafield Performance Plan set out exactly what work would be completed at Sellafield between 2010/11 and 2025/26, how all of the facilities on the site interact, and what new facilities would be needed in order to deliver the risk and hazard reduction mission. The plan is the first credible and underpinned lifetime plan for the Sellafield site - the most complex part of the UK's civil nuclear estate. Under the Sellafield Performance Plan there are projected to be more jobs longer creating opportunities for the site, its workforce and the economic stability of West Cumbria. The Sellafield Ltd performance plan sets out how NMP will apply their global experience to improve operations, generate efficiencies and deliver detailed programmes of work with the aim of accelerating decommissioning and providing value for money. Successful delivery of the plan will also ensure the site continues to effectively operate critical national infrastructure that supports the UK's energy programme, and maintains the safe and secure management and storage of nuclear materials. The NDA and UK Government have demonstrated their confidence in NMP and Sellafield Ltd's capability to deliver this plan by providing the highest-ever Annual Site Funding Limit for the site in 2011/12. The Sellafield Performance Plan also creates both the foundation and the environment for a vibrant West Cumbrian economy through significant opportunities for the local supply chain and real prospects for further inward investment. By working flexibly and accelerating the decommissioning programme, the plan provides the opportunity for significant retraining to adapt to future challenges on the site and for other potential new nuclear missions in West Cumbria. (authors)

Irving, Iain [Stakeholder Relations Director, Sellafield Ltd, Cumbria (United Kingdom)

2012-07-01T23:59:59.000Z

132

Planning for an energy-efficient future: The experience with implementing energy conservation programs for new residential and commercial buildings: Volume 1  

SciTech Connect (OSTI)

This report is one of a series of program experience reports that seek to synthesize current information from both published and unpublished sources to help utilities, state regulatory commissions, and others to identify, design, and manage demand-side programs. This report evaluates the experience with implementing programs promoting energy efficiency in new residential and commercial construction. This investigation was guided by our perspective on how programs address the barriers to widespread adoption of energy-efficient design and better end-use technologies in new buildings. We considered four types of barriers: lack of information, high initial costs, degree of technological development, and perceived risk. We developed a typology that reflects different approaches to overcome these barriers to energy-efficient construction. 234 refs., 5 tabs.

Vine, E.; Harris, J.

1988-09-01T23:59:59.000Z

133

Simulated pion photoproduction experiments  

E-Print Network [OSTI]

Introduction: In this paper, I will be assessing the capabilities of the Neutral Meson Spectrometer (NMS) detector in a planned experiment at the High Intensity Gamma Source at Duke University. I will review the relevant ...

Howe, Ethan (Ethan Gabriel Grief)

2005-01-01T23:59:59.000Z

134

Measurements for the JASPER program In-Vessel Fuel Storage experiment  

SciTech Connect (OSTI)

The In-Vessel-Fuel-Storage (IVFS) experiment was conducted at the Oak Ridge National Laboratory`s (ORNL) Tower Shielding Facility (TSF) during the first nine months of 1991 as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) that was started in 1986. This is the fourth in a series of eight experiments that were planned, all of which are intended to provide support in the development of current reactor shield designs proposed for liquid metal reactor (LMR) systems both in Japan and the United States. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Development Corporation (PNC). This document provides a description of the instrumentation and experimental configuration, test data, and data analysis.

Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Shono, A. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)] [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

1992-01-01T23:59:59.000Z

135

Integration of Biodiversity into National Forestry Planning:...  

Open Energy Info (EERE)

Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration...

136

Research Report Hedonic and Instrumental  

E-Print Network [OSTI]

Mitchell,1 and James J. Gross2 1 Boston College and 2 Stanford University ABSTRACT--What motivates, & Rodriguez, 1989). Such instrumental motives might play a role in the regulation of emotion (Parrott, 1993

Gross, James J.

137

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

2000-12-05T23:59:59.000Z

138

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

2005-01-27T23:59:59.000Z

139

Strategic Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a single BPA data repository * Data quality improvements * Improve model alignment with WECC planning data * Improve WECC base case coordination * Align the BPA data model with...

140

Site scientific mission plan for the southern Great Plains CART site, January--June 1998  

SciTech Connect (OSTI)

The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Site scientific mission plan for the southern Great Plain CART site July-December 1997.  

SciTech Connect (OSTI)

The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

1997-08-28T23:59:59.000Z

142

Readiness Issues for Emergency Response Instrumentation  

SciTech Connect (OSTI)

Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

C.A. Riland; D.R. Bowman; R.J. Tighe

1999-03-01T23:59:59.000Z

143

Solar Energy Research Center Instrumentation Facility  

SciTech Connect (OSTI)

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

144

Strategic Energy Management Plan for the 1990's  

E-Print Network [OSTI]

This paper describes the strategic energy management plan implemented by the Defense Systems and Electronics Group (DSEG) of Texas Instruments (TI) to enable it to meet its energy management challenge into the 1990's. The strategic energy management...

Fiorino, D. P.; Priest, J. W.

1987-01-01T23:59:59.000Z

145

Nuclear and fundamental physics instrumentation for the ANS project  

SciTech Connect (OSTI)

This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs.

Robinson, S.J. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics; Raman, S.; Arterburn, J.; McManamy, T.; Peretz, F.J. [Oak Ridge National Lab., TN (United States); Faust, H. [Institut Laue-Langevin, 38 - Grenoble (France); Piotrowski, A.E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

1996-05-01T23:59:59.000Z

146

Instrument development continues in Oak Ridge  

SciTech Connect (OSTI)

Peer review panels composed of 80 external scientists recently visited Oak Ridge National Laboratory (ORNL) to review almost 700 proposals for experiments on 23 instruments at the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR). These were proposed for the time period from January-June 2012. About 40% of the proposals were approved for beam time and 20% were placed on an alternate list if time becomes available. The Hybrid Spectrometer HYSPEC at SNS began its commissioning in September 2011. HYSPEC is otpimized for studying low energy dynamics in single-crystal samples using a broad variety of sample environments, and is equipped with a polarization analysis capability. It is expected to be available for users on a limited basis in the second half of 2012. The detector tank of CORELLI has been installed on beamline 9 at SNS. Now that the tank is in place, banks of neutron detectors and boron carbide shielding will be installed around the interior. CORELLI is optimized to probe complex disorder in crystalline materials through diffuse scattering from single-crystal samples. It will begin commissioning in 2014. CORELLI is one of four instruments being developed under the SING II (SNS Instruments Next Generation II) project. The others are the Macromolecular Neutron Diffractometer (MANDI), the Vibrational Spectrometer (VISION, scheduled to begin commissioning in 2012), and the Time of Flight Ultra Small Angle Neutron Scattering Instrument (TOF-USANS). The single crystal neutron diffractometer IMAGINE, was deliverd to HFIR in October 2011. Preliminary testing has been carried out. IMAGINE will provide atomic resolution information on chemical, organic, metallo-organic and protein single crystals that will enable their chemical, physical and biological structure and function to be understood. This instrument will benefit scientists with interests in pharmaceuticals, minerals and other inorganic crystals, small molecules, molecular organo-metallic crystals and metal-organic frameworks (MOFs) molecular crystal structures. The quasi-Laue geometry, combined with a large solid angle detector, will enable rapid data collection from crystals with volume < 1mm{sup 1} and unit cell < 100 {angstrom}. Construction and installation of the optical system is in progress. Commissioning is expected to start in April 2012.

Ekkebus, Allen E [ORNL

2012-01-01T23:59:59.000Z

147

Preliminary simulations of planned experiments to study the impact of trace gases on the capacity of the Weyburn-Midale field to store carbon dioxide  

SciTech Connect (OSTI)

The CO{sub 2} stream injecting into the Weyburn-Midale field can be generally classified as a reducing stream with residual H{sub 2}S and low-molecular weight hydrocarbons. The composition of the CO{sub 2} gas stream from the Dakota Gasification Company is reported to be 95% CO{sub 2}, 4% hydrocarbons, and 1% H{sub 2}S by volume (Huxley 2006). In addition to the H{sub 2}S introduced at the injection wells, significant concentrations of H{sub 2}S are thought to have been produced in-situ by sulfate reducing bacteria from previous water floods for enhanced oil production. Produced gas compositions range in H{sub 2}S concentrations from 1 to 6 volume percent. The produced gas, including the trace impurities, is re-injected into the field. Although there is no evidence for inorganic reduction of SO{sub 4}{sup 2-} to H{sub 2}S at the Weyburn-Midale field, Sitchler and Kazuba (2009) suggest that SO{sub 4}{sup 2-} can be inorganically reduced to elemental sulfur in highly reducing environments based on a natural analog study of the Madison Formation in Wyoming. They propose that elevated concentrations of CO{sub 2} dissolve anhydrite to produce the sulfate that is then reduced. Oxidizing CO{sub 2} streams with residual O{sub 2} and SO{sub 2} typical of streams captured from oxyfuel and post combustion processes are not presently an issue at the Weyburn-Midale field. However it is possible that the oxidizing CO{sub 2} streams may be injected in the future in carbonate reservoirs similar to the Weyburn-Midale field. To date there are few modeling and experimental studies that have explored the impact of impurity gases in CO{sub 2} streams targeted for geologic storage (Gale 2009). Jacquemet et al (2009) reviewed select geochemical modeling studies that explored the impact of SO{sub 2} and H{sub 2}S impurities in the waste streams (Gunter et al., 2000, Knauss et al., 2005, Xu et al., 2007). These studies collectively show that SO{sub 2} significantly reduces the pH when oxidized to H{sub 2}SO{sub 4} causing enhanced dissolution of carbonate minerals and some sulfate mineral precipitation. Low pH results in higher mineral solubility and faster dissolution rates and is thought to enhance porosity and permeability near the injection well when trace amounts of SO{sub 2} is injected with CO{sub 2}. The impact of H{sub 2}S on storage reservoir performance appears to more subtle. Knauss et al (2005) report no significant impacts of injection of CO{sub 2} gas streams with and without H{sub 2}S (1 M Pascal H{sub 2}S + 8.4 M Pascal CO{sub 2}) in simulations of CO{sub 2} storage in the Frio sandstone formation. Geochemical reactions for H{sub 2}S impurities include enhance field alkalinity and reaction with iron bearing minerals that may delay breakthrough of H{sub 2}S relative to CO{sub 2}. Emberley et al. (2005) report that half of the alkalinity measured at monitoring wells at the Weyburn-Midale field is due to HS{sup -}. Schoonen and Xu (2004) report that H{sub 2}S can be sequestered as pyrite in sandstones and carbonates by dissolving iron hydroxides and iron-bearing clays. Similarly, Gunter et al (2000) propose the that siderite converts to iron sulfides when it is reacted with H{sub 2}S. The geochemical reactions between H{sub 2}S and iron bearing minerals together with the high solubility of H{sub 2}S relative to CO{sub 2} may contribute to the delayed break though of H{sub 2}S in experiments. A few core flood experiments have shown that the injection of supercritical CO{sub 2} into carbonate aquifers has the potential to significantly alter the porosity in the absence of trace gases such as SO{sub 2} and H{sub 2}S. Luquot and Gouze (2009) documented a 2% porosity increase in carbonate cores when rock-water interactions were transport limited and solution concentrations were closer to equilibrium and a 4% porosity increase when rock-water interactions were reaction limited and solution compositions were further from equilibrium. Similarly Le Guen et al (2007) used x-ray micro-tomography and geochemistry to show that porosity signific

Carroll, S; Hao, Y

2009-11-13T23:59:59.000Z

148

INSTRUMENT EVALUATION, CALIBRATION, AND INSTALLATION POME HEATER EXPERIMENTS AT STRIPA  

E-Print Network [OSTI]

Properties of Stripa Granite. Lawrence Berkeley LaboratoryGroundwaters in the Stripa Granite: Results and PreliminaryStorage of Nuclear Waste in Granite by P. A. Witherspoon, P.

Schrauf, T.

2010-01-01T23:59:59.000Z

149

Small-Scale Experiments: Sandia Instrumented Thermal Ignition (SITI)  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of theResourcecomments/rss enExpansion ofMaximumresearch community

150

Using a 3D Needle Tissue Interaction Loading basis to optimize the design of an instrumented needle  

E-Print Network [OSTI]

Using a 3D Needle ­Tissue Interaction Loading basis to optimize the design of an instrumented-IMAG UMR5525, Grenoble, France Keywords: Needle deformation; Load distribution; Instrumented needle of the needle which does not follow the planned trajectory. Furthermore, the amount of irradiation during

Paris-Sud XI, Université de

151

Experimental Test Plan DOE Tidal and River Reference Turbines  

SciTech Connect (OSTI)

Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [ORNL

2012-09-01T23:59:59.000Z

152

International Conference Synchrotron Radiation Instrumentation SRI `94  

SciTech Connect (OSTI)

This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

Not Available

1994-10-01T23:59:59.000Z

153

ACQUISITION PLANNING  

Office of Environmental Management (EM)

7.1 (May 2010) 1 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition...

154

Proactive Planning  

E-Print Network [OSTI]

, rainwater harvesting, stream bank stabilization, and educational programs to prevent urban and agricultural nonpoint source pollution. Project leaders plan to have the Cedar Creek Watershed Protection Plan finalized by the summer of 2008. ?We... on watershed management, stream restoration practices, agricultural best man- agement practices, rainwater harvesting, non- point source pollution control, on-site septic system maintenance, and other water quality issues facing urban and rural...

Wythe, Kathy

2008-01-01T23:59:59.000Z

155

CORPORATE AND STRATEGIC PLANNING Faculty planning workbook  

E-Print Network [OSTI]

.............................................................................33 Staffing & workforce planningCORPORATE AND STRATEGIC PLANNING Faculty planning workbook Humanities, Law & Social Studies Outcomes from 2008/09 Confirmation of progress during 2009/10 Faculty planning for 2010/11 ­ 2012/13 #12

156

ACRF Instrumentation Status and Information - June 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-06-01T23:59:59.000Z

157

ACRF Instrumentation Status and Information September 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01T23:59:59.000Z

158

ACRF Instrumentation Status and Information July 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-08-13T23:59:59.000Z

159

ACRF Instrumentation Status and Information April 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-05-07T23:59:59.000Z

160

ACRF Instrumentation Status and Information August 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ACRF Instrumentation Status and Information May 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-05-01T23:59:59.000Z

162

Irish Potato Fertilizer Experiments.  

E-Print Network [OSTI]

S AGRICULTURAL EXPERIMENT STATIONS. BULLETIN NO 101 January, 1908. ish Potato Fertilizer Experiments - Postoffice, COLLEGE STATION, BRAZOS COUNTY, TEXAS. TEXAS AGRICULTURAL EXPERIMENT STATIONS OFFICERS. GOVERNING BOARD. (Board of Directors... was sc Be Irish Potato Fl nents W. S. Hotchkiss and E. J. Kyle. e fertilizer work with the Irish potato at Troupe was first planned fall of 1902. The results which were gotten upon harvesting the the spring of 1903 were so opposed, especially...

Hotchkiss, W.S.; Kyle, E. J. (Edwin Jackson)

1908-01-01T23:59:59.000Z

163

Instrumentation  

E-Print Network [OSTI]

indicate the following results. (i) Fair agreement is obtained with the theory of Stine and Wanlass 2 at

J. Picken; B. Sc; R. Harmer; J. Picken; B. Sc; R. Harmer; A Nol

1958-01-01T23:59:59.000Z

164

Advanced Test Reactor Testing Experience: Past, Present and Future  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

Frances M. Marshall

2005-04-01T23:59:59.000Z

165

Maps, Networks and a Sea That Won’t Conform: Thinking Critically About Marine Spatial Planning in Scotland   

E-Print Network [OSTI]

Scotland has adopted marine spatial planning (MSP) as a key instrument of its National Marine Plan. This follows a global trend in shifting marine governance techniques. MSP is turn away from sectoral governance of the sea ...

Smith, Glen

166

Planning Theory as an Institutional Innovation: Diverse Approaches and Nonlinear Trajectory of  

E-Print Network [OSTI]

that the profession of planning was created as a response to social demand. Planning functions as an institutional of the Evolution of Planning Theory Tingwei Zhang Published in CITY PLANNING REVIEW, 2006, Vol. 30 (8) 9-18 Best American planning experiences with Chinese planning practices in the last 50 years, the author argues

Illinois at Chicago, University of

167

Next Generation Neutrinoless Double -Decay Experiments Andreas Piepke, R.G. Hamish Robertson  

E-Print Network [OSTI]

of this ambitious program...". The Long Range Plan further states: "... neutrinoless double beta decay experiments

168

GEND planning report  

SciTech Connect (OSTI)

The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bank organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.

None

1980-10-01T23:59:59.000Z

169

Instrumental learning within the spinal cord: further examination of the deficit observed following noncontingent shock  

E-Print Network [OSTI]

events that cannot be controlled (noncontingent events) has a deleterious effect on instrumental learning, much like exposure to inescapable shock affects escape/avoidance learning in intact animals. Experiment 1 showed that noncontingent tailshock has...

Crown, Eric Daniel

2000-01-01T23:59:59.000Z

170

International Experience in Transportation Analysis and Planning  

E-Print Network [OSTI]

managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Agency for International Development A team of researchers toured ports and land transport facilities

171

Medical Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey MathematicaMeasuringMedical Plans Medical Plans

172

Strategic Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutronStrategic Plan The strategic planning process1/7/2010

173

Tomorrow optical interferometry: astrophysical prospects and instrumental issues  

E-Print Network [OSTI]

Interferometry has brought many new constraints in optical astronomy in the recent years. A major leap in this field is the opening of large interferometric facilities like the Very Large Telescope Interferometer and the Keck Interferometer to the astronomical community. Planning for the future is both easy --most specialists know in which directions to develop interferometry-- and difficult because of the increasing complexity of the technique. I present a short status of interferometry today. Then I detail the possible astrophysical prospects. Finally I address some important instrumental issues that are decisive for the future of interferometry.

F. Malbet

2006-09-14T23:59:59.000Z

174

Principal Components Instrumental Variable Estimation  

E-Print Network [OSTI]

of the main results are displayed in two appendices. 2 Econometric Framework Consider the simultaneous equations model y = X? + u and X = Z?+ V , (1) 1 An advantage of such general structure is that the ‘large-sample’ condition used in previous studies Kn/ p n... ? 0, where Kn is the number of instruments and n is the sample size, is not required in our asymptotic approximations. 4 where y is the n × 1 vector containing n observations of the dependent variable; X is the n × G matrix with observations...

Winkelried, Diego; Smith, Richard J.

2011-01-31T23:59:59.000Z

175

Tevatron instrumentation: boosting collider performance  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

2006-05-01T23:59:59.000Z

176

SECTION V: SUPERCONDUCTING CYCLOTRON, INSTRUMENTATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,# , onLightThe natureINSTRUMENTATION

177

ARM - AMF1 Baseline Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 Baseline Instruments AMF

178

Plan Your School Visit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Your School Visit For Teachers Teachers Visit the Museum We Visit You Teacher Resources Home Schoolers Plan Your School Visit invisible utility element Plan Your School Visit...

179

Milestone Plan Process Improvement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Milestone Plan Process Improvement Milestone Plan Process Improvement Background In response to our community's concern over the milestone plan (MP) process within the system, the...

180

Energy planning and management plan  

SciTech Connect (OSTI)

This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lafayette Metropolitan Planning Organization 2030 Transportation Plan  

E-Print Network [OSTI]

And Development Lafayette Metropolitan Planning Organization 2030 Transportation Plan DRAFT FINAL REPORT Prepared by Neel-Schaffer, Inc... ? 2020 DEFICIENCIES ........................................................................................... 51 FIGURE 11 ? 2030 DEFICIENCIES ........................................................................................... 52 FIGURE 12...

Lafayette Metropolitan Planning Organization

2010-10-31T23:59:59.000Z

182

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

183

GCFR thermal-hydraulic experiments  

SciTech Connect (OSTI)

The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

1980-01-01T23:59:59.000Z

184

The BRAIN experiment, a bolometric interferometer dedicated to the CMB B-mode measurement  

E-Print Network [OSTI]

We present the BRAIN Experiment, a project of B-mode experiment using a novel technology, bolometric interferometry. This technique is a promising alternative to direct imaging experiments since it combines the advantages of interferometry in terms of systematic effects handling and those of bolometry in terms of sensitivity. We briefly introduce some of the bolometric interferometry key concepts and difficulties. We then give the specifications of the BRAIN future detector. A first module of the final instrument is planned to be installed at Dome C in 2010. We hope to constrain a tensor to scalar modes ratio of 0.01 with nine modules and one effective year of data. BRAIN is a collaboration between France, Italy and United Kingdom.

Romain Charlassier; for the BRAIN Collaboration

2008-05-29T23:59:59.000Z

185

Coherent electron cooling proof of principle instrumentation design  

SciTech Connect (OSTI)

The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.

Gassner D. M.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M.; Pinayev, I.

2012-04-15T23:59:59.000Z

186

Maps and Plans  

E-Print Network [OSTI]

shrouded door to box seats. Rose / Maps and Plans Re-Placing Places 20.1 Rose / Maps and Plans Re-Placing PlacesMaps and Plans Thomas Rose Architectural plans create the

Rose, Thomas

2008-01-01T23:59:59.000Z

187

Annual Training Plan Template  

Broader source: Energy.gov [DOE]

The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

188

MC and A instrumentation catalog  

SciTech Connect (OSTI)

In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

1998-06-01T23:59:59.000Z

189

College of Engineering Strategic Plan  

E-Print Network [OSTI]

, the nation, and the world by graduating talented, broadly educated engineers, conducting high quality-wide strategic plan identifies three dimensions to this priority: Quality, access, and affordability. The College programs. The total educational experience at the University will promote their academic and professional

190

Pandemic Influenza Pediatric Office Plan Template  

SciTech Connect (OSTI)

This is a planning tool developed by pediatric stakeholders that is intended to assist pediatric medical offices that have no pandemic influenza plan in place, but may experience an increase in patient calls/visits or workload due to pandemic influenza.

HCTT CHE

2010-01-01T23:59:59.000Z

191

Plans, Procedures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenterYou are here: SN Home page|Plans,

192

Program Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada wins GeraldDuncan McBranchProgram Planning at

193

Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849| OSTI, US Dept ofStrategic Plan Print

194

Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849| OSTI, US Dept ofStrategic Plan

195

2009 CAPS Spring Forecast Program Plan  

E-Print Network [OSTI]

package. · Two 18 UTC update forecasts on demand basis, with the same domain and configuration, running2009 CAPS Spring Forecast Experiment Program Plan April 20, 2009 #12;2 Table of Content 1. Overview .......................................................................................................4 3. Forecast System Configuration

Droegemeier, Kelvin K.

196

Venus Technology Plan Venus Technology Plan  

E-Print Network [OSTI]

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

Rathbun, Julie A.

197

Planning & Investigating Plan an Investigation  

E-Print Network [OSTI]

in print or online? o resources and material available to me? · Set up an experiment Examples: o Measure data collected at home to see if it might be a good location for a wind turbine. · Look for trends

New Hampshire, University of

198

SPORT MANAGEMENT, RECREATION, AND TOURISM TOURISM, LEISURE, AND EVENT PLANNING (TLEP) MAJOR  

E-Print Network [OSTI]

1 SPORT MANAGEMENT, RECREATION, AND TOURISM DIVISION TOURISM, LEISURE, AND EVENT PLANNING (TLEP...................................................................................................................23 Examples of Tourism Field Experie

Moore, Paul A.

199

Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982  

SciTech Connect (OSTI)

Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

Klobe, L.E.E. (ed.)

1982-12-01T23:59:59.000Z

200

aexs instrument development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interferometer Ohta, Shigemi 2 Development of Models for Optical Instrument Transformers. Open Access Theses and Dissertations Summary: ??Optical Instrument Transformers...

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computational and experimental study of instrumented indentation  

E-Print Network [OSTI]

The effect of characteristic length scales, through dimensional and microstructural miniaturizations, on mechanical properties is systematically investigated by recourse to instrumented micro- and/or nanoindentation. This ...

Chollacoop, Nuwong, 1977-

2004-01-01T23:59:59.000Z

202

Rotary mode system initial instrument calibration  

SciTech Connect (OSTI)

The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

Johns, B.R.

1994-10-01T23:59:59.000Z

203

Instrumentation for CTA site characterization  

E-Print Network [OSTI]

Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the "Cherenkov Telescope Array" CTA. Such data are not available with sufficient precision or the comparability to allow for a comprehensive characterization of the proposed sites to be made. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize ...

Fruck, Christian; Ernenwein, Jean-Pierre; Mandát, Dušan; Schweizer, Thomas; Häfner, Dennis; Bulik, Tomasz; Cieslar, Marek; Costantini, Heide; Dominik, Michal; Ebr, Jan; Garczarczyk, Markus; Lorentz, Eckart; Pareschi, Giovanni; Pech, Miroslav; Puerto-Giménez, Irene; Teshima, Masahiro

2015-01-01T23:59:59.000Z

204

Instrumentation, Control, and Intelligent Systems  

SciTech Connect (OSTI)

Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

Not Available

2005-09-01T23:59:59.000Z

205

Instrumentation and process control development for in situ coal gasification. Seventeenth, eighteenth, and nineteenth quarterly reports, December 1978 through August 1979  

SciTech Connect (OSTI)

The second phase of the Hanna IV In Situ Coal Gasification Test, Hanna IV-B, was initiated on April 20, 1979. The reverse combustion linking process was completed July 13, 1979, and gasification began July 28, 1979. Sandia Laboratories is providing support by fielding and monitoring diagnostic and remote monitoring instrumentation techniques. All techniques are supported by a minicomputer-based, field data acquisition system developed for this application which provides on-site, real-time reduction, analysis and display of the experimental data. Results to date show the development of at least three links, and the progress of the gasification front is being monitored. There have also been developments in hardware for use in the planned Hoe Creek III experiment, notably an inverted thermocouple string with a lateral transmission device. To support all field activities an in-house computing system with complete data base storage capability has been assembled.

Glass, R.E. (ed.)

1980-02-01T23:59:59.000Z

206

Hanford Site Development Plan  

SciTech Connect (OSTI)

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

207

2030 OCARTS Plan Report  

E-Print Network [OSTI]

......................................Director of Planning & Program Development Pearlie Tiggs................................................................... Community Planner 2030 OCARTS Plan Report Table of Contents PART 1 INTRODUCTION........................................................................ 1 Federal Legislation.......................................................................... 1 Purpose of the Plan Report and Relationship to other Plan Documents............. 3 Organization of the Transportation Planning Process...

Association of Central Oklahoma Governments

208

Effect of geotropism on instrument readings  

SciTech Connect (OSTI)

A review of gravity's effect on instrument readings, also referred to as geotropism. In this essay a review of meter movement construction and the effect are reviewed as it applies to portable radiation instruments. Reference to the three ANSI standards and their requirements are reviewed. An alternate approach to test for the effects is offered.

Rolph, James T.

2006-11-01T23:59:59.000Z

209

Microfabricated field calibration assembly for analytical instruments  

DOE Patents [OSTI]

A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

2011-03-29T23:59:59.000Z

210

Void Fraction Instrument operation and maintenance manual  

SciTech Connect (OSTI)

This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

1994-09-01T23:59:59.000Z

211

Multi-Analyses Data Library and Search Plan for the Forensic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Analyses Data Library and Search Plan for the Forensic Identification of Inks and Toners DESCRIPTION: This project will develop a multi-analytical-instrument data library on...

212

Management Plan Supplement Yakima Subbasin Plan  

E-Print Network [OSTI]

#12;Management Plan Supplement Yakima Subbasin Plan November 26, 2004 Prepared for the Presented's subbasin planning process is iterative and designed within an adaptive management framework. Management is comprised of elected officials from local governments throughout the subbasin, and meets regularly to work

213

Strategic Energy Planning Webinar  

Broader source: Energy.gov [DOE]

Attendees will learn about developing a strategic energy plan, identifying key aspects of successful energy planning, and using available information and resources, including archived webinars in...

214

Accidental Death & Dismemberment Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Death & Dismemberment Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact...

215

Strategic Health Workforce Planning  

E-Print Network [OSTI]

May 11, 2013 ... Health workforce planning plays a key role in the United States and ... workforce plans should account for lags implied by training new ...

2013-05-11T23:59:59.000Z

216

Neutron Scattering Experiment Automation with Python  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

Zolnierczuk, Piotr A [ORNL] [ORNL; Riedel, Richard A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

217

Plasma instrumentation for fusion power reactor control  

SciTech Connect (OSTI)

Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

1985-07-01T23:59:59.000Z

218

Mitigation Action Plan  

SciTech Connect (OSTI)

This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

Not Available

1994-02-01T23:59:59.000Z

219

ACRF Instrumentation Status: New, Current, and Future March 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-03-01T23:59:59.000Z

220

ACRF Instrumentation Status: New, Current, and Future June 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ACRF Instrumentation Status: New, Current, and Future May 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-05-01T23:59:59.000Z

222

ACRF Instrumentation Status: New, Current, and Future February 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development

JC Liljegren

2007-02-01T23:59:59.000Z

223

ACRF Instrumentation Status: New, Current, and Future January 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-01-01T23:59:59.000Z

224

ACRF Instrumentation Status: New, Current, and Future - March 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-04-01T23:59:59.000Z

225

ACRF Instrumentation Status: New, Current, and Future - November – December 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2007-12-01T23:59:59.000Z

226

ACRF Instrumentation Status: New, Current, and Future - September – October 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

JW Voyles

2007-10-30T23:59:59.000Z

227

ACRF Instrumentation Status: New, Current, and Future July 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of ACRF instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

JC Liljegren

2007-07-01T23:59:59.000Z

228

ACRF Instrumentation Status: New, Current, and Future - February 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-03-01T23:59:59.000Z

229

ACRF Instrumentation Status: New, Current, and Future May 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-04-01T23:59:59.000Z

230

ACRF Instrumentation Status: New, Current, and Future October 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2006-10-01T23:59:59.000Z

231

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

232

DHS Research Experience Summary  

SciTech Connect (OSTI)

I learned a great deal during my summer internship at Lawrence Livermore National Laboratory (LLNL). I plan to continue a career in research, and I feel that my experience at LLNL has been formative. I was exposed to a new area of research, as part of the Single Particle Aerosol Mass Spectrometry (SPAMS) group, and I had the opportunity to work on projects that I would not have been able to work on anywhere else. The projects both involved the use of a novel mass spectrometer that was developed at LLNL, so I would not have been able to do this research at any other facility. The first project that Zachary and I worked on involved using SPAMS to detect pesticides. The ability to rapidly detect pesticides in a variety of matrices is applicable to many fields including public health, homeland security, and environmental protection. Real-time, or near real-time, detection of potentially harmful or toxic chemical agents can offer significant advantages in the protection of public health from accidental or intentional releases of harmful pesticides, and can help to monitor the environmental effects of controlled releases of pesticides for pest control purposes. The use of organophosphate neurotoxins by terrorists is a possibility that has been described; this is a legitimate threat, considering the ease of access, toxicity, and relatively low cost of these substances. Single Particle Aerosol Mass Spectrometry (SPAMS) has successfully been used to identify a wide array of chemical compounds, including drugs, high explosives, biological materials, and chemical warfare agent simulants. Much of this groundbreaking work was carried out by our group at LLNL. In our work, we had the chance to show that SPAMS fulfills a demonstrated need for a method of carrying out real-time pesticide detection with minimal sample preparation. We did this by using a single particle aerosol mass spectrometer to obtain spectra of five different pesticides. Pesticide samples were chosen to represent four common classes of pesticides that are currently used in the US. Permethrin (a pyrethrin insecticide), dichlorvos and malathion (organophosphates), imidacloprid (a chloronicotinyl pesticide), and carbaryl (a carbamate) were selected for analysis. Samples were aerosolized either in water (using a plastic nebulizer) or in ethanol (using a glass nebulizer), and the particles entered the SPAMS instrument through a focusing lens stack. The particles then passed through a stage with three tracking lasers that were used to determine each particle's velocity. This velocity was used to calculate when to fire a desorption/ionization (D/I) laser in order to fragment the particle for analysis in a dual polarity time of flight mass spectrometer. Signals were digitized, and then analyzed using LLNL-developed software. We obtained chemical mass spectral signatures for each pesticide, and assigned peaks to the mass spectra based on our knowledge of the pesticides chemical structures. We then proved the robustness of our detection method by identifying the presence of pesticides in two real-world matrices: Raid{trademark} Ant Spray and a flea collar. To sample these, we simply needed to direct aerosolized particles into the SPAMS instrument. The minimal sample preparation required makes SPAMS very attractive as a detector. Essentially, we were able to show that SPAMS is a reliable and effective method for detecting pesticides at extremely low concentrations in a variety of matrices and physical states. The other project that I had the opportunity to be a part of did not involve data collection in the lab; it consisted of analyzing a large amount of data that had already been collected. We got to look at data collected over the course of about two months, when the SPAMS instrument was deployed to a public place. The machine sampled the air and collected spectra for over two months, storing all the spectra and associated data; we then looked at an approximately two-month subset of this data to search for patterns in the types of particles being detected. Essentially, we we

Venkatachalam, V

2008-10-24T23:59:59.000Z

233

Original article Natural mating of instrumentally  

E-Print Network [OSTI]

before they start egg laying. Thus, the control over mating of parents is lost. To prevent this, queen INTRODUCTION Instrumental insemination assures control over mating of parents in the honey bee. However, Woyke

Paris-Sud XI, Université de

234

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION  

E-Print Network [OSTI]

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION Evaluation of the Displacement Value). Production of fuel-grade ethanol, initiated in the late 1970's as a result of rising gasoline prices

235

PRINCIPLES OF SCIENTIFIC INSTRUMENTS Spring 2012  

E-Print Network [OSTI]

/email interaction. Course requirements: Participation in class discussion, problem sets, take home final exam of exponential behavior in chem., biochem., physics: molecules vs. instruments. 6 Light absorption densitometry, energy transfer, photobleaching and single molec., image analysis. Anisotropy and molecular mobility

Sharp, Kim

236

A nano-stepping robotic instrumentation platform  

E-Print Network [OSTI]

The development of an Autonomous Nano-stepping Tool (ANT) system is presented. Each ANT is a small, tripodal, robotic instrument capable of untethered precision motion within a quasi-three-dimensional workspace of arbitrary ...

Wahab, Adam Joseph

2013-01-01T23:59:59.000Z

237

Optimization of naďve dynamic binary instrumentation Tools/  

E-Print Network [OSTI]

The proliferation of dynamic program analysis tools has done much to ease the burden of developing complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation frameworks such as ...

Kleckner, Reid (Reid N.)

2011-01-01T23:59:59.000Z

238

Cellular telephone-based radiation detection instrument  

DOE Patents [OSTI]

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2011-06-14T23:59:59.000Z

239

Positron Emission Tomography Physics, Instrumentation, Data Analysis  

E-Print Network [OSTI]

1 Positron Emission Tomography Physics, Instrumentation, Data Analysis Carl K. Hoh, MD Department fast computer Filtered Back Projection Iterative Reconstruction PET Image Reconstruction #12 PET Scanner Design · Smaller individual crystal size = better spatial resolution · Physical limit

Liu, Thomas T.

240

Field instrumentation for vocalizing avian survey  

E-Print Network [OSTI]

We present automated instruments to facilitate the monitoring of vocalizing species in their environment with minimal disruption. These devices offer recording and acoustic localization of bird calls and relay data via the ...

Elliott, Grant (Grant Andrew)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

X-Ray Nanoimaging: Instruments and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

242

Results from Plasma Wakefield Experiments at FACET  

SciTech Connect (OSTI)

We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8 x 10{sup 10} electrons is compressed to 20 {mu}m longitudinally and focused down to 10 {mu}m x 10 {mu}m transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients > 10 GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed. The experimental hardware and operation of the plasma heat-pipe oven have been successfully commissioned. Plasma wakefield acceleration was not observed because the electron bunch density was insufficient to ionize the lithium vapor. The remaining commissioning time in summer 2011 will be dedicated to delivering the FACET design parameters for the experimental programs which will begin in early 2012. PWFA experiments require the shorter bunches and smaller transverse sizes to create the plasma and drive large amplitude wakefields. Low emittance and high energy will minimize head erosion which was found to be a limiting factor in acceleration distance and energy gain. We will run the PWFA experiments with the design single bunch conditions in early 2012. Future PWFA experiments at FACET are discussed in [5][6] and include drive and witness bunch production for high energy beam manipulation, ramped bunch to optimize tranformer ratio, field-ionized cesium plasma, preionized plasmas, positron acceleration, etc.. We will install a notch collimator for two-bunch operation as well as new beam diagnostics such as the X-band TCAV [7] to resolve the two bunches. With these new instruments and desired beam parameters in place next year, we will be able to complete the studies of plasma wakefield acceleration in the next few years.

Li, S.Z.; Clarke, C.I.; England, R.J.; Frederico, J.; Gessner, S.J.; Hogan, M.J.; Jobe, R.K.; Litos, M.D.; Walz, D.R.; /SLAC; Muggli, P.; /Munich, Max Planck Inst.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; /UCLA; Adli, E.; /U. Oslo

2011-12-13T23:59:59.000Z

243

Motion Planning ! Jana Kosecka!  

E-Print Network [OSTI]

1! Motion Planning ! Jana Kosecka! Department of Computer Science! ·Discrete planning, graph search://cs.cmu.edu/~motionplanning, Jyh-Ming Lien! Discrete Planning! · Review of some discrete planning methods! · Given state space is discrete) ! · Use well developed search and graph traversal algorithms to find the path! · Path: set

Kosecka, Jana

244

Climate change action plan  

E-Print Network [OSTI]

Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

245

Intermountain Province Subbasin Plan  

E-Print Network [OSTI]

, and stakeholders. The IMP subbasin plan includes: · an assessment providing the technical foundation for the plan Power and Conservation Council Portland, Oregon O N B E H A L F O F : Intermountain Province Oversight Planning in the Intermountain Province The Northwest Power Planning Council1 's (Council) 2000 Fish

246

National Instruments online training and training credits offering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Instruments online training and training credits offering The lab has entered into an Enterprise Agreement with National Instruments (NI) to offer online training and...

247

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

An Instrument for Neutrino Astronomy Francis Halzen 1 andAn Instrument for Neutrino Astronomy Francis Halzen 1 and94720 Abstract Neutrino astronomy beyond the Sun was first

Halzen, F.

2010-01-01T23:59:59.000Z

248

Surveillance Guides - QAS 2.4 Instrument Calibration  

Broader source: Energy.gov (indexed) [DOE]

of the contractor's program to routinely calibrate instruments, alarms, and sensors. The Facility Representative observes calibration testing of instruments and channels...

249

SciTech Connect: Nuclear power reactor instrumentation systems...  

Office of Scientific and Technical Information (OSTI)

Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

250

Electronics for Satellite Experiments  

SciTech Connect (OSTI)

The tracking detector for the LAT science instrument on the GLAST mission is an example of a large-scale particle detection system built primarily by particle physicists for space flight within the context of a NASA program. The design and fabrication model in most ways reflected practice and experience from particle physics, but the quality assurance aspects were guided by NASA. Similarly, most of the electronics in the LAT as a whole were designed and built by staff at a particle physics lab. This paper reports on many of the challenges and lessons learned in the experience of designing and building the tracking detector and general LAT electronics for use in the NASA GLAST mission.

Johnson, Robert P.; /UC, Santa Cruz

2006-05-16T23:59:59.000Z

251

DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS  

SciTech Connect (OSTI)

Thermo Power Corporation has proven the technical viability of an on-line, real-time alpha radionuclide instrument for aqueous sample analysis through laboratory and initial field tests of the instrument. The instrument has been shown to be isotonically sensitive to extremely low (ten parts per trillion, or femto Curies per liter) levels of a broad range of radioisotopes. Performance enhancement and other scaling data obtained during the course of this investigation have shown that on-line, real-time operation is possible, with a sub 30-minute response time analyzing 20 ppb (30 pCi/1) natural uranium. Now that these initial field tests in Oak Ridge, Tennessee have been successfully completed, Thermo Power plans to conduct comprehensive field tests of the instrument. The purpose of these endurance tests will be to determine the endurance characteristics of the Thermo Alpha Monitor for Water when it is used by non-Thermo Power personnel in a series of one or more extended field tests. Such endurance testing is the vital next step towards the commercialization of the Alpha Monitor. Subsequently, it will be possible to provide the DOE with an instrument that has the capability of obtaining rapid feedback about the concentrations of alpha-emitting isotope contamination in effluent water streams (Subsurface Contaminants Focus Area). It will also be useful for process control of remediation and D and D operations such as monitoring scrubber/rinse water radioactivity levels (Mixed Waste, Plutonium and D and D Focus Areas).

Unknown

1999-06-16T23:59:59.000Z

252

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

SciTech Connect (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

253

Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

Shelton, R T; O'Brien, D W; Kamperschroer, J H; Nelson, J R

2007-10-03T23:59:59.000Z

254

65 Contingency Planning Issues CONTINGENCY PLANNING ISSUES  

E-Print Network [OSTI]

. The plan relies on a mixed strategy response to an energy shortage. The plan uses a free market approach to local jurisdic- tions, economic considerations, revisions to the California Energy Shortage Contingency multiple jurisdictions or agencies. LOCAL GOVERNMENT ASSISTANCE PROGRAM The purpose of the Energy

255

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

256

Advances in instrumentation for nuclear astrophysics  

SciTech Connect (OSTI)

The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

Pain, S. D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-15T23:59:59.000Z

257

Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 NUCLEARFaculty ofPhysics and Nuclear Techniques Academy ofMining and Metallurgy, Cracow, Poland h INFN, Torino INSTRUMENTS 8 METHODS IN PHYSICS RESEARCH SectIonA A fast, high-granularity silicon multiplicity detector

Ramello, Luciano

258

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

259

IRRADIATION EXPERIMENTS &  

E-Print Network [OSTI]

IRRADIATION EXPERIMENTS & FACILITIES AT BNL: BLIP & NSLS II Peter Wanderer Superconducting Magnet). Current user: LBNE ­ materials for Project X. · Long Baseline Neutrino Experiment ­ Abandoned gold mine

McDonald, Kirk

260

Matter in Extreme Conditions Instrument - Conceptual Design Report  

SciTech Connect (OSTI)

The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by

Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC; ,

2009-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Workshop on the preparation of climate change action plans. Workshop summary  

SciTech Connect (OSTI)

Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.

NONE

1999-05-24T23:59:59.000Z

262

Motion Planning Jana Kosecka  

E-Print Network [OSTI]

Slides thanks to http://cs.cmu.edu/~motionplanning, Jyh-Ming Lien Hard Motion Planning · Configuration Geometric Models S Sampling Based Motion Planner Discrete Search C-space planning Idea : Generate random

Kosecka, Jana

263

Virginia Energy Plan (Virginia)  

Broader source: Energy.gov [DOE]

The 2010 Virginia Energy Plan affirms the state's support for the development of renewable energy. The Plan assesses the state’s energy picture through an examination of the state’s primary energy...

264

Planning the Project Meeting  

E-Print Network [OSTI]

Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

265

Sustainabiliity Sustainability Plan  

E-Print Network [OSTI]

Sustainabiliity IIT Campus Sustainability Plan 2010­2020 Published Fall Semester 2010 www.iit.edu/campus_sustainability #12;IIT Campus Sustainability Plan 2010-2020 Fall Semester 2010 1 Section I: Background Sustainability ...................................................................................................................................................................8 IIT Academic Entities on Sustainability

Heller, Barbara

266

Hoisting & Rigging Lift Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 3 of 3 Guidelines for Generating a Rigging Sketch The lift plan required a rigging sketch or...

267

Training Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Plan Training Plan This template is used to define the plan, scope, environment, roles and responsibilities for training needs for systemsoftware development and...

268

Waste Management Quality Assurance Plan  

E-Print Network [OSTI]

Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

Waste Management Group

2006-01-01T23:59:59.000Z

269

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

SciTech Connect (OSTI)

The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

Not Available

2011-10-01T23:59:59.000Z

270

The penning trap electron gun for the KATRIN experiment  

E-Print Network [OSTI]

The KArlsruhe TRitium Neutrino experiment (KATRIN) is currently in under construction, with plans to be activated in 2010. The experiment will measure the energy of electrons recoiling from the three body beta decay of ...

Trowbridge, Sarah Nicole

2008-01-01T23:59:59.000Z

271

Business Planning Resources  

Broader source: Energy.gov [DOE]

Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

272

Greensburg Sustainable Comprehensive Plan  

High Performance Buildings Database

Greensburg, KS In October 2007, the architectural and planning firm, BNIM, was selected formally by the City of Greensburg, with support from the USDA, to prepare the first phase of a comprehensive master plan to rebuild the city, which provides a framework for the rebuilding of Greensburg based around the principles of economic, social and environmental sustainability. The BNIM Planning team presented the final draft of Greensburg's Comprehensive Plan to the City Council and to a public hearing on January 16, 2008.

273

apply skills & experience build skills  

E-Print Network [OSTI]

senior apply skills & experience junior build skills sophomore research & execute freshman explore options1 2 3 4 s u p p o r t4-year career action plan parent about the center for career development Remind your student that it is never too soon or too late to seek an internship or summer job. build

Alvarez, Pedro J.

274

Multiperiod Refinery Planning Optimization  

E-Print Network [OSTI]

Multiperiod Refinery Planning Optimization with Nonlinear CDU Models Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development 2 Extension to Multiperiod Planning #12;3 Multiperiod Refinery: refinery configuration Determine · What crude oil to process and in which time period? · The quantities

Grossmann, Ignacio E.

275

University Libraries Technology Plan  

E-Print Network [OSTI]

Libraries Bowling Green State University #12;Table of Contents Introduction ..................................................................19 Page 2 of 19 Technology Plan, 2003-2005 University Libraries Bowling Green State University #12University Libraries Technology Plan 2003-2005 Page 1 of 19 Technology Plan, 2003-2005 University

Moore, Paul A.

276

University of Operations Plan  

E-Print Network [OSTI]

Management Plan Office of Campus and Public Safety University of Delaware Critical Incident Management Plan Management Plan Office of Campus and Public Safety - 4 - University of Delaware Critical Incident Management and Public Safety - 5 - County of New Castle CD-30 911 Center/Communications CD-31 Department of Police CD-32

Firestone, Jeremy

277

Motion Planning Jana Kosecka  

E-Print Network [OSTI]

1 Motion Planning Jana Kosecka Department of Computer Science · Discrete planning, graph search://cs.cmu.edu/~motionplanning, Jyh-Ming Lien State space · Set of all possible states is represented as graph · Nodes states, links planning ­ generate a set of actions, if the solution exists it must be found in the finite time · Search

Kosecka, Jana

278

Corporate and Business Plan  

E-Print Network [OSTI]

Corporate and Business Plan 2010-2011 #12;Main addresses Forest Research Alice Holt Lodge Farnham Research's Business Plan 2010-2011 ..........................12 Table Contents Table 1 - Income This Corporate and Business Plan sets out FR's aims and strategic objectives. It describes the Key Performance

279

UW SCHOOL OF PHARMACY INSTRUMENTATION COMMITTEE  

E-Print Network [OSTI]

UW SCHOOL OF PHARMACY INSTRUMENTATION COMMITTEE 2013-2014 Warren Heideman (chair) Mass spec users-related activities of the School. 4. Provide input and advice to the Dean on issues of importance to the AIC the research enterprise within the School of Pharmacy, across campus, and in the scientific community such as

Sheridan, Jennifer

280

Integrated polymerase chain reaction/electrophoresis instrument  

DOE Patents [OSTI]

A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

Andresen, Brian D. (Livermore, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Regulative and voluntary instruments for responsible forest  

E-Print Network [OSTI]

carrotssermonssticks PES Comand and control Taxes and subsibies ­ Directness + Education ­Useofeconomicincentives,700 ha di farmland producing corn converted to organic · 92% of the area involved in the program · 200) A similar type of classification " Regulative instruments promoted by public institutions: international

Pettenella, Davide

282

Cooling the dark energy camera instrument  

SciTech Connect (OSTI)

DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

Schmitt, R.L.; Cease, H.; /Fermilab; DePoy, D.; /Ohio State U.; Diehl, H.T.; Estrada, J.; Flaugher, B.; /Fermilab; Kuhlmann, S.; /Ohio State U.; Onal, Birce; Stefanik, A.; /Fermilab

2008-06-01T23:59:59.000Z

283

Utility Indifference Pricing of Credit Instruments  

E-Print Network [OSTI]

in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics Instruments Georg Sigloch Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2009 consequences of being exposed to credit risk. In this thesis we address these issues by pricing credit

Jaimungal, Sebastian

284

The OLYMPUS Experiment  

E-Print Network [OSTI]

The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $\\mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01~GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately $25^\\circ$--$75^\\circ$. Symmetric M{\\o}ller/Bhabha calorimeters at $1.29^\\circ$ and telescopes of GEM and MWPC detectors at $12^\\circ$ served as luminosity monitors. A total luminosity of approximately 4.5~fb$^{-1}$ was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

R. Milner; D. K. Hasell; M. Kohl; U. Schneekloth; N. Akopov; R. Alarcon; V. A. Andreev; O. Ates; A. Avetisyan; D. Bayadilov; R. Beck; S. Belostotski; J. C. Bernauer; J. Bessuille; F. Brinker; B. Buck; J. R. Calarco; V. Carassiti; E. Cisbani; G. Ciullo; M. Contalbrigo; N. D'Ascenzo; R. De Leo; J. Diefenbach; T. W. Donnelly; K. Dow; G. Elbakian; D. Eversheim; S. Frullani; Ch. Funke; G. Gavrilov; B. Gläser; N. Görrissen; J. Hauschildt; B. S. Henderson; Ph. Hoffmeister; Y. Holler; L. D. Ice; A. Izotov; R. Kaiser; G. Karyan; J. Kelsey; D. Khaneft; P. Klassen; A. Kiselev; A. Krivshich; I. Lehmann; P. Lenisa; D. Lenz; S. Lumsden; Y. Ma; F. Maas; H. Marukyan; O. Miklukho; A. Movsisyan; M. Murray; Y. Naryshkin; C. O'Connor; R. Perez Benito; R. Perrino; R. P. Redwine; D. Rodríguez Pińeiro; G. Rosner; R. L. Russell; A. Schmidt; B. Seitz; M. Statera; A. Thiel; H. Vardanyan; D. Veretennikov; C. Vidal; A. Winnebeck; V. Yeganov

2013-12-05T23:59:59.000Z

285

ACRF Instrumentation Status: New, Current, and Future - April 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-05-01T23:59:59.000Z

286

ACRF Instrumentation Status: New, Current, and Future July 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-07-01T23:59:59.000Z

287

ACRF Instrumentation Status: New, Current, and Future February 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-02-15T23:59:59.000Z

288

ACRF Instrumentation Status: New, Current, and Future September 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-09-01T23:59:59.000Z

289

ARM Climate Research Facility Monthly Instrument Report May 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-06-21T23:59:59.000Z

290

ACRF Instrumentation Status: New, Current, and Future - November 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-12-01T23:59:59.000Z

291

ACRF Instrumentation Status: New, Current, and Future - May 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-05-01T23:59:59.000Z

292

ACRF Instrumentation Status: New, Current, and Future - August 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-09-01T23:59:59.000Z

293

ARM Climate Research Facility Instrumentation Status and Information October 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01T23:59:59.000Z

294

ARM Climate Research Facility Monthly Instrument Report August 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-09-28T23:59:59.000Z

295

ACRF Instrumentation Status: New, Current, and Future - September 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-10-15T23:59:59.000Z

296

ARM Climate Research Facility Instrumentation Status and Information December 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-12-30T23:59:59.000Z

297

ARM Climate Research Facility Monthly Instrument Report June 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-07-13T23:59:59.000Z

298

ACRF Instrumentation Status: New, Current, and Future - July 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-07-01T23:59:59.000Z

299

ARM Climate Research Facility Monthly Instrument Report July 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-08-18T23:59:59.000Z

300

ARM Climate Research Facility Instrumentation Status and Information March 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM Climate Research Facility Instrumentation Status and Information January 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-02-28T23:59:59.000Z

302

ARM Climate Research Facility Instrumentation Status and Information February 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-03-25T23:59:59.000Z

303

ACRF Instrumentation Status: New, Current, and Future August 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-08-01T23:59:59.000Z

304

ACRF Instrumentation Status: New, Current, and Future - December 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-01-15T23:59:59.000Z

305

ACRF Instrumentation Status: New, Current, and Future - June 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-07-01T23:59:59.000Z

306

ARM Climate Research Facility Instrumentation Status and Information April 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-05-15T23:59:59.000Z

307

ACRF Instrumentation Status: New, Current, and Future March 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-03-15T23:59:59.000Z

308

ACRF Instrumentation Status: New, Current, and Future - October 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-10-01T23:59:59.000Z

309

ACRF Instrumentation Status: New, Current, and Future - January 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-03-02T23:59:59.000Z

310

ARM Climate Research Facility Monthly Instrument Report September 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-10-18T23:59:59.000Z

311

A market-based environmental policy experiment in Chile  

E-Print Network [OSTI]

Despite growing interest in the use of emissions trading for pollution control, empirical evidence for this regulatory instrument has been confined to a few experiences in the United States. This paper broadens the empirical ...

Montero, Juan-Pablo

2000-01-01T23:59:59.000Z

312

DIGITAL ARCHITECTURE PROJECT PLAN  

SciTech Connect (OSTI)

The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new technologies.

Thomas, Ken

2014-09-01T23:59:59.000Z

313

Business Plans for Agricultural Producers  

E-Print Network [OSTI]

Natural resources Z Strengths, weaknesses, opportunities ? and threats (SWOT) Mission statement ? Objectives and goals ? Production plan ? Financial plan ? Market plan ? Legal and liability issues ? Insurance ? Succession and estate planning...

McCorkle, Dean; Bevers, Stan

2008-10-17T23:59:59.000Z

314

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network [OSTI]

Risk Manager 2687 Hospital Quality Assurance 3153 Hospital Clinical Engineering 2954 Human Resources #12;5. CHEMICAL HYGIENE PLAN 5.1 General Standard Operating Procedures 5.1.1 General Rules 5

Oliver, Douglas L.

315

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network [OSTI]

Department 2588 Hospital Risk Manager 2687 Hospital Quality Assurance 3153 Hospital Clinical Engineering 2954 #12;5. CHEMICAL HYGIENE PLAN 5.1 General Standard Operating Procedures 5.1.1 General Rules 5

Kim, Duck O.

316

Basic Wind Tech Course - Lesson Plans and Activities  

SciTech Connect (OSTI)

The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.

none

2011-07-01T23:59:59.000Z

317

Operating plan FY 1998  

SciTech Connect (OSTI)

This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

NONE

1997-10-01T23:59:59.000Z

318

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R D.

Not Available

1992-12-01T23:59:59.000Z

319

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R&D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R&D.

Not Available

1992-12-01T23:59:59.000Z

320

Design of a speed meter interferometer proof-of-principle experiment  

E-Print Network [OSTI]

The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.

C. Gräf; B. W. Barr; A. S. Bell; F. Campbell; A. V. Cumming; S. L. Danilishin; N. A. Gordon; G. D. Hammond; J. Hennig; E. A. Houston; S. H. Huttner; R. A. Jones; S. S. Leavey; H. Lück; J. Macarthur; M. Marwick; S. Rigby; R. Schilling; B. Sorazu; A. Spencer; S. Steinlechner; K. A. Strain; S. Hild

2014-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated Planning and Performance Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management systems need clarification - Consolidated planning annual timetable needed for efficiency * Organizational rolesresponsibilities need alignment to defined planning...

322

SLAC All Access: Atomic, Molecular and Optical Science Instrument  

ScienceCinema (OSTI)

John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

Bozek, John

2014-06-03T23:59:59.000Z

323

Instrumentation Report No. 3: performance and reliability of instrumentation deployed for the Spent Fuel Test - Climax  

SciTech Connect (OSTI)

A demonstration of the short-term storage and subsequent retrieval of spent nuclear fuel assemblies was successfully completed at the US Department of Energy`s Nevada Test Site. Nearly 1000 instruments were deployed to monitor the temperature of rock, air, and metallic components of the test; displacements and stress changes within the rock mass; radiation dosage to personnel and to the rock; thermal energy input; characteristics of the ventilation airstream; and the operational status of the test. Careful selection, installation, calibration, and maintenance of these instruments ensured the acquisition of about 15.3 x 10{sup 6} high-quality data points. With few exceptions, the performance and reliability of the instrumentation and associated data acquisition system (DAS) were within specified acceptable limits. Details of the performance and reliability of the instrumentation are discussed in this report. 42 figs., 32 tabs.

Patrick, W.C.; Rector, N.L.; Scarafiotti, J.J.

1984-12-01T23:59:59.000Z

324

Program Academic Quality Plan Department of Construction Management  

E-Print Network [OSTI]

Program Academic Quality Plan Department of Construction Management Bowling Green State University://www.bgsu.edu/colleges/technology/undergraduate/cmt/index.html Integral in this effort is our Program Academic Quality Plan. I. Bowling Green State University Mission Bowling Green State University provides educational experiences inside and outside the classroom

Moore, Paul A.

325

VISUAL-BASED PLANNING AND CONTROL FOR NONHOLONOMIC MOBILE ROBOTS  

E-Print Network [OSTI]

in the cartesian space. The mobile robot SuperMARIO used in our experiments is a two-wheel differen- tially drivenVISUAL-BASED PLANNING AND CONTROL FOR NONHOLONOMIC MOBILE ROBOTS A. De Luca, G. Oriolo, L. Paone, P: Visual feedback, nonholonomic mo- bile robots, motion planning, nonlinear control Abstract An integrated

De Luca, Alessandro

326

CHEMICAL ENGINEERING PROGRAM ASSESSMENT PLAN Program Learning Objectives  

E-Print Network [OSTI]

education necessary to understand the impact of engineering solutions in a global, economic, environmental20 CHEMICAL ENGINEERING PROGRAM ASSESSMENT PLAN Program Learning Objectives of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well

Cantlon, Jessica F.

327

Signal conditioning circuitry design for instrumentation systems.  

SciTech Connect (OSTI)

This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

Larsen, Cory A.

2012-01-01T23:59:59.000Z

328

TRIO experiment  

SciTech Connect (OSTI)

The TRIO experiment is a test of in-situ tritium recovery and heat transfer performance of a miniaturized solid breeder blanket assembly. The assembly (capsule) was monitored for temperature and neutron flux profiles during irradiation and a sweep gas flowed through the capsule to an anaytical train wherein the amounts of tritium in its various chemical forms were determined. The capsule was designed to operate at different temperatures and sweep gas conditions. At the end of the experiment the amount of tritium retained in the solid was at a concentration of less than 0.1 wppM. More than 99.9% of tritium generated during the experiment was successfully recovered. The results of the experiment showed that the tritium inventories at the beginning and at the end of the experiment follow a relationship which appears to be characteristic of intragranular diffusion.

Clemmer, R.G.; Finn, P.A.; Malecha, R.F.; Misra, B.; Billone, M.C.; Bowers, D.L.; Fischer, A.K.; Greenwood, L.R.; Mattas, R.F.; Tam, S.W.

1984-09-01T23:59:59.000Z

329

The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation  

SciTech Connect (OSTI)

The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

2014-08-08T23:59:59.000Z

330

Instrument performance on the short and long pulse second SNS target stations  

SciTech Connect (OSTI)

In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

Zhao, Jinkui [ORNL; Herwig, Kenneth W [ORNL; Robertson, Lee [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

2013-01-01T23:59:59.000Z

331

The OLYMPUS Experiment  

E-Print Network [OSTI]

The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $\\mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01~GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately $25^\\circ$--$75^\\circ$. Symmetric M{\\o}ller/Bhabha calorimeters at $1.29^\\circ$ and telescopes of GEM and MWPC detectors at $12^\\circ$ served as luminosity monitors. A total luminosity of approximately 4.5~fb$^{-1}$ was collect...

Milner, R; Kohl, M; Schneekloth, U; Akopov, N; Alarcon, R; Andreev, V A; Ates, O; Avetisyan, A; Bayadilov, D; Beck, R; Belostotski, S; Bernauer, J C; Bessuille, J; Brinker, F; Buck, B; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; D'Ascenzo, N; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hauschildt, J; Henderson, B S; Hoffmeister, Ph; Holler, Y; Ice, L D; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Khaneft, D; Klassen, P; Kiselev, A; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Movsisyan, A; Murray, M; Naryshkin, Y; O'Connor, C; Benito, R Perez; Perrino, R; Redwine, R P; Pińeiro, D Rodríguez; Rosner, G; Russell, R L; Schmidt, A; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V

2014-01-01T23:59:59.000Z

332

Spectroscopic Needs for Imaging Dark Energy Experiments  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselve

Newman, Jeffrey A. [Univ. of Pittsburgh and PITT PACC, PA (United States). Dept of Physics and Astronomy; Slosar, Anze [Brookhaven National Laboratory (BNL), Upton, NY (United States); Abate, Alexandra [Univ. of Arizona, Tucson, AZ (United States); Abdalla, Filipe B. [Univ. College London (United Kingdom); Allam, Sahar [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Allen, Steven W. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Ansari, Reza [LAL Univ. Paris-Sud, Orsay (France); Bailey, Stephen [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barkhouse, Wayne A. [Univ. of North Dakota, Grand Forks, ND (United States); Beers, Timothy C. [National Optical Astronomy Observations, Tucson, AZ (United States); Blanton, Michael R. [New York Univ., NY (United States); Brodwin, Mark [Univ. of Missouri at Kansas City, Kansas City, MO (United States); Brownstein, Joel R. [Univ. of Utah, Salt Lake City, UT (United States); Brunner, Robert J. [Illinois Univ., Urbana, IL (United States); Carrasco-Kind, Matias [Illinois Univ., Urbana, IL (United States); Cervantes-Cota, Jorge [Inst. Nacional de Investigaciones Nucleares (ININ), Escandon (Mexico); Chisari, Nora Elisa [Princeton Univ., Princeton, NJ (United States); Colless, Matthew [Australian National Univ., Canberra (Australia). Research School of Astronomy and Astrophysics; Comparat, Johan [Campus of International Excellence UAM and CSIC, Madrid (Spain); Coupon, Jean [Univ. of Geneva (Switzerland). Astronomical Observatory; Cheu, Elliott [Univ. of Arizona, Tucson, AZ (United States); Cunha, Carlos E. [Stanford Univ., Stanford, CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; de la Macorra, Alex [UNAM, Mexico City (Mexico). Dept. de Fisica Teorica and Inst. Avanzado de Cosmologia; Dell’Antonio, Ian P. [Brown Univ., Providence, RI (United States); Frye, Brenda L. [Univ. of Arizona, Tucson, AZ (United States); Gawiser, Eric J. [State Univ. of New Jersey, Piscataway, NJ (United States); Gehrels, Neil [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Grady, Kevin [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Hagen, Alex [Penn State Univ., University Park, PA (United States); Hall, Patrick B. [York Univ., Toronto, ON (Canada); Hearin, Andrew P. [Yale Univ., New Haven, CT (United States); Hildebrandt, Hendrik [Argelander-Inst. fuer Astronomie, Bonn (Germany); Hirata, Christopher M. [Ohio State Univ., Columbus, OH (United States); Ho, Shirley [Carnegie Mellon Univ., Pittsburgh, PA (United States). McWilliams Center for Cosmology; Honscheid, Klaus [Ohio State Univ., Columbus, OH (United States); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Ivezic, Zeljko [Univ. of Washington, Seattle, WA (United States); Kneib, Jean -Paul [Laboratoire d'Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL) (Swizerland); Laboratoire d'Astrophysique de Marseille (France); Kruk, Jeffrey W. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Lahav, Ofer [Univ. College London, Bloomsbury (United Kingdom); Mandelbaum, Rachel [Carnegie Mellon Univ., Pittsburgh, PA (United States). McWilliams Center for Cosmology; Marshall, Jennifer L. [Texas A and M Univ., College Station, TX (United States); Matthews, Daniel J. [Univ. of Pittsburgh and PITT PACC, PA (United States). Dept of Physics and Astronomy; Menard, Brice [Johns Hopkins Univ., Baltimore, MD (United States); Miquel, Ramon [Univ. Autonoma de Barcelona (Spain). Inst. de Fisica d'Altes Energies (IFAE); Moniez, Marc [Univ. Paris-Sud, Orsay (France); Moos, H. W. [Johns Hopkins Univ., Baltimore, MD (United States); Moustakas, John [Siena College, Loudonville, NY (United States); Papovich, Casey [Texas A and M Univ., College Station, TX (United States); Peacock, John A. [Univ. of Edinburgh (United Kingdom). Inst. for Astronomy, Royal Observatory; Park, Changbom [Korea Inst. for Advanced Study, Seoul (Korea, Republic of); Rhodes, Jason [Jet Propulsion Lab./Caltech, Pasadena, CA (United States)

2015-03-01T23:59:59.000Z

333

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect (OSTI)

This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

334

IDC Integrated Master Plan.  

SciTech Connect (OSTI)

This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

Clifford, David J.; Harris, James M.

2014-12-01T23:59:59.000Z

335

Environmental Management System Plan  

E-Print Network [OSTI]

R-3 • Environmental Management System Plan References 30.of Energy, Safety Management System Policy, DOE P 450.4 (E), Environmental Management Systems ? Requirements with

Fox, Robert

2009-01-01T23:59:59.000Z

336

Environmental Protection Implementation Plan  

SciTech Connect (OSTI)

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

Brekke, D.D.

1995-11-01T23:59:59.000Z

337

Individual Development Plan  

Broader source: Energy.gov [DOE]

To be effective, training decisions made at the organizational and departmental levels must be informed by the needs of the individual. An individual development plan (IDP) is cooperatively...

338

Microsoft Word - prjct planning  

Broader source: Energy.gov (indexed) [DOE]

activities to be performed throughout the information systems project life cycle. Project planning is generally characterized as a process for selecting the strategies,...

339

MITG Test Plan  

SciTech Connect (OSTI)

The plan presented is for the testing of a prototypical slice of the Modular Isotopic Thermoelectric Generator (MITG). Cross Reference T48-1.

Eck, Marshall B.

1981-08-01T23:59:59.000Z

340

Community Relations Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Permittees and the public are documented during the Hazardous Waste Facility Permit Community Relations Plan development. Contact Environmental Communication & Public...

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Climate Action Plan (Virginia)  

Broader source: Energy.gov [DOE]

Governor Timothy M. Kaine established the Governor's Commission on Climate Change in December 2007. The commission prepared a plan for Virginia that identified ways to reduce greenhouse gas...

342

Climate Action Plan (Kentucky)  

Broader source: Energy.gov [DOE]

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

343

State Energy Strategic Planning  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

344

Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint  

SciTech Connect (OSTI)

The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

Nelson, E.

2010-08-01T23:59:59.000Z

345

Sealed source peer review plan  

SciTech Connect (OSTI)

Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR {section} 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements for the subject peer review.

Feldman, Alexander [Los Alamos National Laboratory; Leonard, Lee [RETIRED; Burns, Ron [CONTRACTOR

2009-01-01T23:59:59.000Z

346

Instrumentation for multiaxial mechanical testing of inhomogeneous elastic membranes  

E-Print Network [OSTI]

This thesis presents the design, development, and construction of an instrument for biaxial mechanical testing of inhomogeneous elastic membranes. The instrument incorporates an arrangement of linear motion stages for ...

Herrmann, Ariel Marc

2006-01-01T23:59:59.000Z

347

CU-LASP Test Facilities ! and Instrument Calibration Capabilities"  

E-Print Network [OSTI]

­ Star tracker ­ Solar position sensors ­ Test & calibration applications ­ End-to-end instrument;Total Solar Irradiance Radiometer Facility (TRF) · Total Solar Irradiance (TSI) instrument calibrations

Mojzsis, Stephen J.

348

Implementation of instruments and facilities at the SGP CART site  

SciTech Connect (OSTI)

This report discusses the installation of instruments and trailers at the southern Great Plains Clouds and Radiation Testbed site.

Sisterson, D.L.; Wesely, M.L.

1994-02-01T23:59:59.000Z

349

Control strategies and motion planning for nanopositioning applications with multi-axis magnetic-levitation instruments  

E-Print Network [OSTI]

comprised analytical design and development, followed by experimental verification and validation. Preliminary analysis and testing included open-loop stabilization and rigorous set-point change and load-change testing to demonstrate the precision...

Shakir, Huzefa

2007-09-17T23:59:59.000Z

350

Proposed Metering and Instrumentation Monitoring and Analysis Plan and Budget: Alamo Community College District  

E-Print Network [OSTI]

, it will be necessary to install additional software (PCAnywhere) or equipment (mainly another PC workstation) near the existing EMS computer terminals. ESL would also like Ethernet lines connected to the PC workstation so the system could be accessed via Internet...

O'Neal, D. L.; Carlson, K. A.; Sweeney, J., Jr.; Milligan, K.

2002-01-01T23:59:59.000Z

351

Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use  

SciTech Connect (OSTI)

This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

McCoskey, Jacob K.

2014-01-22T23:59:59.000Z

352

SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 15  

E-Print Network [OSTI]

SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 15 INSTRUCTION MANUAL Serial No._____________________ 8/94 World Precision Instruments, Inc. SP100i Syringe Pump Digital Infusion Syringe Pump #12;SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 1 Contents GENERAL DESCRIPTION

Kleinfeld, David

353

Absolute instruments and perfect imaging in geometrical optics  

E-Print Network [OSTI]

Absolute instruments and perfect imaging in geometrical optics Tom´as Tyc, Lenka Herz symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically

Tyc, Tomas

354

Southwest Region Experiment Station - Final Technical Report  

SciTech Connect (OSTI)

Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners

Rosenthal, A

2011-08-19T23:59:59.000Z

355

MHD power plant instrumentation and control  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) has awarded a contract to the MHD Development Corporation (MDC) to develop instrumentation and control requirements and strategies for commercial MHD power plants. MDC subcontracted MSE to do the technical development required. MSE is being assisted by Montana State University (MSU) for the topping cycle development. A computer model of a stand-alone MHD/steam plant is being constructed. The plant is based on the plant design set forth in the MDC proposal to the Federal Clean Coal Technology 5 solicitation. It consists of an MHD topping plant, a Heat Recovery Seed Recovery (HRSR) plant, and a steam turbo-generator. The model is based on the computer code used for a study of the Corette plant retrofitted with an MHD plant. Additional control strategies, based on MHD testing results and current steam bottoming plant control data, will be incorporated. A model will be devised and implemented for automatic control of the plant. Requirements regarding instrumentation and actuators will be documented. Instrumentation and actuators that are not commercially available will be identified. The role and desired characteristics of an expert system in the automated control scheme is being investigated. Start-up and shutdown procedures will be studied and load change dynamic performance will be evaluated. System response to abnormal topping cycle and off-design system operation will be investigated. This includes use of MHD topping cycle models which couple gasdynamic and electrical behavior for the study of controlling of the MHD topping cycle. A curvefitter, which uses cubic Hermitian spline interpolation functions in as many as five dimensions, allows much more accurate reproduction of nonlinear, multidimensional functions. This project will be the first to investigate plant dynamics and control using as many as seven independent variables or control inputs to the MHD topping cycle.

Lofftus, D.; Rudberg, D. [MSE Inc., Butte, MT (United States); Johnson, R.; Hammerstrom, D. [Montana State Univ., Bozeman, MT (United States)

1993-12-31T23:59:59.000Z

356

Environmental protection Implementation Plan  

SciTech Connect (OSTI)

This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

R. C. Holland

1999-12-01T23:59:59.000Z

357

Walkability Planning in Jakarta  

E-Print Network [OSTI]

Integrated accessibility strategy and design Legibility Integrated activity Shared spaces Strategy 1: Policy Pedestrian planning as constituency buildingIntegrated activity study Inclusive road designation WikiPlaces pedestrian network mapping Vernacular placemaking and Asian shared street design Pedestrian planning as constituency building

Lo, Ria S. Hutabarat

2011-01-01T23:59:59.000Z

358

ENERGY EMERGENCY RESPONSE PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY EMERGENCY RESPONSE PLAN COMMISSIONREPORT October 2006 CEC-600-2006-014 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman James D Deputy Director FUELS AND TRANSPORTATION DIVISION #12;The Energy Emergency Response Plan is prepared

359

Environmental Protection Implementation Plan  

SciTech Connect (OSTI)

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. The Environmental Protection Implementation Plan serves as an aid to management and staff to implement new environmental programs in a timely manner.

Brekke, D.D.

1994-01-01T23:59:59.000Z

360

Hanford facility contingency plan  

SciTech Connect (OSTI)

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supporting Document Strategic Plan  

E-Print Network [OSTI]

1 Supporting Document Strategic Plan 2013­2020 #12;2 Supporting Document Strategic Plan 2013 more critical to the University's future than was the case in 2005. The purpose of this document are summarised via a SWOT analysis in Appendix 1. This document should therefore be read in conjunction

Auckland, University of

362

Beam instrumentation for the Tevatron Collider  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

2009-10-01T23:59:59.000Z

363

Curtis Instruments Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran, Illinois:Instruments Inc Jump to:

364

Licenses Available in Analytical Instrumentation | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE CAnalytical Instrumentation SHARE

365

ARM - Campaign Instrument - 5mm-mwr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARMFacilitiesCERAgovInstruments5mm-mwr

366

Marketing Plan for Transmission Planning Services  

E-Print Network [OSTI]

well because of its people, business market and industry; it is always a good idea to be on the lookout for new markets and clients in other industries and markets. Transmission planning has always been a steady market for the electrical industry...

Tu, Linh

2006-12-15T23:59:59.000Z

367

Hanford Tank Farms Waste Certification Flow Loop Test Plan  

SciTech Connect (OSTI)

A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

2010-01-01T23:59:59.000Z

368

Transportation Institutional Plan  

SciTech Connect (OSTI)

This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

Not Available

1986-08-01T23:59:59.000Z

369

DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan  

E-Print Network [OSTI]

DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan DRAFT May 25 2004 Compiled by Wasco County Soil and Water Conservation District in cooperation with Fifteenmile Coordinating Group 5. FIFTEENMILE SUBBASIN MANAGEMENT PLAN

370

South Texas Planning Region Public Transportation Coordination Plan  

E-Print Network [OSTI]

KFH GROUP, INC. SOUTH TEXAS PLANNING REGION PUBLIC TRANSPORTATION COORDINATION PLAN Developed for the: SOUTH TEXAS DEVELOPMENT COUNCIL ECONOMIC DEVELOPMENT PROGRAM By: KFH Group, Incorporated December.................................................................................................................................1 PLAN PROCESS .............................................................................................................................3 GOALS AND OBJECTIVES...

South Texas Development Council Economic Development Program

2006-12-15T23:59:59.000Z

371

AGS experiments -- 1991, 1992, 1993. Tenth edition  

SciTech Connect (OSTI)

This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

Depken, J.C.

1994-04-01T23:59:59.000Z

372

BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN  

E-Print Network [OSTI]

BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A R RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDIN T PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEM

Florida, University of

373

Microfabricated instrument for tissue biopsy and analysis  

DOE Patents [OSTI]

A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate. For automation purposes, microvalves and micropumps may be incorporated. Also, specimens in parallel may be cut and treated with identical or varied chemicals. The instrument is disposable due to its low cost and thus could replace current expensive microtome and histology equipment.

Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

1999-01-01T23:59:59.000Z

374

Accommodating subject and instrument variations in spectroscopic determinations  

DOE Patents [OSTI]

A method and apparatus for measuring a biological attribute, such as the concentration of an analyte, particularly a blood analyte in tissue such as glucose. The method utilizes spectrographic techniques in conjunction with an improved instrument-tailored or subject-tailored calibration model. In a calibration phase, calibration model data is modified to reduce or eliminate instrument-specific attributes, resulting in a calibration data set modeling intra-instrument or intra-subject variation. In a prediction phase, the prediction process is tailored for each target instrument separately using a minimal number of spectral measurements from each instrument or subject.

Haas, Michael J. (Albuquerque, NM); Rowe, Robert K. (Corrales, NM); Thomas, Edward V. (Albuquerque, NM)

2006-08-29T23:59:59.000Z

375

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

376

Energy Efficiency Market Sustainable Business Planning | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning, a presentation...

377

2012 DOE Strategic Sustainability Performance Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Strategic Sustainability Performance Plan 2012 DOE Strategic Sustainability Performance Plan The 2012 DOE Strategic Sustainability Performance Plan embodies DOE's...

378

Resource-Optimal Planning For An Autonomous Planetary Vehicle  

E-Print Network [OSTI]

Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a variety of sensors used to perform exploration and experiments on a planet's surface. Rovers work in a partially unknown environment, with narrow energy/time/movement constraints and, typically, small computational resources that limit the complexity of on-line planning and scheduling, thus they represent a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for example for rovers that operate without a continuous Earth supervision, such planning is often performed on simplified models that are not completely realistic. In this paper we show how the UPMurphi model checking based planning tool can be used to generate resource-optimal plans to control the engine of ...

Della Penna, Giuseppe; Magazzeni, Daniele; Mercorio, Fabio; 10.5121/ijaia.2010.1302

2010-01-01T23:59:59.000Z

379

Public affairs plan  

SciTech Connect (OSTI)

The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the Fiscal Year 1995 UMTRA public affairs program and identify specific activities to be conducted during the year. It also describes the roles of various agencies involved in the conduct of the public affairs program and defines the functions of the Technical Assistance Contractor (TAC) Public Affairs Department. It integrates and replaces the Public Participation Plan (DOE/AL/62350-47D) and Public Information Plan (DOE/AL/623590-71). The plan describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in project decision-making processes. The plan applies to the UMTRA Project Office; the DOE Albuquerque Operations Office, Office of Intergovernmental and External Affairs (OIEA); the UMTRA TAC; the UMTRA Remedial Action Contractor (RAC); and other cooperating agencies.

Not Available

1994-09-01T23:59:59.000Z

380

experiment, collaboration  

E-Print Network [OSTI]

-Departamento Energias Renovables, Plataforma Solar de Almeria, E-04080 Almeria, Spain Departamento de Lenguajes y ca. factor 10 less complex then imaging solar Cerenkov exp.:smaller cost, fewer systematic errors #12; 5 Rainer Plaga The GRAAL experiment, ECRS Lodz July 2000 Location of GRAAL " Plataforma Solar de

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Construction and testing of the instrument for neutron holographic study at the Budapest Research Reactor  

SciTech Connect (OSTI)

Neutron scattering device dedicated to neutron holography experiments is described. The device is operating at a constant wavelength prepared by a double focusing monochromator. It is equipped by highly efficient shielding, proper collimator, Eulerian cradle, monitor detector, gamma-ray, and neutron detectors as well. Relevant software serves as control for the measurement and data collection. The harmonized application of the components enumerated above makes our device extremely efficient and unparalleled. Two atomic resolution neutron holographic experiments carried out illustrate the efficiency and power of the instrument.

Marko, Marton; Toeroek, Gyula; Cser, Laszlo [Department of Neutron Spectroscopy, Research Institute for Solid State Physics and Optics, P.O.B. 49, H-1525 Budapest (Hungary); Szakal, Alex [Department of Neutron Spectroscopy, Research Institute for Solid State Physics and Optics, P.O.B. 49, H-1525 Budapest (Hungary); Budapest University of Technology and Economics, Muegyetem rakpart 1-3, H-1113 Budapest (Hungary)

2010-10-15T23:59:59.000Z

382

Environmental monitoring plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 52 refs., 10 figs., 12 tabs.

Holland, R.C.

1997-02-01T23:59:59.000Z

383

Transmission Planning | Department of Energy  

Office of Environmental Management (EM)

Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made...

384

Community Energy Stategic Planning Resources  

Broader source: Energy.gov (indexed) [DOE]

Community Energy Strategic Planning Resources Technical Assistance Program January 24 th , 2013 2 Agenda 1. Welcome & overview 2. What is a community energy strategic plan and why...

385

Planning for Years to Come  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education...

386

Transition Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and training needs for system operation and maintenance, planning for data migration, etc Transition Plan More Documents & Publications System Design Feasibility Study Report...

387

Arguing About Plans: Plan Representation and Reasoning for Mixed-Initiative Planning  

E-Print Network [OSTI]

Arguing About Plans: Plan Representation and Reasoning for Mixed-Initiative Planning George into a microphone. Over thirteen hours of inter- action have been collected and transcribed (see (Gross, Allen

Ferguson, George

388

SRS delayed neutron instruments for safeguards measurements  

SciTech Connect (OSTI)

Six analytical systems measuring delayed neutrons have been used for safeguards measurements at the Savannah River Site (SRS). A predecessor, the 252Cf Activation Analysis Facility installed at the Savannah River Technology Center (formally SR Laboratory) has been used since 1974 to analyze small samples, measuring both delayed neutrons and gammas. The six shufflers, plus one currently being fabricated, were developed, designed and fabricated by the LANL N-1 group. These shufflers have provided safeguards measurements of product (2 each), in-process scrap (2 each plus a conceptual replacement) and process waste (2 each plus one being fabricated). One shuffler for scrap assay was the first shuffler to be installed (1978) in a process. Another (waste) was the first installed in a process capable of assaying barrels. A third (waste) is the first pass-through model and a fourth (product) is the most precise ({+-}.12%) and accurate NDA instrument yet produced.

Studley, R.V. [Westinghouse SRC, Aiken, SC (United States)

1993-12-31T23:59:59.000Z

389

Microfabricated instrument for tissue biopsy and analysis  

DOE Patents [OSTI]

A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate.

Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

2001-01-01T23:59:59.000Z

390

Highly damped kinematic coupling for precision instruments  

DOE Patents [OSTI]

A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

Hale, Layton C. (Livermore, CA); Jensen, Steven A. (Livermore, CA)

2001-01-01T23:59:59.000Z

391

Assessing the local windfield with instrumentation  

SciTech Connect (OSTI)

This report concerns the development and testing of a technique for the initial screening and evaluation of potential sites for wind-energy conversion systems (WECS). The methodology was developed through a realistic siting exercise. The siting exercise involved measurements of winds along the surface and winds aloft using a relatively new instrument system, the Tethered Aerodynamic Lifting Anemometer (TALA) kite; notation of ecological factors such as vegetation flagging, soil erosion and site exposure, and verification of an area best suited for wind-energy development by establishing and maintaining a wind monitoring network. The siting exercise was carried out in an approximately 100-square-mile region of the Tehachapi Mountains of Southern California. The results showed that a comprehensive site survey involving field measurements, ecological survey, and wind-monitoring can be an effective tool for preliminary evaluation of WECS sites.

Zambrano, T.G.

1980-10-01T23:59:59.000Z

392

SUNRISE: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS  

SciTech Connect (OSTI)

The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.

Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmueller, T. L.; Schuessler, M. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Bonet, J. A.; Pillet, V. MartInez [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Del Toro Iniesta, J. C. [Instituto de Astrofisica de AndalucIa (CSIC), Apdo. de Correos 3004, E-18080, Granada (Spain); Domingo, V.; Palacios, J. [Grupo de AstronomIa y Ciencias del Espacio, Universidad de Valencia, E-46980, Paterna, Valencia (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gonzalez, N. Bello; Berkefeld, T.; Franz, M.; Schmidt, W. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, 79104 Freiburg (Germany); Title, A. M., E-mail: solanki@mps.mpg.d [Lockheed-Martin Solar and Astrophysical Lab., Palo Alto, CA 94304 (United States)

2010-11-10T23:59:59.000Z

393

Financial Planning Resource Allocation  

E-Print Network [OSTI]

Financial Planning Resource Allocation Human Resources Administrative Services Recruitment Management Leadership Studies Minor Admissions Information Desk & Game Center Fraternity/Sorority Life & Cross-Cultural Support Board Dining Medical Services Liaison for Faculty, Staff & Scholarships Retail

Barrash, Warren

394

Developing a Marketing Plan  

E-Print Network [OSTI]

Developing a good marketing plan will help you identify and quantify costs, set price goals, determine potential price outlook, examine production and price risk, and develop a strategy for marketing your crop. This publication describes...

Bevers, Stan; Waller, Mark L.; Amosson, Stephen H.; McCorkle, Dean

2009-03-02T23:59:59.000Z

395

Environmental Monitoring Plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

1993-07-01T23:59:59.000Z

396

Walkability Planning in Jakarta  

E-Print Network [OSTI]

Rukmana, Deden. “Street Vendors and Planning in IndonesianYatmo, Yandi Andri. “Street Vendors as 'Out of Place' UrbanYatmo, Yandi Andri. “Street Vendors as 'Out of Place' Urban

Lo, Ria S. Hutabarat

2011-01-01T23:59:59.000Z

397

CURRICULUM VITAE RESEARCH PLAN  

E-Print Network [OSTI]

CURRICULUM VITAE & RESEARCH PLAN Erik Schwartz Sørensen Ph. D. Theoretical Condensed Matter Physics Contents Curriculum vitae 3 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Recent Invited Talks 21 Referees 22 #12; Erik Sørensen February 19, 2001 3 Curriculum vitae

Sørensen, Erik S.

398

Constraints and AI Planning   

E-Print Network [OSTI]

Tackling real-world problems often requires to take various types of constraints into account. Such constraint types range from simple numerical comparators to complex resources. This article describes how planning techniques ...

Nareyek, A; Freuder, E C; Fourer, R; Giunchiglia, R P; Kautz, H; Rintanen, J; Tate, Austin

2005-01-01T23:59:59.000Z

399

Strategic Plan: Implementation and  

E-Print Network [OSTI]

Findings From: Planning Interviews Stakeholder Survey Environmental Assessment Refine Mission and Vision Define Goals with Measurable Outcomes Develop Specific Strategies & Tactics Finalize;Improving lives and transforming healthcare.* Mission Statement ­ "Core Purpose" Vision Statement

Nguyen, Danh

400

Business Entity Planning  

E-Print Network [OSTI]

There are a number of ways farm and ranch businesses can be structured, including partnerships, corporations, limited liability companies, and others. This publication explains how the structure of a business affects estate planning, management...

Thompson, Bill; Hayenga, Wayne

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Planning a Prescribed Burn  

E-Print Network [OSTI]

This leaflet explains how to plan for adequate fuel for a prescribed burn, control the fire, notify the proper authority, manage the burn itself, and conduct follow-up management. A ranch checklist for prescribed burning is included....

Hanselka, C. Wayne

2009-04-01T23:59:59.000Z

402

Technical Planning Basis  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists DOE/NNSA field elements and operating contractors in identifying and analyzing hazards at facilities and sites to provide the technical planning basis for emergency management programs. Cancels DOE G 151.1-1, Volume 2.

2007-07-11T23:59:59.000Z

403

Climate Action Plan (Maine)  

Broader source: Energy.gov [DOE]

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

404

TECHNOLOGY PROGRAM PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

405

Nuclear Instruments and Methods in Physics Research A 544 (2005) 171178 Simulation of long-distance beam propagation in the  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 544 (2005) 171­178 Simulation of long. Davidson, Philip C. Efthimion, Richard Majeski, Edward A. Startsev Plasma Physics Laboratory, Princeton, spallation neutron sources, high energy and nuclear physics experiments, and nuclear ARTICLE IN PRESS www

Gilson, Erik

406

Environmental implementation plan  

SciTech Connect (OSTI)

In this document, the Savannah River site environmental programs and plans from DOE contractors and Westinghouse Savannah River Company divisions/departments are presented along with the environmental coordinator for each program. The objectives are to enhase communication of existing or planned programs to do the following: identify activities required for meeting environmental needs; identify needing resources and a schedule to accomplish those activities; promote share-savings and consistency in those activities.

Peterson, G.L.

1994-10-04T23:59:59.000Z

407

Metropolitan Transportation Plan 2035  

E-Print Network [OSTI]

Adopted by the Tyler Area MPO Policy Committee December 4, 2009 METROPOLITAN TRANSPORTATION PLAN 2035 Revised April 22, 2010 Adopted by the Tyler Area MPO Policy Committee December 4, 2009 Amended/Revised April 22, 2010 Prepared by: Bucher..., Willis, and Ratliff Corporation 1828 East Southeast Loop 323, Suite 202 Tyler, Texas 75701 903.581.7844 This Document Serves as an Update to the Tyler Area Metropolitan Transportation Plan 2030. Portions of that Document were Unchanged and Appear...

Tyler Area Metropolitan Planning Organization

2009-12-04T23:59:59.000Z

408

Public affairs plan  

SciTech Connect (OSTI)

The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the fiscal year (FY) 1996 UMTRA Project public affairs program and to identify specific activities to be conducted during the year. It describes the roles of various agencies involved in the public affairs program and defines the functions of the UMTRA Project Technical Assistance Contractor (TAC) Public Affairs Department. It replaces the FY 1995 Public Affairs Plan (DOE/AL/62350-154). The plan also describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about UMTRA Project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in UMTRA Project decision-making processes. The plan applies to the UMTRA Project Team; the DOE Grand Junction Projects Office (GJPO); the DOE Albuquerque Operations Office, Office of Public Affairs (OPA); the TAC; the UMTRA Project Remedial Action Contractor (RAC); and other cooperating agencies.

NONE

1995-09-01T23:59:59.000Z

409

New portable hand-held radiation instruments for measurements and monitoring  

SciTech Connect (OSTI)

Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification.

Fehlau, P.E.

1987-01-01T23:59:59.000Z

410

Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan  

E-Print Network [OSTI]

Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Federal Highway Administration Federal Transit Administration 2030 Long Range Transportation Plan for the Hot Springs Area Metropolitan Planning Organization This LRTP has been funded with federal Metropolitan Planning (PL) funds through...

Hot Springs Metropolitan Planning Organization

2005-11-03T23:59:59.000Z

411

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

Nickels, J.M.

1991-06-01T23:59:59.000Z

412

OSU Bicycle Plan 2/10 OSU Bicycle Plan  

E-Print Network [OSTI]

OSU Bicycle Plan 2/10 DRAFT OSU Bicycle Plan Introduction Goals and Performance Measures (statistics and data points) Bicycle Network (circulation and parking) Bicycle Programs (incentives, outreach, education and enforcement) Improvement Plan #12;OSU Bicycle Plan 2/10 Introduction The 2010 Oregon State

Escher, Christine

413

Plan generation strategies for a knowledge based process planning system  

E-Print Network [OSTI]

-12. Checking Manufacturability at Site 3-13. Plan Alternate Process 3-14. Review Plans Critically 3-15. Plan Refinement 3-16. Evaluation of Plans 45 47 48 49 50 52 3-17. Detail Plan 53 3-18. Understanding Part Features 55 3-19. Evolving... manufacturing system where quick decisions have to be made on the shop when production is interrupted for contingencies. 15 2. 3. 2 The Generative Approach A generative process planning system synthesizes new process plans automatically. It enables...

Hari, Umesh

1993-01-01T23:59:59.000Z

414

Rulison Monitoring Plan  

SciTech Connect (OSTI)

The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

None

2010-07-01T23:59:59.000Z

415

Experiment Hazard Class 5.2 - High Pressure - Large Volume Press  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safety plan. Personal Protective Equipment - Safety glasses with side shields that meet ANSI Z87 requirements. Experiment Authorization Unless otherwise noted in the approved...

416

Method of evaluating the effect of HPGe design on the sensitivity of physics experiments.  

E-Print Network [OSTI]

??Motivated by planned double beta decay experiments in 76Ge I describe a computational model for the electric fields of solid state diode detectors and the… (more)

Kephart, Jeremy Dale

2009-01-01T23:59:59.000Z

417

PVUSA instrumentation and data analysis techniques for photovoltaic systems  

SciTech Connect (OSTI)

The Photovoltaics for Utility Scale Applications (PVUSA) project tests two types of PV systems at the main test site in Davis, California: new module technologies fielded as 20-kW Emerging Module Technology (EMT) arrays and more mature technologies fielded as 70- to 500-kW turnkey Utility-Scale (US) systems. PVUSA members have also installed systems in their service areas. Designed appropriately, data acquisition systems (DASs) can be a convenient and reliable means of assessing system performance, value, and health. Improperly designed, they can be complicated, difficult to use and maintain, and provide data of questionable validity. This report documents PVUSA PV system instrumentation and data analysis techniques and lessons learned. The report is intended to assist utility engineers, PV system designers, and project managers in establishing an objective, then, through a logical series of topics, facilitate selection and design of a DAS to meet the objective. Report sections include Performance Reporting Objectives (including operational versus research DAS), Recommended Measurements, Measurement Techniques, Calibration Issues, and Data Processing and Analysis Techniques. Conclusions and recommendations based on the several years of operation and performance monitoring are offered. This report is one in a series of 1994--1995 PVUSA reports documenting PVUSA lessons learned at the demonstration sites in Davis and Kerman, California. Other topical reports address: five-year assessment of EMTs; validation of the Kerman 500-kW grid support PV plant benefits; construction and safety experience in installing and operating PV systems; balance-of-system design and costs; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

Newmiller, J.; Hutchinson, P.; Townsend, T.; Whitaker, C.

1995-10-01T23:59:59.000Z

418

FORMALDEHYDE Formaldehyde Management Plan i  

E-Print Network [OSTI]

and Evaluation) Facilities Management Work Control Center (40)5-2222 (Repair of Facility Equipment DeficienciesFORMALDEHYDE MANAGEMENT PLAN #12;Formaldehyde Management Plan i Review and Approval Authority Formaldehyde Management Plan this page intentionally blank #12;Formaldehyde Management Plan iii Table

Rubloff, Gary W.

419

Forestry Commission England Corporate Plan  

E-Print Network [OSTI]

Forestry Commission England Corporate Plan 2011-15 This is the Corporate Plan for the Forestry Commission in England. It is one of a suite of plans including those for Forestry Commission (GB) and Forest Research. Page 1Forestry Commission England Corporate Plan 2011-15 #12;Page 2Forestry Commission England

420

Windward Community College Strategic Plan  

E-Print Network [OSTI]

.......................................................1 II. DESCRIPTION OF THE COLLEGE PLANNING PROCESS.......................................3 A with career exploration, technolo

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UNL CAMPUS & LANDSCAPE MASTER PLANS  

E-Print Network [OSTI]

are to both support the upkeep and maintenance of existing landscapes on campus and to support the designPLAN BIG UNL CAMPUS & LANDSCAPE MASTER PLANS NOVEMBER 2013 #12;#12;PLAN BIG ARCHITECTURAL AND LANDSCAPE GUIDELINES #12;4 #12;5 TABLE OF CONTENTS INTRODUCTION Purpose and Introduction 6 The Plan Big

Farritor, Shane

422

DOE Fundamentals Handbook: Instrumentation and Control, Volume 2  

SciTech Connect (OSTI)

The Instrumentation and Control Fundamentals Handbook personnel, and the technical staff facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

Not Available

1992-06-01T23:59:59.000Z

423

DOE Fundamentals Handbook: Instrumentation and Control, Volume 1  

SciTech Connect (OSTI)

The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

Not Available

1992-06-01T23:59:59.000Z

424

Optimal Interdiction of Attack Plans Joshua Letchford  

E-Print Network [OSTI]

Economics, Security, Algorithms Keywords Game theory, security, planning, plan interdiction 1. INTRODUCTION

Vorobeychik, Eugene

425

Radiation Protection Instrument Manual, Revision 1, PNL-MA-562  

SciTech Connect (OSTI)

PNL-MA-562 This manual provides specific information for operating and using portable radiological monitoring instruments available for use on the Hanford Site.

Johnson, Michelle Lynn

2009-09-23T23:59:59.000Z

426

automatic stapling instrument: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MUSICAL INSTRUMENT DETECTOR BY USING EVOLUTIONARY LEARNING METHOD Yoshiyuki Kobayashi SONY Corporation, Japan Yoshiyuki.Kobayashi@jp.sony.com ABSTRACT This paper presents a novel...

427

adaptive nonparametric instrumental: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

both selects Faraway, Julian 27 Spanish Version of the Sport Satisfaction Instrument (SSI) Adapted to Physical Education CiteSeer Summary: The objective of this research was to...

428

Tuesday, March 14, 2006 POSTER SESSION I: INSTRUMENT FACILITIES  

E-Print Network [OSTI]

-of-the-art instrument and the research that we will do with it. Kohout T. Elbra T. Pesonen L. J. Schnabl P. Slechta S

Rathbun, Julie A.

429

QAS 2.4 Instrument Calibration 5/26/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to evaluate the implementation of the contractor's program to routinely calibrate instruments, alarms, and sensors.  The Facility Representative observes...

430

activation instrumental analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

car electronics industry. There are currently many electronic systems improving the safety Wieringa, Roel 17 Runtime Instrumentation for Precise Flow-Sensitive Type Analysis...

431

Chemistry 532: Analytical Chemistry Instrumentation Spring 2014  

E-Print Network [OSTI]

to the other Luke Tolley Class schedule: MWF 11 ­ 11:50 Supplies needed: LabView Student Edition Arduino Uno R3 experience doing the lab. Some of them will involve interfacing with your Arduino. Grading: 10% Exam 1 10

Nickrent, Daniel L.

432

Environmental Implementation Plan  

SciTech Connect (OSTI)

The Environmental Implementation Plan (EIP) is a dynamic long-range environmental-protection plan for SRS. The EIP communicates the current and future (five year) environmental plans from individual organizations and divisions as well as site environmental initiatives which are designed to protect the environment and meet or exceed compliance with changing environmental/ regulatory requirements. Communication with all site organizations is essential for making the site environmental planning process work. Demonstrating environmental excellence is a high priority embodied in DOE and WSRC policy. Because of your support and participation in the three EIP initiatives; Reflections, Sectional Revision, and Integrated Planning, improvements are being made to the EIP and SRS environmental protection programs. I appreciate the ``Partnership in Environmental Excellence`` formed by the environmental coordinators and professionals who work daily toward our goal of compliance and environmental excellence. I look forward to seeing continued success and improvement in our environmental protection programs through combined efforts of all site organizations to protect our employees, the public health, and the environment. Together, we will achieve our site vision for SRS to be the recognized model for Environmental Excellence in the DOE Nuclear Weapons Complex.

Not Available

1994-02-01T23:59:59.000Z

433

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

1 Optimal Model-Based Production Planning for Refinery Operation Abdulrahman Alattas Advisor;2 Outline Introduction Problem Statement Refinery Planning Model Development LP Planning Models NLP Planning Models Conclusion #12;3 Introduction Refinery production planning models Optimizing refinery

Grossmann, Ignacio E.

434

Agent Program Planning Information Money Smart  

E-Print Network [OSTI]

Agent Program Planning Information Money Smart http participated in Money Smart classes: Habitat for Humanity, Head Start, workforce center clients, adult Planning Model plans have been developed for a Money Smart outcome plan and a Money Smart output plan

435

Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving  

E-Print Network [OSTI]

Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving quality data archive is produced, design archive production into the instrument data pipeline, use PDS major archive design milestones, early generation of sample data, peer review of the pipeline

Waliser, Duane E.

436

Calibration facility for environment dosimetry instruments  

SciTech Connect (OSTI)

In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (?10{sup ?9} - 10{sup ?8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin [Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului St, Magurele, Jud Ilfov, P.O.B. MG-6, RO-077125 (Romania)

2013-12-16T23:59:59.000Z

437

Advances in nuclear instrumentation for safeguards  

SciTech Connect (OSTI)

This paper describes detectors, instrumentation, and analytical methods under development to address the above issues. The authors will describe work underway on room-temperature semiconductors including attempts to model the response of these detectors to improve spectrum analysis procedures and detector design. Computerized tomography is used in many medical and industrial applications; they are developing both gamma-ray and neutron tomography for improved measurements of waste and direct-use materials. Modern electronics and scintillation detectors should permit the development of fast neutron coincidence detectors with dramatically improved signal-to-noise ratios. For active measurements, they are studying several improved neutron sources, including a high-fluence, plasma-based, d-t generator. New analysis tools from information theory may permit one to better combine data from different measurement systems. This paper attempts to briefly describe a range of new sensors, electronics, and data analysis methods under study at Los Alamos and other laboratories to promote discussion of promising technology that they may bring to bear on these important global issues.

Prettyman, T.H.; Reilly, T.D.; Miller, M.C.; Hollas, C.L.; Pickrell, M.M.; Prommel, J.M.; Dreicer, J.S.

1996-12-31T23:59:59.000Z

438

DAF Glovebox Project Plan  

SciTech Connect (OSTI)

This document defines how the glovebox project will be managed and executed. It provides a path forward for establishing a glovebox capability in Building 341 of the DAF in time to meet JASPER programmatic requirements as the first user. Note that some elements of the glovebox project have been under way for some time and are more mature than others; other elements are being worked concurrently. This plan serves the following purposes: Assign organizational and individual responsibilities for bringing the glovebox capability online; Coordinate activities between organizations; Facilitate communication between project members and management; and Identify the mechanisms used to manage and control the project. The scope of this plan includes all activities conducted to achieve project objectives, culminating in DOE/NV approval to operate. This plan does not address the issues associated with the steady-state operation of the glovebox.

Martinez, M.W.; Higgs, R.L.

2000-11-14T23:59:59.000Z

439

Energy Organizational Planning  

SciTech Connect (OSTI)

As the Seneca Nation of Indians (SNI) continues to refine and finalize its Strategic Energy Plan, it became necessary to insure that a sustainable organization structure was developed through which the energy program and its initiatives could be nurtured and managed. To that end, SNI undertook a study to thoroughly evaluate the existing organizational structures and assess the requisite changes and/or additions to that framework that would complement the mission of the Strategic Plan. The goal of this study was to analyze, work with staff and leadership and recommend the most effective plan for the development of an organizational framework within which the Seneca could more effectively exercise energy sovereignty – control and manage their natural resource assets – i.e. develop its own energy resources, meet the current and projected energy needs of their community, and “sit at the table” with other regional energy providers to deal with issues on a peer-to-peer basis.

Gina C. Paradis; James Yockey; Tracey LeBeau

2009-04-17T23:59:59.000Z

440

Determination of accuracy of measurements by NREL`s Scanning Hartmann Optical Test instrument  

SciTech Connect (OSTI)

NREL`s Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

Jorgensen, G.; Wendelin, T.; Carasso, M.

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Determination of accuracy of measurements by NREL's Scanning Hartmann Optical Test instrument  

SciTech Connect (OSTI)

NREL's Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

Jorgensen, G.; Wendelin, T.; Carasso, M.

1991-04-01T23:59:59.000Z

442

Environmental protection implementation plan  

SciTech Connect (OSTI)

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. SNL is committed to operating in full compliance with the letter and spirit of applicable environmental laws, regulations, and standards. Furthermore, SNL/California strives to go beyond compliance with legal requirements by making every effort practical to reduce impacts to the environment to levels as low as reasonably achievable.

Holland, R.C.

1998-03-01T23:59:59.000Z

443

Strategic Planning for Landowners  

E-Print Network [OSTI]

Strategic Planning for Landowners Risk Management E-146 RM3-12.0 09-08 *Assistant Professor and Extension Economist?Management, and Extension Specialist?Risk Management, The Texas A&M System Strategic planning is a process that provides direction... the bottom up. Managers are also responsible for Jason L. Johnson and Wade Polk* 2 carrying out those required daily tasks. Land- owners are often both manager and employee, which demands a combination of vision and technical aptitude. Steps for Setting...

Johnson, Jason; Polk, Wade

2008-09-16T23:59:59.000Z

444

Performance Management Plan  

SciTech Connect (OSTI)

This Performance Management Plan describes the approach for accelerating cleanup activities of U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Management (EM) Program. This approach accelerates the reduction of risk at NNSA/NV sites while performing the work responsibly, effectively, and more efficiently. In May 2002, NNSA/NV EM and the Nevada Division of Environmental Protection signed a Letter of Intent formalizing an agreement to pursue accelerated risk reduction and cleanup for activities within the State of Nevada. This Performance Management Plan provides the strategic direction for implementing the Letter of Intent.

IT Corporation, Las Vegas, NV

2002-08-21T23:59:59.000Z

445

Guam Strategic Energy Plan  

SciTech Connect (OSTI)

Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

Conrad, M. D.

2013-07-01T23:59:59.000Z

446

Plutonium Vulnerability Management Plan  

SciTech Connect (OSTI)

This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

NONE

1995-03-01T23:59:59.000Z

447

Career Planning - SRSCRO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMissionat|planning Career Planning

448

FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards  

SciTech Connect (OSTI)

Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be the best candidate technology for determining nitric acid concentrations but the PGNAA approach may also be applicable. 4) Work was also carried out to begin investigating the use of remote UV imaging to detect air-ionization induced by alpha particle emission from plutonium. This approach has been shown elsewhere as a useful tool for detecting and quantifying plutonium contamination and has the potential of providing a unique and powerful approach for quantifying hold-up in reprocessing facilities. Based on these simple scoping experiments the potential far-reaching capabilities of the measurement are clear.

D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

2009-08-01T23:59:59.000Z

449

Intern experience at the Honeywell Test Instrument Division: an internship report  

E-Print Network [OSTI]

?( 0 1? 00 M z 0 0 1? UJ UJ ZCo on-OO i n CO CO>- CO o oo ? on UJ 1?? z z UJ > 01?1 ? 0 0 0 z UJ? > z 0 z 1? 1 UJ a : > 0 1? r> 1?H 0 0 0O > - CO 00 UJ O0..._ I? H? u . 0 00

Sengupta, Debasis, 1949-

2013-03-13T23:59:59.000Z

450

Design of an Instrumentation System for a Boundary Layer Transition Wing Glove Experiment  

E-Print Network [OSTI]

side of the glove. Infrared (IR) thermography has been selected as the primary transition detection tool. A heat transfer analysis has shown that solar radiation will warm the surface of the glove above the adiabatic wall temperature and therefore...

Williams, Thomas 1987-

2012-08-23T23:59:59.000Z

451

Toward the Development of Radiation-Tolerant Instrumentation Data Links for Thermonuclear Fusion Experiments  

E-Print Network [OSTI]

Thermonuclear reactors will require permanent monitoring under high-gamma dose rates and high neutron flux. We propose to get rid of the digital data transmission limitations in highly radioactive environments by implementing an analog fiber-optic link based on directly modulated vertical

Alberto Fernandez Fernandez; Ez Fern; F. Berghmans; B. Brichard; M. Decreton

2002-01-01T23:59:59.000Z

452

Hand-held pulse-train-analysis instrument  

SciTech Connect (OSTI)

A portable hand-held pulse-train-analysis instrument uses a number-oriented microprocessor sequenced by a single component microprocessor. The incorporation of new CMOS integrated circuits makes possible complex analysis in a small, easily operated, battery-powered unit. The instrument solves an immediate problem with threshold setting of plastic scintillators and promises numerous other applications.

Nixon, K.V.; Garcia, C.

1982-01-01T23:59:59.000Z

453

The Cosmic Origins Spectrograph: A Hubble Replacement Instrument  

E-Print Network [OSTI]

The Cosmic Origins Spectrograph: A Hubble Replacement Instrument for the 2002 Reservicing Mission Origins Spectrograph (COS) has recently been selected as a replacement instrument for the Hubble Space Telescope. Installation is scheduled for late 2002, replacing COSTAR, which at that time will be unnecessary

Colorado at Boulder, University of

454

PNWD-SA-6893 Instrumenting the Intelligence Analysis Process  

E-Print Network [OSTI]

PNWD-SA-6893 Instrumenting the Intelligence Analysis Process Ernest Hampson Paula Cowley PresentedLean, VA, USA Battelle Memorial Institute #12;Instrumenting the Intelligence Analysis Process Ernest process Abstract The Advanced Research and Development Activity initiated the Novel Intelligence from

455

LCLS-II New Instruments Workshops Report  

SciTech Connect (OSTI)

The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and heterogeneous catalysis. Of particular interest is the efficient conversion of light to electrical or chemical energy, which requires understanding the non-adiabatic dynamics of electronic excited states. Ultrafast x-ray scattering presents an excellent opportunity to investigate structural dynamics of molecular systems with atomic resolution, and x-ray scattering and spectroscopy present an excellent opportunity to investigating the dynamics of the electronic charge distribution. Harnessing solar energy to generate fuels, either indirectly with photovoltaics and electrochemical catalysis or directly with photocatalysts, presents a critical technological challenge that will require the use of forefront scientific tools such as ultrafast x-rays. At the center of this technical challenge is the rational design of efficient and cost effective catalysts. Important materials science opportunities relate to information technology applications, in particular the transport and storage of information on increasingly smaller length- and faster time-scales. Of interest are the understanding of the intrinsic size limits associated with the storage of information bits and the speed limits of information or bit processing. Key questions revolve about how electronic charges and spins of materials can be manipulated by electric and magnetic fields. This requires the exploration of speed limits subject to the fundamental conservation laws of energy and linear and angular momentum and the different coupling of polar electric and axial magnetic fields to charge and spin. Of interest are novel composite materials, including molecular systems combining multi electric and magnetic functionality. Ultrafast x-rays offer the required probing speed, can probe either the charge or spin properties through polarization control and through scattering and spectroscopy cover the entire energy-time-momentum-distance phase space. In the field of atomic and molecular science, LCLS II promises to elucidate the fundamental interactions among electrons and between electrons and nuclei, and to explore the fron

Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC; ,

2012-08-08T23:59:59.000Z

456

Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments  

SciTech Connect (OSTI)

The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

AFCI AFC-2A and AFC-2B Experiments Project Executi

2007-03-01T23:59:59.000Z

457

US graphite reactor D&D experience  

SciTech Connect (OSTI)

This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

Garrett, S.M.K.; Williams, N.C.

1997-02-01T23:59:59.000Z

458

Operating Experience Level 3, Explosives Safety  

Broader source: Energy.gov [DOE]

This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

459

Impacted material placement plans  

SciTech Connect (OSTI)

Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

Hickey, M.J.

1997-01-29T23:59:59.000Z

460

Introduction to Transportation Planning  

E-Print Network [OSTI]

Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 on a Saturday night, transportation is not an objective in and of itself, but a means to carry out the functions of daily living (i.e., it's a "derived good"). As a consequence, the transportation systems we build

Tipple, Brett

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PENSION PLAN INFORMATION SESSION  

E-Print Network [OSTI]

%)* QPP (20%) Personal Savings RRSP, TFSA Company Pension Plan (49%)** Government Benefits Personal.lastname@mcgill.ca). If you forget your McGill Username or McGill Password, try logging into Minerva with your 9-digit McGill ID number and PIN. Once you have logged in successfully, go to the Personal Menu > Password for Mc

Kambhampati, Patanjali

462

Climate Change Scoping Plan  

E-Print Network [OSTI]

Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

463

Climate Change Scoping Plan  

E-Print Network [OSTI]

Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

464

PNNL Campus Master Plan  

SciTech Connect (OSTI)

The Plan is used as a guide for PNNL in making facility and infrastructure decisions essential to supporting the PNNL vision: to establish a modern, collaborative, flexible, and sustainable campus while optimizing the efficiency of operations in support of courageous discovery and innovation.

Mosey, Whitney LC

2012-09-07T23:59:59.000Z

465

Multispecies Conservation Planning  

E-Print Network [OSTI]

CHAPTER 3 Multispecies Conservation Planning on U.S. Federal Lands Barry R. Noon, Kevin S. McKelvey, and Brett G. Dickson Numerous laws directly, or indirectly, mandate the conservation of all species that govern the use of these same lands that are in conflict with a goal of maximizing the conservation

466

Conservation Plan Issues  

E-Print Network [OSTI]

1 Northwest Power and Conservation Council Plan Issues: Regional Surplus Northwest Power and Conservation Council What is the Issue? · Some have expressed concern about the surplus that is included lean on the market and be fine ­ Calls into question the aggressive pursuit of conservation

467

Gonzales Comprehensive Plan  

E-Print Network [OSTI]

Program’s (NFIP) Community Rat- ing System (CRS) which reduces the premiums for policy holders within the municipality. In terms of improving the human environment, the plan addresses the impacts of the oil and gas industry as well as improving trails...…………………..………………………………………………...…………………...….242 Environment…………………….……………………………………………………………………….……..….245 Future Environment………………...……………………………………………..…………...…..283 Policy Table……………………..……………………………………………………...…...………….288 Appendix………………….…………………………………………………………...…………………292 Urban Design...

Bright, Elise; Cutaia, Louis; Barrios, Nair; Brinkman, Travis; Caraballo, Stephany; Chen, Long; Coleman, Alex; Crosby, Kevin; Dai, Boya; Espinoza, Carlos; Han, Dondjin; Hansen, Todd; Hyde, Allison; Lazaro, Cristopher; Lin, Rosie; Lopez, Michael; Martin, Michael; Masterson, Jaimie Hicks; Medina, Izel; Peackock, Walter M; Sengupta, Koly; Shelnutt, Andrew; Su, Jin; Tan, Shuman; Tang, Taoi; Tran, Tho

2013-01-01T23:59:59.000Z

468

Aerocapacitor commercialization plan  

SciTech Connect (OSTI)

The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

NONE

1995-09-12T23:59:59.000Z

469

Student Health Benefit Plan  

E-Print Network [OSTI]

and programs tailored to the needs of students. The SHBP coordinates care with University Health Services (UHS), UMass Amherst's fully accredited health center. UHS provides comprehensive primary care, walk-in care2 2013-2014 Student Health Benefit Plan (SHBP) Designed for the Students of Policy Period: August 1

Massachusetts at Amherst, University of

470

Search Criteria Health Plan  

E-Print Network [OSTI]

Search Criteria Location: Distance: Health Plan: Provider Type: San Diego, CA 92103 Within 10 miles another provider, you are seeking care from that provider, not from Anthem Blue Cross. The provider benefit decisions only and are not the provision of medical care. Anthem Blue Cross is not responsible for

Gleeson, Joseph G.

471

Business Services Strategic Plan  

E-Print Network [OSTI]

Business Services Strategic Plan Updated September 2008 New Synergies: Launching Tomorrow's Leaders Discovery with Delivery Meeting Global Challenges Excellence in Business and Support Services #12;Introduction The mission of Business Services at Purdue University is to enable, serve, and support others

Holland, Jeffrey

472

Plans, Implementation, and Results  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that support and document the program management process, and the results and public benefits that derive from it.

473

COMMUNITY WILDFIRE PROTECTION PLANS  

E-Print Network [OSTI]

natural resource knowledge and technical expertise to the planning process, particularly in the areas of GIS and mapping, vegetation management, assessment of values and risks and funding strategies. WHAT of the community, priorities for fuel treatment may include critical watersheds, public water and power facilities

474

Environmental Education Strategic Plan  

SciTech Connect (OSTI)

This document is designed to guide the Environmental Education and Development Branch (EM-522) of the EM Office of Technology (OTD) Development, Technology Integration and Environmental Education Division (EM-52) in planning and executing its program through EM staff, Operations Offices, National Laboratories, contractors, and others.

none,

1991-12-01T23:59:59.000Z

475

Action Plan Materials Science  

E-Print Network [OSTI]

sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

Fitze, Patrick

476

Planning support systems for spatial planning through social learning  

E-Print Network [OSTI]

This dissertation examines new professional practices in urban planning that utilize new types of spatial planning support systems (PSS) based on geographic information systems (GIS) software. Through a mixed-methods ...

Goodspeed, Robert (Robert Charles)

2013-01-01T23:59:59.000Z

477

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan  

E-Print Network [OSTI]

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan (CHP) (Appendix C in Lab Safety Manual........................................................................................................................1-1 Chapter 2: Chemical Hazard Communication....................................................................................2-1 Chapter 3: Classes of Hazardous Chemicals

Nizkorodov, Sergey

478

Architecture & Urban Planning College of Architecture & Urban Planning  

E-Print Network [OSTI]

Architecture & Urban Planning College of Architecture & Urban Planning Architecture (ARCH) 300 projects for the remainder of the term. 560 Macroecon Envir Bus 3.00 ADVISORY, ENFORCED 74595 P RW REC 451

Shyy, Wei

479

Architecture & Urban Planning College of Architecture & Urban Planning  

E-Print Network [OSTI]

Architecture & Urban Planning College of Architecture & Urban Planning Architecture (ARCH) 690 Arc is reserved for Executive MBA students only, and meets from 7/19- 9/6. 637 Macroecon Envir Bus 1.50 ADVISORY

Shyy, Wei

480

The Dark Energy Survey instrument design  

SciTech Connect (OSTI)

We describe a new project, the Dark Energy Survey (DES), aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx}5%, with four complementary techniques. The survey will use a new 3 sq. deg. mosaic camera (DECam) mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). DECam includes a large mosaic camera, a five element optical corrector, four filters (g,r,i,z), and the associated infrastructure for operation in the prime focus cage. The focal plane consists of 62 2K x 4K CCD modules (0.27''/pixel) arranged in a hexagon inscribed within the 2.2 deg. diameter field of view. We plan to use the 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). At Fermilab, we will establish a packaging factory to produce four-side buttable modules for the LBNL devices, as well as to test and grade the CCDs. R&D is underway and delivery of DECam to CTIO is scheduled for 2009.

Flaugher, B.; /Fermilab

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "instruments experiment planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Accelerator Preparations for Muon Physics Experiments at Fermilab  

SciTech Connect (OSTI)

The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

Syphers, M.J.; /Fermilab

2009-10-01T23:59:59.000Z

482

Institutional Plan, FY 1995--2000  

SciTech Connect (OSTI)

Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.

NONE

1994-10-01T23:59:59.000Z

483

WECC Variable Generation Planning Reference Book: Appendices  

SciTech Connect (OSTI)

The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

2013-05-13T23:59:59.000Z

484

Analytical Plan for Roman Glasses  

SciTech Connect (OSTI)

Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

2011-01-01T23:59:59.000Z

485

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

486

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

487

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

488

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

489

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

490

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

491

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

492

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

493

Implementing Strategic Environmental Assessment of spatial planning tools  

SciTech Connect (OSTI)

After more than a decade from the publication of the European Directive 2001/42/CE (Directive) on Strategic Environmental Assessment (SEA), the design and construction of the interested spatial planning instruments has gone through a variety of changes and integrations in European and in world states. This inhomogeneous panorama can be explained with a pattern of institutional structures that have so far affected the implementation of the Directive. The aim of this paper is to investigate the level of implementation of the Directive in Italy by developing a comparative analysis of the quality of integration of SEA within the design of the spatial coordination plan of a set of Italian provinces. Italian practice is analyzed in the framework of a comparative study of worldwide SEA implementation within spatial and land use planning. The results reveal strengths and weaknesses in SEA implementation at the provincial level and, in particular, the emergence of critical areas of research concerning institutional context, public participation, monitoring, and observatory of the spatial transformations. -- Highlights: • This is a comparative analysis of SEA in strategic spatial planning in Italy. • The adhesion of Provinces to the study is remarkable. • SEA implementation and integration into spatial planning is still moderate. • Participation via consultations should be more widespread. • Monitoring and institution of observatories are still in an infancy stage.

De Montis, Andrea, E-mail: andreadm@uniss.it

2013-07-15T23:59:59.000Z

494

Massachusetts Ocean Management Plan (Massachusetts)  

Broader source: Energy.gov [DOE]

The Massachusetts Ocean Act of 2008 required the state’s Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan...

495

Climate Action Plan (Ontario, Canada)  

Broader source: Energy.gov [DOE]

Climate Ready, Ontario's Adaptation Strategy and Action Plan, outlines the problems, goals, and key strategies for the province's approach to climate change and the problems it poses. The Plan...

496

Accessibility-based transit planning  

E-Print Network [OSTI]

A method for evaluating transit planning proposals using accessibility metrics is advanced in this research. A transit-accessibility model is developed intended for use by in-house transit agency planning staff as a ...

Busby, Jeffrey R

2004-01-01T23:59:59.000Z

497

Agricultural Sciences Strategic Plan 20082013  

E-Print Network [OSTI]

Actions 15 Facilities and Land--Progress and Further Planning 24 FiveYear Recycling Plan and Program.This daring concept has led to a nationwide system of colleges and universities that create new knowledge

Kaye, Jason P.

498

PLANNING UNIT October 26, 2009  

E-Print Network [OSTI]

PLANNING UNIT October 26, 2009 Advertisement for TRIPP Chair in the Institute A large number research work in the area of Transportation Planning for control of accidents and pollution with special

Prasad, Sanjiva

499

Best Management Practice #1: Water Management Planning  

Broader source: Energy.gov [DOE]

A successful water management program starts with developing a comprehensive water management plan. This plan should be included within existing facility operating plans.

500

Space Conditioning Standing Technical Committee Strategic Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Committee Strategic Plan Space Conditioning Standing Technical Committee Strategic Plan This strategic plan document outlines the gaps, barriers, and opportunities identified by...