National Library of Energy BETA

Sample records for instrumentation control equipment

  1. LANSCE | Lujan Center | Instruments | ASTERIX | Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Surfaces and Interfaces Sample Environment: Magnet and cryostat system offering 0-1 T fields and 4-300 K temperatures. This system consists of an electromagnet or Helmholtz coil that produce fields up to 1T and 3 mT, respectively. A Displex cryostat (4-300 K) can be accommodated by either magnet. For samples with a dimension greater than 1 cm the maximum field is 0.6 T. Cryomagnet: The maximum field is 11 T for polarized or unpolarized beam experiments. We offer two 1.7 - 300 K sample

  2. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  3. Instrumentation and Controls, IC, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation and Controls, IC About Us AOT Home Teams Beam Diagnostics Controls Software ECAD Electronics Vacuum CONTACTS Group Leader Fred E. Shelley Office Administrator...

  4. Instrumentation, Control, and Intelligent Systems

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  5. Instrumentation & Controls Electrical Engineer | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation & Controls Electrical Engineer Department: Engineering Supervisor(s): Tim ... Perform role of COG engineer in PMO system to perform project management jobs. Generates ...

  6. FAQS Reference Guide – Instrumentation and Control

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the June 2013 edition of DOE-Standard (STD)-1162-2013, Instrumentation and Control Functional Area Qualification Standard.

  7. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    SciTech Connect (OSTI)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Of the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank farm OEL, consideration should be given to adopting protective limits from NIOSH, AIHA, or developing OELs. Protective gloves and suits are evaluated for each chemical for which information is available. Information gaps are identified for some of the compounds and materials. Recommendations are made for resolving these needs. Based on available information, Silver Shield{reg_sign} gloves are promising for tank farm applications. However, permeation testing documentation is needed for the COPC and mixtures for Silver Shield{reg_sign} gloves to evaluate their protectiveness. North Safety Products is expected to provide the requested documentation. Multiple Tychem{reg_sign} products are available. There is overlap between chemicals and effective materials. Further hazard evaluation to determine actual hazards and permeation testing documentation is required to assess the efficacy of a single Tychem{reg_sign} product for tank farm applications. All of this chemical specific data is combined into a spreadsheet that will assist the industrial hygienist in the selection of monitoring instruments, respiratory protection selection and protective clothing for performing work at a specific tank(s).

  8. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of ...

  9. Microgrid Equipment Selection and Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrid Equipment Selection and Control Microgrid Equipment Selection and Control Project Objective The U.S.-China Clean Energy Research Center (CERC) is a pioneering research and development (R&D) consortium bringing together governments, key policymakers, researchers, and industry to develop a long-term platform for sustainable U.S.-China joint R&D. Ultra-efficient buildings and microgrids require complex optimization both for operations and when choosing equipment. This CERC project

  10. Remote Control of Laboratory Equipment for Educational Purposes | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Remote Control of Laboratory Equipment for Educational Purposes This invention consists of a method to remote control many types of laboratory equipment that is typically found in an undergraduate science (physics, chemistry, biology, engineering, etc.) course. The invention uses a web browser to create a virtual interface to the equipment and a web cam to stream real-time video. . It is designed for educational purposes, either for universities or high schools that do not

  11. Instrumentation and Control Functional Area Qualification Standard

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-STD-1162-2013 June 2013 DOE STANDARD INSTRUMENTATION AND CONTROL FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1162-2013 This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  12. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    SciTech Connect (OSTI)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  13. DOE Fundamentals Handbook: Instrumentation and Control, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook personnel, and the technical staff facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

  14. DOE Fundamentals Handbook: Instrumentation and Control, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

  15. ETA-NAC007 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  16. ETA-UAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Control of Measuring and Test Equipment (M&TE)" Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  17. FAQS Qualification Card - Instrumentation and Control | Department of

    Energy Savers [EERE]

    Energy Instrumentation and Control FAQS Qualification Card - Instrumentation and Control A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional

  18. Acceptance Test Procedure for New Pumping Instrumentation & Control Skid V

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-08-14

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  19. Instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

  20. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Energy Savers [EERE]

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA -

  1. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  2. OPS 9.8 Control of Equipment and System Status 8/24/98 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Control of Equipment and System Status 82498 OPS 9.8 Control of Equipment and System Status 82498 The objective of this surveillance is to verify that the contractor has ...

  3. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect (OSTI)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  4. ETA-HAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  5. ETA-HIAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  6. MAS 10.2 Control of Measuring and Test Equipment, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to verify that the contractor maintains adequate control of tools, gauges, instruments, devices or systems used to inspect, test, calibrate, measure or...

  7. Instrumentation and control system (ICS). Training alternatives study

    SciTech Connect (OSTI)

    Lindberg, R.C.

    1997-01-01

    Computer technology today provides tools for producing presentations and training programs that are colorful, effective and comprehensive. For example, the Microsoft package of Word, Excel, Powerpoint, and Visual Basic can be used to produce a multimedia presentation for training WETF ICS operators. This presentation would be segmented into a series of lessons which would lead the prospective operator from a cursory view of facility operations to a detailed knowledge of ICS, process, control room and other systems operations. Using a suitably equipped Personal Computer (PC), a person would be ready for advanced, hands-on experience at the conclusion of such a training sequence.

  8. Instrument Control and Data Acquisition for NMR Experiments

    Energy Science and Technology Software Center (OSTI)

    1999-03-29

    This is a software program which is intended to do some instrument control and data acquisition for NMR experiments. The basic purpose of the program is to allow a user of the NMR system to create a list of instructions which tells the program what steps should be done, the stat the data taking program and let the system run by itself (depending on the type of sample and the type of experiment being run,more » it can take from several minutes to many hours to do a data collection run).« less

  9. Instrumentation and Controls Division biennial progress report, September 1, 1978-September 1, 1980

    SciTech Connect (OSTI)

    Sadowski, G.S.

    1981-06-01

    Brief summaries of research work are presented in the following section: overview of the ORNL Instrumentation and Controls Division activities; new developments and methods; reactor instrumentation and controls; measurement and control engineering; electronic engineering; maintenance; studies; services; and development; and division achievements.

  10. Future Vision for Instrumentation, Information and Control Modernization

    SciTech Connect (OSTI)

    Ken D. Thomas

    2012-05-01

    A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. II&C has been identified as a potential life-limiting issue for the domestic LWR fleet in addressing the reliability and aging concerns of the legacy systems in service today. The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. Pilot projects are being conducted as the means for industry to gain confidence in these new technologies for use in nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision. Initial project results confirm that the technologies can address provide substantial efficiency and human performance benefits while resolving the reliability and aging concerns.

  11. Instrumentation and Controls Division progress report, July 1, 1982-July 1, 1984. Volume 1

    SciTech Connect (OSTI)

    Klobe, L.W.E.

    1984-12-01

    Progress is briefly summarized for a large number of projects in the areas of research instruments, measurement and controls engineering, reactor systems, and maintenance management. (LEW)

  12. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    SciTech Connect (OSTI)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion, unlike ORIGEN, which only depletes the isotopes specified by the user. This means that depletions done by MRTAU more accurately reflect reality. MRTAU also allows the user to build new isotope data sets, which means any isotope with nuclear data could be depleted, something that would help predict the outcomes of nuclear reaction testing in materials other than fuel, like beryllium or gold.

  13. Cleanroom Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel UV Exposure Station with Aligner Quintel UL7000-OBS Aligner and DUV Exposure Station Metrology Equipment AFT 210XP Nanospec Digital Instrument 3100 SPM Hitachi S-4500II Field Emission SEM Hitachi U-2001 NIR-UV-VUS Spectrophotometer Nikon MM-22U Measuroscope Nikon OPTIPHOT-88 Optical Microscope OXFORD Plasmalab System

  14. Instrumentation of a WEC Device for Controls Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The sensor suite for measuring parameters used in real-time control strategies will be ... the T3R2. Next, the sensor suite needed to implement real-time control will be discussed. ...

  15. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from ...

  16. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  17. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  18. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid V

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control. (PIC) skid designed as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  19. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid T

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-06-20

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  20. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid U

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-12-05

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''U''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  1. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid W

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''W''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  2. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid R

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-11

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''R''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  3. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid Q

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-03-27

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  4. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid T

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing Of the new Pumping Instrumentation and Control (PIC) skid designed as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  5. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid P

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-03-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  6. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid N

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-12-13

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''N''. The ATP will be performed after the construction of the PIC skid in the shop.

  7. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid L

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-10-11

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''L''. The ATP will be performed after the construction of the PIC skid in the shop.

  8. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    SciTech Connect (OSTI)

    Klobe, L.E.E.

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

  9. Proceedings of the 1981 symposium on instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The 1981 symposium on instrumentation and control for fossil-energy processes was held June 8-10, 1981, at the Sheraton-Palace Hotel, San Francisco, California. It was sponsored by the US Department of Energy; Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Sixty-seven articles from the proceedings have been entered individually into EDB and ERA; thirteen articles had been entered previously from other sources. (LTN)

  10. Instrumentation and control for resource management at the INEL

    SciTech Connect (OSTI)

    Polk, R.E.

    1988-01-01

    Resource management at facilities dealing with nuclear reactors and waste processing includes the conservation of storage space, reduction of radiation exposure, and improvement of operational efficiency. The application of current control and display technology is a significant asset in the performance improvement of these facilities. Four examples of such applications at the Idaho National Engineering Laboratory (INEL) are presented.

  11. Adaptation of the control equipment to permit 3-terminal operation of the HVDC link between Sardinia, Corsica and mainland Italy

    SciTech Connect (OSTI)

    Mazzoldi, F.; Taisne, J.P.; Martin, C.J.B.; Rowe, B.A.

    1989-04-01

    After more than 20 years service as a conventional 2-terminal HVdc link, the Sardinia-Mainland Italy hvdc link (200MW, 200kV) is now operating as a three-terminal system. The original control equipment has been modified to allow the introduction of a tapping station on the line for 3-terminal operation. The adaptations to the control equipment, including the means to ensure that the convertors are operated within their capabilities, are explained.

  12. Follow-up Review of Control and Accountability of Emergency Communication Network Equipment, INS-L-12-01

    Energy Savers [EERE]

    Control and Accountability of Emergency Communication Network Equipment INS-L-12-01 December 2011 Department of Energy Washington, DC 20585 December 21, 2011 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR EMERGENCY OPERATIONS FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Follow-up Review of Control and Accountability of Emergency Communication Network Equipment" BACKGROUND The Department of

  13. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    SciTech Connect (OSTI)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research experience. The project management organizational chart is provided as Figure 1. Appendices A, B, and C contain the reports on the summer research performed at the University of Tennessee by undergraduate students from South Carolina State University.

  14. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure using a laser sensor

    DOE Patents [OSTI]

    Van Berkel, Gary J.; Kertesz, Vilmos

    2012-02-21

    A system and method utilizes distance-measuring equipment including a laser sensor for controlling the collection instrument-to-surface distance during a sample collection process for use, for example, with mass spectrometric detection. The laser sensor is arranged in a fixed positional relationship with the collection instrument, and a signal is generated by way of the laser sensor which corresponds to the actual distance between the laser sensor and the surface. The actual distance between the laser sensor and the surface is compared to a target distance between the laser sensor and the surface when the collection instrument is arranged at a desired distance from the surface for sample collecting purposes, and adjustments are made, if necessary, so that the actual distance approaches the target distance.

  15. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOE Patents [OSTI]

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  16. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOE Patents [OSTI]

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  17. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990

    SciTech Connect (OSTI)

    Klobe, L.E.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I C Division staff members.

  18. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    SciTech Connect (OSTI)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

  19. Simulation and control of a HD diesel engine equipped with new EGR technology

    SciTech Connect (OSTI)

    Dekker, H.J.; Sturm, W.L.

    1996-09-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission requirements. The final emission results were 2.4 g/k Wh NO{sub x} and 0.107 g/kWh particulates for the European 13 mode test. Better than 3.0 g/k Wh NO{sub x} and 0.10 g/k Wh particulates are expected to be characteristic EURO4 emission requirements (approximate year of implementation is 2004). In the design of the EGR system the model provided initial assessments of the properties of this system. Associated engine and turbocharger behavior as well as optimal control strategies were predicted. A transient engine control algorithm was developed using the dynamic engine model. The VGT is closed loop controlled and EGR is shut off during a short time after a load increase. The simulation results were confirmed by actual measurements, demonstrating acceptable transient behavior.

  20. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    SciTech Connect (OSTI)

    OHara, J.M.; Gunther, B.; Martinez-Guridi, G.; Xing, J.; Barnes, V.

    2010-11-07

    Integrated digital instrumentation and control (I&C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I&C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I&C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I&C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I&C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  1. Test Report for Acceptance Test Procedure for Pumping and Instrumentation Control Skid ''K''

    SciTech Connect (OSTI)

    JOHNS, B.R.

    1999-10-28

    This is a Test Report for Acceptance Test Procedure (ATP) HNF-4276. This test report provides the results of the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''K''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  2. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid P

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-03-29

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix.

  3. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid V

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-07-25

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping Instrumentation and Control (PIC) skid ''V''. The scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Services (SFS) shop upon completion of the construction of the PIC skid.

  4. Proceedings of the 1980 symposium on instrumentation and control for fossil energy processes

    SciTech Connect (OSTI)

    Doering, R.W. (comp.)

    1980-01-01

    The 1980 symposium on Instrumentation and Control for Fossil Energy Processes was held June 9-11, 1980, New Cavalier, Virginia Beach, Virginia. It was sponsored by the Argonne National Laboratory and the US Department of Energy, Office of Fossil Energy. Forty-five papers have been entered individually into EDB and ERA; nine papers had been entered previously from other sources. (LTN)

  5. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid L

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-11-09

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5055. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''L''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  6. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid N

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-02-03

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5489. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''N''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  7. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid Q

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-11

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix.

  8. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid Q

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-02-14

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.

  9. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid M

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-12-13

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5073. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''M''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  10. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid M

    SciTech Connect (OSTI)

    KOCH, M.R.

    1999-11-09

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping and Instrumentation Control (PIC) skid ''M''. The Scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Service's (SFS) shop upon completion of construction of the PIC skid.

  11. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid P

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-02-14

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.

  12. Instrumentation and Controls Division Progress report, July 1, 1992--June 30, 1994

    SciTech Connect (OSTI)

    McDonald, D.W.

    1995-06-01

    The Instrumentation and Controls (I&C) Division serves a national laboratory, and as such has an expansive domain: science, industry, and national defense. The core mission is to support the scientific apparatus of the Laboratory and all of the systems that protect the safety and health of people and the environment. Progress is reported for the five sections: photonics and measurements systems, electronic systems, signal processing, controls and systems integration, and technical support.

  13. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    SciTech Connect (OSTI)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug.

  14. DOE-STD-1039-93; Guide to Good Practices for Control of Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... . . . . . 13 4.8 Equipment Post-Maintenance Testing and ... of a facility, process, experiment, or other project. ... should be pre-authorized by the operations supervisor. ...

  15. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    SciTech Connect (OSTI)

    Agraz, Jose Grunfeld, Alexander; Li, Debiao; BIRI, Cedars Sinai Medical Center, West Hollywood, California 90048 ; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-15

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.

  16. Closing plenary summary of working group 4 instrumentation and controls for ERL2011

    SciTech Connect (OSTI)

    Gassner, D.; Obina, T.

    2011-10-16

    Working group 4 was charged with presentations and discussions on instrumentation and controls with regards to Energy Recovery Linacs (ERL). There were 4 sessions spanning 3.5 hours in which 7 talks were delivered, the first being an invited plenary presentation. The time allotted for each talk was limited to 20-25 minutes in order to allow 5-10 minutes for discussion. Most of the talks were held in joint session with working group 5 (Unwanted Beam Loss). This format was effective for the purpose of this workshop. A final series of discussion sessions were also held with working group 5. Summary of the working group 4 activities, presented in the closing plenary session. We had a plenary presentation on operational performance, experience, and future plans at the existing ERL injector prototype at Cornell. This included instrumentation data, controls system configurations, as well as description of future needs. This was followed by four talks from KEK and RIKEN/SPring-8 that described electron beam instrumentation already in use or under development that can be applied to ERL facilities. The final talks described the ERLs under construction at KEK and BNL. The format of having joint sessions with working group 5 was beneficial as there were a significant number of common topics and concerns with regards to the causes of beam loss, instrumentation hardware, and techniques used to measure and analyze beam loss.

  17. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  18. Operational test procedure for pumping and instrumentation control skid SALW-6001B monitor and control system

    SciTech Connect (OSTI)

    Garcia, M.F.

    1995-11-01

    This OTP shall verify and document that the monitor and control system comprised of PICS SALW-6001B PLC, 242S PLC, Operator Control Station, and communication network is functioning per operational requirements.

  19. A thermal control system for long-term survival of scientific instruments on lunar surface

    SciTech Connect (OSTI)

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime ?200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a regolith mound. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  20. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  1. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  2. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  3. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsAerosols

  4. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsOther

  5. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsRadiometric

  6. Laboratory Equipment Donation Program - Equipment Applications

    Office of Scientific and Technical Information (OSTI)

    Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for

  7. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    SciTech Connect (OSTI)

    Goldman, A.S.

    1985-05-01

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs.

  8. Challenges and Opportunities for Transactive Control of Electric Vehicle Supply Equipment. A Reference Guide

    SciTech Connect (OSTI)

    Jin, Xin; Meintz, Andrew

    2015-07-29

    This report seeks to characterize the opportunities and challenges that arise in developing a transactive control strategy for grid-EVSE integration in various use-case scenarios in a way that provides end-user, energy market, grid, and societal benefits. A detailed review provides information about EVSE integration market trends and stakeholder activities. This is followed by an exploration of value proposition for transactive control of EVSE at both the home scale and the building/campus scale. This report will serve as a reference guide for stakeholders in the grid-EVSE integration area, illustrate potential implementations, and identify a high-value research project for overcoming the barriers and unlocking the benefits of transactive controls of EVSE. While it is not intended to specify the technical details of the transactive control solution, the report contains a list of use cases describing potential applications of transactive control of EVSE, barriers to implementing these applications, and research and development (R&D) opportunities to overcome the barriers. The use cases of transactive control of EVSE are listed in Table ES1.

  9. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibriummore » is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.« less

  10. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    SciTech Connect (OSTI)

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.

  11. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  12. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  13. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990. Volume 2

    SciTech Connect (OSTI)

    Klobe, L.E.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I&C Division staff members.

  14. ARM - Guest Instrument Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    features a climate-controlled main building, an elevated instrument platform, and a concrete instrument patio, all of which are described in more detail below. Features Features...

  15. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsAirborne Observations

  16. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsCloud Properties

  17. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsOcean Observations

  18. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsSatellite Observations

  19. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsSurface Meteorology

  20. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications for the residential sector. The purpose is to cover the gaps that exist in the information captured by the sensors for energy management system to be able to provide demand response and load factor control. The vision is the development of an energy management system or other controlling enterprise hardware and software that is not only able to control loads, PHEVs, and renewable generation for demand response and load factor control, but also to do so with consumer comforts in mind and in an optimal fashion.

  1. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

  2. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect (OSTI)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

  3. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect (OSTI)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

  4. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect (OSTI)

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  5. Arbin Instruments | Open Energy Information

    Open Energy Info (EERE)

    Place: College Station, Texas Zip: 77845 Product: Hi-tech developer and manufacturer of energy storage and energy conversion testing equipment. References: Arbin Instruments1...

  6. LANSCE | Lujan Center | Ancillary Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  7. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsDerived Quantities and Models

  8. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsSurface/Subsurface Properties

  9. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    Equipment Company (CECO) Place: Seattle, Washington Zip: 98107 Product: Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates: 47.60356,...

  10. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  11. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOE Patents [OSTI]

    Lintilhac, P.M.; Vesecky, T.B.

    1995-09-19

    An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.

  12. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOE Patents [OSTI]

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.

  13. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure with image analysis

    DOE Patents [OSTI]

    Van Berkel, Gary J.; Kertesz, Vilmos

    2011-08-09

    A system and method utilizes an image analysis approach for controlling the collection instrument-to-surface distance in a sampling system for use, for example, with mass spectrometric detection. Such an approach involves the capturing of an image of the collection instrument or the shadow thereof cast across the surface and the utilization of line average brightness (LAB) techniques to determine the actual distance between the collection instrument and the surface. The actual distance is subsequently compared to a target distance for re-optimization, as necessary, of the collection instrument-to-surface during an automated surface sampling operation.

  14. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Equipment photo Last update 30 April 2015. People wishing to use equipment listed below must first receive training and permission from the Facility Director, or present instrument contact person, who can provide basic training and information from an experienced user. Training and access must be arranged in advance of first use. Reservation of usage time for a number of instruments requires you to set up an account on the Facilities Online Manager (FOM) service! Connect to the

  15. Instrument for the application of controlled mechanical loads to tissues in sterile culture

    DOE Patents [OSTI]

    Lintilhac, P.M.; Vesecky, T.B.

    1995-04-18

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame. 8 figs.

  16. Instrument for the application of controlled mechanical loads to tissues in sterile culture

    DOE Patents [OSTI]

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame.

  17. MC and A instrumentation catalog

    SciTech Connect (OSTI)

    Neymotin, L.; Sviridova, V.

    1998-06-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

  18. Digital Instrumentation and Control Failure Events Derivation and Analysis by Frame-Based Technique

    SciTech Connect (OSTI)

    Hui-Wen Huang; Chunkuan Shih [National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013 (China); Swu Yih [DML International, 18F-1 295, Section 2 Kuang Fu Road, Hsinchu, Taiwan (China); Yen-Chang Tzeng; Ming-Huei Chen [Institute of Nuclear Energy Research, No. 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)

    2006-07-01

    A frame-based technique, including physical frame, logical frame, and cognitive frame, was adopted to perform digital I and C failure events derivation and analysis for generic ABWR. The physical frame was structured with a modified PCTran-ABWR plant simulation code, which was extended and enhanced on the feedwater system, recirculation system, and steam line system. The logical model is structured with MATLAB, which was incorporated into PCTran-ABWR to improve the pressure control system, feedwater control system, recirculation control system, and automated power regulation control system. As a result, the software failure of these digital control systems can be properly simulated and analyzed. The cognitive frame was simulated by the operator awareness status in the scenarios. Moreover, via an internal characteristics tuning technique, the modified PCTran-ABWR can precisely reflect the characteristics of the power-core flow. Hence, in addition to the transient plots, the analysis results can then be demonstrated on the power-core flow map. A number of postulated I and C system software failure events were derived to achieve the dynamic analyses. The basis for event derivation includes the published classification for software anomalies, the digital I and C design data for ABWR, chapter 15 accident analysis of generic SAR, and the reported NPP I and C software failure events. The case study of this research includes (1) the software CMF analysis for the major digital control systems; and (2) postulated ABWR digital I and C software failure events derivation from the actual happening of non-ABWR digital I and C software failure events, which were reported to LER of USNRC or IRS of IAEA. These events were analyzed by PCTran-ABWR. Conflicts among plant status, computer status, and human cognitive status are successfully identified. The operator might not easily recognize the abnormal condition, because the computer status seems to progress normally. However, a well trained operator can become aware of the abnormal condition with the inconsistent physical parameters; and then can take early corrective actions to avoid the system hazard. This paper also discusses the advantage of Simulation-based method, which can investigate more in-depth dynamic behavior of digital I and C system than other approaches. Some unanticipated interactions can be observed by this method. (authors)

  19. Rotary mode system initial instrument calibration

    SciTech Connect (OSTI)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  20. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (pdf, 420kb) Science Plan (pdf) Operations Plan (pdf, 144kb) Instruments Contacts News ARM Press Release (Feb. 26, 2007) Images flickrdots Instruments This plot shows the...

  1. Case Study of the Failure of two 13.8kV Control & Metering Transformers that caused significant Equipment Damage

    SciTech Connect (OSTI)

    Dreifuerst, G R; Chew, D B; Mangonon, H L; Swyers, P W

    2011-08-25

    The degradation and failure of cast-coil epoxy windings within 13.8kV control power transformers and metering potential transformers has been shown to be dangerous to both equipment and personnel, even though best industrial design practices were followed. Accident scenes will be examined for two events at a U.S. Department of Energy laboratory. Failure modes will be explained and current design practices discussed with changes suggested to prevent a recurrence and to minimize future risk. New maintenance philosophies utilizing partial discharge testing of the transformers as a prediction of end-of-life will be examined.

  2. Curtis Instruments Inc | Open Energy Information

    Open Energy Info (EERE)

    Mount Kisco, New York Sector: Vehicles Product: They make motor speed controllers, battery measurement equipment and related equipment for electric vehicles of all types....

  3. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro-Hardness Instrument Brinell Hardness Instrument Vickers and Rockwell Hardness Testing

  4. Information technology equipment cooling system

    DOE Patents [OSTI]

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  5. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  6. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Listing Crystal Preparation and Characterization Resistance Heated Bridgman Crystal Growth Systems Back-Reflection Laue X-ray System Electro-Discharge Machining High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Lapping Fixtures for Precise Orientation of Crystals (0.1°) Physical Properties Measurement Facilities - Hardness Testing Vickers and Rockwell Hardness Testing Brinell Hardness Instrument Wilson Tukon Micro Hardness Tester Forming and Characterization

  7. ARM - Instrument - acars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These data are routed by several cooperating airlines to FSL, who decode and quality control the data. Data for this instrument are no longer being collected by ARM; however,...

  8. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  9. Draft Sample Collection Instrument | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Sample Collection Instrument Draft Sample Collection Instrument Davis-Bacon Semi-annual Labor Compliance Report OMB Control Number 1910-New PDF icon dbacollectioninstrument...

  10. Laboratory Equipment Donation Program - Equipment List

    Office of Scientific and Technical Information (OSTI)

    ...2016 Repairable NA 89022961190235 72358 WATER BLOCK 05172016 Repairable NA ... 89514161060003 LABORATORY EQUIPMENT AND SUPPLIES 05052016 Used NA 8991BB61130002 ...

  11. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  12. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution / Professor {Type} {Equipment} {Details} {Institution} {Lab} BACK TO TOP

  13. ARM - Instrument -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar line up at the SGP site Instrument collections* at three fixed sites around the globe, two mobile facilities, and an aerial facility are operated by the ARM Climate...

  14. Uses of automated geotechnical instrumentation systems

    SciTech Connect (OSTI)

    Marr, W.A.

    1999-07-01

    Developments occurring in electronics and instrumentation promise to lower the cost and improve the reliability of electronic systems to monitor geotechnical instrumentation. The miniaturization of electronics, reduction of power consumption, reduced component cost, and improved component reliability all help to make new instruments possible and geotechnical instrumentation more cost effective. This paper describes the application of some of these developments to three problems and summarizes the potential benefits to the engineer from their use. The increased capabilities of instrumentation and data acquisition equipment combined with their improved reliability and lower cost will make future applications of geotechnical instrumentation more cost effective. One application described is ground water monitoring.

  15. ARM Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    999 Lightning Safety and ARM Instrumentation Last month we discussed the way lightning forms and then strikes. This month we will look at ways to protect ourselves and our property from the damaging threat of a lightning strike, as well as what ARM does to protect its array of scientific instrumentation and buildings. About Lightning Lightning packs a punch equal to 100 million volts of electricity, a force powerful enough to tear through roofs and explode walls and chimneys. A lightning strike

  16. Available for Checkout Equipment Inventory | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Available for Checkout Equipment Inventory « Equipment Resources Title Description Agate Mortar & Pestle Sets Agate mortar & pestle sets (100mm, 65 mm, & 50mm sizes). Buchi V-700 Vacuum Pump & condenser Chemically resistant vacuum pump, flow rate 1.8m^3/h, ultimate vacuum less than 10mbar. The secondary condenser (Buchi 047180) is a complete module with insulation and 500mL receiving flask. Campden Instruments Vibrating Manual Tissue Cutter HA 752 Campden

  17. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  18. Beijing Instrument Industry Group BIIC | Open Energy Information

    Open Energy Info (EERE)

    Place: Beijing, Beijing Municipality, China Zip: 100022 Product: Beijing-based instrumentation and electrical equipment maker. The firm is entering polysilicon production....

  19. Vacuum enhanced cutaneous biopsy instrument

    DOE Patents [OSTI]

    Collins, Joseph (St. Petersburg, FL)

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  20. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  1. Sensitive Instrument Facility | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitive Instrument Facility Take a quick tour of Ames Laboratory's new Sensitive Instrument Facility. The state-of-the-art building is designed to minimize vibrations and magneto-electric interference that can affect the new, high-resolution electron microscopy equipment located there. Ames Lab and Iowa State University researchers will use the equipment to probe new materials at the atomic scale to learn important information about their atomic structure and how that relates to various

  2. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  3. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS.

    SciTech Connect (OSTI)

    NEYMOTIN,L.

    1999-07-25

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials.

  4. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  5. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  6. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

  7. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Development Technical Developments and Equipment In close collaboration with Holifield Radioactive Ion Beam Facility (HRIBF) scientists, researchers at University Radioactive Ion Beam (UNIRIB) consortium universities are offered the opportunity to perform low-energy nuclear structure research using radioactive/stable ion beams and experimental equipment available through HRIBF. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), provides not only funding,

  8. New Emergency Equipment Notifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  9. Heavy Mobile Equipment Mechanic

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  10. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... committees of ASME, SAE and ISO * Hydrogen has been used ... "approval" by the code official is required before ... or as meeting a standard. Listed - Equipment, ...

  11. Troubleshooting rotating equipment

    SciTech Connect (OSTI)

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  12. ARM - Instrument - prp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Categories Radiometric The Portable Radiation Package (PRP) is an instrument suite to collect atmospheric radiation measurements on a moving platform. The instrument ...

  13. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  14. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  15. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  16. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  17. Instrumentation and diagnostics

    SciTech Connect (OSTI)

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  18. ARM - Campaign Instrument - 50rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstruments50rwp

  19. ARM - Campaign Instrument - ecmwfdiag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Campaign Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models Campaigns...

  20. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  1. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  2. Improving the reliability of Class 1E power distribution to instrumentation and control cabinets on nuclear power plants in the USA. Final report

    SciTech Connect (OSTI)

    Brennen, M.B.

    1995-09-01

    This study was conducted to explore nontraditional electric power distribution concepts to improve the reliability of uninterruptible power to vital Instrumentation and Control (I and C) cabinets in future US nuclear power plants. The study incorporated comparative technical and economic evaluations of existing and nontraditional uninterruptible power supply (UPS) concepts. All nontraditional distribution concepts were based on available or already emerging components or semiconductor devices. Another purpose of the study was to reduce the cost and complexity of present power distribution and to lower maintenance, replacement, degradation and fault location requirements. The possible reduction of distribution losses, especially during operation under battery power, was also evaluated. The study indicates that direct current distribution at 48 or 125 Vdc levels would have more than an order of magnitude improvement over the reliability of present alternating current supplies at comparable cost. Furthermore, losses under battery power could be reduced significantly with respect to present distribution losses. An inherent advantage of DC distribution is that power transfer from the failed power bus to an operational bus occurs naturally and instantaneously via two simple and reliable semiconductor diodes. AC distribution, on the other hand, requires complex synchronization, decision making and gated semiconductor switching devices for power bus transfer all of which could be eliminated. Some of the concepts presented may also be applied to make existing vital (Class 1E) uninterruptible power supplies in US nuclear plants more reliable.

  3. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  4. Instruments for preparation of heterogeneous catalysts by an impregnation method

    SciTech Connect (OSTI)

    Yamada, Yusuke; Akita, Tomoki; Ueda, Atsushi; Shioyama, Hiroshi; Kobayashi, Tetsuhiko

    2005-06-15

    Instruments for the preparation of heterogeneous catalysts in powder form have been developed. The instruments consist of powder dispensing robot and an automated liquid handling machine equipped with an ultrasonic and a vortex mixer. The combination of these two instruments achieves the catalyst preparation by incipient wetness and ion exchange methods. The catalyst library prepared with these instruments were tested for dimethyl ether steam reforming and characterized by transmission electron microscopy observations.

  5. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect (OSTI)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant status control, information management, knowledge management, and 'Real-Time-Truth' as it relates to the current plant conditions. The following report includes two attachments; each attachment represents Pilot Project 1 and 3. The two attachments also provide a report on two distinct milestones that were completed and are described below: M3L11IN06030307 - Complete initiation of two pilot projects Complete initiation of pilot projects on real-time configuration management and control to overcome limitations with existing permanent instrumentation and real-time awareness of plant configurations; two candidate projects that consider low-cost wireless technology for in situ configuration monitoring and candidate technologies and an information architecture for outage management and control will be initiated with utilities. M3L11IN06030309 - Complete data collection, R&D plans, and agreements needed to conduct the two pilot projects Complete data collection conducted at pilot project utilities to support real-time configuration management and outage control center pilot studies conducted; R&D plan for pilot projects produced and needed agreements established to support R&D activities.

  6. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  7. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Equipment Inventory « Biology Chemistry & Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination Ag/AgCl electrode and ATC probe. Corning 430 pH Meter pH Meter (Cold Room) Corning 430 pH meter. Corning 6795-420D Digital Stirrer/Hot Plate w/ temp probe Temperature Control Digital Hot Plate/Stirrer, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1100rpm. The hot plate is equipment with

  8. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  9. Waaree Instruments Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mumbai, Maharashtra, India Zip: 400 093 Product: Mumbai-based process control instrumentation products and PV modules manufacturer. Coordinates: 19.076191, 72.875877 Show...

  10. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASATs manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  11. Laboratory Equipment Donation Program - On-Line Application

    Office of Scientific and Technical Information (OSTI)

    Item Control Number: Equipment Name: School Information (Note: LEDP Eligibility Guidelines must be met and verified below) *School Name: *Department Name: *Department Head Name: ...

  12. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Jay Kohler Eric Minor Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources ...

  13. Formation Flying and Deformable Instruments

    SciTech Connect (OSTI)

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  14. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  15. Low activated incore instrument

    DOE Patents [OSTI]

    Ekeroth, Douglas E.

    1994-01-01

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  16. ARM - Instrument - htdma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Humidified Tandem Differential Mobility Analyzer (HTDMA) Instrument Categories Aerosols This instrument...

  17. Low activated incore instrument

    DOE Patents [OSTI]

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  18. Annual training event instrumental in region's safety culture |

    Energy Savers [EERE]

    Department of Energy Annual training event instrumental in region's safety culture Annual training event instrumental in region's safety culture September 8, 2014 - 10:00am Addthis Participants receive hands-on demonstrations for protective equipment. This year’s event offers 45 safety courses and seminars. Participants receive hands-on demonstrations for protective equipment. This year's event offers 45 safety courses and seminars. Oak Ridge, TN - This week, the Oak Ridge Office of

  19. ARM - RHUBC II Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II Backgrounder (PDF, 300K) News & Press Images Experiment Planning RHUBC-II Proposal Abstract Science Plan (PDF, 267KB) Science Objectives Contacts Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator RHUBC II Instruments RHUBC-II Instruments - Cerro Toco, Chile Guest Instruments Instrument

  20. WNR Instrument Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Contacts Name Flight Path Position Phone Pager Cell Ullmann, John 1FP14(DANCE) Instrument Scientist 667-2517 664-3523 Couture, Aaron 1FP14(DANCE) Instrument Assistant 667-1730 664-1163 Mosby, Shea 1FP14(DANCE) Instrument Assistant 665-5414 664-7412 Devlin, Matt 1FP12 Instrument Scientist 665-0421 664-5776 Tovesson, Fredrik 1FP12 Instrument Assistant 665-9652 500-5073 Nelson, Ron 1FP05 Instrument Scientist 667-7107 664-2191 690-4220 Devlin, Matt 1FP05 Instrument Assistant 665-0421

  1. ARM - Campaign Instrument - rcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at 1-888-ARM-DATA. Send Campaign Instrument : NREL Radiometer Characterization System (RCS) Instrument Categories Radiometric Campaigns Aerosol IOP Download Data Southern...

  2. ARM - Campaign Instrument - psr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call us at 1-888-ARM-DATA. Send Campaign Instrument : Polarimetric Scanning Radiometer (PSR) Instrument Categories Radiometric, Surface Meteorology Campaigns Cloud LAnd Surface...

  3. ARM - Campaign Instrument - mas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA MODIS Airborne Simulator (MAS) Instrument Categories Airborne Observations, Radiometric Campaigns Cloud LAnd...

  4. ARM - Instrument - usdarad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send Instrument : US Department of Agriculture (USDA) Radiation Monitoring Data (USDARAD) Instrument Categories Radiometric...

  5. ARM - Campaign Instrument - sam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or call us at 1-888-ARM-DATA. Send Campaign Instrument : Sun and Aureole Measurement (SAM) Instrument Categories Radiometric Campaigns CLASIC - SAM Support Download Data ...

  6. ARM - Instrument Handbooks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Full Name Instrument Short Name Date Last Updated Parsivel2 Laser Disdrometer ... Sky Imager IRSI 2016 ARM Mobile Facility Surface Meteorology AMFMET 2011 ARM Surface ...

  7. ARM - Instrument - clap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send Instrument : Continuous Light Absorption Photometer (CLAP) Instrument Categories Aerosols The Continuous Light Absorption...

  8. ARM - Campaign Instrument - pdi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Phase Doppler Interferometer (PDI) Instrument Categories Airborne Observations, Cloud Properties...

  9. ARM - Instrument - ecmwfdiag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-888-ARM-DATA. Send Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models General...

  10. ARM - Campaign Instrument - twst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-888-ARM-DATA. Send Campaign Instrument : Three Waveband Spectrally-agile Technique Sensor (TWST) Instrument Categories Atmospheric Profiling, Cloud Properties, Radiometric...

  11. ARM - Campaign Instrument - mir

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us at 1-888-ARM-DATA. Send Campaign Instrument : Millimeter-wave Imaging Radiometer (MIR) Instrument Categories Atmospheric Profiling, Radiometric Campaigns Millimeter-wave...

  12. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  13. Secure authenticated video equipment

    SciTech Connect (OSTI)

    Doren, N.E.

    1993-07-01

    In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.

  14. FHR Process Instruments

    SciTech Connect (OSTI)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.

  15. Career Map: Instrumentation Coordinator

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  16. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Boundary Facilities Active Retired Active instruments are currently deployed at fixed or mobile facilities

  17. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Extended Facilities Active Retired Active instruments are currently deployed at fixed or mobile facilities

  18. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Intermediate Facilities Active Retired Active instruments are currently deployed at fixed or mobile

  19. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shouxian, ChinaInstruments Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version (PDF, 458K) Mandarin Version (PDF, 1230K) AMF Poster, Mandarin Version News Campaign Images Instruments : Shouxian, Anhui, China Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. Retired instruments were deployed

  20. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  1. Equipment Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Specialist Equipment Specialist Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Bonneville Power...

  2. CRAD, Measuring and Testing Equipment Assessment Plan

    Broader source: Energy.gov [DOE]

    The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits.

  3. Microgrid Equipment Selection and Control in Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNM XingYe Solar (electricity utility) Santa Fe Com. ... etc. in the U.S. and China. 2 Purpose and Objectives ... wireless system under development - Prototype direct ...

  4. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  5. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  6. ARM - Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface Properties...

  7. ARM - Instrument - dl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Doppler Lidar (DL) Instrument Categories Cloud Properties Picture of the Doppler Lidar...

  8. ARM - Campaign Instrument - maeri

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmaeri Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Marine AERI (MAERI) Instrument...

  9. ARM - Campaign Instrument - aot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaot Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Optical Thickness (AOT) Instrument...

  10. ARM - Campaign Instrument - hsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshsi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Hemispheric Sky Imager (HSI) Instrument...

  11. ARM - Campaign Instrument - ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsozone Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Ozone Monitor (OZONE) Instrument...

  12. ARM - Campaign Instrument - wsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswsi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Whole Sky Imager (WSI) Instrument...

  13. ARM - Campaign Instrument - gerbprobe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgerbprobe Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Gerber Probe (GERBPROBE) Instrument...

  14. ARM - Campaign Instrument - mwrret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwrret Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : MWR Retrievals (MWRRET) Instrument...

  15. ARM - Campaign Instrument - cpi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Particle Imager (CPI) Instrument...

  16. ARM - Campaign Instrument - radon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsradon Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Radon (RADON) Instrument Categories...

  17. ARM - Campaign Instrument - otter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsotter Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Twin Otter (OTTER) Instrument Categories...

  18. ARM - Campaign Instrument - wcm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswcm Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : water content meter (WCM) Instrument...

  19. ARM - Campaign Instrument - sfcflux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssfcflux Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Surface Flux (SFCFLUX) Instrument...

  20. ARM - Campaign Instrument - learjet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentslearjet Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Lear Jet (LEARJET) Instrument...

  1. ARM - Campaign Instrument - eta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentseta Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Eta Model Runs (ETA) Instrument Categories...

  2. ARM - Campaign Instrument - anemometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsanemometer Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Anemometer (ANEMOMETER) Instrument...

  3. ARM - Campaign Instrument - aerinf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaerinf Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : AERI Noise Filtered (AERINF) Instrument...

  4. ARM - Campaign Instrument - mfr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmfr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Multifilter Radiometer (MFR) Instrument...

  5. ARM - Campaign Instrument - cmh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscmh Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Chilled Mirror Hygrometer (CMH) Instrument...

  6. ARM - Instrument - masc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Multi-Angle Snowflake Camera (MASC) Instrument Categories Surface Meteorology Contact(s) Martin...

  7. ARM - Instrument - suomigps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : SuomiNet Global Positioning System (SUOMIGPS) Instrument Categories Atmospheric Profiling General Overview...

  8. ARM - Campaign Instrument - ssfr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA Ames Solar Spectral Flux Radiometer (SSFR) Instrument Categories ...

  9. ARM - Campaign Instrument - asti

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Absolute Solar Transmittance Interferometer (ASTI) Instrument ...

  10. ARM - Instrument - sirs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Solar and Infrared Radiation Station (SIRS) Instrument Categories Radiometric ...

  11. ARM - Instrument - asti

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Absolute Solar Transmittance Interferometer (ASTI) Instrument Categories ...

  12. ARM - Campaign Instrument - ldis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Laser Disdrometer (LDIS) Instrument Categories Surface Meteorology Campaigns Marine ARM GPCI ...

  13. ARM - Instrument - ldis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Laser Disdrometer (LDIS) Instrument Categories Surface Meteorology A laser disdrometer measures the reduction ...

  14. ARM - Instrument - okm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Oklahoma Mesonet (OKM) Instrument Categories Surface Meteorology General Overview The State of Oklahoma restricts ...

  15. ARM - Instrument - skyrad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Sky Radiometers on Stand for Downwelling Radiation (SKYRAD) Instrument Categories...

  16. ARM - Instrument - tsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Total Sky Imager (TSI) Instrument Categories Cloud Properties Picture of the Total Sky Imager...

  17. ARM - Instrument - ebbr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Energy Balance Bowen Ratio Station (EBBR) Instrument Categories SurfaceSubsurface...

  18. ARM - Instrument - psap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Particle Soot Absorption Photometer (PSAP) Instrument Categories Aerosols A particle soot absorption...

  19. ARM - Instrument - tdma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Tandem Differential Mobility Analyzer (TDMA) Instrument Categories Aerosols Picture of the...

  20. ARM - Campaign Instrument - tsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Total Sky Imager (TSI) Instrument Categories Cloud Properties Campaigns 2007 Cumulus Humilis Aerosol Process...

  1. ARM - Instrument - irsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Infra-Red Sky Imager (IRSI) Instrument Categories Cloud Properties, Radiometric Primary...

  2. ARM - Instrument - thwaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Temperature, Humidity, Wind and Pressure Sensors (THWAPS) Instrument Categories Surface...

  3. ARM - Instrument - surthref

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Surface Temperature and Humidity Reference System for Sondes (SURTHREF) Instrument Categories...

  4. ARM - Instrument - tps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send Instrument : Total Precipitation Sensor (TPS) Instrument Categories Surface Meteorology Picture of the Total Precipitation...

  5. ARM - Instrument - ksumeso

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Kansas State University Mesonet (KSUMESO) Instrument Categories Surface Meteorology General...

  6. HVAC Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: As of January 1, 2016, rebates for unitary air conditioning and split systems and integrated dual enthalpy economizer controls are no longer available.

  7. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AtlanticInstruments ENA Related Links Facilities and Instruments ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site ENA Fact Sheet (PDF, 512KB) Images Information for Guest Scientists Contacts Instruments : Eastern North Atlantic Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Plots Browse Data [ Single installation ] AOS

  8. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InactiveInstruments NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Atqasuk AK Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. MFRSR Multifilter Rotating Shadowband Radiometer Radiometric

  9. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manacapuru, Brazil Instruments Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Website Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press GOAMAZON Blog Images Contacts Kim Nitschke, AMF Operations Scot Martin, Principal Investigator Instruments : Manacapuru, Amazonas, Brazil Active Retired Active instruments are currently deployed at fixed or mobile facilities or

  10. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Niamey, Niger, West AfricaInstruments Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News Instruments : Niamey, Niger Active Retired Active instruments are currently deployed at fixed or

  11. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oliktok Point, AlaskaInstruments Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Gijs de Boer, Principal Investigator Instruments : Oliktok Point, Alaska Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. AERI Atmospheric Emitted Radiance

  12. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesAMF Deployment, Ganges Valley, IndiaInstruments Ganges Valley Deployment AMF Home Ganges Valley Home Data Plots and Baseline Instruments Campaign Images Experiment Planning GVAX Full Proposal Abstract and Related Campaigns Science Plan Field Campaign Report Outreach GVAX Backgrounder (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi Instruments : Ganges Valley, India Active Retired Active instruments are currently deployed at fixed or

  13. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Point Reyes National Seashore, CaliforniaInstruments Point Reyes Deployment AMF Home Point Reyes Home Data Plots and Baseline Instruments Experiment Planning MASRAD Proposal Abstract and Related Campaigns Outreach Posters Climate Research at Point Reyes National Seashore (horizontal) Climate Research at Point Reyes National Seashore (vertical) News Campaign Images Instruments : Point Reyes CA, USA Active Retired Active instruments are currently deployed at fixed or mobile facilities or are

  14. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steamboat Springs, ColoradoInstruments Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace Instruments : Steamboat Springs CO, USA Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available

  15. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesNorth Slope of AlaskaNSA Barrow FacilityInstruments NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Barrow AK Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. AERI Atmospheric

  16. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility Active Retired Active instruments are currently deployed at fixed or mobile facilities or

  17. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manus Site-InactiveInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Manus I., PNG Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. MPL Micropulse Lidar Cloud

  18. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nauru Site-InactiveInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Nauru Island Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. MFRSR Multifilter Rotating

  19. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Darwin Site-InactiveInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Darwin, Australia Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. MFRSR Multifilter

  20. Minimization of Impact from Electric Vehicle Supply Equipment to the

    Office of Scientific and Technical Information (OSTI)

    Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving (Conference) | SciTech Connect Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving Citation Details In-Document Search Title: Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving This research presents a comparison of two

  1. Puerto Rico - Renewable Energy Equipment Certification | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Puerto Rico Program Type Equipment Certification Summary Certification of Photovoltaic Equipment EAA specifies that PV equipment must meet UL 1703 requirements, and...

  2. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 C and 60 C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  3. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loans Requirements to Loan Property: Ames Laboratory may loan Government Property provided the equipment is not excess to the Laboratory's needs. In order to loan equipment, the following criteria must be met: 1) Equipment shall be used in performing research, studies, and other efforts that result in benefits to both the U.S. Government, the borrower, and provided that the DOE mission is not affected. 2) Used by another DOE organization, contractor, Government agency, or organization that has a

  4. Laboratory Equipment Donation Program - Guidelines

    Office of Scientific and Technical Information (OSTI)

    The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is

  5. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  6. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  8. Webinar: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST.

  9. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  10. Curtis Instruments | Open Energy Information

    Open Energy Info (EERE)

    Instruments Jump to: navigation, search Logo: Curtis Instruments Name: Curtis Instruments Address: 200 Kisco Ave. Place: Mount Kisco, New York Zip: 10549 Region: Northeast - NY NJ...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  12. ARM - Campaign Instrument - photoacoustic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsphotoacoustic Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Photoacoustic Instrument (PHOTOACOUSTIC) Instrument Categories Aerosols Campaigns 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04 - 2007.06.25 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites,

  13. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pearl Harbor, Hawaii, to San Francisco, CaliforniaInstruments HI to CA Deployment AMF Home Hawaii to California Home Deployment Operations Baseline Instruments Experiment Planning ACAPEX Full Proposal Abstract and Related Campaigns Science Plan Backgrounder (PDF) Outreach News and Press Images Contacts L. Ruby Leung, Principal Investigator Nicki Hickmon, AMF Operations Paul Ortega, AMF Operations Beat Schmid, AAF Technical Director Instruments : ACAPEX (ARM Cloud Aerosol Precip Experiment)

  14. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McMurdo Station, AntarcticaInstruments McMurdo Deployment AMF Home McMurdo Home Experiment Planning Abstract and Related Campaigns Science Plan AWARE Website Deployment Operations Baseline Instruments and Data Plots at the Archive Weather & Climate Support for the AWARE Project Outreach News & Press AWARE Log of Events Backgrounder (PDF, 1.5MB) Poster (JPEG, 1.3MB) Images Contacts Paul Ortega, AMF Operations Hanna Goss, Media Contact Dan Lubin, Principal Investigator Instruments : AWARE

  15. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesAMF Deployment, Black Forest, GermanyInstruments Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images Instruments : Black Forest, Germany Active Retired

  16. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Angeles, California, to Honolulu, HawaiiInstruments LA to Honolulu Deployment AMF Home LA to Honolulu Home Deployment Operations Baseline Instruments and Data Plots at the Archive Science Plan (PDF, 1.7MB) Experiment Planning MAGIC Full Proposal Abstract and Related Campaigns Brookhaven National Laboratory MAGIC Website Outreach News & Press Backgrounder (PDF, 1.3MB) MAGIC Blog Images Contacts Nicki Hickmon, AMF Operations Ernie Lewis, Principal Investigator Instruments : MAGIC (Marine

  17. ARM - Instrument - brs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsbrs Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Broadband Radiometer Station (BRS) Instrument Categories Radiometric Output Value-Added Products This instrument is an input to the following value-added products, which provide improved measurements or derived quantities. 15swfanalbrs1long : Short Wave Flux Analysis: 15-min resolution on BRS data, Long algorithm

  18. ARM - Instrument - toms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstoms Documentation TOMS : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Total Ozone Mapping Spectrometer (TOMS) Instrument Categories Satellite Observations General Overview Global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a

  19. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  20. ARM - Instrument - disdrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australia retired retired Originating instrument has been retired at this location Contact(s) Mary Jane Bartholomew Brookhaven National Laboratory (631) 344-2444 bartholomew@bnl...

  1. ARM - Instrument - sacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Scanning ARM cloud radar (SACR) Instrument Categories Cloud Properties Contact(s) Karen Johnson Brookhaven National Laboratory (631) 344-5952 kjohnson@bnl.gov Nitin...

  2. ARM - Instrument - rss-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be better than 5%, which includes calibration and instrument stability errors. Higher accuracy (1%) can be obtained when the responsivity is tied to the solar...

  3. ARM - Instrument - rss

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be better than 5%, which includes calibration and instrument stability errors. Higher accuracy (1%) can be obtained when the responsivity is tied to the solar...

  4. ARM - Instrument - precnet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    considered scientifically relevant. Precipitation Locations Southern Great Plains SGP A1 Browse Data Whitewater, KS (ABLE) retired retired Originating instrument has been...

  5. ARM - Campaign Instrument - rl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Categories Aerosols, Atmospheric Profiling Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  6. ARM - Campaign Instrument - wsicloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WSICLOUD) Instrument Categories Cloud Properties Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1995.04.01 - 1995.05.31 The...

  7. ARM - Instrument - gps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Global Positioning System (GPS) Note: gps is currently inactive andor retired. Active Dates 1970.01.01 - 1970.01.01 Instrument Categories Other General Overview Global...

  8. ARM - Campaign Instrument - dlh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Hygrometer (DLH) Instrument Categories Airborne Observations Campaigns ARM-FIRE Water Vapor Experiment Download Data Southern Great Plains, 2000.11.01 - 2000.12.31...

  9. ARM - Campaign Instrument - twrmr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixing Ratio (TWRMR) Instrument Categories Atmospheric Profiling Campaigns Fall 1997 Water Vapor IOP Download Data Southern Great Plains, 1997.09.15 - 1997.10.05 Water...

  10. ARM - Instrument - sasze

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building isolated from the elements. ... Data Highland Center, Cape Cod MA; AMF1 retired retired Originating instrument has been retired at this location ...

  11. ARM - Instrument Location Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar KASACR Ka ARM Zenith Radar KAZR Laser Disdrometer LDIS Multi-Angle Snowflake Camera MASC Automatic Weather Station MAWS Surface Meteorological Instrumentation MET ...

  12. ARM - Instrument - gvr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience and Remote Sensing 45(7): 2207-2215. Available Retrievals and Uncertainty Neural network retrievals of precipitable water vapor are available from this instrument as...

  13. ARM - Instrument - gvrp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can be found in the instrument handbook. Available Retrievals and Uncertainty Neural network retrievals of precipitable water vapor and liquid water path are in...

  14. ARM - Instrument - nephelometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peak retired TMP S1 Browse Data U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AOS retired Originating instrument has been retired at this location See Also...

  15. ARM - Instrument - twr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    installed on the towers are listed in section 7, Instrument Details, although only the TemperatureRelative HumidityVapor Pressure (TRHVP) measurements made on the SGP CF...

  16. ARM - Instrument - wpdn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WPDN) Instrument Categories Atmospheric Profiling General Overview Data from an array of wind profilers are provided from NOAA's Forecast Systems Laboratory (FSL) Demonstration...

  17. ARM - Instrument - stable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one...

  18. ARM - Instrument - sonicwind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Categories Surface Meteorology Output Datastreams sonicwind2d : Horizontal wind speed and direction from ultrasonic wind sensor (Vaisala WS425), 2m above ground on...

  19. Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1

    SciTech Connect (OSTI)

    Conner, J.C.

    1994-11-15

    The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

  20. Chapter 10 - Property, Plant and Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-18-2011 Chapter 10-1 CHAPTER 10 PROPERTY, PLANT, AND EQUIPMENT 1. INTRODUCTION. a. Background/Authorities. This chapter describes financial controls over the acquisition, use, and retirement of property and provides guidelines for distinguishing between charges to capital accounts and charges to expense accounts consistent with the Statement of Federal Financial Accounting Standards (SFFAS). b. Applicability. The applicability of this chapter is specified in Chapter 1, "Accounting

  1. ARM - Word Seek: Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Instruments

  2. ARM - Instrument - mti

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmti Documentation MTI : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Multispectral Thermal Imager (MTI) Instrument Categories Surface/Subsurface Properties

  3. New Emergency Equipment Notifications 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  4. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  5. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  6. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hyytiälä, FinlandInstruments Hyytiälä Deployment AMF Home Hyytiälä Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment Operations Baseline Instruments and Data Plots at the Archive BAECC Instruments AMF2 Management and Operations Outreach News & Press BAECC Blog Backgrounder (PDF, 1.5MB) Poster (JPEG, 1.3MB) Education Flyer (English) (PDF, 1.3MB) Education Flyer (Finnish) (PDF, 1.3MB) Images Contacts Nicki Hickmon, AMF Operations Tuukka Petäjä, Principal

  7. The LANSCE RICE control system upgrade.

    SciTech Connect (OSTI)

    Oothoudt, Michael; Schaller, S.; Bjorklund, E. A.; Burns, M. J.; Carr, G.; Carr, G.; Faucett, John Allen,; Hayden, D. J.; Lusk, M. D.; Merl, R. B.; Potter, J. M.; Reynolds, J. A.; Romero, D. B.; Shelley, F. E.

    2003-01-01

    The LANSCE (Los Alamos Neutron Science Center) control system upgrade program continues with the impending replacement of the RICE (Remote Instrumentation and Control Equipment) subsystem. The RICE subsystem upgrade is a challenge because of its technology (late 1960s), number of channels (>10,000), and unique characteristics (all-modules data takes, timed/flavored data takes). The plan is to replace at least the non-timed data and the command portions of the subsystem with Programmable Logic Controllers (PLCs). We discuss motivations, technological challenges, proof-of-principle, and planning. The boundary condition, as usual, is that we must implement these major changes on a running accelerator.

  8. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  9. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  10. Webinar December 10: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST. The webinar will introduce the Hydrogen Equipment Certification Guide, a document intended to aid in equipment approval until listed equipment are available for the entirety of equipment and components.

  11. ARM - Instrument - omi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to ozone chemistry and climate. The OMI instrument is mounted on the EOS Aura platform and employs hyperspectral imaging in a push-broom mode to observe solar...

  12. ARM - Instrument - om

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to ozone chemistry and climate. The OMI instrument is mounted on the EOS Aura platform and employs hyperspectral imaging in a push-broom mode to observe solar...

  13. ARM - Campaign Instrument - cirpas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscirpas Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NPS CIRPAS Twin Otter Aircraft (CIRPAS)...

  14. ARM - Campaign Instrument - tdlas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstdlas Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tunable Diode Laser Absorption...

  15. ARM - Campaign Instrument - soar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssoar Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Shipboard Oceanographic and Atmospheric...

  16. ARM - Campaign Instrument - teom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsteom Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tapered Element Oscillating Microbalance...

  17. ARM - Campaign Instrument - smart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssmart Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Surface-Sensing Measurements for...

  18. ARM - Campaign Instrument - hvps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshvps Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : High Volume Precipitation Spectrometer...

  19. ARM - Campaign Instrument - issrwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsissrwp Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 915RWP Derived Data with Sonde at...

  20. ARM - Campaign Instrument - pip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspip Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Precipitation Imaging Probe (PIP)...

  1. ARM - Instrument - spn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsspn Documentation Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Sunshine Pyranometer (SPN) The...

  2. ARM - Campaign Instrument - ronbrown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsronbrown Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Research Vessel Ron Brown...

  3. ARM - Campaign Instrument - hsrl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshsrl Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : High Spectral Resolution Lidar (HSRL)...

  4. ARM - Campaign Instrument - precipret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsprecipret Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Precipitation Retrievals (PRECIPRET)...

  5. ARM - Campaign Instrument - rsp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrsp Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Research Scanning Polarimeter (RSP)...

  6. ARM - Campaign Instrument - aats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaats Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Ames Airborne Tracking Sunphotometer...

  7. ARM - Campaign Instrument - solarirrads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssolarirrads Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Solar and Infrared Radiometers...

  8. ARM - Campaign Instrument - mmwr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmmwr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Millimeter Wave Radiometer (MMWR)...

  9. ARM - Campaign Instrument - csr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Circular Scanning Radiometer (CSR)...

  10. ARM - Campaign Instrument - cavity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscavity Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Absolute Cavity Radiometer (CAVITY)...

  11. ARM - Campaign Instrument - scocec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsscocec Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Semi-Continuous Organic Carbon...

  12. ARM - Campaign Instrument - aod

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaod Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Optical Depth, derived from...

  13. ARM - Campaign Instrument - fcdp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsfcdp Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Fast cloud droplet probe (FCDP)...

  14. ARM - Campaign Instrument - parsl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsparsl Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : PNNL's Atmospheric Remote Sensing...

  15. ARM - Campaign Instrument - noaasurf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnoaasurf Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Surface Meteorology Data,...

  16. ARM - Campaign Instrument - lase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentslase Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : LASE-airborne Dial System (LASE)...

  17. ARM - Campaign Instrument - wpdngps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswpdngps Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Wind Profiler Demonstration Network...

  18. ARM - Campaign Instrument - visst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsvisst Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Minnis Cloud Products Using Visst...

  19. ARM - Campaign Instrument - tem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstem Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Transmission Electron Microscope (TEM)...

  20. ARM - Campaign Instrument - rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrad Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Radiation Measurements at AMF (RAD)...

  1. ARM - Campaign Instrument - precipiso

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsprecipiso Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Stable Isotope from Precipitation...

  2. ARM - Campaign Instrument - sondeadjust

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssondeadjust Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Sonde Adjust (SONDEADJUST)...

  3. ARM - Campaign Instrument - mirai

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmirai Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : JAMSTEC Research Vessel Mirai (MIRAI)...

  4. ARM - Campaign Instrument - rss

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrss Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Rotating Shadowband Spectroradiometer...

  5. ARM - Campaign Instrument - isar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsisar Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Infrared seasurface skin temperature...

  6. ARM - Campaign Instrument - towerflux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstowerflux Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tower Flux Measurements (TOWERFLUX)...

  7. ARM - Campaign Instrument - fluxnet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsfluxnet Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : FluxNet: Network of Regional CO2 and...

  8. ARM - Campaign Instrument - cvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscvi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NCAR Counterflow Virtual Impactor (CVI)...

  9. ARM - Campaign Instrument - ecmwf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsecmwf Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : European Centre for Medium Range Weather...

  10. ARM - Campaign Instrument - nip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnip Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Normal Incident Pyrheliometer (NIP)...

  11. ARM - Campaign Instrument - clddigcam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsclddigcam Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Digital Camera (CLDDIGCAM)...

  12. ARM - Campaign Instrument - glidersonde

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsglidersonde Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Glidersonde (Oklahoma University)...

  13. ARM - Campaign Instrument - ecor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsecor Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Eddy Correlation Flux Measurement System...

  14. ARM - Campaign Instrument - npol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnpol Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA N-POL Polarimetric Radar System...

  15. ARM - Instrument - nwsup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnwsup Documentation Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : National Weather Service Upper Air...

  16. ARM - Instrument - nwssurf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnwssurf Documentation Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : National Weather Service Surface...

  17. ARM - Campaign Instrument - sdms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssdms Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : snow depth measurement system (SDMS)...

  18. ARM - Campaign Instrument - msr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Multi-wavelength Scanning Radiometer (MSR)...

  19. ARM - Campaign Instrument - hop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshop Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Helicopter Observation Platform (HOP)...

  20. ARM - Campaign Instrument - csi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscsi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Spectrometer and Impactor (CSI)...

  1. ARM - Instrument - ceilpblht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsceilpblht Documentation Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ceilpblht" does...

  2. ARM - Campaign Instrument - rsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Rotating Shading-arm Radiometer (RSR)...

  3. ARM - Campaign Instrument - goes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgoes Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Geostationary Operational Environmental...

  4. ARM - Campaign Instrument - iap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsiap Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : In-situ Aerosol Profiles (Cessna Aerosol...

  5. ARM - Campaign Instrument - tcrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstcrsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Thin Cloud Rotating Shadowband...

  6. ARM - Campaign Instrument - palms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspalms Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Particle Analysis by Laser Mass...

  7. ARM - Campaign Instrument - mplnor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmplnor Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Normalized Backscatter Profiles from...

  8. ARM - Campaign Instrument - radfluxanal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsradfluxanal Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Radiative Flux Analysis...

  9. ARM - Campaign Instrument - sfcmetumiami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssfcmetumiami Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : University of Miami Surface...

  10. ARM - Campaign Instrument - asd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsasd Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Analytical Spectral Devices Field...

  11. ARM - Campaign Instrument - replicator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsreplicator Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Balloon-borne Ice Crystal...

  12. ARM - Campaign Instrument - qmeaerilbl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsqmeaerilbl Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Comparison of Statistics or Clouds...

  13. ARM - Instrument - gp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Global Positioning System (GP) <-- Picture of the Global Positioning System (GPS) --> General...

  14. ARM - Instrument - bsrn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Baseline Solar Radiation Network (BSRN) Note: bsrn is currently inactive andor ...

  15. ARM - Instrument - smos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (ABLE) retired SGP A4 Browse Data Smileyberg, KS (ABLE) retired SGP A5 Browse Data Oxford, KS (ABLE) retired retired Originating instrument has been retired at this location...

  16. ARM - Instrument - fluxnet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AsiaFlux, and OzFlux. Locations Tropical Western Pacific TWP X33 Browse Data Howard Springs FluxNet Site retired retired Originating instrument has been retired at this...

  17. ARM - Instrument - 50rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstruments50rwp Documentation 50RWP : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  18. ARM - Instrument - vceil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsvceil Documentation VCEIL : Handbook Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument...

  19. ARM - Instrument - rain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site TMP M1 Browse Data U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 retired Originating instrument has been retired at this location Contact(s)...

  20. ARM - Instrument - vdis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF2 retired TMP M1 Browse Data U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 retired Originating instrument has been retired at this location Contact(s)...

  1. ARM - Instrument - nav

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - NOAA Ship Ronald H. Brown; AMF2 MAG M1 Browse Data Los Angeles, CA to Honolulu, HI - container ship Horizon Spirit; AMF2 retired retired Originating instrument has been...

  2. ARM - Instrument - maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Mesoscale Analysis and Prediction System (MAPS) Note: maps is currently inactive andor...

  3. ARM - Instrument - rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Sahel region against those taken at the more developed surface area around the airport. Because the remote location didn't have electrical power, instruments for the...

  4. ARM - Instrument - twrcam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA retired retired Originating instrument has been retired at this location...

  5. ARM - Instrument - nfov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA retired retired Originating instrument has been retired at this location...

  6. ARM - Campaign Instrument - gpswv

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgpswv Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Water Vapor from Global Positioning...

  7. ARM - Instrument - cfh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscfh Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cfh

  8. ARM - Instrument - marinemet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmarinemet Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "marinemet" does not exist.

  9. ARM - Instrument - pgsiso

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspgsiso Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "pgsiso" does not exist.

  10. ARM - Instrument - radiocarbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsradiocarbon Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "radiocarbon" does not exist.

  11. ARM - Instrument - tbs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstbs Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "tbs" does not exist.

  12. Sensors, Instrumentation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors, Instrumentation Systems /science-innovation/_assets/images/icon-science.jpg Sensors, Instrumentation Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Sensors Los Alamos National Laboratory's Kevin Farinholt holds a prototype rectifying antenna array used in experiments designed to monitor the structural health of

  13. ARM - Campaign Instrument - acsm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsacsm Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Chemical Speciation Monitor (ACSM) Instrument Categories Aerosols Campaigns Aerosol Life Cycle IOP at BNL [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2011.06.01 - 2011.08.31 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for

  14. ARM - Campaign Instrument - aeri

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaeri Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Atmospheric Emitted Radiance Interferometer (AERI) Instrument Categories Atmospheric Profiling, Radiometric Campaigns ARRA AERI Comparison [ Download Data ] Southern Great Plains, 2011.01.07 - 2011.01.23 Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China [ Download Data ] Shouxian, Anhui, China; Mobile Facility,

  15. ARM - Campaign Instrument - aerosmassspec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaerosmassspec Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Mass Spectrometer (AEROSMASSSPEC) Instrument Categories Aerosols, Airborne Observations, Atmospheric Carbon Campaigns 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2006.03.03 - 2006.03.28 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off

  16. ARM - Campaign Instrument - aeth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaeth Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aethalometer (AETH) Instrument Categories Aerosols Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island [ Download Data ] Gan Island, Maldives; Mobile Facility, 2010.04.15 - 2010.09.15 Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding [ Download Data ] Off Site Campaign : various, including non-ARM

  17. ARM - Campaign Instrument - aos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaos Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Observing System (AOS) Instrument Categories Aerosols Campaigns 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04 - 2007.06.25 ARM Cloud Aerosol Precipitation Experiment (ACAPEX) [ Download Data ] ACAPEX (ARM Cloud Aerosol Precip Experiment); Mobile Facility, 2015.01.14

  18. ARM - Campaign Instrument - aosmet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaosmet Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Meteorological Measurements associated with the Aerosol Observing System (AOSMET) Instrument Categories Surface Meteorology Campaigns ARM Cloud Aerosol Precipitation Experiment (ACAPEX) [ Download Data ] ACAPEX (ARM Cloud Aerosol Precip Experiment); Mobile Facility, 2015.01.14 - 2015.02.12 Biogenic Aerosols - Effects on Clouds and Climate [ Download Data ]

  19. ARM - Campaign Instrument - ccn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Condensation Nuclei Particle Counter (CCN) Instrument Categories Aerosols, Airborne Observations Campaigns 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2005.07.05 - 2005.07.27 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various,

  20. ARM - Campaign Instrument - cep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscep Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Extinction Probe (CEP) Instrument Categories Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for

  1. ARM - Campaign Instrument - disdrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsdisdrometer Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Impact Disdrometer (DISDROMETER) Instrument Categories Surface Meteorology Campaigns AMIE-Gan Ancillary Disdrometer [ Download Data ] Gan Island, Maldives; Mobile Facility, 2012.01.01 - 2012.02.10 CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds

  2. ARM - Campaign Instrument - dma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsdma Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Differential Mobility Analyzer (DMA) Instrument Categories Aerosols, Airborne Observations Campaigns 2004 NEAX (Northeast Aerosol Experiment), G-1 data [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2004.07.20 - 2004.08.15 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including

  3. ARM - Campaign Instrument - fssp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsfssp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Forward-Scatter Spectrometer Probe (FSSP) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns 1995 Southern Oxidants Study (SOS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1995.06.24 - 1995.07.20 1996 NARSTO Northeast Field Study (NARSTO-NE) [ Download Data ] Off Site Campaign : various, including

  4. ARM - Campaign Instrument - mfrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmfrsr Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Multifilter Rotating Shadowband Radiometer (MFRSR) Instrument Categories Aerosols, Derived Quantities and Models, Radiometric Campaigns Aerosol Lidar Validation Experiment - ALIVE [ Download Data ] Southern Great Plains, 2005.09.12 - 2005.09.22 Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China [ Download Data ]

  5. ARM - Campaign Instrument - mwr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwr Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Microwave Radiometer (MWR) Instrument Categories Atmospheric Profiling, Cloud Properties, Radiometric Campaigns ARESE II IOP [ Download Data ] Southern Great Plains, 2000.02.01 - 2000.04.05 Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China [ Download Data ] Shouxian, Anhui, China; Mobile Facility, 2008.05.15 -

  6. ARM - Campaign Instrument - pass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspass Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Photoacoustic Soot Spectrometer (PASS) Instrument Categories Aerosols Campaigns Aerosol Life Cycle IOP at BNL [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2011.06.01 - 2011.08.31 Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering [ Download Data ] Off Site Campaign :

  7. ARM - Campaign Instrument - pcasp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspcasp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Passive Cavity Aerosol Spectrometer (PCASP) Instrument Categories Aerosols, Airborne Observations Campaigns 1995 Southern Oxidants Study (SOS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1995.06.24 - 1995.07.20 1996 NARSTO Northeast Field Study (NARSTO-NE) [ Download Data ] Off Site Campaign : various, including non-ARM sites,

  8. ARM - Campaign Instrument - rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrwp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Radar Wind Profiler (RWP) Instrument Categories Atmospheric Profiling Campaigns Aerosol Life Cycle IOP at BNL [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2011.06.01 - 2011.08.31 Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding [ Download Data ] Off Site Campaign : various, including non-ARM

  9. ARM - Campaign Instrument - semsamp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssemsamp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Scanning Electron Microscope Sampler (SEMSAMP) Instrument Categories Aerosols Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2010.05.26 - 2010.07.07 Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological

  10. ARM - Campaign Instrument - sodar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssodar Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Mini Sound Detection and Ranging (SODAR) Instrument Categories Atmospheric Profiling, Surface Meteorology Campaigns Boundary Layer Cloud IOP [ Download Data ] North Slope Alaska, 2005.07.11 - 2005.08.07 Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding [ Download Data ] Off Site Campaign : various, including non-ARM

  11. ARM - Campaign Instrument - tracegas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstracegas Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Trace gas concentrations (TRACEGAS) Instrument Categories Aerosols, Airborne Observations, Atmospheric Profiling, Atmospheric Carbon Campaigns 2008 VAMOS Ocean-Cloud-Atmos-Land Study (VOCALS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2008.10.14 - 2008.11.13 Observations and Modeling of the Green Ocean Amazon (GOAMAZON) [

  12. ARM - Campaign Instrument - varanal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsvaranal Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Constrained Variational Analysis (VARANAL) Instrument Categories Derived Quantities and Models Campaigns ARM MJO Investigation Experiment on Gan Island [ Download Data ] Gan Island, Maldives; Mobile Facility, 2011.10.01 - 2012.03.31 Cloud LAnd Surface Interaction Campaign (CLASIC) [ Download Data ] Southern Great Plains, 2007.06.01 - 2007.06.30 Fall 1997

  13. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesInstruments AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  14. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesInstruments AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  15. ARM - Instrument - eta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentseta Documentation ETA : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Eta Model Runs (ETA) Instrument Categories Derived Quantities and Models General Overview NOAA's National Centers for Environmental Prediction run a regional numerical weather analysis and forecast system that covers the entire North American Continent. The data archived by ARM since 1993-06-16 come

  16. ARM - Instrument - gndmfr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgndmfr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ground Multifilter Radiometer (GNDMFR) Note: gndmfr is currently inactive and/or retired. Active Dates 1970.01.01 - 1970.01.01 Instrument Categories Radiometric, Surface/Subsurface Properties General Overview The Ground Radiation (GNDRAD) collection of radiometers provides each site with continuous measurements of

  17. ARM - Instrument - issrwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsissrwp Documentation ISSRWP : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : 915RWP Derived Data with Sonde at Altitude (ISSRWP) Instrument Categories Derived Quantities and Models Output Datastreams 915issrwpwindcon : Derived: wind data from the 915RWP (consensus) and sonde, at altitude Primary Measurements The following measurements are those considered scientifically

  18. ARM - Instrument - isssonde

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsisssonde Documentation ISSSONDE : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Integrated Sounding System (ISSSONDE) Instrument Categories Derived Quantities and Models Output Datastreams isssonde : Integrated Sounding System (ISS): meteorological data vertical profile isssonde10s : Integrated Sounding System (ISS): meteorological data vertical profile, 10-s resolution

  19. ARM - Instrument - maws

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmaws Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Automatic Weather Station (MAWS) Instrument Categories Surface Meteorology Primary Measurements The following measurements are those considered scientifically relevant. Atmospheric moisture Atmospheric pressure Atmospheric temperature Horizontal wind Locations Southern Great Plains SGP C1 Browse Data Browse Plots Central

  20. ARM - Instrument - nwsupa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnwsupa Documentation NWSUPA : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : National Weather Service Upper Air Measurements (NWSUPA) Instrument Categories Atmospheric Profiling General Overview These data are NWS soundings covering all three ARM sites. Some of these data are high temporal resolution (6 seconds) others are only for mandatory and significant levels. Most

  1. ARM - Instrument - pils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspils Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Particle Into Liquid Sampler (PILS) Instrument Categories Aerosols As the name implies, aerosols are collected in liquid sample vials, which can then be passed through an offline ion chromatograph to determine chemical composition of the water soluble component of the aerosol particles. The PILS is part of the Aerosol

  2. ARM - Instrument - stamp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsstamp Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Temperature and Moisture Profiles (STAMP) Instrument Categories Surface/Subsurface Properties Primary Measurements The following measurements are those considered scientifically relevant. Precipitation Soil moisture Soil surface temperature Locations Southern Great Plains SGP E9 Browse Data Ashton, KS (Extended) SGP

  3. ARM - Instrument - surfspecalb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssurfspecalb Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Surface Spectral Albedo (SURFSPECALB) Instrument Categories Surface/Subsurface Properties Primary Measurements The following measurements are those considered scientifically relevant. Surface albedo Surface condition Locations North Slope Alaska NSA C1 Browse Data Central Facility, Barrow AK retired Southern Great

  4. ARM - Instrument - tdmadap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstdmadap Documentation TDMADAP : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aerosol Properties derived from TDMA Measurements (TDMADAP) Instrument Categories Aerosols Primary Measurements The following measurements are those considered scientifically relevant. Cloud condensation nuclei Locations Southern Great Plains SGP X1 Browse Data External Data (satellites and

  5. 2015 Advanced Sensors and Instrumentation Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors and Instrumentation Webinar 2015 Advanced Sensors and Instrumentation Webinar The Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program, in coordination with the Office of Nuclear Reactor Technologies and the Office of Fuel Cycle Technologies, conducted an Instrumentations and Controls (I&C) webinar on October 28-29, 2015. This webinar provided an opportunity to review the research and development being conducted in the areas of

  6. Machine protection system for rotating equipment and method

    DOE Patents [OSTI]

    Lakshminarasimha, Arkalgud N. (Marietta, GA); Rucigay, Richard J. (Marietta, GA); Ozgur, Dincer (Kennesaw, GA)

    2003-01-01

    A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.

  7. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  8. Moncada Solar Equipment | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moncada Solar Equipment Place: Italy Product: Developer and manufacturer of thin-film modules. References: Moncada Solar Equipment1 This article is a stub. You can...

  9. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  10. Personal Computing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

  11. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  12. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  13. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  14. Laboratory Equipment Donation Program - About Us

    Office of Scientific and Technical Information (OSTI)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department ...

  15. CVD Equipment Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Ronkonkoma, New York Zip: 11779 Sector: Solar Product: New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of...

  16. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    ... Evaluations in the Process and Utility Industries," adopted November 1990. 3 equipment. ... Table 6 shows approximate factors for setting various types of equipment. 1 The total cost ...

  17. DMSE Equipment Scheduling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Equipment ownercustodian reserves the right to override the schedule for maintenance andor other justified reasons. Abuse of the scheduling system or equipment may...

  18. Enforcement Policy Statement: Commercial HVAC Equipment Issued...

    Energy Savers [EERE]

    ... that conditions the equipment's supply air using energy transferred from an external source ... SteamHydronic Heat Options. A heat exchanger located inside the equipment that ...

  19. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  20. Design review report for modifications to RMCS safety class equipment

    SciTech Connect (OSTI)

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  1. AVTA: Airport Ground Support Equipment Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Airport Ground Support Equipment Specifications and Test Procedures AVTA: Airport Ground Support Equipment Specifications and Test Procedures PDF icon eGSE America Electric Baggage Tow Tractor (EBTT) Technical Specifications PDF icon eGSE America Electric Aircraft PushBack Tractor (EAPT) Technical Specifications PDF icon eGSE America Electric Aircraft Cargo Conveyor (EACC) Technical Specifications PDF icon ETA-GAC001 Control, Close-out, and Storage of Documentation PDF

  2. Guide to Low-Emission Boiler and Combustion Equipment Selection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types of industrial, commercial, and institutional (ICI) boilers along with discussion about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and

  3. Space Instrument Realization (ISR-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Space Instrument Realization Providing expertise to support the design and fabrication of space-based custom instrumentation Contacts Group Leader Amy Regan Email Staff ...

  4. instrumentation | OpenEI Community

    Open Energy Info (EERE)

    relevant to instrumentation and sensors. Sharing information on MHK instrumentation and lessons learned from laboratory testing and field deployments will help the MHK community...

  5. instruments | OpenEI Community

    Open Energy Info (EERE)

    relevant to instrumentation and sensors. Sharing information on MHK instrumentation and lessons learned from laboratory testing and field deployments will help the MHK community...

  6. ARM - Campaign Instrument - aircraftcabin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsaircraftcabin Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aircraft Cabin Parameters (e.g. attitude, motion, ambient state) (AIRCRAFTCABIN) Instrument Categories Airborne Observations Campaigns 1996 NARSTO Northeast Field Study (NARSTO-NE) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1996.07.01 - 1996.07.28 2008 VAMOS Ocean-Cloud-Atmos-Land Study (VOCALS) [ Download Data ] Off Site

  7. ARM - Campaign Instrument - cas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscas Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud and Aerosol Spectrometer (CAS) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2005.07.05 - 2005.07.27 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City [ Download Data ] Off Site Campaign :

  8. ARM - Campaign Instrument - cfdc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscfdc Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Continuous Flow Ice Thermal Diffusion Chamber (CFDC) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Mixed-Phase Arctic Cloud Experiment [ Download Data ] North Slope Alaska, 2004.09.27 - 2004.10.21 Primary

  9. ARM - Campaign Instrument - cldaerosmicro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscldaerosmicro Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud and Aerosol Microphysical Properties (CLDAEROSMICRO) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2005.07.05 - 2005.07.27 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City [ Download

  10. ARM - Campaign Instrument - cpc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Condensation Particle Counter (CPC) Instrument Categories Aerosols Campaigns 1998 Phoenix Air Quality Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1998.05.17 - 1998.06.09 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04 - 2007.06.25 2007

  11. ARM - Campaign Instrument - flask

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsflask Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Instrument Categories Airborne Observations, Atmospheric Carbon Campaigns ARM Airborne Carbon Measurements (ARM-ACME) [ Download Data ] Southern Great Plains, 2008.10.01 - 2011.12.31 ARM LBNL Carbon Project [ Download Data ] Southern Great Plains, 2002.04.02 - 2006.06.30 Aircraft Carbon [ Download

  12. ARM - Campaign Instrument - gasmonitor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgasmonitor Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Gas Monitors (GASMONITOR) Instrument Categories Aerosols, Other Campaigns 1995 Southern Oxidants Study (SOS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1995.06.24 - 1995.07.20 1996 NARSTO Northeast Field Study (NARSTO-NE) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1996.07.01 - 1996.07.28 1998

  13. ARM - Campaign Instrument - gcms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgcms Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Gas Chromatography Mass Spectrometry (GCMS) Instrument Categories Aerosols Campaigns 1995 Southern Oxidants Study (SOS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1995.06.24 - 1995.07.20 1998 Phoenix Air Quality Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1998.05.17 - 1998.06.09 1999 Northeast

  14. ARM - Campaign Instrument - irsi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsirsi Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Infra-Red Sky Imager (IRSI) Instrument Categories Cloud Properties, Radiometric Campaigns Cloudiness Inter-Comparison IOP [ Download Data ] Southern Great Plains, 2003.02.21 - 2003.04.21 IRSI Inter-Comparison Study [ Download Data ] Southern Great Plains, 2007.08.27 - 2007.09.23 IRSI Inter-Comparison Study [ Download Data ] Southern Great Plains, 2007.08.27 -

  15. ARM - Campaign Instrument - mpl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmpl Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Micropulse Lidar (MPL) Instrument Categories Cloud Properties Campaigns Aerosol Lidar Validation Experiment - ALIVE [ Download Data ] Southern Great Plains, 2005.09.12 - 2005.09.22 Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China [ Download Data ] Shouxian, Anhui, China; Mobile Facility, 2008.05.15 - 2008.12.29 Cirrus

  16. ARM - Campaign Instrument - nephelometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnephelometer Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Nephelometer (NEPHELOMETER) Instrument Categories Aerosols Campaigns 1999 Northeast Corridor Ozone & Particulate Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1999.07.23 - 1999.08.11 2002 NEAQS (New England Air Qual. Study), G-1 data [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.07.09

  17. ARM - Campaign Instrument - partimg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspartimg Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Particle imager (PARTIMG) Instrument Categories Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Indirect and Semi-Direct Aerosol

  18. ARM - Campaign Instrument - pils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspils Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Particle Into Liquid Sampler (PILS) Instrument Categories Aerosols Campaigns 2000 Houston, Texas Air Quality Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2000.08.19 - 2000.09.12 2001 Philadelphia NE-OPS Air Quality Experiment [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2001.07.14 - 2001.07.30 2006

  19. ARM - Campaign Instrument - psap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspsap Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Particle Soot Absorption Photometer (PSAP) Instrument Categories Aerosols Campaigns 1998 Phoenix Air Quality Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1998.05.17 - 1998.06.09 2000 Houston, Texas Air Quality Study [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2000.08.19 - 2000.09.12 2001 Phoenix

  20. ARM - Campaign Instrument - smps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssmps Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Scanning mobility particle sizer (SMPS) Instrument Categories Aerosols Campaigns Aerosol Life Cycle IOP at BNL [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2011.06.01 - 2011.08.31 Aerosol Life Cycle: UV-APS and Nano-SMPS [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2011.06.10 - 2011.06.25 Carbonaceous

  1. ARM - Campaign Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssoil Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories Surface/Subsurface Properties Campaigns COSMOS Network [ Download Data ] Southern Great Plains, 2010.08.05 - 2017.03.01 Cloud LAnd Surface Interaction Campaign (CLASIC) [ Download Data ] Southern Great Plains, 2007.06.01 - 2007.06.30 Cloud LAnd Surface Interaction Campaign (CLASIC) [ Download Data ]

  2. ARM - Campaign Instrument - tdma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstdma Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tandem Differential Mobility Analyzer (TDMA) Instrument Categories Aerosols Campaigns 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2005.07.05 - 2005.07.27 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City [ Download Data ] Off Site Campaign : various, including non-ARM sites,

  3. ARM - Campaign Instrument - trac

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstrac Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Time Resolved Aerosol Collector (TRAC) Instrument Categories Aerosols Campaigns 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04 - 2007.06.25 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04

  4. ARM - Instrument - ecmwf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsecmwf Documentation ECMWF : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : European Centre for Medium Range Weather Forecasts Model Data (ECMWF) Note: ecmwf is currently inactive and/or retired. Active Dates 1996.10.01 - 2015.09.30 Instrument Categories Derived Quantities and Models General Overview These data can only be distributed to ARM scientists. ARM scientists who

  5. ARM - Instrument - gms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgms Documentation GMS : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Geostationary Meteorological Satellite (GMS) Note: gms is currently inactive and/or retired. Active Dates 1996.10.01 - 2003.02.16 Instrument Categories Satellite Observations <!-- Picture of the GMS --> General Overview GMS-5 satellite images are taken over the Tropical Western Pacific (TWP),

  6. ARM - Instrument - grams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgrams Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ground Radiometer Autonomous Measurement System (GRAMS) Note: grams is currently inactive and/or retired. Active Dates 1997.10.15 - 2000.10.03 Instrument Categories Radiometric Picture of the Ground-based Radiometer Autonomous Measurement System (GRAMS) Locations Southern Great Plains SGP C1 Browse Data Central Facility,

  7. ARM - Instrument - sp2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssp2 Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Single Particle Soot Photometer (SP2) Instrument Categories Aerosols The SP2 measures the soot (black carbon) mass of individual aerosol particles by laser-induced incandescence down to concentrations as low as 10 ng/m^3. The SP2 is part of the Aerosol Observing System (AOS). See Also Contact(s) Stephen Springston Brookhaven

  8. ARM - Instrument - tlcv

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstlcv Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Time-Lapsed Cloud Video (TLCV) Note: tlcv is currently inactive and/or retired. Active Dates 1997.09.15 - 2001.09.14 Instrument Categories Cloud Properties General Overview The time-lapsed cloud video (TLCV) camera provides a record of sky conditions by recording color images of an approximately 100-degree field of view,

  9. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for imaging equipment, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies buy ENERGY STAR qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law.

  10. Instrument for assaying radiation

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  11. ARM - Instrument - smps-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssmps-2 Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Scanning Mobile Particle Sizer (SMPS-2) The Scanning Mobile Particle Sizer combines a differential mobility analyser (DMA) with a condensation particle counter (CPC) to achieve greater sensitivity for small particles.

  12. Implementation of tank volume measurement equipment at the Mayak Production Association

    SciTech Connect (OSTI)

    Darenskikh, O.; Suda, S.C.; Valente, J.U.; Zuhoski, P.B.; Salwen, C.A.

    1997-12-31

    One goal of the United States Russia Cooperative program to improve nuclear material protection, control, and accounting (MPC and A) in Russian facilities is to computerize material accounting techniques for bulk materials. Such materials include liquid solutions at radiochemical plants: dissolver, intermediate product, and waste. Material accounting techniques for tank volume measurements (TVM) are needed to determine the nuclear material content of these solutions (chemical and isotopic analysis are also required). The content is required to close the material balance in a radiochemical plant. Computerization of these techniques can provide unattended measurements of material flows, improved precision and accuracy, reduced operator effort, and lower radiation exposure of operators--with equipment that is predominantly remote from high radiation areas. This paper describes the technical activities that contributed to the successful integration of the TVM system, developed by Brookhaven National Laboratory (BNL), into the Mayak Production Association radiochemical plant conducted under the US/Russian cooperative MPC and A Program. US assistance with installation and adjustment of the instrumentation was completed in May 1997. After that, Mayak experts on measurement and metrology continued mastering and testing the equipment.

  13. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  14. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  15. Data acquisition instruments: Psychopharmacology

    SciTech Connect (OSTI)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  16. Instrumentation for Southem Great Plains D. L. Sisterson and M. L. Wesely

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southem Great Plains D. L. Sisterson and M. L. Wesely Environmental Research Division Argonne National Laboratory Argonne, IL 60439 accept the instrument but operates it in a degraded mode until the problems are fixed, or does not operate the instrument. Similar procedures are followed for other types of equipment and some aspects of the site data system. Central Facility Table 1 shows the progress to date on implementation of instruments, facilities, and general aspects of the site data system

  17. Equipment for nondestructive evaluation of the strength of the Fort St. Vrain core-support blocks

    SciTech Connect (OSTI)

    Morgan, W.C.; Prince, J.M.; Posakony, G.J.

    1982-09-01

    A novel sweep-frequency eddy current instrument has been constructed for measuring density-depth profiles in oxidized graphite. Development work on additional parts of the instrumentation package, that was to be tested in the Fort St. Vrain High Temperature Gas-Cooled Reactor, has been temporarily halted. This report documents the work which has been accomplished to date and presents the current status of the equipment development effort.

  18. Instrumentation for WEC Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ean A. Amon Northwest National Marine Renewable Energy Center MHK Instrumentation Workshop, NREL, July 2012 The Northwest National Marine Renewable Energy Center * A partnership between Oregon State University, the University of Washington, & the National Renewable Energy Lab. * Develop a full range of capabilities to support wave and tidal energy development, from small-scale lab and tank systems to full-scale ocean facilities. * Center activities are structured to: * facilitate device

  19. REVIEW OF SCIENTIFIC INSTRUMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REVIEW OF SCIENTIFIC INSTRUMENTS 81, 123503 (2010) The rotating wall machine: A device to study ideal and resistive magnetohydrodynamic stability under variable boundary conditions C. Paz-Soldan, W. F. Bergerson, M. I. Brookhart, D. A. Hannum, R. Kendrick, G. Fiksel, and C. B. Forest Department of Physics, University of Wisconsin, 1150 University Ave, Madison, Wisconsin 53706, USA (Received 31 July 2010; accepted 4 October 2010; published online 7 December 2010) The rotating wall machine, a

  20. Rain Gauge Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Rain Gauge Instrument Handbook MJ Bartholomew January 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  1. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect (OSTI)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  2. Soldering instrument safety improvements

    DOE Patents [OSTI]

    Kosslow, William J.; Giron, Ronald W.

    1996-01-01

    A safe soldering device includes a retractable heat shield which can be moved between a first position in which the solder tip of the device is exposed for soldering operation and a second position in which the solder tip is covered by the heat shield. Preferably, the heat shield is biased towards the second position and may be locked in the first position for ease of use. When the soldering device is equipped with a vacuum system, the heat shield may serve to guide the flow of gases and heat from the solder tip away from the work area. The heat shield is preferably made of non-heatsinking plastic.

  3. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  4. Feasibility of high recovery highwall mining equipment. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Three equipment systems exhibited significant promise: the RSV Miner, a surface longwall using standard underground equipment, and the variable angle auger. Other equipment systems showing considerable merit were the surface shortwall, and the two extended depth augers. Of the three most significant systems, the RSV Miner exhibits the greatest versatility and adaptability. It may be used competently in many surface mining applications and readily adapts to geologic anomalies and changing seam heights. The machine employs steering and guidance equipment and provides the necessary capabilities for extended depth operation. Safety is good, as no men are required to work underground. However, most important is the system's recovery factor of approximately 75% to 80% of the in-situ coal reserve within reach. The surface longwall system using standard underground equipment (preferably a ranging drum shearer in conjunction with shield supports) is most suited to either a trench mining or a modified area mining application. Both applications would allow the length of the face to be held constant. Another important consideration is legal requirements for a tailgate entry, which would necessitate additional equipment for development in a modified area mining application. When compared to surface shortwall, surface longwall exhibits higher productivity, a far greater equipment selection which allows system tailoring to geologic conditions, and greater roof control due to the significantly smaller section of overburden that must be supported. Recovery should approach, and possibly exceed, 90% of the coal in-place. The variable angle auger, which is currently only a concept, fills a very real need for which no other equipment is available at this time.

  5. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  6. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect (OSTI)

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  7. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  8. The QUIET Instrument

    SciTech Connect (OSTI)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  9. ARM - Instrument - flask

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastomer-free air sample path Stainless steel welded manifolds Automated, motorized valve system Micro-processor controlled customizable program Sturdy travelshipping case ...

  10. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires

  11. LANSCE | Lujan Center | Instruments | HIPPO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the standard ancillary equipment (100-specimen sample changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure anvil cells capable of achieving...

  12. Portable musical instrument amplifier

    DOE Patents [OSTI]

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  13. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect (OSTI)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; ,

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by x-ray scattering of various types all time resolved. The necessary diagnostics are discussed.

  14. Solar Energy Research Center Instrumentation Facility

    SciTech Connect (OSTI)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was “shell space” that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier Research Center UNC EFRC, funded by the US Department of Energy Office of Basic Energy Sciences. Equipment funded by this congressional award has provided important new capabilities for UNC SERC and has greatly facilitated collaborative research by many multi-institutional teams in the six partner institutions of the UNC EFRC, including Duke University, North Carolina Central University, and North Carolina State University. This state-of-the-art instrumentation has allowed us to design cutting-edge experiments that provide insight into the molecular structure and dynamics of materials and components for solar energy conversion under real working conditions. This research has resulted in ten publications already published or in preparation that acknowledge support from DOE EERE for this congressionally directed project.

  15. Seiko Instruments Inc | Open Energy Information

    Open Energy Info (EERE)

    Instruments Inc Jump to: navigation, search Name: Seiko Instruments Inc Place: Chiba, Japan Zip: 261-8507 Product: Focused on manufacturing precision instruments and micro...

  16. ARM - Campaign Instrument - uav-proteus-micro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Proteus Cloud Microphysics Instruments (UAV-PROTEUS-MICRO) Instrument Categories Airborne Observations, Cloud...

  17. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  18. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  19. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  20. Controls for offshore high pressure corrosive gas wells

    SciTech Connect (OSTI)

    Bailliet, R.M.

    1982-01-01

    In September 1981, Shell Oil Company began production from its first high-pressure corrosive gas well in the Gulf of Mexico. The extreme pressures and corrosive nature of the gas required the installation of a 20,000 psi low alloy steel christmas tree, equipped with 12 hydraulically operated safety and control valves. This study describes the instrumentation and control system developed to operate this complex well. Similar wells have been produced on shore, but the limited space available on an offshore platform has required the development of new techniques for operating these wells. The instrumentation system described utilizes conventional pneumatics and hydraulics for control plus intrinsically-safe electronics for data acquisition. The use of intrinsically-safe field wiring provided maximum safety while avoiding the need for explosion-proof conduit and wiring methods in division one hazardous areas.