Sample records for instrument categories atmospheric

  1. Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

  2. Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  3. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  4. Calibration of LSST Instrumental and Atmospheric Photometric Passbands

    SciTech Connect (OSTI)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Barrau, Aurelien; Baumont, Sylvain; /LPSC, Grenoble; Blondin, Stephane; /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Gorecki, Alexia; /LPSC, Grenoble; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Krabbendam, Victor; Liang, Ming; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-07-06T23:59:59.000Z

    The Large Synoptic Survey Telescope (LSST) will continuously image the entire sky visible from Cerro Pachon in northern Chile every 3-4 nights throughout the year. The LSST will provide data for a broad range of science investigations that require better than 1% photometric precision across the sky (repeatability and uniformity) and a similar accuracy of measured broadband color. The fast and persistent cadence of the LSST survey will significantly improve the temporal sampling rate with which celestial events and motions are tracked. To achieve these goals, and to optimally utilize the observing calendar, it will be necessary to obtain excellent photometric calibration of data taken over a wide range of observing conditions - even those not normally considered 'photometric'. To achieve this it will be necessary to routinely and accurately measure the full optical passband that includes the atmosphere as well as the instrumental telescope and camera system. The LSST mountain facility will include a new monochromatic dome illumination projector system to measure the detailed wavelength dependence of the instrumental passband for each channel in the system. The facility will also include an auxiliary spectroscopic telescope dedicated to measurement of atmospheric transparency at all locations in the sky during LSST observing. In this paper, we describe these systems and present laboratory and observational data that illustrate their performance.

  5. The NASA Aura satellite houses four instruments to study atmospheric ozone. The Ozone Monitoring Instrument (OMI) onboard the satellite provides global total column ozone (TCO) and in combination

    E-Print Network [OSTI]

    Thompson, Anne

    iii ABSTRACT The NASA Aura satellite houses four instruments to study atmospheric ozone. The Ozone Monitoring Instrument (OMI) onboard the satellite provides global total column ozone (TCO) and in combination with other instruments tropospheric ozone residual (TOR) can be derived. In this study, the trajectory

  6. Airtight container for the transfer of atmosphere-sensitive materials into vacuum-operated characterization instruments

    SciTech Connect (OSTI)

    Gaume, Romain M. [CREOL, the College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816-2700 (United States); Joubert, Lydia-Marie [Cell Sciences Imaging Facility, Beckman Center, Stanford University, Stanford, California 94305 (United States)

    2011-12-15T23:59:59.000Z

    This paper describes the design and operation of a simple airtight container devised to facilitate the transfer of atmosphere-sensitive samples from a glovebox to the vacuum chamber of an analytical instrument such as a scanning electron microscope. The use of this device for characterizing the microstructure of highly hygroscopic strontium iodide ceramics by scanning electron microscopy is illustrated as an application example.

  7. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06T23:59:59.000Z

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  8. GS-2/9/12-3 Category 1 Category 2 Category 3 Category 4

    E-Print Network [OSTI]

    fixed Queen bed Category 1 Category 2 Owner's Suite Category 3 Category 4 Category 5 Category 6 Category

  9. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Davidovits, Paul

    2011-12-10T23:59:59.000Z

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  10. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  11. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect (OSTI)

    Eccles, V.; Armstrong, R.

    1993-05-01T23:59:59.000Z

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  12. Atmosphere Sciences Instrumentation Lab

    E-Print Network [OSTI]

    Delene, David J.

    dimensional wind field. #12;Mass Flow Controller Tim Logan · Mass Flow Controller regulates the flow of air frequency, using a combination reflecting-refracting imaging system · Worked with the PCASP, doing. Additional heat is removed due to vaporization of liquid water when in cloud. Difference in energy

  13. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1993-01-01T23:59:59.000Z

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  14. A Practical Analytic Model for Daylight Category: research

    E-Print Network [OSTI]

    Shirley, Peter

    A Practical Analytic Model for Daylight Category: research Abstract Sunlight and skylight that approximates full spectrum daylight for various atmospheric con­ ditions. These conditions are parameterized

  15. A Practical Analytic Model for Daylight Category: research

    E-Print Network [OSTI]

    Shirley, Peter

    A Practical Analytic Model for Daylight Category: research Abstract Sunlight and skylight that approximates full spectrum daylight for various atmospheric con- ditions. These conditions are parameterized

  16. Traces on Module Categories over Fusion Categories

    E-Print Network [OSTI]

    Gregor Schaumann

    2015-01-27T23:59:59.000Z

    We consider traces on module categories over pivotal fusion categories which are compatible with the module structure. It is shown that such module traces characterise the Morita classes of special haploid symmetric Frobenius algebras. Moreover, they are unique up to a scale factor and they equip the dual category with a pivotal structure. This implies that for each pivotal structure on a fusion category over the complex numbers there exists a conjugate pivotal structure defined by the canonical module trace.

  17. Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon #ashers for atmospheric monitoring

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon of Physics, High Energy Astrophysics Institute, University of Utah, Salt Lake City, UT 84112, USA Department

  18. Requested Funding Categories

    E-Print Network [OSTI]

    Martinez, Tony R.

    Requested Funding Categories: Department's Funding Priority Request (in the event partial funding is granted): Committee recommends the following funding: Wages for adjunct or part- time faculty or admin Factors: Has unit received previous internship grant funding? _______ ifso

  19. Alcohol Services Category #1 # Permit Applica2on Category #2

    E-Print Network [OSTI]

    Powers, Robert

    Alcohol Services Category #1 # Permit Applica2on Category #2 Category #3 If an outdoor event, a;ach UNL Police approved licensed area plan to Permit Request ADMINISTRATOR TO OBTAIN THE REQUIRED ALCOHOL SERVICES PERMIT FOR EACH EVENT

  20. STABLE -CATEGORIES DAVID PLATT

    E-Print Network [OSTI]

    Proudfoot, Nicholas

    STABLE -CATEGORIES DAVID PLATT 1. Motivation Recall that an additive category A is abelian PLATT X Y Z X[1] X Y Z X[1] (3) X f Y g Z h X[1] can be rotated to Y g Z h X[1] -f Y [1]. (4 mod out by quasi-isomorphisms. #12;4 DAVID PLATT When A has enough projectives, D(A) is the quotient

  1. Covered Product Category: Displays

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including displays, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. ACRF Instrumentation Status and Information - June 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-06-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ACRF Instrumentation Status and Information September 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-10-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ACRF Instrumentation Status and Information July 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-08-13T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ACRF Instrumentation Status and Information April 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-05-07T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ACRF Instrumentation Status and Information August 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-09-09T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ACRF Instrumentation Status and Information May 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-05-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. Exertion instruments

    E-Print Network [OSTI]

    Vawter, Noah (Noah Theodore)

    2011-01-01T23:59:59.000Z

    This dissertation describes the research, development and reasoning behind a family of musical instruments called Exertion Instruments. They use inline electrical generators to run a synthesizer and an amplifier while ...

  9. ACRF Instrumentation Status: New, Current, and Future March 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-03-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  10. ACRF Instrumentation Status: New, Current, and Future June 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-06-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  11. ACRF Instrumentation Status: New, Current, and Future May 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-05-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. ACRF Instrumentation Status: New, Current, and Future February 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-02-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development

  13. ACRF Instrumentation Status: New, Current, and Future January 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-01-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status: New, Current, and Future - March 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-04-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  15. ACRF Instrumentation Status: New, Current, and Future - November – December 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-12-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status: New, Current, and Future - September – October 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-10-30T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  17. ACRF Instrumentation Status: New, Current, and Future - February 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-03-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  18. ACRF Instrumentation Status: New, Current, and Future May 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-04-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  19. ACRF Instrumentation Status: New, Current, and Future October 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-10-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  20. ACRF Instrumentation Status: New, Current, and Future - October – November 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-11-30T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  1. Alcohol Services Category #1 # Permit Application Category #2

    E-Print Network [OSTI]

    Powers, Robert

    Alcohol Services Category #1 # Permit Application Category #2 Category #3 Facility to be Used If an outdoor event, attach UNL Police approved licensed area plan to Permit Request. This individual may TO OBTAIN THE REQUIRED ALCOHOL SERVICES PERMIT FOR EACH EVENT. THE APPROVED CATERER IS RESPONSIBLE

  2. Covered Product Categories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    List of Federal Energy Management Program (FEMP)-designated product categories for energy-efficient procurement requirements.

  3. Chaos in Binary Category Computation

    E-Print Network [OSTI]

    Carlos Pedro Gonçalves

    2010-11-21T23:59:59.000Z

    Category computation theory deals with a web-based systemic processing that underlies the morphic webs, which constitute the basis of categorial logical calculus. It is proven that, for these structures, algorithmically incompressible binary patterns can be morphically compressed, with respect to the local connectivities, in a binary morphic program. From the local connectivites, there emerges a global morphic connection that can be characterized by a low length binary string, leading to the identification of chaotic categorial dynamics, underlying the algorithmically random pattern. The work focuses on infinite binary chains of C2, which is a category that implements an X-OR-based categorial logical calculus.

  4. Covered Product Category: Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, which is a product category covered by the ENERGY STAR program.

  5. Covered Product Category: Commercial Griddles

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

  6. Strict $\\infty $-categories. Concrete Duality

    E-Print Network [OSTI]

    G. V. Kondratiev

    2006-08-17T23:59:59.000Z

    An elementary theory of strict $\\infty $-categories with application to concrete duality is given. New examples of first and second order concrete duality are presented.

  7. Covered Product Categories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    Overview of the U.S. Department of Energy Federal Energy Management Program Energy-Efficient Product Procurement Program and its designated product category list.

  8. Covered Product Category: Fluorescent Ballasts

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and federal efficiency requirements across a variety of product categories, including fluorescent ballasts, which is a FEMP designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Wildlife Category Review: Planning Introduction

    E-Print Network [OSTI]

    budget and scope adjustments, project durations, and the results from the science review) categorical projects for up to eight years. Periodic budget and performance check-ins would occur duringWildlife Category Review: Planning Introduction Category and Geographic Reviews To implement

  10. Covered Product Categories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    Federal mandates require that Federal agencies purchase energy-efficient products. To help agency buyers meet these requirements, the Federal Energy Management Program (FEMP) maintains a list of FEMP-designated and ENERGY STAR-qualified product categories.

  11. Category Learning in the Brain

    E-Print Network [OSTI]

    Miller, Earl K.

    The ability to group items and events into functional categories is a fundamental characteristic of sophisticated thought. It is subserved by plasticity in many neural systems, including neocortical regions (sensory, ...

  12. Energy Audit Findings by Category

    E-Print Network [OSTI]

    Theising, T. R.

    2008-01-01T23:59:59.000Z

    During the first half of 2007, a dozen Energy Survey's were completed at newly acquired BASF manufacturing facilities within the U.S. More than 500 energy conservation opportunities were identified. I have categorized these into 16 categories, see...

  13. ACRF Instrumentation Status: New, Current, and Future - April 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-05-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status: New, Current, and Future July 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-07-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  15. ACRF Instrumentation Status: New, Current, and Future February 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-02-15T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status: New, Current, and Future September 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-09-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  17. ARM Climate Research Facility Monthly Instrument Report May 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-06-21T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ACRF Instrumentation Status: New, Current, and Future - November 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-12-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. ACRF Instrumentation Status: New, Current, and Future - May 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-05-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ACRF Instrumentation Status: New, Current, and Future - August 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-09-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ARM Climate Research Facility Instrumentation Status and Information October 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-10-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ARM Climate Research Facility Monthly Instrument Report August 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-09-28T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ACRF Instrumentation Status: New, Current, and Future - September 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-10-15T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information December 2009

    SciTech Connect (OSTI)

    JW Voyles

    2010-12-30T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Monthly Instrument Report June 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-07-13T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ACRF Instrumentation Status: New, Current, and Future - July 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-07-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Monthly Instrument Report July 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-08-18T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information March 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-04-19T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Instrumentation Status and Information January 2010

    SciTech Connect (OSTI)

    JW Voyles

    2010-02-28T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Instrumentation Status and Information February 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-03-25T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ACRF Instrumentation Status: New, Current, and Future August 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-08-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  12. ACRF Instrumentation Status: New, Current, and Future - December 2008

    SciTech Connect (OSTI)

    JW Voyles

    2009-01-15T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ACRF Instrumentation Status: New, Current, and Future - June 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-07-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ARM Climate Research Facility Instrumentation Status and Information April 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-05-15T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  15. ACRF Instrumentation Status: New, Current, and Future March 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-03-15T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status: New, Current, and Future - October 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-10-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ACRF Instrumentation Status: New, Current, and Future - January 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-03-02T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ARM Climate Research Facility Monthly Instrument Report September 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-10-18T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. Covered Product Category: Compact Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including compact fluorescent lamps (CFLs), which are an ENERGY STAR-qualified product category.

  20. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer SinglegovInstrumentsvceilgovInstrumentsAirborne

  1. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentation ARMgovInstrumentswsiInstruments Related Links RHUBC

  2. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User Recovery Act MissiongovInstruments

  3. ITAR Categories Category I -Firearms, Close Assault Weapons and Combat Shotguns

    E-Print Network [OSTI]

    and Associated Equipment Category XVI - Nuclear Weapons, Design and Testing Related Items Category XVII, Incendiary Agents and Their Constituents. Category VI - Vessels of War and Special Naval Equipment. Category Energy Weapons Category XIX - [Reserved] Category XX - Submersible Vessels, Oceanographic and Associated

  4. Dynamics in the Category Set

    E-Print Network [OSTI]

    Elemer E Rosinger

    2010-04-09T23:59:59.000Z

    What makes sets, or more precisely, the category {\\bf Set} important in Mathematics are the well known {\\it two} specific ways in which arbitrary mappings $f : X \\longrightarrow Y$ between any two sets $X, Y$ can {\\it fail} to be bijections. Namely, they can fail to be injective, and/or to be surjective. As for bijective mappings they are rather trivial, since with some relabeling of their domains or ranges, they simply become permutations, or even identity mappings. \\\\ To the above, one may add the {\\it third} property of sets, namely that, between any two nonvoid sets there exist mappings. \\\\ These three properties turn out to be at the root of much of the interest which the category {\\bf Set} has in Mathematics. Specifically, these properties create a certain {\\it dynamics}, or for that matter, lack of it, on the level of the category {\\bf Set} and of some of its subcategories.

  5. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  6. ACRF Instrumentation Status: New, Current, and Future November-December 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-12-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  7. Operation manual Installation Category I

    E-Print Network [OSTI]

    Kleinfeld, David

    Cary 50 Hardware Operation manual Installation Category I Pollution Degree 2 Safety Class 3 (EN-2:1991 IEC 801-3:1984 IEC 801-4:1988 Equipment Model Number Cary 50 Series Responsible Person in the EUUV software 4-13 5 Spare parts 5-1 #12;Cary 50 Publication date: 06/99 vii Safety practices and hazards Your

  8. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Covered Product Category: Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Category Measure Minimum Efficiency / Certification

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -$6200 Xcel rebate: $120 for AFUE >= 84% Fed tax credit: 30%, up to $1500** Ground source heat pump Closed and cooling (floor, wall, and ceiling) Radiant systems must be powered by a heat pump (electric or gas Space Heating and Cooling ENERGY EFFICIENCY MEASURES Residential Eligible Measures List #12;Category

  11. Covered Product Category: Exterior Lighting

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for outdoor wall-mounted light fixtures or luminaires, outdoor pole/arm-mounted area and roadway luminaires, outdoor pole/arm-mounted decorative luminaires, fuel pump canopy luminaires, bollards, and parking garage luminaires, all of which are FEMP-designated product categories.

  12. Covered Product Category: Fluorescent Luminaires

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including fluorescent luminaires. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Modelling the acquisition of natural language categories 

    E-Print Network [OSTI]

    Fountain, Trevor Michael

    2013-07-02T23:59:59.000Z

    The ability to reason about categories and category membership is fundamental to human cognition, and as a result a considerable amount of research has explored the acquisition and modelling of categorical structure from ...

  14. Covered Product Category: Uninterruptible Power Supplies (for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications) Covered Product Category: Uninterruptible Power Supplies (for Data Center, Computer, and Telecommunication Applications) The Federal Energy Management...

  15. Low activated incore instrument

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA)

    1994-01-01T23:59:59.000Z

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  16. Low activated incore instrument

    DOE Patents [OSTI]

    Ekeroth, D.E.

    1994-04-19T23:59:59.000Z

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  17. Evaluating musical instruments

    SciTech Connect (OSTI)

    Campbell, D. Murray

    2014-04-01T23:59:59.000Z

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  18. Candidate Selection Instrument

    Broader source: Energy.gov [DOE]

    The candidate selection instrument is designed to take the guesswork out of selecting candidates for the various career development programs of interest. The instrument is straightforward and...

  19. Career Map: Instrumentation Coordinator

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  20. Extending the frontiers of mass spectrometric instrumentation and methods

    SciTech Connect (OSTI)

    Schieffer, Gregg

    2010-12-15T23:59:59.000Z

    The focus of this dissertation is two-fold: developing novel analysis methods using mass spectrometry and the implementation and characterization of a novel ion mobility mass spectrometry instrumentation. The novel mass spectrometry combines ion trap for ion/ion reactions coupled to an ion mobility cell. The long term goal of this instrumentation is to use ion/ion reactions to probe the structure of gas phase biomolecule ions. The three ion source - ion trap - ion mobility - qTOF mass spectrometer (IT - IM - TOF MS) instrument is described. The analysis of the degradation products in coal (Chapter 2) and the imaging plant metabolites (Appendix III) fall under the methods development category. These projects use existing commercial instrumentation (JEOL AccuTOF MS and Thermo Finnigan LCQ IT, respectively) for the mass analysis of the degraded coal products and the plant metabolites, respectively. The coal degradation paper discusses the use of the DART ion source for fast and easy sample analysis. The sample preparation consisted of a simple 50 fold dilution of the soluble coal products in water and placing the liquid in front of the heated gas stream. This is the first time the DART ion source has been used for analysis of coal. Steven Raders under the guidance of John Verkade came up with the coal degradation projects. Raders performed the coal degradation reactions, worked up the products, and sent them to me. Gregg Schieffer developed the method and wrote the paper demonstrating the use of the DART ion source for the fast and easy sample analysis. The plant metabolite imaging project extends the use of colloidal graphite as a sample coating for atmospheric pressure LDI. DC Perdian and I closely worked together to make this project work. Perdian focused on building the LDI setup whereas Schieffer focused on the MSn analysis of the metabolites. Both Perdian and I took the data featured in the paper. Perdian was the primary writer of the paper and used it as a chapter in his dissertation. Perdian and Schieffer worked together to address the revisions and publish it in Rapid Communications in Mass Spectrometry Journal.

  1. Piping inspection instrument carriage

    SciTech Connect (OSTI)

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20T23:59:59.000Z

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  2. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  3. Clustering Categories in Support Vector Machines ? - Optimization ...

    E-Print Network [OSTI]

    2014-05-18T23:59:59.000Z

    "Property" originally had four categories, namely, "real estate", "building society savings agreement/life insurance", "car or other" and "unknown/no property". As.

  4. Covered Product Categories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Strings Pool Pumps Water Coolers Suspended Categories Electric Motors Distribution Transformers Fluorescent Tube Lamps FEMP Home About the Program Program Areas Laws &...

  5. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets federal efficiency...

  6. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  7. Covered Product Category: Residential Central Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  8. A TRIANGULATED CATEGORY WITHOUT MODELS FERNANDO MURO

    E-Print Network [OSTI]

    ;; )); we describe conditions on r, or rather on a lift of r to the translation cohomol- ogy group H 3 (A generally, the tri- angulated homotopy category of a stable S-category S, in the sense of [TV04, 7

  9. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Covered Product Category: Room Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  12. Covered Product Category: Residential Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including geothermal heat pumps, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. CATEGORY THEORY as an extension of

    E-Print Network [OSTI]

    Dyckhoff, Roy

    CATEGORY THEORY as an extension of Martin-Lflf Type Theory. Roy Dyckhoff Department of ComputationalScience, University of St Andrews. Category theory has tong been widely recognised as being concepts, as an extension of the Goteborg implementation of Martin-Lofs theory of types; we discuss some

  14. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  15. The Static and Dynamic Efficiency of Instruments of Promotion of Renewables Dominique FINON and Philippe MENANTEAU*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ;2 electricity market. Support schemes fall into three main categories that are either price-based or quantity of projects framed by long-term contracts with guaranteed power purchase and price. Its principle allows of environmental policy that opposes price-based instruments versus quantity-based instruments in an uncertain

  16. Digital Publishing Procedures Category: Information Management

    E-Print Network [OSTI]

    (WA) Policy Manager Vice President Corporate Relations and Development Contact Director, Digital Media1 Digital Publishing Procedures Category: Information Management 1. LEGISLATION a framework for the publishing of the University's digital communications, including but not limited to all

  17. Environmental Sustainability Policy Category: Campus Life, Facilities

    E-Print Network [OSTI]

    Environmental Sustainability Policy Category: Campus Life, Facilities 1. PURPOSE To outline the University's commitment to environmental sustainability. 2. POLICY STATEMENT The University is committed. RELATED DOCUMENTS/LINKS The Environmental Sustainability Plan The Environmental Management Plan Policy

  18. Mixed quantum states in higher categories

    E-Print Network [OSTI]

    Chris Heunen; Jamie Vicary; Linde Wester

    2014-12-30T23:59:59.000Z

    There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

  19. Instrumentation for Nuclear Applications

    SciTech Connect (OSTI)

    NONE

    1998-09-18T23:59:59.000Z

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards.

  20. Instrument validation project

    SciTech Connect (OSTI)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01T23:59:59.000Z

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  1. Managing Category I and II Asbestos-Containing Materials During...

    Energy Savers [EERE]

    Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition Managing Category I and II Asbestos-Containing Materials During Decontamination and...

  2. Covered Product Category: Light Fixtures (Luminaires)

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including luminaires, or light fixtures. The luminaires product category is very broad and covers a wide variety of lighting products. Both ENERGY STAR® and FEMP provide programmatic guidance for various types of luminaires. See table 2 for more information about which types of light fixtures are covered by which program (FEMP or ENERGY STAR). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  3. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  4. Category and Perceptual Learning in Subjects with Treated Wilson's Disease

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    many similarities. In both types of learning, observers arebetween different types of category and perceptual learning.

  5. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D. (ed.)

    1984-07-01T23:59:59.000Z

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  6. Hyperstructures in topological categories Ren Bartsch

    E-Print Network [OSTI]

    Hyperstructures in topological categories René Bartsch 14th Colloquiumfest, Saskatoon 28.02. - 01.03.2014 March 1, 2014 | 14th Colloquiumfest | René Bartsch | 1 #12;Hyperspaces Motivation: a simple fractal Let Colloquiumfest | René Bartsch | 2 #12;#12;#12;#12;#12;#12;#12;What have we done? f1 : X X : f1(x) := 1 3 x + -1

  7. Risk Management Procedures Category: Strategic Management

    E-Print Network [OSTI]

    1 Risk Management Procedures Category: Strategic Management 1. LEGISLATION/ENTERPRISE AGREEMENT/POLICY SUPPORTED Risk Management Policy Tertiary Education Quality Standards Agency Act 2011 (TEQSA Act 2011) 2 (a) Advise the Vice-Chancellor on the effective management of the University's risk profile

  8. Risk Management Policy Category: Strategic Management

    E-Print Network [OSTI]

    1 Risk Management Policy Category: Strategic Management 1. PURPOSE To support the University will be encouraged to speak openly and honestly. (iii) Managers will monitor risk and will disclose risks identified's risk appetite. 2.3. Risk management standards 2.3.1 The University's risk management framework

  9. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Service Category: Outreach Organization: Food Medicine

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Service Category: Outreach Organization: Food Medicine Person verifying Co-Curricular hours: Ethan location: Various sites in Detroit Area such as Whole Foods market, shelters, schools, Cass Clinic around the city like Whole Foods, schools, shelters, and senior centers. Commitment: Activities

  11. Distribution Categories: Magnetic Fusion Energy (UC-20)

    E-Print Network [OSTI]

    Harilal, S. S.

    Schematic illustrating ion or electron electron beam target interaction 4 2 Flow chart of A8THERMAL-2Distribution Categories: Magnetic Fusion Energy (UC-20) Inertia! Confinement Fusion (UC-21) ANL and square time pulse 16 11 The effect of higher initial temperatures and energy densities on the melting

  12. Homological algebra in categories of Banach spaces

    E-Print Network [OSTI]

    Brown, April D.

    1999-01-01T23:59:59.000Z

    In this paper I wish to develop basic algebraic concepts, category theory, and homology theory in the world of Banach spaces. We begin by defining such terms as morphisms and exact sequences, and considering what these terms mean in Banach spaces...

  13. Covered Product Category: Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. ARM - Campaign Instrument - island-guest-instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to hear from you! Send us agovInstrumentsisland-guest-instruments Comments?

  15. Space Instrument Realization (ISR-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Space Instrument Realization Providing expertise to support the design and fabrication of space-based custom instrumentation Contacts Group Leader Amy Regan Email Staff...

  16. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  17. New Atmospheric Profiling Instrument Added to SGP CART Suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU - 2 3 1 Nevis -Approaches to3

  18. An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization| Department

  19. Health effects of risk-assessment categories

    SciTech Connect (OSTI)

    Kramer, C.F.; Rybicka, K.; Knutson, A.; Morris, S.C.

    1983-10-01T23:59:59.000Z

    Environmental and occupational health effects associated with exposures to various chemicals are a subject of increasing concern. One recently developed methodology for assessing the health impacts of various chemical compounds involves the classification of similar chemicals into risk-assessment categories (RACs). This report reviews documented human health effects for a broad range of pollutants, classified by RACs. It complements other studies that have estimated human health effects by RAC based on analysis and extrapolation of data from animal research.

  20. Category:Liquid Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model

  1. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScienceLevelAtlanticInstruments

  2. ARM - Word Seek: Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities and InstrumentsInstruments Outreach Home

  3. Instrumentation for CTA site characterization

    E-Print Network [OSTI]

    Fruck, Christian; Ernenwein, Jean-Pierre; Mandát, Dušan; Schweizer, Thomas; Häfner, Dennis; Bulik, Tomasz; Cieslar, Marek; Costantini, Heide; Dominik, Michal; Ebr, Jan; Garczarczyk, Markus; Lorentz, Eckart; Pareschi, Giovanni; Pech, Miroslav; Puerto-Giménez, Irene; Teshima, Masahiro

    2015-01-01T23:59:59.000Z

    Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the "Cherenkov Telescope Array" CTA. Such data are not available with sufficient precision or the comparability to allow for a comprehensive characterization of the proposed sites to be made. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize ...

  4. Instrumented Bioreactors BIOMATERIALS

    E-Print Network [OSTI]

    Instrumented Bioreactors BIOMATERIALS Our goal is to develop novel bioreactors that combine are embedding sensing techniques into a custom bioreactor platform to enable real-time monitoring of tissue integrity during growth. Our present design builds on earlier bioreactors constructed at NIST that provided

  5. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J. (Richland, WA)

    1983-01-01T23:59:59.000Z

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  6. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04T23:59:59.000Z

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  7. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  8. Category:Conceptual Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a new Conceptual Model

  9. Category:Congressional Districts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a new Conceptual

  10. Category:Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage? For detailed

  11. Category:Counties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage? For

  12. Category:Countries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage? Forsovereign

  13. Category:Cuttings Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage?

  14. Category:Data Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques page? For detailed

  15. Category:Datasets | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques page?

  16. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques

  17. Category:EZFeed Policies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesand Aliases

  18. Category:Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesandElectrical

  19. Category:Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page? For detailed

  20. Category:Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page?

  1. Category:Exploratory Boreholes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page?Boreholes page?

  2. Category:Exploratory Well | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page?Boreholes

  3. Category:FLIR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page?Boreholespage?

  4. Category:Field Methods | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques

  5. Category:Field Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniquesTechniques page? For

  6. Category:Financial Organizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniquesTechniques

  7. Category:Gas Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed information

  8. Category:Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed informationGas

  9. Category:Gateways | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed

  10. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailedAnalysis

  11. Category:Geodetic Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailedAnalysispage? For

  12. Category:Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For

  13. Category:Geothermal References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History View New Pages

  14. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History View New

  15. Category:Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History ViewGeothermal

  16. Category:Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History

  17. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source

  18. Category:Help | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp is welcomed.

  19. Category:InSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage? For

  20. Category:Incentive Programs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage?

  1. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage?Injectivity

  2. Category:Isotope Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp

  3. Category:Lists | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" TheLists Jump to:

  4. Category:MHK Companies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" TheLists

  5. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"

  6. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? For detailed

  7. Category:Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? ForTechniques

  8. Category:Mud Logging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?Logging page?

  9. Category:Multispectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?Logging

  10. Category:NEPA Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?Loggingthat

  11. Category:NEPA Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?LoggingthatJump

  12. Category:Navigation Templates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplates Jump to:

  13. Category:Networking Organizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplates Jumpsource

  14. Category:Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplates

  15. Category:Numerical Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplatespage? For

  16. Category:OpenEI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysource History View New

  17. Category:PSInSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysource History View

  18. Category:Paleomagnetic Measurements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysource History

  19. Category:Photovoltaic Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysource

  20. Category:Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysourcePhotovoltaic"

  1. Category:Policy Organizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists

  2. Category:Private Sectors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical Action Committees

  3. Category:Production Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical Action CommitteesProduction

  4. Category:Production Wells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical Action

  5. Category:Quantitative Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical ActionQuantitative

  6. Category:RAPID Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical ActionQuantitativeThisRAPID

  7. Category:RAPID Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jump

  8. Category:Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jumppage? For

  9. Category:Radiometrics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jumppage?

  10. Category:Reflection Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties

  11. Category:Refraction Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalPropertiesRefraction Survey

  12. Category:Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source History View

  13. Category:Rock Density | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source History

  14. Category:SAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSAR page? For

  15. Category:SRT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSAR page?

  16. Category:SWIR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSARSWIR as

  17. Category:Self Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSARSWIRSelf

  18. Category:Silica Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory

  19. Category:Solar References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation

  20. Category:Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolar Regulatory

  1. Category:States | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall states of the

  2. Category:Stress Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall statesStress

  3. Category:Stubs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall

  4. Category:Utilities References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques, clickpage? ForCategory

  5. Category:Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages in categoryWind

  6. FAA Airport Categories Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:AnalogsOpenExtremelyCategories

  7. Covered Product Category: Commercial Refrigerators and Freezers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategoriesDepartment of

  8. Covered Product Category: Computers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategoriesDepartment

  9. Category:Gapminder | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton GreensVisualizations. Pages in category

  10. Category:Goodland, KS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton GreensVisualizations.in category

  11. Category:Rochester, NY | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation Media in category

  12. Category:Seattle, WA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation Media in categorySRMLWA

  13. Property:Building/Category | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute forToolkit JumpBuilding/Category" Showing 25

  14. The ARCADE 2 Instrument

    E-Print Network [OSTI]

    Singal, J; Kogut, A; Levin, S; Limon, M; Lubin, P; Mirel, P; Seiffert, M; Villela, T; Wollack, E; Wünsche, C A

    2009-01-01T23:59:59.000Z

    The second generation Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) instrument is a balloon-borne experiment to measure the radiometric temperature of the cosmic microwave background and Galactic and extra-Galactic emission at six frequencies from 3 to 90 GHz. ARCADE 2 utilizes a double-nulled design where emission from the sky is compared to that from an external cryogenic full-aperture blackbody calibrator by cryogenic switching radiometers containing internal blackbody reference loads. In order to further minimize sources of systematic error, ARCADE 2 features a cold fully open aperture with all radiometrically active components maintained at near 2.7 K without windows or other warm objects, achieved through a novel thermal design. We discuss the design and performance of the ARCADE 2 instrument in its 2005 and 2006 flights.

  15. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisalaAlaskaInstruments NSA Related Links

  16. Instrumentation and diagnostics

    SciTech Connect (OSTI)

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01T23:59:59.000Z

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  17. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01T23:59:59.000Z

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  18. Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 170. A SURVEY OF DEFINITIONS OF n-CATEGORY

    E-Print Network [OSTI]

    Chapman, Robin

    Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 1­70. A SURVEY OF DEFINITIONS OF n-CATEGORY TOM LEINSTER ABSTRACT. Many people have proposed definitions of `weak n-category'. Ten of them are presented here. Each definition is given in two pages, with a further two pages on what happens when n 2

  19. Geothermal high temperature instrumentation applications

    SciTech Connect (OSTI)

    Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

    1998-06-11T23:59:59.000Z

    A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

  20. TMT Science and Instruments

    E-Print Network [OSTI]

    David Crampton; Luc Simard; David Silva

    2008-01-23T23:59:59.000Z

    To meet the scientific goals of the Thirty Meter Telescope Project, full diffraction-limited performance is required from the outset and hence the entire observatory is being designed, as a system, to achieve this. The preliminary design phases of the telescope and the first light adaptive optic facility are now approaching completion so that much better predictions of the system performance are possible. The telescope design and instrumentation are summarized in this presentation, with a brief description of some of the scientific programs that are foreseen.

  1. ARM - Campaign Instrument - issrwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to hear from you! Send us agovInstrumentsisland-guest-instruments

  2. ARM - Instrument - 50rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events,Forms Ingest Ingest WorkflowgovInstruments50rwp

  3. ARM - RHUBC II Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-II Home RHUBC Home

  4. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-IIActRecovery Act

  5. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScienceLevel and82

  6. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScienceLevel and82

  7. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScienceLevel

  8. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisalaAlaskaInstruments NSA Related Links Facilities and

  9. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisalaAlaskaInstruments NSA Related Links Facilities

  10. ARM - Instrument Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User Recovery Act Mission FAQgovDataInstrument

  11. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru, Brazil Instruments Manacapuru

  12. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru, Brazil Instruments

  13. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru, Brazil InstrumentsOliktok Point,

  14. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru, Brazil InstrumentsOliktok

  15. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru,Manus Site-InactiveInstruments TWP

  16. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArcticManacapuru,Manus Site-InactiveInstruments

  17. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    E-Print Network [OSTI]

    Ivone F. M. Albuquerque; George F. Smoot

    2001-03-28T23:59:59.000Z

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

  18. Instrumentation and Techniques Mihalis Mathioudakis

    E-Print Network [OSTI]

    with atmospheric dynamics · Small scale structures Umbra dots ­ Spicules ­ Bright points · Flux Tubes ­ Buidling

  19. The QUIET Instrument

    SciTech Connect (OSTI)

    Bischoff, C.; et al.

    2012-07-01T23:59:59.000Z

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  20. AwardWinnersByCategoryProject

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types

  1. The MICE PID Instrumentation

    E-Print Network [OSTI]

    M. Bonesini

    2008-10-02T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight stations, two Aerogel Cerenkov detectors and a KLOE-like calorimeter has been constructed in order to keep beam contamination ($e, \\pi$) well below 1%. The MICE time-of-flight system will measure timing with a resolution better than 70 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and electron backgrounds from RF dark current.

  2. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  3. Geochemistry of Surface-Atmosphere Interactions on

    E-Print Network [OSTI]

    Withers, Paul

    state of the surface? #12;Carbonates on Venus ¥ CaCO3+SiO2 = CaSiO3+CO2(g) ¥ Psurface = Pbuffer. ¥ S in lower atmosphere is kinetically controlled ¥ CaCO3 + SO2 = CaSO4 + CO removes SO2 , deposits CaSO4 ¥ Fe rates ¥ Need more data, new spacecraft instruments #12;Handy Minerals ¥ SiO2 Quartz ¥ CaCO3 Calcite ¥ Ca

  4. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  5. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Energy Savers [EERE]

    Water-Cooled Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal...

  6. Covered Product Category: Residential Whole-Home Gas Tankless...

    Energy Savers [EERE]

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition...

  7. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

  8. On the Classification of Low-Rank Braided Fusion Categories

    E-Print Network [OSTI]

    Bruillard, Paul Joseph

    2013-05-23T23:59:59.000Z

    ON THE CLASSIFICATION OF LOW-RANK BRAIDED FUSION CATEGORIES A Dissertation by PAUL JOSEPH BRUILLARD Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of DOCTOR...+=p . BFC Braided Fusion Category. C0 The M uger center of the category C. Cad The adjoint subcategory. Cpt The pointed subcategory. Cop Opposite (mirror) category to C. coevX Coevaluation I! X X . C2 (G;K ) 2-cochains of G with coe cients in K . C...

  9. AwardWinnersByCategoryProject_NoOrg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Pollution Prevention Award Winners Award Category Project Name Team Member Change Agents Gold Award Nominated by Rosella Atencio- Gerst Going Green with Electronic Data...

  10. Covered Product Category: Residential Heat Pump Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal...

  11. Covered Product Category: Residential Electric Resistance Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP sets federal efficiency requirements and provides acquisition guidance across a variety of product categories, including residential electric resistance water heaters.

  12. The Role of Analog Instrumentation in Energy Management

    E-Print Network [OSTI]

    Moore, J. A.

    1979-01-01T23:59:59.000Z

    that will pay back material and installation costs in an acceptable period of time. The owner or operator becomes the decision making portion of the system in this case. Three categories of Energy Management are identified in analog instrumentation: Auditing... are "find out what has to be done, do it, then check to see that it is performing as it was intended to." AUDIT Auditing is the first step. What does auditing mean in the context of Energy Management? If we define a system as an area in which activities...

  13. Sandia National Laboratories: meteorological instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meteorological instrumentation Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Wind...

  14. LANSCE | Lujan Center | Instruments | FDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Difference Spectrometer (FDS) is used for molecular vibrational spectroscopy by inelastic neutron scattering. The instrument is designed for high count rates by use of large...

  15. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  16. Covered Product Category: Pre-Rinse Spray Valves

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including pre-rinse spray valves, which are a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  17. Perception, Categories, and Possibilities for Action Brett R. Fajen

    E-Print Network [OSTI]

    Fajen, Brett

    Science, Rensselaer Polytechnic Institute Michael T. Turvey Center for the Ecological Study of Perception276 Perception, Categories, and Possibilities for Action Brett R. Fajen Department of Cognitive that the perception of boundaries separating categories plays a fundamental role in adaptive behavior

  18. Modeling the spacing effect in sequential category Hongjing Lu

    E-Print Network [OSTI]

    Yuille, Alan L.

    are found not only in human learning, but also in various types of learning in other species, including ratsModeling the spacing effect in sequential category learning Hongjing Lu Department of Psychology@stat.ucla.edu Abstract We develop a Bayesian sequential model for category learning. The sequential model updates two

  19. Covered Product Category: Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Covered Product Category: Residential Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. Testing Dependence Among Serially Correlated Multi-category Variables

    E-Print Network [OSTI]

    Pesaran, M Hashem; Timmermann, Allan

    Testing Dependence Among Serially Correlated Multi-category Variables M. Hashem Pesaran and Allan Timmermann July 2006 CWPE 0648 Testing Dependence Among Serially Correlated... Multi-category Variables? M. Hashem Pesaran Cambridge University Allan Timmermann University of California, San Diego July 3, 2006 ?We benefitted from the comments of Herman van Dijk and Adrian Pagan and from participants at the Econometric Institute...

  3. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  4. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  5. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  6. D0 Instrument Air System

    SciTech Connect (OSTI)

    Serges, T.J.; /Fermilab

    1988-09-15T23:59:59.000Z

    The main function of the instrument air system is to operate control valves associated with the cryogenics in the D0 hall. Occasionally, it will be used for purging purposes. Appendix A shows a schematic of the air instrument system along with a corresponding components list.

  7. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  8. From filtergrams to physical atmospheric magnitudes: A prospective diagnostic

    SciTech Connect (OSTI)

    Toro Iniest, J.C. del; Tarbell, T.; Ruiz Cobo, B.

    1992-01-01T23:59:59.000Z

    The first steps of a thorough study on the capabilities of the Lockheed tunable filter instrument are presented. We explore the sensitivities of the different filtergrams (magnetograms, dopplergrams) on the various physical magnitudes characterizing the atmosphere which photons are coming from. The Response Functions of several lines normally used with this instrument in real observations are evaluated and their properties in several solar structures discusses. This study is of crucial importance if we want to use the highly resolved data which are obtained with this instrument in excellent sites like the Observatorio del Roque de Los Muchachos (La Palma, Spain) to improve the current models of active and quiet regions of the sun.

  9. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  10. The Fukaya category, exotic forms and exotic autoequivalences

    E-Print Network [OSTI]

    Harris, Richard

    2012-04-10T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.3 Fragility of symplectomorphisms . . . . . . . . . . . . . . . 14 I Projective twists in A?-catgeories 19 2 A?-categories 21 2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Functors... consider the moduli 4 1.1. Fukaya categories space of discs with one boundary puncture M1(L; ?), there is an evaluation map ev : M¯1(L; ?)? L and we can define µ0(L) = ? ??pi2(M,L) q?(?)ev?([M¯1(L; ?)]). Now, when we examine whether µ1 is a differential, we...

  11. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Raynor, G.S. (ed.) [ed.

    1981-12-01T23:59:59.000Z

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  12. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05T23:59:59.000Z

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  13. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27T23:59:59.000Z

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  14. PEP instrumentation and control system

    SciTech Connect (OSTI)

    Melen, R.

    1980-06-01T23:59:59.000Z

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  15. Stanford Anesthesia 50th Year Celebration Registration Category

    E-Print Network [OSTI]

    Ford, James

    Stanford Anesthesia 50th Year Celebration Registration Category Please select a registration Department of Anesthesia will not assume any responsibility for any injuries or other negative occurrences indicate your affiliation with Stanford Anesthesia Anesthesia Resident Anesthesia Fellow Anesthesia Faculty

  16. Category 1: World's best journals Journal of Banking and Finance

    E-Print Network [OSTI]

    Zhang, Zhengjun

    Category 1: World's best journals Journal of Banking and Finance Journal of Finance Journal: Leading specialist journals Financial Analysts Journal Financial Management Journal of Business Finance and Accounting Journal of Empirical Finance Journal of Financial Econometrics Journal of Financial Education

  17. Physics high-ranking Journals (category 2) Advances in Physics

    E-Print Network [OSTI]

    Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

  18. Symplectic cohomology and duality for the wrapped Fukaya Category

    E-Print Network [OSTI]

    Ganatra, Sheel (Sheel Chandrakant)

    2012-01-01T23:59:59.000Z

    Consider the wrapped Fukaya category W of a collection of exact Lagrangians in a Liouville manifold. Under a non-degeneracy condition implying the existence of enough Lagrangians, we show that natural geometric maps from ...

  19. ISSN 1201561X THEORY AND APPLICATIONS OF CATEGORIES

    E-Print Network [OSTI]

    Chapman, Robin

    . Hardie, Klaus Heiner Kamps, Timothy Porter 71 Entity­relationship­attribute designs and sketches Michael Friedrich W. Bauer 162 c # The Editors of Theory and Applications of Categories 2002. Permission to copy

  20. ISSN 1201-561X THEORY AND APPLICATIONS OF CATEGORIES

    E-Print Network [OSTI]

    Chapman, Robin

    . Hardie, Klaus Heiner Kamps, Timothy Porter 71 Entity-relationship-attribute designs and sketches Michael Friedrich W. Bauer 162 c The Editors of Theory and Applications of Categories 2002. Permission to copy

  1. ITS POLICIES AND GUIDELINES CATEGORY: Information Technology, Security, Privacy,

    E-Print Network [OSTI]

    Gering, Jon C.

    ITS POLICIES AND GUIDELINES CATEGORY: Information Technology, Security, Privacy, Information Access & Management STATUS: Approved GUIDELINE TITLE: Information Security Incident Response GUIDELINE PURPOSE: The purpose of information security incident response is to: mitigate the effects caused by such an incident

  2. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  3. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  4. Upper Atmospheric Density Profiles

    E-Print Network [OSTI]

    Withers, Paul

    · Uncertainties in aerodynamics, problems with signals from shaking solar panel, rotation of instrument about · Change in latitude per unit change in longitude along profile set by orbit inclination and latitude (not engineering) instrument, very high sensitivity, unseen part of 11-yr solar cycle · Current science

  5. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  6. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  7. The relevance of didactic categories for analysing obstacles in conceptual change

    E-Print Network [OSTI]

    Prediger, Susanne

    1 The relevance of didactic categories for analysing obstacles in conceptual change Revisiting research like `Grundvorstellungen' and epistemological obstacles. These didactic categories help to make

  8. ATR NSUF Instrumentation Enhancement Efforts

    SciTech Connect (OSTI)

    Joy L. Rempe; Mitchell K. Meyer; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Curtis Wilkins

    2011-01-01T23:59:59.000Z

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to expand instrumentation available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing real-time measurements of key irradiation parameters is emphasized because of their potential to increase data fidelity and reduce posttest examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide improved in-pile instrumentation to users.

  9. Joint Urban 2003: Study Overview And Instrument Locations

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-16T23:59:59.000Z

    Quality-assured meteorological and tracer data sets are vital for establishing confidence that indoor and outdoor dispersion models used to simulate dispersal of potential toxic agents in urban atmospheres are giving trustworthy results. The U.S. Department of Defense-Defense Threat Reduction Agency and the U.S. Department of Homeland Security joined together to conduct the Joint Urban 2003 atmospheric dispersion study to provide this critically-needed high-resolution dispersion data. This major urban study was conducted from June 28 through July 31, 2003, in Oklahoma City, Oklahoma, with the participation of over 150 scientists and engineers from over 20 U.S. and foreign institutions. The Joint Urban 2003 lead scientist was Jerry Allwine (Pacific Northwest National Laboratory) who oversaw study design, logistical arrangements and field operations with the help of Joe Shinn (Lawrence Livermore National Laboratory), Marty Leach (Lawrence Livermore National Laboratory), Ray Hosker (Atmospheric Turbulence and Diffusion Division), Leo Stockham (Northrop Grumman Information Technology) and Jim Bowers (Dugway Proving Grounds). This report gives a brief overview of the field campaign, describing the scientific objectives, the dates of the intensive observation periods, and the instruments deployed. The data from this field study is available to the scientific community through an on-line database that is managed by Dugway Proving Ground. This report will be included in the database to provide its users with some general information about the field study, and specific information about the instrument coordinates. Appendix A of this document provides the definitive record of the instrument locations during this field campaign, and Appendix B lists all the study principal investigators and participants.

  10. International Conference Synchrotron Radiation Instrumentation SRI `94

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

  11. 4.2 RAPID FORCING OF THE SURFACE AND NEAR-SURFACE ATMOSPHERE Edgar L Andreas*1

    E-Print Network [OSTI]

    Geiger, Cathleen

    1 of 12 4.2 RAPID FORCING OF THE SURFACE AND NEAR-SURFACE ATMOSPHERE Edgar L Andreas*1 , Cathleen A quite fast--1 Hz for most instruments and 10 Hz for six * Corresponding author address: Edgar L Andreas

  12. ACRF Instrumentation Status: New, Current, and Future - January 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; KL Gaustad

    2008-01-31T23:59:59.000Z

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  13. Laser Spectroscopic Trace-Gas Sensor Networks for Atmospheric Monitoring Applications

    E-Print Network [OSTI]

    Zhong, Lin

    a laser based chemical sensing technology with wide-area autonomous wireless sensor networking@princeton.edu ABSTRACT Laser-based atmospheric trace-gas sensors have great potential for long-term, real such as CO2, NOx, and methane with exceptionally high specificity. Categories and Subject Descriptors C.3

  14. Performance Limits for Cherenkov Instruments

    E-Print Network [OSTI]

    W. Hofmann

    2006-03-17T23:59:59.000Z

    The performance of Cherenkov instruments for the detection of very high energy gamma rays is ultimately limited by the fluctuations in the development of air showers. With particular emphasis on the angular resolution, the ultimate performance limits are investigated on the basis of simulations.

  15. Vacuum enhanced cutaneous biopsy instrument

    DOE Patents [OSTI]

    Collins, Joseph (St. Petersburg, FL)

    2000-01-01T23:59:59.000Z

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  16. On Concrete Universals: A Modern Treatment using Category Theory

    E-Print Network [OSTI]

    David Ellerman

    2014-05-09T23:59:59.000Z

    Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals along with a new concept to abstractly model the functions of a brain.

  17. Category:RAPID Toolkit Library | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jump to:Category

  18. Category:Regulatory Roadmap Properties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap. Pages in category

  19. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  20. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  1. Human factors survey of advanced instrumentation and controls

    SciTech Connect (OSTI)

    Carter, R.J.

    1989-01-01T23:59:59.000Z

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  2. Towards a Hermeneutic Categorical Mathematics or why Category theory goes beyond Mathematical Structuralism

    E-Print Network [OSTI]

    Andrei Rodin

    2006-12-19T23:59:59.000Z

    Category theory provides an alternative to Hilbert's Formal Axiomatic method and goes beyond Mathematical Structuralism

  3. Aerosol observing system platform integration and AAF instrumentation

    SciTech Connect (OSTI)

    Springston, S.; Sedlacek, A.

    2010-03-15T23:59:59.000Z

    As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO, NOx, NOy, CO, O3, and SO2]; Scanning Mobility Particle Sampler [SMPS]; and Particle into Liquid Sampler [PILS]). The current status of the AOS platforms, instrument suites, instituted QA/QC activities, projected AOS VAPs, and inlet design, as well as still-unresolved issues, will be presented.

  4. CATEGORIAL BIBLIOGRAPHY OF LITERATURE IN THE FIELD OF ROBOTICS

    E-Print Network [OSTI]

    . New York, 1967). RoaOTS IN LITEHATURK 1\\ 6. l(arel Capek, ".U.R. (ROSSUM'S UNIVERSAL ROBOTS) 10Xfor Intelligent Automaton Program," PROC. ~'I.flST NATIONAL SYJ.!POSIIJM ON INDIJS'l'RIAL RObOTS, Chicago, IllCATEGORIAL BIBLIOGRAPHY OF LITERATURE IN THE FIELD OF ROBOTICS by L. Stephen Coles Artificial

  5. Covered Product Category: Air-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements for electric chillers, which are a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  6. Lineales: algebras and categories in the semantics of linear logic

    E-Print Network [OSTI]

    de Paiva, Valeria

    Lineales: algebras and categories in the semantics of linear logic Valeria de Paiva This paper categorical semantics to algebraic semantics in the form of lineales. 2 Choosing a Semantics Let us assume describes algebraic semantics for (intuitionistic and classical) propositional linear logic, using

  7. Innateness of colour categories is a red herring: insights from

    E-Print Network [OSTI]

    Belpaeme, Tony

    . ­ Regularities in human early visual perception, especially the opponent character of colour vision. (Kay and Mc categories. (Shepard, 1992) + + + + + + + + _ _ L M S L R-G Y-B #12;Empiricism · Our ecology contains simulations · Agent-based simulations ­ An agent is a simulated individual, with perception, categorisation

  8. Learning Geoscience Categories In Situ: Implications for Geographic Knowledge Representation

    E-Print Network [OSTI]

    Klippel, Alexander

    ontology, self-organizing maps, classification, geological fieldwork. 1. INTRODUCTION Field scientists that are difficult, if not impossible to control for. The categories in geological mapping differ somewhat from those systems characterized by compositional heterogeneity and stochasticity, and because gaps in evidence

  9. Nearest-Neighbor-Based Active Learning for Rare Category Detection

    E-Print Network [OSTI]

    Carbonell, Jaime

    Mellon University jgc@cs.cmu.edu Abstract Rare category detection is an open challenge for active for data mining - e.g. detecting new financial transaction fraud patterns, where normal legitimate to stopping similar future fraud transactions [2]. Another example is in astronomy. Most of the objects in sky

  10. ITS POLICIES AND GUIDELINES CATEGORY: Information Technology, Security, Privacy,

    E-Print Network [OSTI]

    Gering, Jon C.

    ITS POLICIES AND GUIDELINES CATEGORY: Information Technology, Security, Privacy, Information Access & Management STATUS: Approved POLICY TITLE: Information Technology Security Policy POLICY PURPOSE: The purpose of this Information Technology Security Policy is to ensure and describe the steps necessary to secure information

  11. Physical and Information Security Policy Category: Campus Life

    E-Print Network [OSTI]

    Physical and Information Security Policy Category: Campus Life Facilities Information Management 1. The Security Office (Bentley Campus) will provide information to assist staff and students in protecting Manager. 2.7 Information security University information must be protected in a manner that is appropriate

  12. SAND962331 Distribution Unlimited Release Category UC405

    E-Print Network [OSTI]

    Devine, Karen

    This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been madeSAND96­2331 Distribution Unlimited Release Category UC­405 Printed September 1996 MPSalsa A FINITE

  13. Atmospheric Science: An introductory survey 1. Introduction to the atmosphere

    E-Print Network [OSTI]

    Folkins, Ian

    Sound Convergence Zone #12;Terrain effects #12;Von Karman vortex streets #12;Atmosphere in Earth system

  14. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06T23:59:59.000Z

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  15. Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 1-70. A SURVEY OF DEFINITIONS OF n-CATEGORY

    E-Print Network [OSTI]

    Chapman, Robin

    Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 1-70. A SURVEY OF DEFINITIONS OF n-CATEGORY TOM LEINSTER ABSTRACT. Many people have proposed definitions of `weak n-category'. T* *en of them are presented here. Each

  16. Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 1--70. A SURVEY OF DEFINITIONS OF nCATEGORY

    E-Print Network [OSTI]

    Chapman, Robin

    Theory and Applications of Categories, Vol. 10, No. 1, 2002, pp. 1--70. A SURVEY OF DEFINITIONS OF n­CATEGORY TOM LEINSTER ABSTRACT. Many people have proposed definitions of `weak n­category'. Ten of them are presented here. Each definition is given in two pages, with a further two pages on what

  17. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04T23:59:59.000Z

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  18. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  19. Flow Cytometry Instrument Policy & Penalties Sample Preparation

    E-Print Network [OSTI]

    Noble, James S.

    the integrity of the instrument, all samples must be filtered with a 40 µm mesh cell strainer just before

  20. ICFA Instrumentation Bulletin, Volume 13, Fall 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation.

  1. Fusion categories in terms of graphs and relations

    E-Print Network [OSTI]

    Hendryk Pfeiffer

    2011-04-20T23:59:59.000Z

    Every fusion category C that is k-linear over a suitable field k, is the category of finite-dimensional comodules of a Weak Hopf Algebra H. This Weak Hopf Algebra is finite-dimensional, cosemisimple and has commutative bases. It arises as the universal coend with respect to the long canonical functor \\omega:C->Vect_k. We show that H is a quotient H=H[G]/I of a Weak Bialgebra H[G] which has a combinatorial description in terms of a finite directed graph G that depends on the choice of a generator M of C and on the fusion coefficients of C. The algebra underlying H[G] is the path algebra of the quiver GxG, and so the composability of paths in G parameterizes the truncation of the tensor product of C. The ideal I is generated by two types of relations. The first type enforces that the tensor powers of the generator M have the appropriate endomorphism algebras, thus providing a Schur-Weyl dual description of C. If C is braided, this includes relations of the form `RTT=TTR' where R contains the coefficients of the braiding on \\omega M\\otimes\\omega M, a generalization of the construction of Faddeev-Reshetikhin-Takhtajan to Weak Bialgebras. The second type of relations removes a suitable set of group-like elements in order to make the category of finite-dimensional comodules equivalent to C over all tensor powers of the generator M. As examples, we treat the modular categories associated with U_q(sl_2).

  2. Category:Regulatory Roadmap Overview Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual

  3. Category:Smart Grid Projects - Integrated and Crosscutting Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal

  4. ATMOSPHERIC SCIENCES Observations from

    E-Print Network [OSTI]

    Pierce, Stephen

    samples from the recovery cruise and Bob O'Malley for evaluation of the CTD sensors used on the deployment p. 8 b. Instrument Calibration p. 9 Ocean Temperature and Salinity Sensors p. 9 Met Sensors p. 10 Doppler Profiler Compass p. 10 ADCP/ADP Battery Capacity p. 11 Pressure Sensors p. 11 CTD Sensors p. 12 c

  5. On Self-Predicative Universals in Category Theory

    E-Print Network [OSTI]

    David Ellerman

    2015-05-11T23:59:59.000Z

    1. This paper shows how the universals of category theory in mathematics provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. 2. The paper also shows how the always-self-predicative universals of category theory provide the "opposite bookend" to the never-self-predicative universals of iterative set theory and thus that the paradoxes arose from having one theory (e.g., Frege's Paradise) where universals could be either self-predicative or non-self-predicative (instead of being always one or the other). 3. Moreover the paper considers one of the most important examples of self-predicative universals in pure mathematics, namely adjoint functors or adjunctions. It gives a parsing of adjunctions into two halves (left and right semi-adjunctions) using the heterodox notion of heteromorphisms, and then shows that the parts can be recombined in a new way to define the cognate-to-adjoints notion of a brain functor that provides an abstract conceptual model of a brain. 4. Finally the paper argues that at least one way category theory has foundational relevance is that it isolates the universal concepts and structures that are important throughout mathematics.

  6. Instrumentation for severe processes improved

    SciTech Connect (OSTI)

    Platt, R.J.

    1983-01-31T23:59:59.000Z

    This article discusses the evolution of equipment to solve or at least mitigate the serious control problems involved in petroleum refineries, where control valves and sensors become fouled, lead lines plug, and overall process performance is impaired. Points out that visbreaking, coal liquefaction and residfining (resid desulfurization) are all processes that impose severe conditions on process instrumentation. Reports that experience at the Exxon Coal Liquefaction Plant (ECLP) has shown that conventional cylindrical thermowells are subject to severe erosion, which can be prevented by eliminating mechanical bending through improved shape.

  7. Tevatron instrumentation: boosting collider performance

    SciTech Connect (OSTI)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01T23:59:59.000Z

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  8. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  9. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  10. Method for improving instrument response

    DOE Patents [OSTI]

    Hahn, David W. (7528 Oxford Cir., Dublin, Alameda County, CA 94568); Hencken, Kenneth R. (2665 Calle Alegre, Pleasanton, Alameda County, CA 94566); Johnsen, Howard A. (5443 Celeste Ave., Livermore, Alameda County, CA 94550); Flower, William L. (5447 Theresa Way, Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    This invention pertains generally to a method for improving the accuracy of particle analysis under conditions of discrete particle loading and particularly to a method for improving signal-to-noise ratio and instrument response in laser spark spectroscopic analysis of particulate emissions. Under conditions of low particle density loading (particles/m.sup.3) resulting from low overall metal concentrations and/or large particle size uniform sampling can not be guaranteed. The present invention discloses a technique for separating laser sparks that arise from sample particles from those that do not; that is, a process for systematically "gating" the instrument response arising from "sampled" particles from those responses which do not, is dislosed as a solution to his problem. The disclosed approach is based on random sampling combined with a conditional analysis of each pulse. A threshold value is determined for the ratio of the intensity of a spectral line for a given element to a baseline region. If the threshold value is exceeded, the pulse is classified as a "hit" and that data is collected and an average spectrum is generated from an arithmetic average of "hits". The true metal concentration is determined from the averaged spectrum.

  11. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics Course Syllabus and Lecture Schedule Instructor: Lynn Russell, 343 NH, 534-4852, lmrussell@ucsd.edu Text: Thermodynamics of Atmospheres of Thermodynamics (Work, Heat, First Law, Second Law, Heat Capacity, Adiabatic Processes) 5-Oct F Hurricane Example

  12. NRC Transportation Security (Part 73 SNF Update and Part 37 Category...

    Office of Environmental Management (EM)

    NRC Transportation Security (Part 73 SNF Update and Part 37 Category 1 and 2 Materials) NRC Transportation Security (Part 73 SNF Update and Part 37 Category 1 and 2 Materials) NRC...

  13. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  14. Principal Components Instrumental Variable Estimation

    E-Print Network [OSTI]

    Winkelried, Diego; Smith, Richard J.

    2011-01-31T23:59:59.000Z

    ,1]. The parameter µ is the absolute value of the largest correlation between any two elements of z i . 14 The determination of rn can be made through a heuristic rule designed to satisfy (A) and (B). This is inspired by usual practices in the selection of those PC... of eigenvectors (the so-called ‘loadings’) has the form C = ? ? ? ? C¯K?×s 0K?×a CˆK?×(K??s) 0a×s Ia 0a×(K??s) ? ? ? ? therefore ZC = [Z?C¯ : Za : Z?Cˆ ] . (14) The PC of Z used as instruments are Z¯ = ZC r , the first r columns of ZC . From (14) it is clear...

  15. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  16. MC and A instrumentation catalog

    SciTech Connect (OSTI)

    Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

    1998-06-01T23:59:59.000Z

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

  17. Category:Clean Energy Economy Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-Mpage?Brophypagein category

  18. Category:Controlled Source Frequency-Domain Magnetics | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a new

  19. Category:Cross-Dipole Acoustic Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage? ForsovereignLog

  20. Category:DC Resistivity Survey (Wenner Array) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a newpage?InformationDC

  1. Category:Data Collection and Mapping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add a

  2. Category:Data and Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques page? For

  3. Category:Direct-Current Resistivity Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques page?as

  4. Category:Downhole Fluid Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniques page?asFluid

  5. Category:EIA Utility Companies and Aliases | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesand Aliases Jump

  6. Category:Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesand Aliasespage?

  7. Category:Electrical Profiling Configurations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesand

  8. Category:Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add

  9. Category:Energy Distribution Organizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page? For

  10. Category:Energy Efficiency Organizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniques page? Forsource

  11. Category:Financial Incentive Programs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniquesTechniques page?

  12. Category:Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png AddTechniquesTechniquesAnalysis

  13. Category:Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png

  14. Category:Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed information on

  15. Category:Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailedAnalysis page?

  16. Category:Geographic Information System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailedAnalysispage?

  17. Category:Geothermal ARRA Funded Projects Properties | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? ForInformation ARRA

  18. Category:Geothermal Controlling Structures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? ForInformation

  19. Category:Geothermal Literature Review | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? ForInformationLiterature

  20. Category:Geothermal Low Temperature Direct Use Facilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?

  1. Category:Geothermal Resource Areas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History View

  2. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source HistoryGround

  3. Category:Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source HistoryGroundGround

  4. Category:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp is welcomed.This

  5. Category:Hydropower Regulatory Roadmap Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp is

  6. Category:Isotopic Analysis- Fluid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluid Jump to:

  7. Category:Isotopic Analysis- Rock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluid Jump to:Rock

  8. Category:LEDS Global Partnership Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluid Jump

  9. Category:LEDSGP Development Impacts Assessment Toolkits | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluid

  10. Category:Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluidLab Analysis

  11. Category:Latin America Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluidLab

  12. Category:Lists for Companies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" The following 11

  13. Category:Lists for Incentive Types | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" The following

  14. Category:Lists for Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" The

  15. Category:Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" TheLists Jump

  16. Category:Map Image Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"Image Files Jump

  17. Category:Map PDF Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"Image Files

  18. Category:Marine and Hydrokinetic Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"Image

  19. Category:Marine and Hydrokinetic Technology Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for

  20. Category:Microgravity-Hybrid Microgravity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? For

  1. Category:Modern Geothermal Features | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?

  2. Category:NREL Map Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor

  3. Category:Near Infrared Surveys | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplates Jump

  4. Category:Oil and Gas Companies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplatespage?

  5. Category:Open-Hole Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury

  6. Category:Passive Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercurysource HistoryTechniques,

  7. Category:Political Action Committees | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical Action Committees Jump to:

  8. Category:Pressure Temperature Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical Action Committees Jump

  9. Category:Query Results Templates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical ActionQuantitativeThis is

  10. Category:RAPID Best Practices | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical ActionQuantitativeThis

  11. Category:RAPID Roadmap Contact Properties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical

  12. Category:RAPID State Permitting Properties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jump to:

  13. Category:Regulatory Roadmap Flowcharts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalPropertiesRefraction

  14. Category:Regulatory Roadmap Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap. Pages in

  15. Category:Regulatory Roadmap State Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap. Pages inState

  16. Category:Relict Geothermal Features | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap. Pages

  17. Category:Remote Sensing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.

  18. Category:Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source HistoryLab

  19. Category:Rules Regulations Policies Incentive Programs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source

  20. Category:SWERA Map Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSAR

  1. Category:Sanyal Temperature Classification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSARSWIR

  2. Category:Small Wind Guidebook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal RegulatoryInformation

  3. Category:Smart Grid Projects - Customer Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal RegulatoryInformationProjects -

  4. Category:Smart Grid Projects - Equipment Manufacturing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal RegulatoryInformationProjects

  5. Category:Smart Grid Projects - Regional Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation Demonstrations Projects

  6. Category:Smart Grid Projects in Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation Demonstrations

  7. Category:Smart Grid References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation DemonstrationsSmart

  8. Category:Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation DemonstrationsSmartSoil

  9. Category:Solar Regulatory Roadmap Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolar Regulatory Roadmap

  10. Category:State Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolar

  11. Category:Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall states of

  12. Category:Step-out Well | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall states ofout

  13. Category:Stereo Satellite Imagery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall states

  14. Category:Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarallSurface Gas

  15. Category:Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarallSurface

  16. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages in category

  17. Property:Building/OwnershipCategory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:InformationCaseType JumpProperty EditOwnershipCategory

  18. Covered Product Category: Commercial Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories » Covered

  19. Covered Product Category: Commercial Dishwashers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories »

  20. Covered Product Category: Commercial Fryers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories »Fryers Covered

  1. Covered Product Category: Commercial Gas Water Heaters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories »Fryers

  2. Covered Product Category: Commercial Griddles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories »FryersGriddles

  3. Covered Product Category: Commercial Ovens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories

  4. Covered Product Category: Commercial Steam Cookers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategoriesDepartment ofSteam

  5. Covered Product Category: Cool Roof Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategoriesDepartmentCool Roof

  6. Covered Product Category: Data Center Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategoriesDepartmentCool

  7. Name Name Address Place Zip Category Sector Telephone number Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNS Solar05Zip Category Sector

  8. Category:SRML Map Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation Media in categorySRML Map

  9. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation Media in categorySRML

  10. Category:WH Mapathan Todo List | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart JumpAZ"Category

  11. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  12. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  13. Delayed Feedback Effects on Rule-Based and Information-Integration Category Learning

    E-Print Network [OSTI]

    Maddox, W. Todd

    , and whether different processes are involved in learning different types of category structuresDelayed Feedback Effects on Rule-Based and Information-Integration Category Learning W. Todd Maddox-integration category learning was investigated. Accuracy rates were examined to isolate global performance deficits

  14. Fast decomposition of pgroups in the Roquette category, for p > 2

    E-Print Network [OSTI]

    Bouc, Serge

    Fast decomposition of p­groups in the Roquette category, for p > 2 Serge Bouc Abstract : Let p be a prime number. In [9], I introduced the Roquette category R p of finite p­groups, which is an additive tensor category containing all finite p­groups among its objects. In R p , every finite p­group P admits

  15. Fast decomposition of p-groups in the Roquette category, for p > 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast decomposition of p-groups in the Roquette category, for p > 2 Serge Bouc Abstract : Let p be a prime number. In [9], I introduced the Roquette category Rp of finite p-groups, which is an additive tensor category containing all finite p-groups among its objects. In Rp, every finite p-group P admits

  16. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11T23:59:59.000Z

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  17. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10T23:59:59.000Z

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. aexs instrument development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interferometer Ohta, Shigemi 2 Development of Models for Optical Instrument Transformers. Open Access Theses and Dissertations Summary: ??Optical Instrument Transformers...

  19. Kids with disabilities inspire a musical instrument

    ScienceCinema (OSTI)

    Daily, Dan; Pfeifer, Kent

    2014-02-10T23:59:59.000Z

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  20. Rotary mode system initial instrument calibration

    SciTech Connect (OSTI)

    Johns, B.R.

    1994-10-01T23:59:59.000Z

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  1. Kids with disabilities inspire a musical instrument

    SciTech Connect (OSTI)

    Daily, Dan; Pfeifer, Kent

    2013-11-21T23:59:59.000Z

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  2. Sandia National Laboratories: Instrumentation and Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation and Materials & Manufacturing Reliability Program Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS On June...

  3. Instrumentation, Control, and Intelligent Systems

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  4. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  5. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric

  6. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion andArticle)Atmospheric

  7. Control Categories Control Category

    E-Print Network [OSTI]

    of transactions executed and access to assets and records only in accordance with management's general or specific objectives. A/R over 90 days. Management Review A person different from the preparer analyzing evidence and performing oversight of the activities performed. Manager review of reconciliations. Reconciliation Check

  8. Microfabricated field calibration assembly for analytical instruments

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2011-03-29T23:59:59.000Z

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  9. Void Fraction Instrument operation and maintenance manual

    SciTech Connect (OSTI)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01T23:59:59.000Z

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  10. Instrument and Source Division Ron Crone, Director

    E-Print Network [OSTI]

    Pennycook, Steve

    Abercrombie Project Management/ Operations Analysis Barbara Thibadeau HFIR Instrument Operations Gary Lynn G. Visscher SNS Instrument Operations Bobby Lee Cross S. McNulty, Admin. Asst. Neutron Choppers J. Stockton. Knox1 Design Services K. Potter, Lead M. Hammons G. Jones W. Sharp S. Roy R. Taylor Survey, Alignment

  11. The Seismic Category I Structures Program results for FY 1987

    SciTech Connect (OSTI)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E. (Los Alamos National Lab., NM (USA)); Baker, W.E. (New Mexico Univ., Albuquerque, NM (USA))

    1990-10-01T23:59:59.000Z

    The accomplishments of the Seismic Category I Structures Program for FY 1987 are summarized. These accomplishments include the quasi-static load cycle testing of large shear wall elements, an extensive analysis of previous data to determine if equivalent linear analytical models can predict the response of damaged shear wall structures, and code committee activities. In addition, previous testing and results that led to the FY 1987 program plan are discussed and all previous data relating to shear wall stiffness are summarized. Because separate reports have already summarized the experimental and analytical work in FY 1987, this report will briefly highlight this work and the appropriate reports will be references for a more detailed discussion. 12 refs., 23 figs., 18 tabs.

  12. atmospheres thin atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  13. Instrument performance on the short and long pulse second SNS target stations

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Herwig, Kenneth W [ORNL; Robertson, Lee [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01T23:59:59.000Z

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  14. FEMP Releases 10 Updated Covered Product Categories | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKETPlanning toPeerReleases 10

  15. AwardWinnersByCategoryProject_NoOrg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward TypesLANL

  16. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect (OSTI)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC; ,

    2009-12-09T23:59:59.000Z

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by

  17. Sandia National Laboratories: atmospheric chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  18. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    E-Print Network [OSTI]

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01T23:59:59.000Z

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  19. Conference on Atmospheric Radiation, 6th, Williamsburg, VA, May 13-16, 1986, Extended Abstracts

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Numerous topics of interest for measurements and modeling of radiation in the atmosphere are discussed, with emphasis on satellite remote sensing capabilities, data analysis techniques and climatological impact. Attention is devoted to aerosols at all levels of the atmosphere, the current understanding of potential nuclear winter scenarios, and to instruments which are used for sensing radiance in the atmosphere. Consideration is also given to spectroscopy and band models, radiative transfer calculations, earth radiation budget (ERB) models and their interaction with GCMs, and to climate models. In-depth analyses are performed of data from the ERB instruments on the Nimbus-7 spacecraft and to validation procedures being developed for data collected by the ERB satellite.

  20. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  1. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  2. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    SciTech Connect (OSTI)

    Soufli, R; Windt, D L; Robinson, J C; Baker, S L; Spiller, E; Dollar, F J; Aquila, A L; Gullikson, E M; Kjonrattanawanich, B; Seely, J F; Golub, L

    2006-02-09T23:59:59.000Z

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamline X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.

  3. E-Print Network 3.0 - atmospheric electrical instrument Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of - Silver Space Sciences Laboratory Collection: Physics 37 THE GREENHOUSE EFFECT YOUR FAMILY'S CONTRIBUTION TO IT Summary: Assistant Secretary for Foreign...

  4. Plasma instrumentation for fusion power reactor control

    SciTech Connect (OSTI)

    Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

    1985-07-01T23:59:59.000Z

    Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

  5. Applications of transputers to astronomical instruments

    SciTech Connect (OSTI)

    Stewart, J.M.; Beard, S,M.; Kelly, B.D.; Paterson, M.J. (Royal Observatory, Edinburgh (UK))

    1990-04-01T23:59:59.000Z

    Parallel processing techniques based on transputers are being applied to astronomical instruments under development. On the COSMOS photographic plate measuring machine, a data farm of transputers allows backgrounds to be determined in realtime instead of requiring 1.5 hours of offline VAX processing per plate. Transputers have been adopted as the embedded processors in a submillimetre bolometer array instrument and their use is planned in demanding future applications such as thermal infrared array instruments and data compression applied to remote observing. The techniques of interfacing transputers to external hardware and to VAX/VMS computers are discussed.

  6. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  7. ACRF Instrumentation Status: New, Current, and Future July 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-07-01T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of ACRF instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  8. FINACIAL INSTRUMENTS FOR SUPPORTING RESPONSIBLE (ETHICAL) FOREST

    E-Print Network [OSTI]

    Pettenella, Davide

    Positive screening Best-in-class (top performing companies in a sector or category based on targeted ESG ­ an expanding market "Traditional" investments in timberland and timber production: · TIMOs and timber REIT funds Environmental funds Consultant companies Research organisations Civil society Investment

  9. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  10. PRINCIPLES OF SCIENTIFIC INSTRUMENTS Spring 2012

    E-Print Network [OSTI]

    Sharp, Kim

    /email interaction. Course requirements: Participation in class discussion, problem sets, take home final exam of exponential behavior in chem., biochem., physics: molecules vs. instruments. 6 Light absorption densitometry, energy transfer, photobleaching and single molec., image analysis. Anisotropy and molecular mobility

  11. MENTORING EIN ERFOLGREICHES INSTRUMENT DER PERSONALENTWICKLUNG

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    MENTORING ­ EIN ERFOLGREICHES INSTRUMENT DER PERSONALENTWICKLUNG VON JUNGEN WISSENSCHAFTLERINNEN für Doktorandinnen INFORMATIONEN UND KONTAKT MENTORING-PROGRAMM für Doktorandinnen Ansprechpartnerinnen an den Universitäten Greifswald und Rostock Annette Ehmler Telefon 03834 861146 mentoring

  12. Cellular telephone-based radiation detection instrument

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2011-06-14T23:59:59.000Z

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  13. A nano-stepping robotic instrumentation platform

    E-Print Network [OSTI]

    Wahab, Adam Joseph

    2013-01-01T23:59:59.000Z

    The development of an Autonomous Nano-stepping Tool (ANT) system is presented. Each ANT is a small, tripodal, robotic instrument capable of untethered precision motion within a quasi-three-dimensional workspace of arbitrary ...

  14. Ch4. Atmosphere and Surface Energy Balances

    E-Print Network [OSTI]

    Pan, Feifei

    ;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission or water. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission Atmosphere

  15. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  16. SciTech Connect: Nuclear power reactor instrumentation systems...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: N79400* --Reactors--Reactor Control Systems; N46110 -- Instrumentation--Radiation Detection Instruments--General...

  17. analysis instruments add: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to giveCHEM 434 INSTRUMENTAL ANALYSIS Southern Illinois University Carbondale SYLLABUS FOR FALL 2014 Nickrent, Daniel L. 2 Instrumenting Executables for Dynamic Analysis...

  18. Development of a Low-Temperature Photoelectron Spectroscopy Instrument...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature Photoelectron Spectroscopy Instrument Using an Electrospray Ion Source and a Cryogenically Development of a Low-Temperature Photoelectron Spectroscopy Instrument...

  19. Instrumentation Technical Program Management Team: FY-1987 annual report

    SciTech Connect (OSTI)

    Hanson, M.L.; Englert, G.L.; Grametbauer, G.L.

    1988-04-14T23:59:59.000Z

    This report contains evaluations of process, environmental, health, and safety instrumentation of gaseous diffusion plants. The study was conducted by the instrumentation technical program management team. (LSP)

  20. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol