Powered by Deep Web Technologies
Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kyiv institutional buildings sector energy efficiency program: Technical assessment  

SciTech Connect (OSTI)

The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

1997-08-01T23:59:59.000Z

2

Public Sector Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

3

Assess institutional frameworks for LEDS for land-use sector | Open Energy  

Open Energy Info (EERE)

Assess institutional frameworks for LEDS for land-use sector Assess institutional frameworks for LEDS for land-use sector Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

4

Low Carbon Society Toward 2050: Indonesia Energy Sector | Open Energy  

Open Energy Info (EERE)

Society Toward 2050: Indonesia Energy Sector Society Toward 2050: Indonesia Energy Sector Jump to: navigation, search Tool Summary Name: Low Carbon Society Toward 2050: Indonesia Energy Sector Agency/Company /Organization: National Institute for Environmental Studies, Institute for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, Grid Assessment and Integration, People and Policy, Solar Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Adaptation, Background analysis, Baseline projection, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment

5

Energy Analysis by Sector | Department of Energy  

Office of Environmental Management (EM)

Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use...

6

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

7

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers [EERE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

8

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers [EERE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

9

Public Sector Energy Efficiency Aggregation Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program < Back Eligibility Fed. Government Institutional Local Government Nonprofit Schools State Government Savings Category Other Maximum Rebate $4,000,000 Program Info Expiration Date 3/22/2013 State Illinois Program Type State Grant Program Rebate Amount $500,000-$4,000,000 Provider Illinois Department of Commerce and Economic Opportunity The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will allow public sector participants to combine energy efficiency projects in order to simplify the application process and implement projects that might otherwise be

10

Energy Efficiency Financing for Public Sector Projects (California) |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $3 million Program Info State California Program Type State Loan Program Provider California Energy Commission Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission for energy

11

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

12

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

13

Danish Government - Sector Programmes | Open Energy Information  

Open Energy Info (EERE)

Government - Sector Programmes Government - Sector Programmes Jump to: navigation, search Name Danish Government - Sector Programmes Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program End 2012 Country South Africa, Vietnam Southern Africa, South-Eastern Asia References Denmark[1] Promoting wind energy in South Africa and energy efficiency in Vietnam (subject to parliamentary approval) References ↑ "Denmark" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Government_-_Sector_Programmes&oldid=580876" Category: Programs

14

Working to Achieve Cybersecurity in the Energy Sector | Department...  

Broader source: Energy.gov (indexed) [DOE]

Working to Achieve Cybersecurity in the Energy Sector Working to Achieve Cybersecurity in the Energy Sector Presentation covers cybersecurity in the energy sector and is given at...

15

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

Issues National Energy Sector Cyber Organization Notice of Intent Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is expected to have the knowledge, expertise, capabilities, and capacity, at a minimum to: * Identify and prioritize cyber security research and development issues.

16

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

17

Responsible Investment in the Forest Sector Recommendations for Institutional Investors  

E-Print Network [OSTI]

May 2012 Responsible Investment in the Forest Sector Recommendations for Institutional Investors, the advice herein is general in nature and is not intended to influence specific investment decisions and commercial attractiveness of any forestry investment should be considered. # # # Approved for release

18

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

19

Photonic Sensing Technology in the Energy Sector  

Science Journals Connector (OSTI)

A review of photonic sensing technologies based on spectroscopic, fiber optics, and LIDAR technologies used in energy sector for measurement and monitoring applications in wind, oil...

Mendez, Alexis

20

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy Savers [EERE]

and government. In developing this guidance, the Energy Department collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council and the...

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technological Institute of Renewable Energy ITER | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy ITER Renewable Energy ITER Jump to: navigation, search Name Technological Institute of Renewable Energy (ITER) Place Santa Cruz de Tenerife, Spain Zip 38611 Sector Solar, Wind energy Product Spain-based, technological research and development institute focused on the solar and wind sectors. References Technological Institute of Renewable Energy (ITER)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technological Institute of Renewable Energy (ITER) is a company located in Santa Cruz de Tenerife, Spain . References ↑ "Technological Institute of Renewable Energy (ITER)" Retrieved from "http://en.openei.org/w/index.php?title=Technological_Institute_of_Renewable_Energy_ITER&oldid=352069

22

Nuclear Energy Institutes  

Science Journals Connector (OSTI)

Nuclear Energy Institutes ... The Atomic Energy Commission and the American Society for Engineering Education offer their nuclear energy courses for engineering and science teachers again in the summer of 1960. ... At least 160 college and university teachers will study nuclear science in the seven institutes scheduled. ...

1960-01-11T23:59:59.000Z

23

Beijing Solar Energy Research Institute BSERI | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Research Institute BSERI Solar Energy Research Institute BSERI Jump to: navigation, search Name Beijing Solar Energy Research Institute (BSERI) Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar Product Founded in 1979, this institute is known as one of the biggest solar energy R&D institutions in China. References Beijing Solar Energy Research Institute (BSERI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Solar Energy Research Institute (BSERI) is a company located in Beijing, Beijing Municipality, China . References ↑ "Beijing Solar Energy Research Institute (BSERI)" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Solar_Energy_Research_Institute_BSERI&oldid=342636"

24

Energy-Sector Stakeholders Attend the Department of Energy's...  

Office of Environmental Management (EM)

Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for...

25

Energy Biosciences Institute EBI | Open Energy Information  

Open Energy Info (EERE)

Biosciences Institute EBI Biosciences Institute EBI Jump to: navigation, search Name Energy Biosciences Institute (EBI) Place Berkeley, California Zip 94720 Sector Biofuels Product US-based research institution dedicated to the new field of energy bioscience, initially focusing on the development of next-generation biofuels. Coordinates 38.748315°, -90.334929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.748315,"lon":-90.334929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Public Sector Electric Efficiency Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $300,000 per location Total incentive may not exceed 75% of project cost (equipment + labor) or 100% of incremental measure cost Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for ComEd, Ameren subsidiary customers Start Date 06/01/2008 State Illinois Program Type State Rebate Program Rebate Amount Standard Incentive Program: Varies by technology

27

Public Sector New Construction and Retrofit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

28

Market Assessment of Public Sector Energy Efficiency Potential in India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Assessment of Public Sector Energy Efficiency Potential in India Market Assessment of Public Sector Energy Efficiency Potential in India Title Market Assessment of Public Sector Energy Efficiency Potential in India Publication Type Report Year of Publication 2012 Authors Iyer, Maithili, and Jayant A. Sathaye Date Published 10-Mar Publisher LBNL Keywords energy efficiency, india, market assessment Abstract The purpose of this study is to assess, with limited resources, the potential for improving energy efficiency in public buildings by providing preliminary estimates of the size of the public sector buildings market, the patterns of energy use in public buildings, and the opportunity for reducing energy use in public buildings. This report estimates the size of this market and the potential for carbon savings with conservative assumptions requiring moderate investment towards efficiency improvement in public sector buildings-here defined as the sum of the public sector commercial and institutional buildings as characterized by the Ministry of Statistics and Program Implementation (MOSPI). Information from this study will be provided to the World Bank and the BEE to assist them in designing effective energy efficiency programs for public buildings

29

Property:ProgramSector | Open Energy Information  

Open Energy Info (EERE)

ProgramSector ProgramSector Jump to: navigation, search This is a property of type String. Pages using the property "ProgramSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2008 Solar Technologies Market Report + Energy + 2010 Solar Market Transformation Analysis and Tools + Energy + 2011 APTA Public Transportation Fact Book + Energy + A A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy + Energy +, Land +, Climate + A Conceptual Framework for Progressing Towards Sustainability in the Agriculture and Food Sector + Land + A Guide to Community Solar: Utility, Private, and Non-profit Project Development + Energy + A Low Carbon Economic Strategy for Scotland + Energy +, Land + A Municipal Official's Guide to Diesel Idling Reduction + Climate +, Energy +

30

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

31

IREC Catalan Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

IREC Catalan Institute for Energy Research IREC Catalan Institute for Energy Research Jump to: navigation, search Name IREC (Catalan Institute for Energy Research) Place Barcelona, Spain Sector Renewable Energy, Wind energy Product String representation "The Catalonia I ... Mediterranean." is too long. References IREC (Catalan Institute for Energy Research)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. IREC (Catalan Institute for Energy Research) is a company located in Barcelona, Spain . References ↑ "IREC (Catalan Institute for Energy Research)" Retrieved from "http://en.openei.org/w/index.php?title=IREC_Catalan_Institute_for_Energy_Research&oldid=347119" Categories:

32

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

33

GHG Management Institute curriculum | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GHG Management Institute curriculum Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GHG Management Institute curriculum Agency/Company /Organization: Greenhouse Gas Management Institute (GHGMI) Partner: Various Sector: Energy, Land, Climate Focus Area: Non-renewable Energy, Energy Efficiency, Buildings, Buildings - Commercial, Buildings - Residential, Renewable Energy, Biomass, - Landfill Gas, - Anaerobic Digestion, Solar, Wind, Forestry, Offsets and Certificates, Greenhouse Gas, Land Use Topics: Finance, Implementation, GHG inventory, Market analysis

34

Renewable Energy Development Institute REDI | Open Energy Information  

Open Energy Info (EERE)

Development Institute REDI Development Institute REDI Jump to: navigation, search Name Renewable Energy Development Institute (REDI) Place Willits, California Zip 95490 Sector Renewable Energy Product An US nonprofit 501c3 charitable, educational and scientific corporation started in 1989 with the primary goal of promoting the use of renewable energy and clean air transportation technologies. References Renewable Energy Development Institute (REDI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Institute (REDI) is a company located in Willits, California . References ↑ "Renewable Energy Development Institute (REDI)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Institute_REDI&oldid=350320"

35

U.S. Energy Sector Vulnerability Report | Department of Energy  

Energy Savers [EERE]

future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and...

36

Energy-Sector Stakeholders Attend the Department of Energy's 2010  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, 2010 during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. Energy Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review More Documents & Publications

37

LEDSGP/sector/AFOLU | Open Energy Information  

Open Energy Info (EERE)

Agricultural Research (CGIAR), Energy Center of the Kwame Nkrumah University of Science and Technology of Ghana, Ethiopian Development Research Institute, Global Green...

38

Renewable Energy Institute International REII | Open Energy Information  

Open Energy Info (EERE)

Institute International REII Institute International REII Jump to: navigation, search Name Renewable Energy Institute International (REII) Place McClellan, California Zip 95652 Sector Renewable Energy Product California-based non-profit that supports research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and non-government organizations. References Renewable Energy Institute International (REII)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Institute International (REII) is a company located in McClellan, California . References ↑ "Renewable Energy Institute International (REII)"

39

Energy Technologies Institute ETI | Open Energy Information  

Open Energy Info (EERE)

Energy Technologies Institute ETI Energy Technologies Institute ETI Jump to: navigation, search Name Energy Technologies Institute (ETI) Place London, Greater London, United Kingdom Zip Sw1H 0ET Sector Efficiency, Renewable Energy Product A public-private JV (50:50), R&D partnership that will focus on research into renewable energies, energy security and energy efficiency. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Renewable energy sources in the Mexican electricity sector  

Science Journals Connector (OSTI)

This paper analyzes the role of renewable energy sources (RES) in the Mexican electricity sector in the context of the proposed renewable energy bill currently under consideration in the Mexican Congress. This paper was divided into three parts. The first part presents a chronology of institutional background related to the RES. This is followed by an analysis of the coordination and management system of the Mexican electricity sector, which can facilitate the promotion and integration of the RES without significant structural changes. Finally, the pros and cons of the renewable energy bill are analyzed in order to demonstrate the need for greater coherence between the bill and the coordination system of the sector. It is concluded that when inconsistency is eliminated, RES would strongly be promoted in Mexico.

B.J. Ruiz; V. Rodrguez-Padilla; J.H. Martnez

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

42

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

43

2013 Institute for Sustainable Energy Outstanding Energy Paper Awards  

E-Print Network [OSTI]

2013 Institute for Sustainable Energy Outstanding Energy Paper Awards Jason M. Luk, Mohammad Pourbafrani, Bradley A. Saville and Heather L. MacLean Ethanol or Bioelectricity? Life Cycle Assessment://dx.doi.org/10.1021/es4006459 In the transportation sector over 97% of energy use can be attributed to petroleum

44

Template:Energy Generation Facilities by Sector | Open Energy Information  

Open Energy Info (EERE)

Facilities by Sector Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the specified sector in a map, or in a list with CSV link depending on SUBPAGENAME; the purpose being the separation of the map content from the underlying data. If the page it is included on ends in '/Data' it will display the raw data and the CSV link. Otherwise, it will display the full screen map. Parameters sector - the sector to query on (for example: Biomass, Solar, Wind energy, Geothermal energy) (required) Usage It should be called in the following format: {{Energy Generation Facilities by Sector}} Example For an example of this template in use, see one of the pages listed in 'What links here' below.

45

Solar Energy Research Institute of Singapore | Open Energy Information  

Open Energy Info (EERE)

Institute of Singapore Institute of Singapore Jump to: navigation, search Name Solar Energy Research Institute of Singapore Place Singapore, Singapore Zip 117574 Sector Solar Product The research institute focuses on advanced technologies that specifically address the needs of the solar industry. It is run jointly by the National University of Singapore in partnership with the multi-agency Clean Energy Programme Office. References Solar Energy Research Institute of Singapore[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy Research Institute of Singapore is a company located in Singapore, Singapore . References ↑ "Solar Energy Research Institute of Singapore"

46

New Report Highlights Growth of America's Clean Energy Job Sector |  

Broader source: Energy.gov (indexed) [DOE]

New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs

47

Dams and Energy Sectors Interdependency Study  

Broader source: Energy.gov (indexed) [DOE]

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

48

Strategic Climate Institutions Programme (SCIP) | Open Energy Information  

Open Energy Info (EERE)

Climate Institutions Programme (SCIP) Climate Institutions Programme (SCIP) Jump to: navigation, search Name Strategic Climate Institutions Programme (SCIP) Agency/Company /Organization United Kingdom Department for International Development Sector Climate Focus Area Renewable Energy Topics Low emission development planning Country Ethiopia Eastern Africa References Strategic Climate Institutions Programme[1] Build organisational and institutional capacity within Ethiopian Government, civil society and the private sector to: increase resilience to current climate variability adapt to future climate change benefit from the opportunities for low carbon growth. References ↑ "Strategic Climate Institutions Programme" Retrieved from "http://en.openei.org/w/index.php?title=Strategic_Climate_Institutions_Programme_(SCIP)&oldid=407108"

49

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

50

U.S. Energy Sector Vulnerability Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report As part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process -- and to advance the Energy Department's goal of promoting energy security -- the Department released the U.S. Energy Sector Vulnerability to Climate Change and Extreme Weather report. The report examines current and potential future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and higher storm surge and flooding. Oil and gas production -- including refining, hydraulic fracturing

51

Property:Sector | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Sector Jump to: navigation, search This is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this property. (previous 25) (next 25) 1 1 Solar Inc + Renewable Energy +, Solar + 1.5-ft Wave Flume Facility + Hydro + 10-ft Wave Flume Facility + Hydro + 11-ft Wave Flume Facility + Hydro + 12 Voltz Limited + Renewable Energy +, Solar +, Wind energy + 1366 Technologies + Solar + 1st Light Energy, Inc. + Solar + 2 2-ft Flume Facility + Hydro + 2008 Solar Technologies Market Report + Renewable Energy +, Solar +, Concentrating solar power +, ... 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + Clean Fossil Energy +

52

Energy-Sector Stakeholders Attend the Department of Energy's  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review August 15, 2011 - 1:12pm Addthis The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG)

53

Energy Efficiency and the Finance Sector | Open Energy Information  

Open Energy Info (EERE)

the Finance Sector the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Energy Efficiency Topics Finance, Market analysis, Policies/deployment programs Website http://www.unepfi.org/fileadmi References Energy Efficiency and the Finance Sector[1] Summary "This survey was carried out in 2008, when high and volatile oil prices, steadily rising demand for energy, and global imperatives, such as climate change, created significant renewed attention to energy efficiency - both in the policy and commercial world. UNEP Finance Initiative sought to provide an evidence base on current lending activities in the energy efficiency space, as well as views on this issue through a survey among

54

Joint Global Change Research Institute | Open Energy Information  

Open Energy Info (EERE)

Global Change Research Institute Global Change Research Institute Jump to: navigation, search Logo: Joint Global Change Research Institute Name Joint Global Change Research Institute Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy, Land Focus Area Energy Efficiency Topics Policies/deployment programs, Resource assessment, Pathways analysis Website http://www.globalchange.umd.ed References Global Change Research Institute [1] Abstract The Joint Global Change Research Institute (JGCRI) houses an interdisciplinary team dedicated to understanding the problems of global climate change and their potential solutions. Joint Institute staff bring decades of experience and expertise to bear in science, technology, economics, and policy. "The Joint Global Change Research Institute (JGCRI) houses an

55

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

56

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Broader source: Energy.gov [DOE]

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

57

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network [OSTI]

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

58

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

59

Public Sector Leadership: Government Purchasing of Energy-efficient  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Sector Leadership: Government Purchasing of Energy-efficient Public Sector Leadership: Government Purchasing of Energy-efficient Products to Save Energy and "Pull" the Market Title Public Sector Leadership: Government Purchasing of Energy-efficient Products to Save Energy and "Pull" the Market Publication Type Conference Proceedings Year of Publication 2004 Authors Coleman, Philip, and Jeffrey P. Harris Conference Name Kuwait ASST Workshop on Energy Conservation in Buildings Series Title Energy Efficiency for Fuelling the World Date Published 01/2004 Conference Location Kuwait Abstract In most countries, government spending represents between 10% and 25% of total economic activity, with the national government generally accounting for the largest portion. Consequently, governments' spending can exert a strong influence on the markets for the products and services they purchase, especially when this procurement is concerted. In the last decade, several governments have instituted programs designed to direct their purchasing of energy-using products to the more efficient models on the market. This has two impacts: It provides substantial direct savings to the government on its utility bills while also helping to increase the availability and lower the prices of these more efficient models for all buyers.

60

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department of Energy Releases New Report on Energy Sector Vulnerablities |  

Broader source: Energy.gov (indexed) [DOE]

Energy Sector Energy Sector Vulnerablities Department of Energy Releases New Report on Energy Sector Vulnerablities July 11, 2013 - 7:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy released a new report which assesses how America's critical energy and electricity infrastructure is vulnerable to the impacts of climate change. Historically high temperatures in recent years have been accompanied by droughts and extreme heat waves, more wildfires than usual, and several intense storms that caused power and fuel disruptions for millions of people. These trends are expected to continue, which could further impact energy systems critical to the nation's economy. The U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather report, which builds on President Obama's Climate Action Plan,

62

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. San

Goldman, Charles

2010-01-01T23:59:59.000Z

63

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

64

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

65

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Energy Institute Inauguration Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

66

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

67

Nexus of Energy Use and Technology in the Buildings Sector  

U.S. Energy Information Administration (EIA) Indexed Site

of Energy Use and Technology in the Buildings Sector EIA Energy Conference July 15, 2014 | Washington, DC Tom Leckey, EIA Director, Office of Energy Consumption and Efficiency...

68

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

69

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

70

Energy Critical Infrastructure and Key Resources Sector-Specific  

Broader source: Energy.gov (indexed) [DOE]

Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR) protection efforts into a single national program. The NIPP includes an overall framework integrating federal programs and activities that are currently underway in the various sectors, as well as new and developing CI/KR protection efforts. The Energy

71

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

72

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

73

Precourt Institute for Energy Efficiency | Open Energy Information  

Open Energy Info (EERE)

Precourt Institute for Energy Efficiency Precourt Institute for Energy Efficiency Jump to: navigation, search Name Precourt Institute for Energy Efficiency Place Stanford, California Zip 94305-6025 Sector Efficiency Product Stanford energy efficiency institute Coordinates 41.871585°, -73.700754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.871585,"lon":-73.700754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Renewable Energy Institutional Arrangements for Implementation Terms of  

Open Energy Info (EERE)

Renewable Energy Institutional Arrangements for Implementation Terms of Renewable Energy Institutional Arrangements for Implementation Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Institutional Arrangements for Implementation Terms of Reference Agency/Company /Organization: World Bank Sector: Energy Focus Area: Solar Topics: Implementation, Market analysis Resource Type: Guide/manual Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Renewable Energy Institutional Arrangements for Implementation Terms of Reference[1] Resources Solar Home Systems Business Planning Advisory Services Preparation, Administration, Monitoring and Evaluation of the Solar Battery Charging Stations Subproject Off-Grid Rural Electrification Project Advisor PV Market Study

75

WANGER INSTITUTE FOR SUSTAINABLE ENERGY  

E-Print Network [OSTI]

WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) Strategic Plan Summary #12;WISER Strategic Plan Summary | 1 WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) STRATEGIC PLAN SUMMARY 1 by developing and supporting undergraduate research in energy and sustainability related areas. · Develop co

Heller, Barbara

76

Working with the Private Sector to Achieve a Clean Energy Economy |  

Broader source: Energy.gov (indexed) [DOE]

Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

77

Working with the Private Sector to Achieve a Clean Energy Economy |  

Broader source: Energy.gov (indexed) [DOE]

with the Private Sector to Achieve a Clean Energy Economy with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

78

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Address: 27 1 Mizumoto cho Place: Muroran Zip: 050-8585 Region: Japan Sector: Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: http:...

79

Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Finance, Market analysis Resource Type: Publications Website: www.sefalliance.org/fileadmin/media/base/downloads/SEFI_Public_Finance Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Screenshot

80

Interacting vacuum energy in the dark sector  

E-Print Network [OSTI]

We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

L. P. Chimento; S. Carneiro

2014-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

World Watch Institute Feed | Open Energy Information  

Open Energy Info (EERE)

World Watch Institute Feed World Watch Institute Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

82

World Resources Institute Feed | Open Energy Information  

Open Energy Info (EERE)

World Resources Institute Feed World Resources Institute Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

83

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency: Press Release, July 31, 2006 announcing an energy efficiency action plan. More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. Utility Sector Leaders Make Firm Commitment to Energy Efficiency More Documents & Publications Chapter 3: Demand-Side Resources US - Brazil Binational Energy Working Group Joint Action Plan

84

Energy Crossroads: Research Institutions | Environmental Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Institutions Research Institutions Suggest a Listing American Council for an Energy-Efficient Economy (ACEEE) The ACEEE is a nonprofit organization dedicated to advancing energy efficiency as a means of promoting both economic prosperity and environmental protection. California Institute for Energy Efficiency (CIEE) CIEE plans, coordinates, and implements applied research to advance productivity and competitiveness through energy efficiency. As a University of California research unit administered by the Lawrence Berkeley Laboratory, CIEE was established in 1988 in cooperation with the California utilities, the California Public Utilities Commission, the California Energy Commission, and the U.S. Department of Energy.

85

Institutional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

institutional Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology & Innovation...

86

US Energy Sector Vulnerabilities to Climate Change  

Broader source: Energy.gov (indexed) [DOE]

On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince George's County, Maryland; Grand Coulee Dam in Washington State; corn field near Somers, Iowa; wind turbines in Texas. Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND EXTREME WEATHER Acknowledgements This report was drafted by the U.S. Department of Energy's Office of Policy and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). The coordinating lead author and a principal author was Craig Zamuda of DOE-PI; other principal authors included Bryan Mignone of DOE-PI, and Dan Bilello, KC Hallett, Courtney Lee, Jordan Macknick, Robin Newmark, and Daniel Steinberg of NREL. Vince Tidwell of Sandia National Laboratories, Tom Wilbanks of

87

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

88

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Sectoral Proposal Templates Ecofys-Sectoral Proposal Templates Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1] The 'Sectoral Proposal Templates' aim at supporting developing countries in proposing sectoral emission baselines under a post-Kyoto climate regime. The sectoral approach underlying this work is seen as a means to scale-up investments in clean technology and systems in developing countries.

90

Roadmap to Secure Control Systems in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

91

Private Sector Outreach and Partnerships | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident response would not be possible without the participation of the private sector. The relationships ISER maintains with energy sector owners and operators and public associations representing energy subsectors, including the American

92

Gansu Natural Energy Research Institute GNERI | Open Energy Information  

Open Energy Info (EERE)

Research Institute GNERI Research Institute GNERI Jump to: navigation, search Name Gansu Natural Energy Research Institute (GNERI) Place Lanzhou, Gansu Province, China Zip 730000 Sector Renewable Energy, Solar Product Involved in the research for renewable energy, especially in solar. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

94

The Energy Research and Modernization Institute ICEMENERG | Open Energy  

Open Energy Info (EERE)

Research and Modernization Institute ICEMENERG Research and Modernization Institute ICEMENERG Jump to: navigation, search Name The Energy Research and Modernization Institute (ICEMENERG) Place Bucharest, Romania Sector Biofuels, Biomass, Efficiency, Geothermal energy, Hydro, Wind energy Product Research institute that covers many sectors including wind, PV, STEG, biomass, biofuels, mini-hydro, geothermal and energy efficiency. Coordinates 44.434295°, 26.102965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.434295,"lon":26.102965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Category:Private Sectors | Open Energy Information  

Open Energy Info (EERE)

currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PrivateSectors&oldid272250" Categories: Programs Projects...

96

Category:Public Sectors | Open Energy Information  

Open Energy Info (EERE)

This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Categories: Programs Projects...

97

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

98

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Broader source: Energy.gov (indexed) [DOE]

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

99

Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

the Power Sector the Power Sector Jump to: navigation, search Logo: Low Carbon Development Planning in the Power Sector Name Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Morocco, Nigeria UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco - 2010-12). A toolkit will be developed at the end of the pilot program to

100

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...  

Broader source: Energy.gov (indexed) [DOE]

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

102

EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector  

Broader source: Energy.gov (indexed) [DOE]

13: Approaches for Acquiring Energy Savings in Commercial 13: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration SUMMARY This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector buildings region wide. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 1991 EA-0513: Final Environmental Assessment Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration September 25, 1991 EA-0513: Finding of No Significant Impact Approaches for Acquiring Energy Savings in Commercial Sector Buildings,

103

Two Paths to Transforming Markets through Public Sector Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paths to Transforming Markets through Public Sector Energy Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Laura Van Wie McGrory, Philip Coleman, David Fridley, and Jeffrey Harris, Lawrence Berkeley National Laboratory (LBNL) Edgar Villaseñor Franco, Promoting an Energy-efficient Public Sector (PEPS) ABSTRACT The evolution of government purchasing initiatives in Mexico and China, part of the PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing energy-efficiency strategies in the public sector. Several years of pursuing a top-down (federally led) strategy in Mexico produced few results, and it was not until the program was restructured in 2004 to focus on municipal-level purchasing that the program

104

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

105

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

106

Dams and Energy Sectors Interdependency Study, September 2011 | Department  

Broader source: Energy.gov (indexed) [DOE]

Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. Dams-Energy Interdependency Study.pdf More Documents & Publications Hydroelectric Webinar Presentation Slides and Text Version Impacts of Long-term Drought on Power Systems in the U.S. Southwest - July 2012 Before the Senate Energy and Natural Resources Committee

107

Energy Department Announces New Private Sector Partnership to Accelerate  

Broader source: Energy.gov (indexed) [DOE]

Private Sector Partnership to Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 7, 2009 - 12:00am Addthis Washington DC --- U.S. Energy Secretary Steven Chu today announced the Department of Energy (DOE) will provide up to $750 million in funding from the American Recovery and Reinvestment Act to help accelerate the development of conventional renewable energy generation projects. This funding will cover the cost of loan guarantees which could support as much as $4 to 8 billion in lending to eligible projects, and the Department will invite private sector participation to accelerate the financing of these renewable energy projects. To this end, the Department announced the creation of its new Financial

108

Economics of Transition in the Power Sector | Open Energy Information  

Open Energy Info (EERE)

Economics of Transition in the Power Sector Economics of Transition in the Power Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Economics of Transition in the Power Sector Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Market analysis, Policies/deployment programs Website: www.iea.org/papers/2010/economics_of_transition.pdf References: The Economics of Transition in the Power Sector[1] The power sector carries a considerably great burden of the CO2 emission reductions required to address climate change, a feature common to many scenarios of emissions abatement. These reductions will only be possible if existing plants are replaced with more efficient, and less-emitting types of plants over the coming decades. This report considers: the risk factors

109

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

110

Fraunhofer Institute for Solar Energy Systems ISE | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Systems ISE Solar Energy Systems ISE Jump to: navigation, search Name Fraunhofer Institute for Solar Energy Systems (ISE) Place Frieberg, Germany Zip 79110 Sector Solar Product Leading solar research institute. Coordinates 57.10788°, 12.24904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.10788,"lon":12.24904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Federal Energy Management Program: Commitment Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commitment Commitment Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Commitment Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Commitment Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Commitment Institutional Change Principle on Google Bookmark Federal Energy Management Program: Commitment Institutional Change Principle on Delicious Rank Federal Energy Management Program: Commitment Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Commitment Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency

112

Federal Energy Management Program: Federal Correctional Institution -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Federal Correctional Institution - Phoenix, Arizona to someone by E-mail Share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Facebook Tweet about Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Twitter Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Google Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Delicious Rank Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Digg Find More places to share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on AddThis.com... Energy-Efficient Products Technology Deployment

113

Federal Energy Management Program: Leadership Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leadership Leadership Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Leadership Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Leadership Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Leadership Institutional Change Principle on Google Bookmark Federal Energy Management Program: Leadership Institutional Change Principle on Delicious Rank Federal Energy Management Program: Leadership Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Leadership Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency

114

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

115

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

116

Working to Achieve Cybersecurity in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

Rita Wells Rita Wells Idaho National Laboratory Working to Achieve Cybersecurity in the Energy Sector "Cybersecurity for Energy Delivery Systems (CEDS)" Roadmap Vision In 10 years, control systems for critical applications will be designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function. * Published in January 2006 * Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones * Provides strategic framework to - align activities to sector needs - coordinate public and private programs - stimulate investments in control systems security Roadmap - Framework for Public-Private Collaboration Roadmap - Key Strategies & 2015 Goals

117

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

118

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Market Trends - Industrial sector energy demand Market Trends - Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

119

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

120

Federal Energy Management Program: Infrastructure Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Infrastructure Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Infrastructure Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Infrastructure Institutional Change Principle on Google Bookmark Federal Energy Management Program: Infrastructure Institutional Change Principle on Delicious Rank Federal Energy Management Program: Infrastructure Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Infrastructure Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal Energy Management Program: Multiple Motivations Institutional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multiple Multiple Motivations Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Multiple Motivations Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Multiple Motivations Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Multiple Motivations Institutional Change Principle on Google Bookmark Federal Energy Management Program: Multiple Motivations Institutional Change Principle on Delicious Rank Federal Energy Management Program: Multiple Motivations Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Multiple Motivations Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses

122

Federal Energy Management Program: Determine Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determine Determine Institutional Change Sustainability Goals to someone by E-mail Share Federal Energy Management Program: Determine Institutional Change Sustainability Goals on Facebook Tweet about Federal Energy Management Program: Determine Institutional Change Sustainability Goals on Twitter Bookmark Federal Energy Management Program: Determine Institutional Change Sustainability Goals on Google Bookmark Federal Energy Management Program: Determine Institutional Change Sustainability Goals on Delicious Rank Federal Energy Management Program: Determine Institutional Change Sustainability Goals on Digg Find More places to share Federal Energy Management Program: Determine Institutional Change Sustainability Goals on AddThis.com... Sustainable Buildings & Campuses

123

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Ecofys-Sectoral Proposal Templates (Redirected from Ecofys Sectoral Proposal Templates) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1]

124

Category:Public Institutions | Open Energy Information  

Open Energy Info (EERE)

Alternative_Energy_Institute\" title=\"Alternative Energy Alternative_Energy_Institute\" title=\"Alternative Energy Institute\">Alternative Energy Institute","title":"Alternative Energy Institute","link":null,"lat":34.9848017,"lon":-101.9100121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""},{"text":"Energy_Incubator\" title=\"Austin Clean Energy Incubator\">Austin Clean Energy Incubator","title":"Austin Clean Energy Incubator","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""},{"text":"

125

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network [OSTI]

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

126

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency July 31, 2006 - 9:30am Addthis (San Francisco, Calif. - July 31, 2006) More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), released today, which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. By adopting the plan's recommendations on low-cost, under-used energy efficiency, Americans could save hundreds of billions of dollars on their gas and electric utility bills, cut greenhouse gas emissions, and lower the costs for energy and pollution controls.

127

Mexican Electric Research Institute IIE | Open Energy Information  

Open Energy Info (EERE)

Mexican Electric Research Institute IIE Mexican Electric Research Institute IIE Jump to: navigation, search Name Mexican Electric Research Institute (IIE) Place Mexico Sector Services Product General Financial & Legal Services ( Academic / Research foundation ) References Mexican Electric Research Institute (IIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mexican Electric Research Institute (IIE) is a company located in Mexico . References ↑ "Mexican Electric Research Institute (IIE)" Retrieved from "http://en.openei.org/w/index.php?title=Mexican_Electric_Research_Institute_IIE&oldid=348756" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

128

Alternative Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Alternative Energy Institute Name Alternative Energy Institute Address 2402 russell long blvd Place Canyon, Texas Zip 79016 Region Texas Area Number of employees 11-50 Year founded 1977 Phone number 8066512295 Coordinates 34.9848017°, -101.9100121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9848017,"lon":-101.9100121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

UC Berkeley- Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: UC Berkeley- Energy Institute Name UC Berkeley- Energy Institute Address 2547 Channing Way Place Berkeley, California Zip 94720 Region Bay Area Coordinates 37.8671185°, -122.2573868° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8671185,"lon":-122.2573868,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

ImplSector ImplSector Jump to: navigation, search Property Name Incentive/ImplSector Property Type String Description Implementing Sector. Pages using the property "Incentive/ImplSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal + 3 30% Business Tax Credit for Solar (Vermont) + State/Territory + 4 401 Certification (Vermont) + State/Province + A AEP (Central and North) - CitySmart Program (Texas) + Utility + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Utility + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Utility +

131

Energy intensity in China's iron and steel sector  

E-Print Network [OSTI]

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

132

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. See more figure data Reference Case Tables Table 2. Energy Consumption by Sector and Source - United States XLS Table 2.1. Energy Consumption by Sector and Source - New England XLS Table 2.2. Energy Consumption by Sector and Source - Middle Atlantic XLS

133

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

134

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

135

Energy & Geoscience Institute | Open Energy Information  

Open Energy Info (EERE)

Energy & Geoscience Institute Energy & Geoscience Institute Name Energy & Geoscience Institute Address 423 Wakara way, Suite 300 Place Salt Lake City, Utah Zip 84108 Region Utah Number of employees 51-200 Year founded 1972 Phone number 801-581-3278 Coordinates 40.761959°, -111.826246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.761959,"lon":-111.826246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

European Energy Institute | Open Energy Information  

Open Energy Info (EERE)

European Energy Institute European Energy Institute Jump to: navigation, search Name European Energy Institute Place Brussels, Belgium Phone number +32 16 322779 Coordinates 50.8462807°, 4.3547273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8462807,"lon":4.3547273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Global Energy Network Institute | Open Energy Information  

Open Energy Info (EERE)

Global Energy Network Institute Global Energy Network Institute Name Global Energy Network Institute Address 1250 6th Avenue, Suite 901 Place San Diego, California Zip 92101 Region Southern CA Area Coordinates 32.718569°, -117.159579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.718569,"lon":-117.159579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

VerdeXchange Institute | Open Energy Information  

Open Energy Info (EERE)

Los Angeles-based start up environmental think tank, publishing the VerdeXchange News, a journal providing commentary on all sectors of the clean energy industry....

139

NREL: Energy Executive Leadership Academy - Leadership Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute Institute Participants in NREL's Executive Energy Leadership Institute learn about renewable energy and energy efficiency from the experts through this accelerated training program typically conducted over a three-day period. Course content includes briefings by technology experts on renewable energy and energy efficiency technologies, market assessments, and analytical and financial tools, as well as associated technology tours. Tours of NREL research facilities are a key component of the Institute. All sessions originate and end at NREL's campus in Golden, Colorado. For additional details, including a customized Leadership Institute in your region, see the sample syllabus or contact Energy Execs. Qualified individuals are invited to apply for the upcoming 2014 Institute.

140

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

142

Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

Energy Research Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name Institute for Energy Research Address 1415 S. Voss Rd. Place Houston, Texas Zip 77057 Region Texas Area Notes Completely funded by tax-deductible contributions. Public. Coordinates 29.7515335°, -95.5009716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7515335,"lon":-95.5009716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Indian Institute of Technology IIT Madras | Open Energy Information  

Open Energy Info (EERE)

IIT Madras IIT Madras Jump to: navigation, search Name Indian Institute of Technology(IIT Madras) Place Chennai, Tamil Nadu, India Zip 600 036 Sector Biomass, Renewable Energy, Solar Product The mechanical engineering department is heavily focused on the different types of renewable energy, such as fuel cells, biomass and solar power. References Indian Institute of Technology(IIT Madras)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Indian Institute of Technology(IIT Madras) is a company located in Chennai, Tamil Nadu, India . References ↑ "Indian Institute of Technology(IIT Madras)" Retrieved from "http://en.openei.org/w/index.php?title=Indian_Institute_of_Technology_IIT_Madras&oldid=346853

144

Sandia National Laboratories: Solar Energy Research Institute...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Research Institute for India and the United States Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar...

145

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

146

Energy Data Sourcebook for the U.S. Residential Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Sourcebook for the U.S. Residential Sector Data Sourcebook for the U.S. Residential Sector Title Energy Data Sourcebook for the U.S. Residential Sector Publication Type Report LBNL Report Number LBNL-40297 Year of Publication 1997 Authors Wenzel, Thomas P., Jonathan G. Koomey, Gregory J. Rosenquist, Marla C. Sanchez, and James W. Hanford Date Published 09/1997 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA ISBN Number LBNL-40297, UC-1600 Keywords Enduse, Energy End-Use Forecasting, EUF Abstract Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment; historical and current appliance and equipment market shares; appliance and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl.gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

147

Energy Department Advances Market Access for U.S. Firms in Chinese Energy Efficiency Sector  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is helping to solve global environmental challenges and increase American competitiveness in the clean energy sector.

148

Energy and Labor in the Construction Sector  

Science Journals Connector (OSTI)

...The opera-. tional energy demand would be 60.5 mil-lion...and an operational energy demand, due to conduction heat loss...is, 1 percent of the 1976 refinery output of No. 6 fuel oil...final new building construction demand; nevertheless, they may be...

Bruce Hannon; Richard G. Stein; B. Z. Segal; Diane Serber

1978-11-24T23:59:59.000Z

149

The German Wind Energy Institute DEWI | Open Energy Information  

Open Energy Info (EERE)

DEWI DEWI Jump to: navigation, search Name The German Wind Energy Institute (DEWI) Place Wilhelmshaven, Germany Zip 26382 Sector Wind energy Product Founded in 1990 by the Federal State of Lower Saxony to support the wind energy industry in Germany. Coordinates 53.51958°, 8.111685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.51958,"lon":8.111685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Australian Solar Institute | Open Energy Information  

Open Energy Info (EERE)

Solar Institute Solar Institute Jump to: navigation, search Name Australian Solar Institute Place Newcastle, New South Wales, Australia Zip 2300 Sector Solar Product New South Wales-based institute providing support for the Australian solar community, helping to retain Australian solar expertise and develop the next generation of Australian solar researchers. References Australian Solar Institute[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Australian Solar Institute is a company located in Newcastle, New South Wales, Australia . References ↑ "Australian Solar Institute" Retrieved from "http://en.openei.org/w/index.php?title=Australian_Solar_Institute&oldid=342442

151

Activities to Secure Control Systems in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

sector sector NSTB November 2008 Hank Kenchington - Program Manager Office of Electricity of Delivery and Energy Reliability U.S. Department of Energy Activities to Secure Control Systems in the Energy Sector * 2,000,000 Miles of Oil Pipelines * 1,300,000 Miles of Gas Pipelines * 2,000 Petroleum Terminals * ~1,000,000 Wells * Extensive Ports, Refineries, Transportation, and LNG Facilities * 160,000 Miles of Electrical Transmission lines * ~17,000 Generators; 985,000 Megawatts (net summer capacity) * Over 3,100 Electric Utilities, with 131 million customers Refinery Locations, Crude and Product Pipelines Source: Energy Information Administration, Office of Oil & Gas LNG Import Facilities (Reactivation underway) Legend Interstate Pipelines Intrastate and Other Pipelines

152

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network [OSTI]

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions requirements as foundation for GHG reductions Consider a mix of direct mandatory and market mechanisms Pursue

153

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

154

The Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Name The Energy Institute Address 61 New Cavendish Street Place London, United Kingdom Year founded 2003 Phone number +44 (0) 20 7467 7100 Coordinates 51.5195198°, -0.1462542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5195198,"lon":-0.1462542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential sector energy demand Residential sector energy demand Residential energy intensity continues to decline across a range of technology assumptions figure data In the AEO2013 Reference case, the energy intensity of residential demand, defined as annual energy use per household, declines from 97.2 million Btu in 2011 to 75.5 million Btu in 2040 (Figure 55). The projected 22-percent decrease in intensity occurs along with a 32-percent increase in the number of homes. Residential energy intensity is affected by various factors-for example, population shifts to warmer and drier climates, improvements in the efficiency of building construction and equipment stock, and the attitudes and behavior of residents toward energy savings. Three alternative cases show the effects of different technology

156

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential sector energy demand Residential sector energy demand Residential energy intensity continues to decline across a range of technology assumptions figure data In the AEO2013 Reference case, the energy intensity of residential demand, defined as annual energy use per household, declines from 97.2 million Btu in 2011 to 75.5 million Btu in 2040 (Figure 55). The projected 22-percent decrease in intensity occurs along with a 32-percent increase in the number of homes. Residential energy intensity is affected by various factors-for example, population shifts to warmer and drier climates, improvements in the efficiency of building construction and equipment stock, and the attitudes and behavior of residents toward energy savings. Three alternative cases show the effects of different technology

157

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy

158

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/ma 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/ma). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

159

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Executive Summary - Natural Gas Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-57702 January 2013 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

160

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas and the Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-55538 November 2012 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy and Labor in the Construction Sector  

Science Journals Connector (OSTI)

...other products requiring sophisticated plants and equipment. Thus, it will be possible...Energy cost life cycle: mineral wool insulation in wood frame walls in the New York area...Interior finish '/2 in. gypsum board Same Insulation 3'/2 in. rock wool 51/2 in. rock...

Bruce Hannon; Richard G. Stein; B. Z. Segal; Diane Serber

1978-11-24T23:59:59.000Z

162

Renewable Energy Institute International | Open Energy Information  

Open Energy Info (EERE)

International International Jump to: navigation, search Logo: Renewable Energy Institute International Name Renewable Energy Institute International Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

164

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

165

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

166

GHG Management Institute GHG MRV Curriculum | Open Energy Information  

Open Energy Info (EERE)

GHG Management Institute GHG MRV Curriculum GHG Management Institute GHG MRV Curriculum Jump to: navigation, search Tool Summary Name: GHG Management Institute GHG MRV Curriculum Agency/Company /Organization: Greenhouse Gas Management Institute (GHGMI), The Climate Registry Sector: Energy, Land Topics: GHG inventory Resource Type: Training materials Website: ghginstitute.org/2010/03/16/tcr-ghgmi-partnership/ References: GHG Management Institute GHG MRV Curriculum[1] "The training courses build on GHGMI's rigorous curriculum and e-learning capabilities and incorporate The Registry's expertise in helping companies measure and report their carbon footprints. Coursework will cover the basics of GHG accounting and reporting to The Registry as well as GHG verification for inventories, ensuring that a new generation of

167

Two Paths to Transforming Markets through Public Sector Energy Efficiency:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Title Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Publication Type Conference Paper LBNL Report Number LBNL-60144 Year of Publication 2006 Authors McGrory, Laura Van Wie, Philip Coleman, David Fridley, Jeffrey P. Harris, and Edgar Villasenor Franco Conference Name 2006 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 08/2006 Conference Location Pacific Grove, CA Abstract The evolution of government purchasing initiatives in Mexico and China, part of the PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing energy-efficiency strategies in the public sector. Several years of pursuing a top-down (federally led) strategy in Mexico produced few results, and it was not until the program was restructured in 2004 to focus on municipal-level purchasing that the program gained momentum. Today, a new partnership with the Mexican federal government is leading to an intergovernmental initiative with strong support at the federal level. By contrast, the PEPS purchasing initiative in China was successfully initiated and led at the central government level with strategic support from international experts. The very different success trajectories in these two countries provide valuable lessons for designing country-specific public sector energy-efficiency initiatives. Enabling conditions for any successful public sector purchasing initiative include the existence of mandatory energy-efficiency performance standards, an effective energy-efficiency endorsement labeling program, an immediate need for energy conservation, a simple pilot phase (focusing on a limited number of strategically chosen products), and specialized technical assistance. Top-down purchasing programs are likely to be more successful where there is high-level political endorsement and a national procurement law in place, supported by a network of trained purchasers. Bottom-up (municipally led) purchasing programs require that municipalities have the authority to set their own purchasing policies, and also benefit from existing networks of cities, supported by motivated municipal leaders and trained purchasing officials.

168

Sector-based political analysis of energy transition: Green shift in the forest policy regime in France  

Science Journals Connector (OSTI)

Abstract This article examines energy transition political process from a sector-based approach, through the analysis of recent shift in the French forest policy regime. We demonstrate that, since 2007, energy transition policies have led to a harvesting turn within the French forest policy framework, meaning that priority is given to wood mobilisation, mainly for biomass uses. In addition, our findings suggest that the political authority wielded by the state over forest policy has shifted from forest administrative services to energy agencies and local authorities. Finally, we show that, although implementation of the harvesting turn is a cause of sectoral and inter-sectoral tensions, energy transition challenge also contributes to a process of (re)institutionalisation of mediation relationships among forestry stakeholders and wood-based industries representatives. The article concludes by arguing that sectors should retain relevant institutional frameworks for actors when choosing political arrangements required for implementing energy transition policy.

Arnaud Sergent

2014-01-01T23:59:59.000Z

169

List of Companies in Geothermal Sector | Open Energy Information  

Open Energy Info (EERE)

Geothermal Sector Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-211) Map of Geothermal energy companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

170

List of Companies in Wind Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Wind Sector Companies in Wind Sector Jump to: navigation, search WindTurbine-icon.png Companies in the Wind energy sector: Add a Company Download CSV (rows 1-1687) Map of Wind energy companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

171

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Energy Demand Commercial Sector Energy Demand On This Page End-use efficiency... Growth in electricity use... Core technologies... Improved interconnection... End-use efficiency improvements could lower energy consumption per capita The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. figure data

172

Superheavy hidden sectors and the vacuum energy density  

E-Print Network [OSTI]

In the present work a quintessence like mechanism is presented, which models a considerable fraction of the critical energy density today $\\rho_c\\simeq 10^{-47}\\;\\hbox{GeV}^4$. By assuming that the Quantum Field Theory vacuum energy is lowered down to zero by a suitable adjustment mechanism, the critical energy density is modelled in terms of a quintessence axion field $a$. This axion is a pseudo-Goldstone boson arising due to a symmetry breaking mechanism in a hidden sector, corresponding to an $\\hbox{SU(2)}$ gauge interaction. The unification between the latter sector and QCD is produced at a very large energy scale, of the order of the GUT or even of the Planck energy. This theory is confining at a very low scale, of the order of a very light neutrino mass $m_\

Santilln, Osvaldo P

2015-01-01T23:59:59.000Z

173

U.S. Building-Sector Energy Efficiency Potential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-Sector Energy Efficiency Potential Building-Sector Energy Efficiency Potential Title U.S. Building-Sector Energy Efficiency Potential Publication Type Journal Article LBNL Report Number LBNL-1096E Year of Publication 2008 Authors Brown, Richard E., Sam Borgeson, Jonathan G. Koomey, and Peter J. Biermayer Date Published 09/2008 Publisher Lawrence Berkeley National Laboratory ISBN Number LBNL-1096E Abstract This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 ¢/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu (2.4 to 6.6 $/GJ). This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

174

Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

175

Community Association Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Community Association Institute Place Falls Church, VA Website http://www.caionline.org/about References Community Associations Institute Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Community Association Institute is a company located in Falls Church, VA. References ↑ "Community Associations Institute Website" Retrieved from "http://en.openei.org/w/index.php?title=Community_Association_Institute&oldid=381604" Categories: Clean Energy Organizations

176

International Masonry Institute | Open Energy Information  

Open Energy Info (EERE)

Masonry Institute Masonry Institute Jump to: navigation, search Name International Masonry Institute Place Annapolis, MD Website http://www.internationalmasonr References International Masonry Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Masonry Institute is a company located in Annapolis, MD. References ↑ "International Masonry Institute" Retrieved from "http://en.openei.org/w/index.php?title=International_Masonry_Institute&oldid=379413" Categories: Clean Energy Organizations Companies Organizations

177

Utilization Technology Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Utilization Technology Institute Place Des Plaines, IL References Utilization Technology Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utilization Technology Institute is a company located in Des Plaines, IL. References ↑ "Utilization Technology Institute" Retrieved from "http://en.openei.org/w/index.php?title=Utilization_Technology_Institute&oldid=381738" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

178

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

179

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

180

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AN ASSESSMENT OF THE MARKET POTENTIAL AND ECONOMIC IMPACTS OF ENERGY CONSERVATION IN THE CANADIAN RESIDENTIAL/COMMERCIAL/INDUSTRIAL SECTORS  

Science Journals Connector (OSTI)

ABSTRACT Energy conservation in the residential/commercial/industrial sectors is a significant supply option for Canada. The conservation business can also produce an important impact on national economic performance. Although some achievement has been made in energy conservation, the potential in Canada has remained mostly untapped. In order to develop the energy conservation potential aggressively, demographic and institutional barriers must be overcome. The non-residential sector is likely to experience a more aggressive rate of energy conservation achievement than the residential sector. Financing is a crucial issue confronting the aggressive development of energy conservation. Good decisions require good information bases. There is much to improve on the quality and variety of data available to the public on energy conservation. Emphasis should also be placed on education and effective communication of energy conservation to managers and the public.

Lorne D.R. Dyke; W. Samuel Chan

1984-01-01T23:59:59.000Z

182

Institut Mines-Tlcom EPOC : Energy Proportional  

E-Print Network [OSTI]

? ? Renewable energy #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28-29 Novembre 2013 Problem 5 time Workload Renewable energy ? ? regular electric #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28Institut Mines-Télécom EPOC : Energy Proportional and Opportunistic Computing system 1 Labex Comin

Lefèvre, Laurent

183

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

184

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate & Environment Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment | Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and

185

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy-Water Resource Systems Human...

186

Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector  

E-Print Network [OSTI]

On 31st March 2012, India quietly announced a historic regulation for industrial sector in a bid to ensure energy security of the country. The regulation, with an aim to enhance energy efficiency in energy intensive industrial sectors, is empowered...

Garnik, S. P.; Martin, M.

2014-01-01T23:59:59.000Z

187

Energy and water sector policy strategies for drought mitigation.  

SciTech Connect (OSTI)

Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

2009-03-01T23:59:59.000Z

188

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

189

Energy Sector Management Assistance Program of the World Bank (ESMAP) |  

Open Energy Info (EERE)

Sector Management Assistance Program of the World Bank (ESMAP) Sector Management Assistance Program of the World Bank (ESMAP) Jump to: navigation, search Logo: Energy Sector Management Assistance Program Name Energy Sector Management Assistance Program Address 1818 H Street, NW Place Washington, DC Zip 20433 Region Northeast - NY NJ CT PA Area Number of employees 11-50 Year founded 1983 Website http://www.esmap.org/esmap/ Coordinates 38.899458°, -77.042447° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899458,"lon":-77.042447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Energy Sector-Specific Plan: An Annex to the National Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Sector-Specific Plan: An Annex to the National Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan More Documents & Publications National Infrastructure Protection Plan Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

191

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

require. Recent figures for the distribution of energy indi cate that the industrial sector consumes about 44% of the total with about 2/3 of that for combustion and the remainder for raw materials. This repre sents about 24 quadrillion BTU's per year... 16 years to a possible 70 quqd rillion BTU's. The total energy consumption wi~l continue to grow over the next 16 years as shown in Figure 2. Again, under moderate economic growth, energy gnowth will average about 3 percent per year. For exa...

Davis, S. R.

1984-01-01T23:59:59.000Z

192

Application of technology roadmaps for renewable energy sector  

Science Journals Connector (OSTI)

Technology Roadmapping (TRM) is a growing technique widely used for strategy planning and aligning technology with overall business objectives. Technology roadmaps are extensively used in many diverse fields at product, technology, industry, company and national levels. An increasing number of articles published on TRM and technology roadmaps indicate that there is a growing attention for TRM among the researchers from academia, industry and government. In this article, an overview of the application of TRM in renewable energy sector has been provided. After survey of the relevant academic literature and industry roadmaps, we tried to group the roadmaps related to the renewable energy technologies into national, industry/sector and organizational level roadmaps. Research findings indicate that goals and objectives of renewable energy roadmaps are different at these three levels. At national level, roadmaps focus on future energy security, energy dependence, energy policy formulation and environment protection. At industry/sector level, roadmaps are used to identify vision, common needs and evaluate barriers, constraints and risks faced by the industry from technical, political and commercial aspects. Organizational roadmap focuses on evaluation and prioritization of R&D projects to achieve the business goals. Similarly different methods, tools and approaches are used to develop roadmaps at different levels. Various other characteristics of these roadmaps are also discussed and analyzed. Research findings also indicate that greater numbers of roadmaps are developed for those renewable energy technologies undergoing rapid growth. Moreover, most of these roadmaps are developed in the regions where more research, development and deployment activities of renewable energy technologies is taking place.

Muhammad Amer; Tugrul U. Daim

2010-01-01T23:59:59.000Z

193

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases 7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya Integrated Buildings Best Available Demand Technologya End-use equipment Limited to technology menu available in 2011. Promulgated standards still take effect. Earlier availability, lower cost, and/ or higher efficiencies for advanced equipment. Purchases limited to highest available efficiency for each technology class, regardless of cost. Hurdle rates Same as Reference case distribution. All energy efficiency investments evaluated at 7-percent real interest rate. All energy efficiency investments evaluated at 7-percent real interest rate. Building shells Fixed at 2011 levels. 25 percent more improvement than in the Reference case by 2035. 50 percent more improvement than in the Reference case by 2035.

194

Renewable energy technologies for the Indian power sector: mitigation potential and operational strategies  

Science Journals Connector (OSTI)

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energyenvironment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of technoeconomic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socioenvironmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.

Debyani Ghosh; P.R. Shukla; Amit Garg; P.Venkata Ramana

2002-01-01T23:59:59.000Z

195

Energy Efficiency Services Sector: Workforce Education and Training Needs  

SciTech Connect (OSTI)

This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

2010-03-19T23:59:59.000Z

196

EIA Energy Efficiency-Residential Sector Energy Intensities, 1978-2001  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Sector Energy Intensities Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the Residential Energy Consumption Survey (RECS). Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF By Type of Housing Unit (Table 1a) html Table 1a excel table 1a. excel table 1a. Weather-Adjusted by Type of Housing Unit (Table 1b) html table 1b excel table 1b excel table 1b Total Primary Energy Consumption (U.S. and Census Region) By Type of Housing Unit (Table 1c) html Table 1c excel table 1c excel table 1c Weather-Adjusted by Type of Housing Unit (Table 1d)

197

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Broader source: Energy.gov [DOE]

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time from about...

198

Improving the Usability of Integrated Assessment for Adaptation Practice: Insights from the U.S. Southeast Energy Sector  

SciTech Connect (OSTI)

Energy systems comprise a key sector of the U.S. economy, and one that has been identified as potentially vulnerable to the effects of climate variability and change. However, understanding of adaptation processes in energy companies and private entities more broadly is limited. It is unclear, for example, the extent to which energy companies are well-served by existing knowledge and tools emerging from the impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities and/or what experiments, analyses, and model results have practical utility for informing adaptation in the energy sector. As part of a regional IAM development project, we investigated available evidence of adaptation processes in the energy sector, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Increasing the relevance of research and assessment for the energy sector will necessitate a greater investment in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts.

de Bremond, Ariane; Preston, Benjamin; Rice, Jennie S.

2014-10-01T23:59:59.000Z

199

Minority Serving Institutions | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutions Institutions Minority Serving Institutions Map by Matt Loveless, Department of Energy. Our Office of Minority Economic Impact works daily to tap into the talents of students and faculty attending our nation's Minority Serving Institutions. To accomplish the mission of the Department of Energy, we need the best and brightest individuals to work at and partner with the Department. We're proud of the work of our Minority Educational Institution partners, and we work to advance our partnerships daily. Minority Serving Institutions are institutions of higher education that serve minority populations. They are unique both in their missions and in their day-to-day operations. Some of these colleges and universities are located in remote regions of the country, whereas others serve urban

200

Clean Tech Institute | Open Energy Information  

Open Energy Info (EERE)

Tech Institute Tech Institute Jump to: navigation, search Logo: Clean Tech Institute Name Clean Tech Institute Address 1290 Parkmoor Avenue Place San Jose, California Zip 95126 Sector Services Product Research, Workforce Training, Consulting Services Number of employees 11-50 Phone number 408-280-6242 Website http://www.cleantechinstitute. Coordinates 37.316134°, -121.909763° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.316134,"lon":-121.909763,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Steven's Institute Solar Project | Open Energy Information  

Open Energy Info (EERE)

Steven's Institute Solar Project Steven's Institute Solar Project Jump to: navigation, search Name Steven's Institute Solar Project Facility Steven's Institute Solar Project Sector Solar Facility Type Carport and roof-mount Owner EnXco Developer EnXco Location Hoboken, New Jersey Coordinates 40.7439905°, -74.0323626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7439905,"lon":-74.0323626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

ImSET: Impact of Sector Energy Technologies  

SciTech Connect (OSTI)

This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

2005-07-19T23:59:59.000Z

203

Energy Sector Cybersecurity Framework Implementation Guidance- Draft for Public Comment & Comment Submission Form (September 2014)  

Broader source: Energy.gov [DOE]

On September 12, 2014, the Department issued a Federal Register Notice announcing the availability of the Energy Sector Cybersecurity Framework Implementation Guidance for public comment. The draft Energy Sector Cybersecurity Framework Implementation Guidance and comment submission form are available.

204

Roadmap to Secure Control Systems in the Energy Sector- January 2006  

Broader source: Energy.gov [DOE]

This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented...

205

Institute of Development Studies Feed | Open Energy Information  

Open Energy Info (EERE)

Institute of Development Studies Feed Institute of Development Studies Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

206

Wind energy in Brazil: From the power sector's expansion crisis model to the favorable environment  

Science Journals Connector (OSTI)

Since the 1970s, demands arising from the impacts of the power sector on the natural environment were added to studies regarding the strategic power sector and its impact on the economic and financial crises. Thus, the development of alternative technologies reflected the new institutional guidelines and overcame the technological paradigms that were based on increasing installed capacities. Consequently, multiple debates that consider the energy use potential of each region and its contributions to sustainable development occurred. This paper presents the information that is necessary for understanding the relationships of the development model that was founded based on waste and the expanding technologies that exploit natural resources. Actions that are aimed at developing renewable energy resources are structured based on the instability of the technological maintenance paradigm and are guaranteed by expanding technologies that were used prior to 1970. In addition, we evaluated the current institutional arrangements that are used to promote wind energy. In this case, greater attention was given to the European experience because Europe provides multiple examples of successful legal frameworks that promote wind energy. In addition, Europe is a benchmark for emerging market countries, such as Brazil.

Neilton Fidelis da Silva; Luiz Pinguelli Rosa; Marcos Aurlio Vasconcelos Freitas; Marcio Giannini Pereira

2013-01-01T23:59:59.000Z

207

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

208

Department of Energy Releases New Report on Energy Sector Vulnerabliti...  

Office of Environmental Management (EM)

could decrease summer water availability leading to potential hydropower shortages when energy demand for cooling is greatest. Risks to energy infrastructure located along the...

209

Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030  

E-Print Network [OSTI]

of International Policies in the solar Electricity sector:Y. R. (2012). Solar energy in India: Strategies, policies,

Abhyankara, Nikit

2014-01-01T23:59:59.000Z

210

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus On This Page Introduction... No Sunset and... World oil price... Increasing light-duty... Fuel consumption... Potential efficiency... Potential of offshore... Prospects for shale... Cost uncertanties... Carbon capture... Power sector... Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special interest, including significant changes in assumptions and recent developments in technologies for energy production and consumption. Detailed quantitative results are available in Appendix D. The first topic updates a discussion included in Annual Energy Outlook 2010 (AEO2010) that compared the results of two cases with different assumptions about the future course of existing energy policies.

211

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Commercial Mkt trends Market Trends The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

212

Ecologic Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Ecologic Institute Name Ecologic Institute Address Pfalzburger Strasse 43/44 Place Berlin, Germany Year founded 1995 Phone number +49 (30) 86880-0 Website http://ecologic.eu/ Coordinates 52.493143445°, 13.3453845978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.493143445,"lon":13.3453845978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top National Laboratory (LBNL) Edgar Villaseñor Franco, Promoting an Energy-efficient Public Sector (PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing

214

Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Change for Sustainability Institutional Change for Sustainability Institutional Change for Sustainability October 8, 2013 - 10:53am Addthis Graphic showing 5 gears. They progress from Determine Goal to Identify Context-Rules, Roles and Tools to Develop Action Plan to Implement Plan to Measure and Evaluate. Institutional Change Continuous Improvement Cycle The Federal Energy Management Program (FEMP) aims to help Federal agencies make sustainability a natural part of how they operate-while continuing to meet their mission goals. Through its Institutional Change activities, FEMP provides guidance and reference materials to help agencies and the myriad organizations within agencies shift their behavior in an effort to save energy and resources now and in the long-term. Institutional change

215

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

216

Energy and environmental conservation in Slovakia and institutional support  

Science Journals Connector (OSTI)

The paper covers the problem of energy intensity in Slovakia, its international comparisons and reasons for its considerable level. The availability of primary energy sources in Slovakia is mentioned and the impact on the environment of the energy sector is presented. Brief characteristics of the Slovak Energy Policy are stated and institutional measures aiming at more efficient energy use in Slovakia are discussed. One of the most efficient of these has been the gradual elimination of energy price regulation - pricing developments of electricity and centralised heat are presented as an example. Governmental programmes of energy support are introduced. In the section dedicated to the environment, the paper deals with the basic aspects of environmental protection in general and the issue of CO2 in particular. As for renewable energy sources in Slovakia, the paper presents the comparison of technically exploitable potential of these and the current (rather modest) situation. In the conclusion of the paper, the outlook for further development linked to the expected economic growth and new legislation in the energy sector is indicated.

Jan Rousek

2003-01-01T23:59:59.000Z

217

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

218

Stevens Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Institute of Technology Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Stevens Institute of Technology Address Davidson Laboratory, 711 Hudson Street Place Hoboken, New Jersey Zip 07030 Sector Hydro Phone number (201) 216-5290 Website http://www.stevens.edu/ses/cms Coordinates 40.7446881°, -74.0275829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7446881,"lon":-74.0275829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Massachusetts Institute of Technology Hydrodynamics | Open Energy  

Open Energy Info (EERE)

Massachusetts Institute of Technology Hydrodynamics Massachusetts Institute of Technology Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Massachusetts Institute of Technology Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Sector Hydro Phone number (617) 254-4348 Website http://web.mit.edu/towtank/www Coordinates 42.3597807°, -71.0936091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3597807,"lon":-71.0936091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Interfuel Substitution and Energy Use in the UK Manufacturing Sector  

E-Print Network [OSTI]

of the following reasons. First, studies based on the aggregate data fail to account for large dierences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

Steinbuks, Jevgenijs

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

222

Rahus Institute | Open Energy Information  

Open Energy Info (EERE)

Rahus Institute Rahus Institute Jump to: navigation, search Name Rahus Institute Address 1535 Center Ave Place Martinez, California Zip 94553 Region Bay Area Notes Research and educational organization with a focus on resource efficiency Website http://www.californiasolarcent Coordinates 37.98404°, -122.09512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.98404,"lon":-122.09512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute  

E-Print Network [OSTI]

UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute Academic Opportunities: UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute #12 Dublin School of Electrical, Electronic & Communications Engineering UCD Energy Institute The electricity

224

University of California Energy Institute Design Choices in the  

E-Print Network [OSTI]

University of California Energy Institute Design Choices in the Organization of Electricity Markets Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals of California Energy Institute Organization of Firms · Public vs. Private Ownership ­ Restructuring

California at Berkeley. University of

225

Classification Training Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Classification Training Institute Classification Training Institute Classification Training Institute Welcome to the Classification Training Institute (CTI) Webpage. This page provides information for Department of Energy (DOE) and non-DOE personnel concerning courses offered by the CTI, the current course schedule, and provides training and resources (reference materials and links to web pages with additional information) concerning information classified and controlled information within the DOE. This page also contains short animated lessons. If you need a quick refresher on an aspect of classified or controlled information, refer to the section "Online Mini-Lessons" below. Additional lessons are being developed. The training materials provided on this page are for information only. If

226

Energy Sciences Institute Talks at West Campus  

E-Print Network [OSTI]

such as pumped hydroelectric storage, compressed air energy storage (CAES), flywheels, and electrochemical electric storage devices, but viable battery technology able to store large amounts of electric energyEnergy Sciences Institute Talks at West Campus Jaephil Cho Professor at SAMSUNG SDI-UNIST Future

227

Breakthrough Institute | Open Energy Information  

Open Energy Info (EERE)

Breakthrough Institute Breakthrough Institute Jump to: navigation, search Logo: Breakthrough Institute Name Breakthrough Institute Address 436 14th Street, Suite 820 Place Oakland, California Zip 94612 Region Bay Area Number of employees 1-10 Year founded 2003 Phone number 510-550-8800 x300 Website http://www.thebreakthrough.org Coordinates 37.80428°, -122.270794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.80428,"lon":-122.270794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Energy sector analysis and modeling From primary to final energy.  

E-Print Network [OSTI]

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

229

Major models and data sources for residential and commercial sector energy conservation analysis. Final report  

SciTech Connect (OSTI)

Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

Not Available

1980-09-01T23:59:59.000Z

230

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

231

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

232

American Institute of Architects 2030 Commitment Enabled by Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Institute of Architects 2030 Commitment Enabled by Energy IQ - 2014 BTO Peer Review American Institute of Architects 2030 Commitment Enabled by Energy IQ - 2014 BTO Peer...

233

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The Annual Energy Outlook 2011 (AEO2011) Reference case generally assumes that current laws and regulations affecting the energy sector remain unchanged throughout the projection (including the implication that laws which include sunset dates do, in fact, become ineffective at the time of those sunset dates). Currently, there are many pieces of legislation and regulation that appear to have some probability of being enacted in the not-too-distant future, and some laws include sunset provisions that may be extended. However, it is difficult to discern the exact forms that the final provisions of pending legislation or regulations will take, and sunset provisions may or may not be extended. Even in situations where existing legislation contains provisions to allow revision of implementing

234

Millennium Institute | Open Energy Information  

Open Energy Info (EERE)

Name Millennium Institute Name Millennium Institute Address 2111 Wilson Blvd. Suite 700 Place Arlington, VA Zip 22201 Region Northeast - NY NJ CT PA Area Phone number (703) 351 5081 Website http://www.millenniuminstitute Coordinates 38.891701°, -77.084673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.891701,"lon":-77.084673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Fact #689: August 22, 2011 Energy Use by Sector and Source |...  

Energy Savers [EERE]

sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The...

236

Fact #582: August 3, 2009 Energy Shares by Sector and Source...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The...

237

DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Issues Energy Sector Cyber Organization NOI, Feb 2010 Issues Energy Sector Cyber Organization NOI, Feb 2010 DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. DOE Issues Energy Sector Cyber Organization NOI More Documents & Publications FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants Grantsdown.xls Before the House Science and Technology Subcommittee on Energy and

238

Roadmap to Secure Control Systems in the Energy Sector - 2006 | Department  

Broader source: Energy.gov (indexed) [DOE]

- 2006 - 2006 Roadmap to Secure Control Systems in the Energy Sector - 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. Roadmap to Secure Control Systems in the Energy Sector More Documents & Publications

239

Scrutinising the influence of the performance of Malaysia agricultural sector on energy use  

Science Journals Connector (OSTI)

Most sectors rely on energy as input to produce output. Though the use of energy by the agriculture sector is not as high as in other sectors, it is still necessary to study the links between the two. This is vital as there are only few studies that illustrate the bonds between them in Malaysia. This study resorts to input-output analysis to examine the link between the two sectors and assess their economic sustainability using input-output data for 1991 to 2005 period. This analysis and assessment show the existence of linkages between agriculture and energy sectors. However, the linkage is not strong for the named period. Among the three energy subsectors, the agriculture sector relies heavily on inputs from 'petrol and coal industries' as compared to the other two subsectors. As such, the current study introduces some policy implications to further diversify the sources of energy use and to promote the most efficient utilisation of energy in agriculture sector.

Hussain Ali Bekhet; Azlina Abdullah

2012-01-01T23:59:59.000Z

240

Federal Energy Management Program: Institutional Change for Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutional Institutional Change for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change for Sustainability on Facebook Tweet about Federal Energy Management Program: Institutional Change for Sustainability on Twitter Bookmark Federal Energy Management Program: Institutional Change for Sustainability on Google Bookmark Federal Energy Management Program: Institutional Change for Sustainability on Delicious Rank Federal Energy Management Program: Institutional Change for Sustainability on Digg Find More places to share Federal Energy Management Program: Institutional Change for Sustainability on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Change for Sustainability Institutional Change for Sustainability Institutional Change Continuous Improvement Cycle Institutional Change Continuous Improvement Cycle...

242

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |  

Broader source: Energy.gov (indexed) [DOE]

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy security-examines current and potential future impacts of these climate trends on the U.S. energy sector. Report updated July 16, 2013. Explore an interactive map that shows where climate change has already impacted the energy sector. US Energy Sector Vulnerabilities to Climate Change More Documents & Publications

243

Profiles in Renewable Energy- Case Studies of Successful Utility-Sector  

Open Energy Info (EERE)

Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Citation U.S. Department of Energy. Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects [Internet]. [updated 2000;cited 2000]. Available from: http://www.osti.gov/accomplishments/NRELprofiles.html#oesi Retrieved from "http://en.openei.org/w/index.php?title=Profiles_in_Renewable_Energy-_Case_Studies_of_Successful_Utility-Sector_Projects&oldid=682490"

244

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |  

Broader source: Energy.gov (indexed) [DOE]

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy security-examines current and potential future impacts of these climate trends on the U.S. energy sector. Report updated July 16, 2013. Explore an interactive map that shows where climate change has already impacted the energy sector. US Energy Sector Vulnerabilities to Climate Change More Documents & Publications

245

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

246

Ministry of Environment and Energy National Environmental Research Institute  

E-Print Network [OSTI]

Ministry of Environment and Energy National Environmental Research Institute The DMU-ATMI THOR Air Publisher: Ministry of Environment and Energy National Environmental Research Institute URL: http Description. National Environmental Research Institute, Roskilde, Denmark. 60 pp. - NERI Technical Report No

247

Investment decisions in the renewable energy sector: An analysis of non-financial drivers  

Science Journals Connector (OSTI)

Notwithstanding their many environmental, economic and social advantages, renewable energy technologies (RE) account for a small fraction of the world's primary energy supply. One possible cause for this limited diffusion is that private investments in the RE sector, although potentially appealing, remain insufficient. The lack of adequate financing is also a clear indication that our understanding of the process by which investors fund RE ventures is still incomplete. This paper aims to fill in this gap and to shed new light on RE investment decisions. Building upon behavioral finance and institutional theory, we posit that, in addition to a rational evaluation of the economics of the investment opportunities, various non-financial factors affect the decision to invest in renewables. We analyze the investment decisions of a large sample of investors, with the objective to identify the main determinants of their choices. Our results shed new light on the role of institutional and behavioral factors in determining the share of renewable energy technologies in energy portfolios, and have important implications for both investors and policy makers: they suggest that RE technologies still suffer from a series of biased perceptions and preconceptions that favor status quo energy production models over innovative alternatives.

Andrea Masini; Emanuela Menichetti

2013-01-01T23:59:59.000Z

248

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

249

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

251

Energy Sector Vulnerable to Climate Change, U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Sector Vulnerable to Climate Change, U.S. Department of Energy Report Says Print E-mail Energy Sector Vulnerable to Climate Change, U.S. Department of Energy Report Says Print E-mail President Obama Announces His Climate Action Plan Friday, July 26, 2013 Featured by DOE, a member of the U.S. Global Change Research Program In his speech at Georgetown University last month, President Obama referred to our nation's vulnerabilities to climate change, underscoring how Hurricane Sandy and other climate-related disasters serve as wake-up calls. These extreme weather events as well as changes in temperature and water availability - all related to our changing climate - are disrupting the ways we generate, distribute, and consume energy, according to a new report released by the US Department of Energy. The U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather report examines current and potential future impacts of these climate trends on the U.S. energy sector.

252

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book [EERE]

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

253

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

254

Commitment Institutional Change Principle | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commitment Institutional Change Principle Commitment Institutional Change Principle Commitment Institutional Change Principle October 8, 2013 - 11:05am Addthis Commitment can be a crucial element that helps Federal agencies inject and emphasize sustainability in their organizational culture. Institutions and people change when they have made definite commitments to change, especially when those commitments relate to future conditions. Research shows that explicit commitments improve the rate at which people adopt energy-efficient behaviors. Methods Explicit commitments help individuals make behavioral changes by externalizing their internal desires and goals to ensure follow-through. Conveying goals to others also increases the probability of achieving them and prevents procrastination. Precommitting to a request can lead to

255

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Change Science Institute Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and Computational Sciences and the Energy and Environmental Sciences Directorates at ORNL actively participate in CCSI research. CCSI aims to understand the fate of carbon in the climate system-the central issue of greenhouse-gas-induced warming-so we can develop the predictive infrastructure to help answer questions about low-probability, high-impact

256

Climate change perception in the energy sector : A comparative study of Norway and Germany.  

E-Print Network [OSTI]

??The thesis investigates perceptions of climate change (CC) among stakeholders within Norwegian and German energy sector, and the implications of climate perception for personal behaviour. (more)

Lindberg, Marie Byskov

2008-01-01T23:59:59.000Z

257

Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors  

E-Print Network [OSTI]

identify energy intensity and consumption for key manufacturing processes and the sector as a whole. Potential energy savings opportunities are identified by quantifying four measures of energy consumption for each process area: current average (year 2010...

Brueske, S.; Cresko, J.; Capenter, A.

2014-01-01T23:59:59.000Z

258

Modelling useful energy demand system as derived from basic needs in the household sector  

Science Journals Connector (OSTI)

Inter-fuel substitution in the household sector depends on whether their target energy use is similar or not. To account ... for the effect of end-use application on energy demand, the concept of useful energy is...

Zahra A. Barkhordar; Yadollah Saboohi

2014-10-01T23:59:59.000Z

259

Federal Energy Management Program: Continuous Change Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Change Continuous Change Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Continuous Change Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Continuous Change Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Continuous Change Institutional Change Principle on Google Bookmark Federal Energy Management Program: Continuous Change Institutional Change Principle on Delicious Rank Federal Energy Management Program: Continuous Change Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Continuous Change Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

260

Federal Energy Management Program: Resources on Institutional Change for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources on Resources on Institutional Change for Sustainability to someone by E-mail Share Federal Energy Management Program: Resources on Institutional Change for Sustainability on Facebook Tweet about Federal Energy Management Program: Resources on Institutional Change for Sustainability on Twitter Bookmark Federal Energy Management Program: Resources on Institutional Change for Sustainability on Google Bookmark Federal Energy Management Program: Resources on Institutional Change for Sustainability on Delicious Rank Federal Energy Management Program: Resources on Institutional Change for Sustainability on Digg Find More places to share Federal Energy Management Program: Resources on Institutional Change for Sustainability on AddThis.com... Sustainable Buildings & Campuses

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Role of Institutions for Development : A Case Study of the Malian Cotton Sector.  

E-Print Network [OSTI]

??This master thesis looks at the cotton sector in Mali and the prospects for making trade in cotton work for Malian cotton producers. Through an (more)

Steihaug, Yngvild Vge

2008-01-01T23:59:59.000Z

262

EC-LEDS in the Agriculture Sector | Open Energy Information  

Open Energy Info (EERE)

the Agriculture Sector the Agriculture Sector Jump to: navigation, search Name EC-LEDS in the Agriculture Sector Agency/Company /Organization United States Department of Agriculture, United States Department of State Partner Ministry of Agriculture, Ministry of Environment Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Program End 2013 Country Costa Rica, Kenya, Mexico, Vietnam Central America, Eastern Africa, Central America, South-Eastern Asia References Land Use Assessment Toolkit - Agriculture Resources[1] Overview Progress and Outcomes Capacity building activities include strengthening implementation of

263

Polish Academy of Sciences Institute of Chemical Engineering | Open Energy  

Open Energy Info (EERE)

Polish Academy of Sciences Institute of Chemical Engineering Polish Academy of Sciences Institute of Chemical Engineering Jump to: navigation, search Name Polish Academy of Sciences: Institute of Chemical Engineering Place Gliwice, Poland Zip 44-100 Sector Solar Product Poland-based chemical engineering research institute. The academy has a research group focused on the conversion of solar energy. Coordinates 50.292°, 18.66719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.292,"lon":18.66719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Institute for Atom-Efficient Chemical Transformations Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientists and engineers to address current fundamental scientific roadblocks to U.S. energy security. Institute for Atom-Efficient Chemical Transformations The Institute for...

265

Institute for Atom-Efficient Chemical Transformations Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a...

266

Green Technology Institute at UCLA | Open Energy Information  

Open Energy Info (EERE)

California-based institute to reduce America's dependence on foreign oil and developing energy efficient technologies. References: Green Technology Institute at UCLA1 This...

267

Hawaii Natural Energy Institute Energy Programs  

E-Print Network [OSTI]

Production - CTAHR Gasification & Contaminant Removal - HNEI Technology Assessment Fuel Fit for Purpose (R&D) across many energy technologies · Testing and evaluating (T&E) of renewable generation contaminant mitigation ­ Battery testing, Electric vehicles · Renewable Power Generation ­ Ocean Energy (OTEC

268

The Energy Institute Live Green, Burn Clean  

E-Print Network [OSTI]

combustion in a Cummins ISB 5.9L MY2000 turbodiesel engine Sources of the "Biodiesel NOx" effect Fuel quality turbodiesel engine Sources of the "Biodiesel NOx" effect Fuel quality issues and blending level question: B2The Energy Institute Live Green, Burn Clean: Advancing Engines for Renewable Fuels Live Green, Burn

Lee, Dongwon

269

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS  

E-Print Network [OSTI]

1 STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS - High Energy Physics Energy Physics" BNPI, Novosibirsk, September 2010 #12;2 STATE RESEARCH CENTER OF RUSSIA INSTITUTE

270

Oxford Institute for Energy Studies | Open Energy Information  

Open Energy Info (EERE)

Oxford Institute for Energy Studies Oxford Institute for Energy Studies Jump to: navigation, search Logo: Oxford Institute for Energy Studies Name Oxford Institute for Energy Studies Address 57 Woodstock Road Place Oxford, United Kingdom Year founded 1982 Phone number +44 (0)1865 311377 Coordinates 51.7846048°, -1.2737752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.7846048,"lon":-1.2737752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

University of Wisconsin Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Energy Institute Energy Institute Jump to: navigation, search Logo: University of Wisconsin Energy Institute Name University of Wisconsin Energy Institute Address 1500 Engineering Dr. Place Madison, Wisconsin Zip 53706 Coordinates 43.0722652°, -89.4117968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0722652,"lon":-89.4117968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

heat and synfuels) consumed by each end-use sector by a final-to- primary conversion factor that accounts for conversion, transmission and distribution losses.heat and synfuels) consumed by each end-use sector by a final-to-primary conversion factor that account for conversion, transmission and distribution losses.

2006-01-01T23:59:59.000Z

273

Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Nepal-Sectoral Climate Impacts Economic Assessment Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

274

Nepal Sectoral Climate impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Sectoral Climate impacts Economic Assessment Sectoral Climate impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

275

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

276

Morocco-Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

Morocco-Low Carbon Development Planning in the Power Sector Morocco-Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Morocco UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco -

277

Nigeria-Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

Nigeria-Low Carbon Development Planning in the Power Sector Nigeria-Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Nigeria UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco -

278

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Broader source: Energy.gov (indexed) [DOE]

Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

279

Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program  

E-Print Network [OSTI]

Services and Energydesign, Technical University of Braunschweig, Germany Univ.-Prof. Dr.-Ing. M. Norbert Fisch Head of Institute IGS ? Institute of Building Services and Energydesign, Technical University of Braunschweig, Germany Edelgard Gruber... Competence Centre Energy Policy and Energy Systems, Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany Barbara Schlomann Competence Centre Energy Policy and Energy Systems, Fraunhofer Institute for Systems and Innovation...

Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

280

Federal Energy Management Program: Identify Institutional Change Rules for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rules for Sustainability to someone by E-mail Rules for Sustainability to someone by E-mail Share Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on Facebook Tweet about Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on Twitter Bookmark Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on Google Bookmark Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on Delicious Rank Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on Digg Find More places to share Federal Energy Management Program: Identify Institutional Change Rules for Sustainability on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Federal Energy Management Program: Identify Institutional Change Roles for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roles for Sustainability to someone by E-mail Roles for Sustainability to someone by E-mail Share Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on Facebook Tweet about Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on Twitter Bookmark Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on Google Bookmark Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on Delicious Rank Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on Digg Find More places to share Federal Energy Management Program: Identify Institutional Change Roles for Sustainability on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

282

Federal Energy Management Program: Identify Institutional Change Tools for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools for Sustainability to someone by E-mail Tools for Sustainability to someone by E-mail Share Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on Facebook Tweet about Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on Twitter Bookmark Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on Google Bookmark Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on Delicious Rank Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on Digg Find More places to share Federal Energy Management Program: Identify Institutional Change Tools for Sustainability on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

283

Federal Energy Management Program: Institutional Change Principles for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principles for Fostering Sustainability to someone by E-mail Principles for Fostering Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on Facebook Tweet about Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on Twitter Bookmark Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on Google Bookmark Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on Delicious Rank Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on Digg Find More places to share Federal Energy Management Program: Institutional Change Principles for Fostering Sustainability on AddThis.com...

284

Great Plains Institute | Open Energy Information  

Open Energy Info (EERE)

Plains Institute Plains Institute Jump to: navigation, search Name Great Plains Institute Place Minneapolis, Minnesota Zip 55407 Product Works with multiple stakeholders to produce and implement policies, technologies and practices in the areas of energy security and bio-based materials. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55...

286

Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as  

Broader source: Energy.gov (indexed) [DOE]

Energy: Critical Infrastructure and Key Resources Sector-Specific Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and responsibilities for all levels of government, private industry, and other security partners. The U.S. Department of Energy (DOE) has been designated the Sector-Specific Agency (SSA) for the Energy Sector,and is tasked with coordinating preparation of

287

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

288

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

289

Draft Energy Sector Cybersecurity Framework Implementation Guidance Available for Public Comment  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) has issued a Notice of Public Comment in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. The document is available for a 30 day comment period.

290

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

1 Buildings Sector Water Consumption 1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class D (4) - - Wisconsin Total (4) - - Note(s): Source(s): 836 3,263 Sourcing Treatment (1) Distribution Wastewater Total 2,230 2,295 2,117 5,411 2,117 3,500 - not included 1,850 9,727 13,021 9,727 11,110 2390 4,340 1,500 3,250 - not included 1,510 1) Treatment before delivery to customer. 2) Source: Electric Policy Research Institute (EPRI) 2009. Wastewater estimated based on EPRI

291

Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.  

SciTech Connect (OSTI)

Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

2008-02-28T23:59:59.000Z

292

Federal Energy Management Program: Identify Institutional Change Rules,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Identify Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability to someone by E-mail Share Federal Energy Management Program: Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability on Facebook Tweet about Federal Energy Management Program: Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability on Twitter Bookmark Federal Energy Management Program: Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability on Google Bookmark Federal Energy Management Program: Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability on Delicious Rank Federal Energy Management Program: Identify Institutional

293

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

294

Form:Research Institution | Open Energy Information  

Open Energy Info (EERE)

Institution Jump to: navigation, search Add a Research or Development Institution Input your research or development institution name below to add to the registry. If your research...

295

Resources on Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Change » Resources on Institutional Institutional Change » Resources on Institutional Change for Sustainability Resources on Institutional Change for Sustainability October 8, 2013 - 1:19pm Addthis Many helpful resources about institutional change are available. Also see Contacts. Case Studies Driving Operation Changes through an Energy Monitoring System Connecting Sustainability to the Agency's Mission Data, Feedback, and Awareness Lead to Big Energy Savings USPS-Lean Green Teams Enabling Sustainable Acquisition by Improving Procurement Systems Reports Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans Implementing Sustainability: The Institutional-Behavioral Dimension Training Sustainable Institutional Change for Federal Facility Managers

296

Energy BioSciences Institute | Open Energy Information  

Open Energy Info (EERE)

BioSciences Institute BioSciences Institute Jump to: navigation, search Logo: Energy BioSciences Institute Name Energy BioSciences Institute Place Berkeley, California Zip 94720 Region Bay Area Coordinates 37.8744633°, -122.2526269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8744633,"lon":-122.2526269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Broader source: Energy.gov (indexed) [DOE]

Sector Control Systems Working Group to Meet March 25, 2008 Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

298

Status of Power Sector Reform in Africa: Impact on the Poor | Open Energy  

Open Energy Info (EERE)

Status of Power Sector Reform in Africa: Impact on the Poor Status of Power Sector Reform in Africa: Impact on the Poor Jump to: navigation, search Tool Summary Name: Status of Power Sector Reform in Africa: Impact on the Poor Agency/Company /Organization: Stephen Karekezi and John Kimani Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, People and Policy Phase: Create a Vision Topics: Co-benefits assessment, - Energy Access Resource Type: Publications User Interface: Website Website: www.sciencedirect.com/science/article/pii/S0301421502000484 Cost: Free UN Region: Eastern Africa, Southern Africa Language: English This article is based on a regional study by the authors reviewing the status, challenges and prospects of ongoing and planned power sector reform in eastern and southern Africa with special emphasis on the implications

299

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building Equipment

Wenzel, T.P.

2010-01-01T23:59:59.000Z

300

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Energy Consumption 11and a decomposition of energy consumption to understand theData Historical energy consumption and energy-related CO 2

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

structure. From 51% of total energy consumption in 1980, thefor 61% of total energy consumption. Industrial energy usethis scenario, Chinas total energy consumption by 2020 will

2008-01-01T23:59:59.000Z

302

Energy-saving technology adoption under uncertainty in the residential sector  

E-Print Network [OSTI]

Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in the energy-saving technology, to save or to consume energy goods and non-energy goods. Resolution in the same way as in a partial equilibrium framework. JEL classification: Q55, D11, D81,C61 Keywords : energy-saving

Paris-Sud XI, Université de

303

List of Companies in Biomass Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Biomass Sector Companies in Biomass Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biomass sector: Add a Company Download CSV (rows 1-589) Map of Biomass companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

304

Site Attracts Private Sector Investments for Reuse | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Attracts Private Sector Investments for Reuse Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse June 26, 2013 - 12:00pm Addthis This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center.

305

List of Companies in Hydrogen Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Hydrogen Sector Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-190) Map of Hydrogen companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

306

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

307

Site Attracts Private Sector Investments for Reuse | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Site Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse June 26, 2013 - 12:00pm Addthis This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center.

308

List of Companies in Biofuels Sector | Open Energy Information  

Open Energy Info (EERE)

List of Companies in Biofuels Sector List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-253) Map of Biofuels companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

309

USGS-Land Cover Institute (LCI) | Open Energy Information  

Open Energy Info (EERE)

USGS-Land Cover Institute (LCI) USGS-Land Cover Institute (LCI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Land Cover Institute (LCI) Agency/Company /Organization: United States Geological Survey Sector: Land Focus Area: Land Use Topics: Resource assessment Resource Type: Maps User Interface: Website Website: landcover.usgs.gov/landcoverdata.php Cost: Free USGS-Land Cover Institute (LCI) Screenshot References: USGS-Land Cover Institute (LCI)[1] "Welcome to the U.S Geological Survey (USGS) Land Cover Institute (LCI). The USGS currently houses the institute at the Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota. The LCI will address land cover topics from local to global scales, and in both domestic and international settings. The USGS through the Land Cover Institute

310

Shenzhen Institute of Building Research SIBR | Open Energy Information  

Open Energy Info (EERE)

Institute of Building Research SIBR Institute of Building Research SIBR Jump to: navigation, search Name Shenzhen Institute of Building Research (SIBR) Place Guangdong Province, China Sector Buildings, Solar Product Shenzhen-based science and technology research institute for buildings and urban development. The body is working on solar panel design and installation in China. References Shenzhen Institute of Building Research (SIBR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shenzhen Institute of Building Research (SIBR) is a company located in Guangdong Province, China . References ↑ "[ Shenzhen Institute of Building Research (SIBR)]" Retrieved from "http://en.openei.org/w/index.php?title=Shenzhen_Institute_of_Building_Research_SIBR&oldid=350941

311

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

World Energy. http://www.bp.com/statisticalreview2004. EDMC 2002, Handbook of Energy & Economics Statistics

2006-01-01T23:59:59.000Z

312

List of Companies in Efficiency Sector | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » List of Companies in Efficiency Sector Jump to: navigation, search Companies in the Efficiency sector: Add a Company Download CSV (rows 1-387) Map of Efficiency companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

313

Federal Sector Renewable Energy Project Implementation: "What's Working and Why"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Sector Renewable Energy Project Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, 2011 Bob Westby Bob Westby NREL Laboratory Program Manager: Federal Energy Management Program NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Innovation for Our Energy Future Contents Federal Sector Renewable Energy Project Implementation: "What's Working and Why" "What's Working and Why" ƒ Commercially viable RE technologies ƒ RE project economic drivers ƒ Project construct scenarios ƒ ƒ Implementation mechanisms Implementation mechanisms

314

University of Southern California-Energy Institute | Open Energy  

Open Energy Info (EERE)

California-Energy Institute California-Energy Institute Jump to: navigation, search Name University of Southern California-Energy Institute Place Los Angeles, California Zip 90089 Region Southern CA Area Coordinates 34.0202738°, -118.2884738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0202738,"lon":-118.2884738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Colorado School of Mines - Colorado Energy Research Institute | Open Energy  

Open Energy Info (EERE)

School of Mines - Colorado Energy Research Institute School of Mines - Colorado Energy Research Institute Jump to: navigation, search Name Colorado School of Mines - Colorado Energy Research Institute Address 1500 Illinois Street Place Golden, Colorado Zip 80401 Region Rockies Area Coordinates 39.751116°, -105.222315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.751116,"lon":-105.222315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Environmental Law Institute Webinar to Promote Superior Energy...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy in partnership with the American National Standards Institute (ANSI), ANSI-ASQ National Accreditation Board (ANAB) and U.S. Council for Energy-Efficient...

317

The FEMP Awards Program: Fostering Institutional Change and Energy...  

Broader source: Energy.gov (indexed) [DOE]

provides an assessment of the Federal Energy Management Program's (FEMP) Energy and Water Management Awards program to identify the institutional elements of award-winning...

318

Energy efficiency achievements in China?s industrial and transport sectors: How do they rate?  

Science Journals Connector (OSTI)

Abstract China is experiencing intensified industrialisation and motorisation. In the world?s largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors? performances reflect the effectiveness of China?s energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector?s demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China?s near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and \\{GHGs\\} by 3435 per cent.

Libo Wu; Hong Huo

2014-01-01T23:59:59.000Z

319

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

320

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

2009a. Green Jobs & Energy Market Trends Relevant Trends,Engineers 2009a. Energy Independence and Market Trends: AEEFace of Energy Efficiency and Market Transformation.

Goldman, Charles

2010-01-01T23:59:59.000Z

322

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

of Excellence 2009b. Energy Efficiency Occupations: Centralof Excellence 2009c. Energy Efficiency Occupations: Greaterof Excellence 2009d. Energy Efficiency Occupations: Inland

Goldman, Charles A.

2010-01-01T23:59:59.000Z

323

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

Northwest Energy Efficiency Alliance New York EnergyIn New York, the New York Energy Research and Developmentenergy efficiency policies, such as California, New York,

Goldman, Charles A.

2010-01-01T23:59:59.000Z

324

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

Brown, Rich

2008-01-01T23:59:59.000Z

325

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

the Massachusetts Energy Efficiency and Building ScienceSummer Study on Energy Efficiency in Buildings. The UnitedStudy on Energy Efficiency in Buildings. American Council

Goldman, Charles

2010-01-01T23:59:59.000Z

326

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. WashingtonStudy on Energy Efficiency in Buildings. American Council

Wenzel, T.P.

2010-01-01T23:59:59.000Z

327

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

data were performed for biomass energy consumption, for theinformation regarding biomass energy consumption only afterswitching from biomass energy use to a more modern form of

2006-01-01T23:59:59.000Z

328

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

et al. (2005). Renewable energy policies and markets in theefficiency and renewable energy policy in the state. Inand Renewable Energy Technology and Policy. Washington,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

329

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

330

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Approximately 30% of total energy consumption is residualrepresented 37% of total energy consumption globally inwe observed how the total energy consumption projected by A1

2006-01-01T23:59:59.000Z

331

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

World Conference on Photovoltaic Energy Conversion, 2003,Effects of Residential Photovoltaic Energy Systems on Homeand renewable energy technologies, solar photovoltaic (PV)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

332

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

A1 scenario forecasts GDP energy intensity to continue toby activity levels and the energy intensity of the specificDemand Activity x Energy Intensity Additional information on

2006-01-01T23:59:59.000Z

333

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

J. , 2001. Changing Energy Intensity in Chinese Industry,M. ,1994. Changing Energy Intensity in Chinese Industry,2006. Indicators of Energy Intensity in the Unites States,

2008-01-01T23:59:59.000Z

334

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

performance services, energy auditors). In the future, asHVAC technicians, energy auditors and raters, and buildingperformance services, energy auditors) and learning on the

Goldman, Charles A.

2010-01-01T23:59:59.000Z

335

Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the manufactured products are energy commodities that are often measured in terms of energy content, separate from the energy content of purchased fuels and electricity. Most...

336

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

10 Historical Primary Energy Per GDP and Per11 Historical Primary Energy per GDP and perHistorical Primary Energy Per GDP and Per capita Population

2008-01-01T23:59:59.000Z

337

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Final energy per GDP decreased considerably inper unit of GDP. Final energy per GDP decreased considerablysubstantial decline in final energy demand per unit of GDP.

2006-01-01T23:59:59.000Z

338

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

339

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

340

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

retrocommissioning_public_sector.doc | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Intergovernmental Programs Office Home About the Office Weatherization Assistance Program State Energy Program Energy Efficiency & Conservation Block Grant Program...

342

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

in the number of energy auditors over the next 3 years; noteinclude auditors, In order to provide the needed energy

Goldman, Charles

2010-01-01T23:59:59.000Z

343

US National Institute of Hydrogen Fuel Cell Commercialization | Open Energy  

Open Energy Info (EERE)

Institute of Hydrogen Fuel Cell Commercialization Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name US National Institute of Hydrogen Fuel Cell Commercialization Place Columbia, South Carolina Zip 29250-0768 Sector Hydro, Hydrogen Product The National Institute of Hydrogen Fuel Cell Commercialization, a nonprofit organization, will work to find commercial opportunities for USC and other state research institutions doing fuel cell research. References US National Institute of Hydrogen Fuel Cell Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Institute of Hydrogen Fuel Cell Commercialization is a company located in Columbia, South Carolina . References

344

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 --A SECTORAL MULTI-MODEL  

E-Print Network [OSTI]

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 -- A SECTORAL MULTI-1800, USA **h.foerster@oeko.de Published 5 December 2013 Energy efficiency and decarbonization are important by improving energy efficiency, by at least 20%, and by investing in new and cleaner energy infrastructures

Paris-Sud XI, Université de

345

THE INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY  

Broader source: Energy.gov (indexed) [DOE]

INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY ManhattanEngineerDistrict (1942-1946) Ex ExecutiveOfficeof thePresident EnergyPolicyOffice(1973) Federal * .,.-, Office (1973-1974) AtomicEnergyCommission (1947 -1975) Federal Energy Administration (1974) -1977) Energy Research and DevelopmentAdministration3 (1975 - 1977) INCLUDES 1sPECIALEnergy Office ( t7J) tklr ... Energy Office(lt13) 2 Trea y-EnergyOffice

346

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

347

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

348

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Renewable Renewable Wind dominates renewable capacity growth, but solar and biomass gain market share figure data From 2010 to 2035, total nonhydropower renewable generating capacity more than doubles in the AEO2012 Reference case (Figure 100). Wind accounts for the largest share of that new capacity, increasing from 39 gigawatts in 2010 to 70 gigawatts in 2035. Both solar capacity and biomass capacity grow at faster rates than wind capacity, but they start from smaller levels. Excluding new projects already under construction, PV accounts for nearly all solar capacity additions both in the end-use sectors (where 11 gigawatts of PV capacity is added from 2010 to 2035) and in the electric power sector (8 gigawatts added from 2010 to 2035). While end-use solar capacity grows throughout the projection, the growth of solar capacity in

349

The private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure  

E-Print Network [OSTI]

This dissertation examines the financial aspects of climate change relating to the private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure. The dissertation examines (a) potential ...

Hart, Craig A

2007-01-01T23:59:59.000Z

350

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Broader source: Energy.gov [DOE]

This paper examines the behavioral assumptions that underlie Californias residential sector energy efficiency programs and recommends improvements that will help to advance the states ambitious greenhouse gas reduction goals.

351

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

by Fuel (with biomass) Primary Energy Consumption (EJ) RuralEnd-use (without biomass) Commercial Energy Use by Fuel andfor 9% of primary energy excluding biomass fuels. Figure 10

2008-01-01T23:59:59.000Z

352

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

353

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

that forecast US residential energy consumption by end-use.new unit energy consumption in the U.S. DOE appliancethe Residential Energy Consumption Survey, or RECS (US DOE

Wenzel, T.P.

2010-01-01T23:59:59.000Z

354

Federal Energy Management Program: Develop an Institutional Change Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Develop an Develop an Institutional Change Action Plan for Sustainability to someone by E-mail Share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Facebook Tweet about Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Twitter Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Google Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Delicious Rank Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Digg Find More places to share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on AddThis.com...

355

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

356

University of California Energy Institute The California Electricity Market  

E-Print Network [OSTI]

University of California Energy Institute The California Electricity Market: What a long strange trip it's been #12;University of California Energy Institute Market Organization in California · ISO an `imbalance' energy (spot) market · Power Exchange (PX) runs day ahead and hour ahead energy markets · Other

California at Berkeley. University of

357

University of Geneva, Institute for Environmental Sciences, Energy Group  

E-Print Network [OSTI]

environment. Project and job description: Given the intermittency of many renewable energy sources (e.g. solarUniversity of Geneva, Institute for Environmental Sciences, Energy Group At the Institute of energy storage technologies. The successful applicant will become member of the Energy Group within

Halazonetis, Thanos

358

Fact Sheet: Detection and Analysis of Threats to the Energy Sector (DATES)  

Broader source: Energy.gov (indexed) [DOE]

Detection and Analysis of Threats Detection and Analysis of Threats to the Energy Sector (DATES) A groundbreaking integrated capability in intrusion detection, security event management, and sector-wide threat analysis Detecting cyber attacks against digital control systems quickly and accurately is essential to energy sector security. Current intrusion detection systems (IDS) continuously scan control system communication paths and alert operators of suspicious network traffic. But existing IDS, often not tailored to the control environment, typically offer limited attack response capability and frequently produce false alarms or fail to alert. Without carefully deployed monitoring, these devices can produce an overwhelming number of alarms

359

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

contacts: Unions and trade associations Energy EfficiencyThird-party and Trade Association Programs supporting Energycontractors and trades, utility ratepayer-funded energy

Goldman, Charles A.

2010-01-01T23:59:59.000Z

360

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

and Renewable Energy (EERE) of Department of Energy (DOE),1985-2004 period in the U.S. (EERE, 2006). k W h / s q u a r

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


362

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

delivered energy consumption by LDVs is tempered by more stringent standards for vehicle GHG emissions through model year (MY) 2016 and fuel economy through MY 2020. Energy demand...

363

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why  

Broader source: Energy.gov [DOE]

Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011.

364

User:GregZiebold/Sector test | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Ocean Renewable Energy Services Vehicles Wind energy Retrieved from "http:en.openei.orgwindex.php?titleUser:GregZieboldSectortest&oldid20763...

365

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

Sustainable Energy Resource Management Community or Technical College EESS Workforce Educationsustainable energy field. This certificate will not provide an individual without prior education

Goldman, Charles A.

2010-01-01T23:59:59.000Z

366

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

consumption from Energy Star monitor savings calculator (USconsumption and savings percentage from Energy Star restaurant guide (USEnergy Star restaurant guide (US EPA 2007b). E15) Baseline consumption

Brown, Rich

2008-01-01T23:59:59.000Z

367

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

368

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

Product: Commercial Steam Cookers. Washington, DC: USEPA. 2004. ENERGY STAR Gas Steam Cooker Savings Calculator [source: Energy Star gas steam cooker savings calculator (US

Brown, Rich

2008-01-01T23:59:59.000Z

369

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

370

Electric Power Research Institute Cooperation to Increase Energy  

Broader source: Energy.gov (indexed) [DOE]

Research Institute Cooperation to Increase Energy Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric Power Research Institute Cooperation to Increase Energy

371

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

372

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar incentive programs, direct subsidies for energy efficiency audits and projects,solar contactors are not in business of selling energy efficiency, when in fact a hybrid projectprojects with an energy component likely for energy efficiency measures even more so than for solar

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

373

Climate VISION: Private Sector Initiatives: Electric Power - Energy  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use

374

Climate VISION: Private Sector Initiatives: Lime - Energy Management  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use

375

Measuring plant level energy efficiency in China's energy sector in the presence of allocative inefficiency  

Science Journals Connector (OSTI)

Abstract Most studies on measuring China's energy efficiency were conducted in the framework of the input-oriented Data Envelopment Analysis. This approach generally calculates the technical efficiency by shrinking all the input factors equally proportionally subject to the observed output still being producible. Thus, all the input factor efficiencies, including the energy efficiency, are measured as the technical efficiency. One drawback of this approach is the presumption of an identical input factor frontier for all input factors and of unrestricted factor substitutability. The present study employs a stochastic frontier analysis approach to measuring energy efficiency that not only allows for non-identical input factor frontiers, but also controls for the effects on the measure of energy efficiency of substitution away from energy or substitution of energy for non-energy factors. This approach is applied to evaluating the efficiency performances of three types of energy amongst a sample of coal mines, petroleum refineries and power plants in China's energy sector which is specifically targeted by the Chinese government to improve energy efficiency.

Baiding Hu

2014-01-01T23:59:59.000Z

376

Danish Technological Institute | Open Energy Information  

Open Energy Info (EERE)

Product: DTI develops, applies and disseminates research- and technologically-based knowledge for the Danish and International business sector. It also we carries out consultancy...

377

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

378

Renewable energy sector development in the Caribbean: Current trends and lessons from history  

E-Print Network [OSTI]

Renewable energy sector development in the Caribbean: Current trends and lessons from history considerations for an enabling regional energy policy framework. a r t i c l e i n f o Article history: Received Rebekah Shirley a , Daniel Kammen a,b,n a Energy and Resources Group, University of California, 310

Kammen, Daniel M.

379

Energy Sector Framework Implementation Guidance Notice of Stakeholder Participation: Federal Register Notice Volume 79, No.- 119 June 20, 2014  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) invites public participation in DOEs efforts to develop a guidance document entitled: Energy Sector Framework Implementation Guidance.

380

Energy Sector Cybersecurity Framework Implementation Guidance- Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014  

Broader source: Energy.gov [DOE]

The Department of Energy invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014.

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Louisville Private Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

382

Classification Training Institute Catalog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Classification » Classification Training Institute » Services » Classification » Classification Training Institute » Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog Training & Reference Materials Online Classified or Controlled Information Mini-Lessons Classified Information Training Unclassified Controlled Nuclear Information Training Official Use Only Training OpenNet Training Training For Other Agency Personnel Classification Training Institute Catalog Enforcement Guidance Oversight Reporting Security Classification Classification Training Institute Official Use Only Information Unclassified Controlled Nuclear Information (UCNI) Statutes, Regulations, & Directives Nuclear Safety Assistance Training Outreach & Collaboration

383

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2011 to 2040 figure data Population growth affects energy use through increases in housing, commercial floorspace, transportation, and economic activity. The effects can be mitigated, however, as the structure and efficiency of the U.S. economy change. In the AEO2013 Reference case, U.S. population increases by 0.9 percent per year from 2011 to 2040; the economy, as measured by GDP, increases at an average annual rate of 2.5 percent; and total energy consumption increases by 0.3 percent per year. As a result, energy intensity, measured both as energy use per person and as energy use per dollar of GDP, declines through the projection period (Figure 52). The decline in energy use per capita is brought about largely by gains in

384

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2011 to 2040 figure data Population growth affects energy use through increases in housing, commercial floorspace, transportation, and economic activity. The effects can be mitigated, however, as the structure and efficiency of the U.S. economy change. In the AEO2013 Reference case, U.S. population increases by 0.9 percent per year from 2011 to 2040; the economy, as measured by GDP, increases at an average annual rate of 2.5 percent; and total energy consumption increases by 0.3 percent per year. As a result, energy intensity, measured both as energy use per person and as energy use per dollar of GDP, declines through the projection period (Figure 52). The decline in energy use per capita is brought about largely by gains in

385

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand On This Page U.S. average energy use... Industrial and commercial... Renewable sources... Transportation uses... U.S. average energy use per person and per dollar of GDP declines through 2035 Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to

386

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases On This Page The National Energy Modeling... Component modules Annual Energy Outlook 2011... The National Energy Modeling System The projections in the Annual Energy Outlook 2011 (AEO2011) are generated from the National Energy Modeling System (NEMS) [1], developed and maintained by the Office of Energy Analysis (OEA), formerly known as the Office Integrated Analysis and Forecasting (OIAF), of the U.S. Energy Information Administration (EIA) [2]. In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups,

387

The Energy and Resources Institute (TERI) Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

388

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

389

India-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

India-NAMA Programme for the Construction Sector in Asia India-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name India-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country India Southern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

390

Indonesia-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Indonesia-NAMA Programme for the Construction Sector in Asia Indonesia-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Indonesia-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Indonesia South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

391

NAMA-Programme for the construction sector in Asia | Open Energy  

Open Energy Info (EERE)

NAMA-Programme for the construction sector in Asia NAMA-Programme for the construction sector in Asia Jump to: navigation, search Name NAMA-Programme for the construction sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country China, India, Indonesia, Malaysia, Philippines, Thailand, Vietnam Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with

392

Thailand-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Thailand-NAMA Programme for the Construction Sector in Asia Thailand-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Thailand-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Thailand South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

393

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 31, ORNL-6987 (Oak Ridge, TN: July 2012), Chapter 2, Table 2.1, U.S. Consumption of Total Energy...

394

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

395

Energy efficiency in the domestic sector, what can utilities do?  

Science Journals Connector (OSTI)

Back in April 1994, during a stimulating workshop on Energy Futures organized by the strategic think-tank of the European Commission s Energy Directorate, a relevant question was raised.

Angelo Camplani

1999-01-01T23:59:59.000Z

396

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Residential Dishwashers Hot Water Motor, Booster, Total Min.Clothes Washers Hot Water Motor Database Year Min. EnergyUS DOE 1990b. Hot water energy and motor, booster and dryer

Wenzel, T.P.

2010-01-01T23:59:59.000Z

397

Institutional Change Basics for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Areas » Institutional Change » Institutional Change Program Areas » Institutional Change » Institutional Change Basics for Sustainability Institutional Change Basics for Sustainability October 8, 2013 - 10:55am Addthis Training Available Graphic of the eTraining logo Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to meet sustainability goals by completing this FEMP eTraining course. Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies, and policies are used effectively in meeting energy and

398

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Renewable Energy (USDOE/EERE). 2009. U. S. Buildings EnergyRenewable Energy (USDOE/EERE), 2010. States activities andin the manufacturing sector (USDOE/EERE, 2010). Industry (

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

399

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity On This Page Residential and... Coal-fired plants... Most new capacity... Annual capacity... Growth in generating... Costs and regulatory... EPACT2005 tax... Biomass and wind... Renewable capacity... State portfolio... Electricity use... Real Growth in... Improved interconn... Residential and commercial sectors dominate electricity demand growth Electricity demand growth has slowed in each decade since the 1950s. After 9.8-percent annual growth in the 1950s, demand (including retail sales and direct use) increased 2.4 percent per year in the 1990s. From 2000 to 2009 (including the 2008-2009 economic downturn) demand grew by 0.5 percent per year. In the Reference case, electricity demand growth rebounds but remains relatively slow, as growing demand for electricity services is offset by

400

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Electric Power exec summary Executive Summary The EPA is expected to enact several key regulations in the coming decade that will have an impact on the U.S. power sector, particularly the fleet of coal-fired power plants. Because the rules have not yet been finalized, their impacts cannot be fully analyzed, and they are not included in the Reference case. However, AEO2011 does include several alternative cases that examine the sensitivity of power generation markets to various assumed requirements for environmental retrofits. In addition, a case with an explicit price on CO2 emissions is also examined. See more Mkt trends Market Trends Electricity demand growth has slowed in each decade since the 1950s. After 9.8-percent annual growth in the 1950s, demand (including retail sales and

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand Mkt trends Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and appliances take effect (Figure 55). See more figure data Reference Case Tables

402

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

International energy International energy On This Page Non-OECD nations account... U.S. reliance on imported... Oil price cases depict... Liquids demand in developing... Unconventional liquids gain... Non-OECD nations account for 84 percent of growth in world energy use EIA's International Energy Outlook shows world marketed energy consumption increasing strongly over the projection period, rising by nearly 50 percent from 2009 through 2035 (Figure 50). Most of the growth occurs in emerging economies outside the Organization for Economic Cooperation and Development (OECD), especially in non-OECD Asia. Total non-OECD energy use increases by 84 percent in the Reference case, compared with a 14-percent increase in the developed OECD nations. figure data Energy use in non-OECD Asia, led by China and India, shows the most robust

403

Gujarat Energy Research and Management Institute Institute of Seismological Research  

E-Print Network [OSTI]

High Tea 09:40-10:00 #12;#12;#12;SECOND INDO-AUSTRALIAN GEOTHERMAL ENERGY BUILDING CAPACITY-Australian Geothermal Energy Building Capacity workshop was held on 3rd September 2010 at National Geophysical Research in identification of a deep borehole target for exploitation of geothermal energy for electrical power generation

Harinarayana, T.

404

Energy Department - Electric Power Research Institute Cooperation to  

Broader source: Energy.gov (indexed) [DOE]

Energy Department - Electric Power Research Institute Cooperation Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 11:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

405

Energy Department - Electric Power Research Institute Cooperation to  

Broader source: Energy.gov (indexed) [DOE]

Energy Department - Electric Power Research Institute Cooperation Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

406

Energy market integration and regional institutions in east Asia  

Science Journals Connector (OSTI)

Abstract This article assesses the case made for energy market integration in East Asia by comparing the role of institutions in South East Asia and North East Asia. The types and functions of institutions and their overall structure are examined in light of global energy market trends. In South East Asia, the shift attempted by ASEAN towards more competitive markets is hampered by the remaining statist variants of the trade institution and bilateral energy diplomacy, which, as regards transaction cost functions, are sub-optimal. As for institutions with order-creating functions, the unresolved status of sovereignty within ASEAN hampers regulatory harmonisation; the great power management institution has since ASEAN?s establishment reduced conflicts without providing decisive leadership conducive to integration. North East Asia?s dependence on global energy markets overshadows the regional integration potential of the diverse liberalisation efforts and interconnection projects. Bilateral energy diplomacies, new trilateral institutions combined with Track Two institutions and remaining great power competition co-exist. In both regions the institutional structure allows for step-wise, technical infrastructure integration. The environmental stewardship institution co-exists with statist energy security and development objectives while it supports cooperation on green energy. The overall structure of informal institutions constrains deeper energy market integration in several ways.

Pami Aalto

2014-01-01T23:59:59.000Z

407

The Energy and Resources Institute (TERI) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Logo: The Energy and Resources Institute (TERI) Name The Energy and Resources Institute (TERI) Address Darbari Seth Block, IHC Complex, Lodhi Road Place New Delhi, India Coordinates 28.635308°, 77.22496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.635308,"lon":77.22496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Renewable Energy for Rural Development in Ethiopia: The Case for New Energy Policies and Institutional Reform. Energy Policy 30  

E-Print Network [OSTI]

This article argues the case for introducing new energy policies in Ethiopia that will ensure energy initiatives for rural development meet the desired expectations. A review of the rural energy sector in Ethiopia is presented. Rural communities have for centuries relied solely on traditional biomass energy sources, human and animal power. In addition, sample findings show that the basic stock of traditional biomass energy resources is dwindling fast for two reasons: one, due to rapid population growth; and two, due to the absence of energy substitutes for traditional energy sources. Renewable energy technologies (RETs) and other modern energy technologies are almost non-existent. In terms of budgetary allocation, rural energy development has not received a fair share of public investment in comparison to education, rural road construction and health. A key policy recommendation made in this article is the need for commitment from concerned authorities to the use of renewables for spurring rural development. This could be through increasing the budget allocation to rural energy, which is currently negligible. Other policy recommendations include the modification of existing institutional frameworks for rural energy delivery, and the design and implementation of appropriate rural energy initiatives suitable for productive activities and sustainable development.

W. Wolde-ghiorgis

2002-01-01T23:59:59.000Z

409

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

or certificate program on green buildings or discussed asand Control Systems Green Buildings, LEED & Energy Starhave also developed green building or sustainability

Goldman, Charles A.

2010-01-01T23:59:59.000Z

410

List of Companies in Services Sector | Open Energy Information  

Open Energy Info (EERE)

Techno Centre Pvt Ltd Kawar Energy Kawasaki Plant Systems Ltd Kelman Ltd Kinarot Jordan Valley Technological Incubator King Machine & Tool Co. Kornic Glory Co Ltd Kosmo Solar...

411

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Heat of reaction Steam, heating and losses Fractionation and compression Separation Total Note: Primary energy includes electricity generation, transmission, and distribution losses

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

412

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 30, ORNL-6986 (Oak Ridge, TN: June 2011), Chapter 4, "Light Vehicles and Characteristics," website...

413

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

414

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

air conditioning Industrial Assessment Centers Internationalof Energy Industrial Assessment Centers have been aexample of the Industrial Assessment Centers 33 (IAC) and

Goldman, Charles A.

2010-01-01T23:59:59.000Z

415

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Gas Market Survey: 1995. AHAM, Association of Home ApplianceEnergy Efficiency and Consumption Trends. Chicago: AHAM.AHAM, Association of Home Appliance Manufacturers. 1996.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

416

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Japan and Europe but not elsewhere Wind power leads rise in world renewable generation, solar power also grows rapidly Reference Case Tables Table 1. Total Energy Supply,...

417

Activities to Secure Control Systems in the Energy Sector | Department...  

Broader source: Energy.gov (indexed) [DOE]

Group (FUPWG) Fall 2008 meeting-covers North American energy infrastructure, SCADA architecture, cyber threat trends, roadmaps, and more. fupwgfall08kenchington.pdf More...

418

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

419

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

were anticipating and planning for a growing workforce. Forand planning centers that emphasize education/training needed for energy efficiency program design and implementation. EESS Workforceand Planning and MIT Energy Initiative College/University National Association of Home Builders (NAHB) Green Building for Building Professionals Association EESS Workforce

Goldman, Charles A.

2010-01-01T23:59:59.000Z

420

Institutions in European and Asian energy markets: A methodological overview  

Science Journals Connector (OSTI)

Abstract This article introduces a methodological framework to study institutions in European and Asian energy markets with a comparative case study on the EU and east Asia. A distinction is made between informal and three types of formal institutions; and their transaction cost reducing, order creating and ecological/climatic functions. The operation of energy markets is explained through the structure of institutions, their types and functions. It is found that order-creating institutions guarantee enough stability, (mutual) trust and solidarity among EU Member States to support the competitive markets institution and supranational formal institutions as the underpinnings of trade in the internal energy market, which nevertheless retains some corporatist features. In the east Asian markets the nature of order-creating institutions sovereignty, energy diplomacy and great power management prevents the emergence of supranational formal institutions and a shared idea of trade. The prevailing structure has a large number of sub-regional organisations with overlapping tasks and few powers. In both markets the functions of institutions signify more than their number; transaction cost reducing institutions are dependent on order-creating institutions, while both of these functions are better realised on the regional level than ecological/climatic functions; ultimately informal institutions are most influential.

Pami Aalto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

;"Energy Research Issue" The IAE has many groups researching various fields of energy related issues. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http

Takada, Shoji

422

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Focus Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special interest, including significant changes in assumptions and recent developments in technologies for energy production and consumption. Detailed quantitative results are available in Appendix D. The first topic updates a discussion included in the Annual Energy Outlook 2011 (AEO2011) that compared the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to sunset as they would under current law. The other case assumes the extension or expansion of a

423

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

424

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

425

Energy Sector Stakeholders Attend the Department of Energy¬タルs 2010 Cybersecurity for Energy Delivery Systems Peer Review  

Broader source: Energy.gov (indexed) [DOE]

Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review July 29, 2010 The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project- presented DOE-supported efforts involving secured SCADA communications and smart grid applications,

426

Working Toward a Tech Sector that Reflects America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America February 1, 2013 - 1:51pm Addthis Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Valerie Jarrett Senior Advisor to President Barack Obama Editor's Note: This blog was orginially published on whitehouse.gov Yesterday, I had the pleasure of speaking at the Technology Inclusion Summit, hosted by Chief Technology Officer Todd Park, the Office of Science and Technology Policy, and the Level Playing Field Institute. It was an amazing gathering of private and public partners who are united in their

427

Working Toward a Tech Sector that Reflects America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America February 1, 2013 - 1:51pm Addthis Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Valerie Jarrett Senior Advisor to President Barack Obama Editor's Note: This blog was orginially published on whitehouse.gov Yesterday, I had the pleasure of speaking at the Technology Inclusion Summit, hosted by Chief Technology Officer Todd Park, the Office of Science and Technology Policy, and the Level Playing Field Institute. It was an amazing gathering of private and public partners who are united in their

428

Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective  

Science Journals Connector (OSTI)

Abstract In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China.

Xianshuo Xu; Tao Zhao; Nan Liu; Jidong Kang

2014-01-01T23:59:59.000Z

429

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

430

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special significance, including changes in assumptions and recent developments in technologies for energy production and consumption. Selected quantitative results are available in Appendix D. The first topic updates a discussion included in a number of previous AEOs that compared the Reference case to the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to terminate as they would under current law. The other case assumes the extension or expansion

431

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

Stephane de la Rue du Can, Sinton, J. , Worrell, E. , Zhou,Press, Cambridge: UK Sinton, J.E. , Fridley, D.G. , Levine,No. 4, September, 1996. Sinton, J. , 2001. Changing Energy

2008-01-01T23:59:59.000Z

432

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

rate paid at the utilitys avoided cost. Results of theroughly to the utilitys avoided cost of energy. Details anda reasonable value for the avoided cost of residential PV

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

433

Manufacturing Energy and Carbon Footprint - Sector: Iron and...  

Energy Savers [EERE]

6 1 369 0 2 3 39 30 8 48 15 81 120 11 5 1 1,043 581 201 0 5 12 Conventional Boilers 71 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Machine Drive...

434

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

Efficiency and Renewable Energy (EERE), Weatherization andBeckley and Mark Bailey (DOE EERE) and Larry Mansueti (DOECEE CEEBS CEM COMNET DOE EE EERE EESS EIA ESCO EUCI FTE FY

Goldman, Charles A.

2010-01-01T23:59:59.000Z

435

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special significance, including changes in assumptions and recent developments in technologies for energy production and consumption. Selected quantitative results are available in Appendix D. The first topic updates a discussion included in a number of previous AEOs that compared the Reference case to the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to terminate as they would under current law. The other case assumes the extension or expansion

436

Mitigation Possibilities in the Energy Sector An Arctic Perspective  

Science Journals Connector (OSTI)

There are vast utilisable wind energy resources in the Arctic frequently located in ... example in the Mountain areas in Sweden and Norway, and in the Northwest of Russia. Large wind resources are also found in t...

Maria Pettersson

2009-01-01T23:59:59.000Z

437

Electric Power Research Institute Cooperation to Increase Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Research Institute Cooperation to Increase Energy Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods.

438

Energy Department - Electric Power Research Institute Cooperation to  

Broader source: Energy.gov (indexed) [DOE]

- Electric Power Research Institute Cooperation - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

439

LBL-40297 UC-1600 ENERGY DATA SOURCEBOOK FOR THE U.S. RESIDENTIAL SECTOR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40297 40297 UC-1600 ENERGY DATA SOURCEBOOK FOR THE U.S. RESIDENTIAL SECTOR Tom P. Wenzel, Jonathan G. Koomey, Gregory J. Rosenquist, Marla Sanchez, and James W. Hanford September 1997 Energy Analysis Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 http://enduse.lbl.gov/Projects/RED.html This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs of the U.S. Department of Energy under Contract No. DE-AC03- 76SF00098. i ABSTRACT Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous

440

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book [EERE]

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

442

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in focus Issues in focus Table 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

443

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

4. Key analyses from "Issues in focus" in recent AEOs 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

444

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

445

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

446

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

447

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

See most recent version of AEO See most recent version of AEO Annual Energy Outlook Products - Archive Annual Energy Outlook Supplement Tables Assumptions NEM System (NEMS): An Overview NEMS Retrospective Early Release HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF 2013 2013 2013 2013 2012 2012 2012 2012 2012 2012 2011 2011 2011 2011 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2009 2009 2009 2009 2009 2009 2009 2009 2009 2008 2008 2008 2008 2008 2008 2009 2008 2008 2008 2008 2007 2007 2007 2007 2007

448

Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report  

SciTech Connect (OSTI)

This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

Zinaman, O.; Miller, M.; Bazilian, M.

2014-04-01T23:59:59.000Z

449

Restructuring the Indian power sector with energy conservation as the motive for economic and environmental benefits  

SciTech Connect (OSTI)

India's strong economic performance of recent years requires continuing effort from the newly formed Government to widen the ambit of economic reform. Though the Government has given higher priority for the power development projects, the Indian Power sector is struggling with formidable difficulties of meeting the heavy demands of electricity due to higher amount of power losses and energy thefts. To give a supporting hand to the Government, this paper suggests restructuring of the Power sector with energy conservation as the main motive to achieve economical and environmental benefits. The capabilities of the Energy Conservation Policies developed are illustrated via tests by three distinct ways on a State Grid alike Test System and the test results confirm the suitability of the proposed policies for real-time implementation on the Indian Power Sector.

Palanichamy, C.; Chelvan, R.K.; Babu, N.S.; Nadarajan, C.

1999-12-01T23:59:59.000Z

450

Carbon Market Opportunities for the Forestry Sector of Africa | Open Energy  

Open Energy Info (EERE)

Carbon Market Opportunities for the Forestry Sector of Africa Carbon Market Opportunities for the Forestry Sector of Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Market Opportunities for the Forestry Sector of Africa Agency/Company /Organization: Food and Agriculture Organization of the United Nations, Winrock International Sector: Land Focus Area: Renewable Energy, Forestry Topics: Implementation, Policies/deployment programs Resource Type: Presentation Website: www.winrock.org/ecosystems/files/Winrock_FAO_Carbon_opportunities_in_A UN Region: "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

451

Vietnam-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Vietnam-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Vietnam-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Vietnam South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with

452

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

an Energy-Efficient Economy. Hanford, J.W. and Y . J. Huang.Laboratory. LBL-33101. Hanford, J.W. , J.G. Koomey, L.E.97. Ritschard, R. L. , J.W. Hanford, and A.O. Sezgen. 1992a.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

453

Fraunhofer Institute for Solar Energy Systems (ISE) | Open Energy  

Open Energy Info (EERE)

Solar Energy Systems (ISE) Solar Energy Systems (ISE) Jump to: navigation, search Name Fraunhofer Institute for Solar Energy Systems (ISE) Place Freiburg, Germany Website http://www.ise.fraunhofer.de/ Coordinates 47.9971865°, 7.8537668° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9971865,"lon":7.8537668,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Beilstein-Institut Reflections on Energy Conversion in  

E-Print Network [OSTI]

Beilstein-Institut Reflections on Energy Conversion in Biological and Biomimetic Systems Athel by conversion of the heat into work, chemical energy or electrical power, and the inevitable energy losses 2011 Abstract In principle any form of energy (light, electrical, potential, chemical, kinetic energy

455

Catalog, Classification Training Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Catalog, Classification Training Institute Catalog, Classification Training Institute Catalog, Classification Training Institute December 2012 2013 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has undertaken the establishment and maintenance of a comprehensive classification and declassification education program. The training and education program is perpetually evolving with new courses and special briefings as events dictate. Basic courses that are in constant demand are described in this course catalog. Other more specialized courses and briefings have been developed and are available on an "as needed" basis. Classification Training Institute (CTI) 2013 Catalog can be viewed below:

456

Catalog, Classification Training Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Catalog, Classification Training Institute Catalog, Classification Training Institute Catalog, Classification Training Institute December 2012 2013 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has undertaken the establishment and maintenance of a comprehensive classification and declassification education program. The training and education program is perpetually evolving with new courses and special briefings as events dictate. Basic courses that are in constant demand are described in this course catalog. Other more specialized courses and briefings have been developed and are available on an "as needed" basis. Classification Training Institute (CTI) 2013 Catalog can be viewed below:

457

Ethiopian Development Research Institute | Open Energy Information  

Open Energy Info (EERE)

Development Research Institute Address: Ethiopia References: http:www.edri.org.ethome.php EDRI was established in August 1999 by the Ethiopian government with the mission to:...

458

Stockholm Environment Institute (SEI) | Open Energy Information  

Open Energy Info (EERE)

vulnerability and governance, as well as specific problems such as water resources and air pollution.2 References Stockholm Environment Institute 2.0 2.1 About SEI...

459

Clean Energy Manufacturing Innovation Institute for Composites...  

Office of Environmental Management (EM)

composites. The Institute will target continuous or discontinuous, primarily carbon and glass fiber systems, with thermoset or thermoplastic resin materials. These types of...

460

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates 3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates State Target Qualifying renewables Qualifying other (thermal, efficiency, nonrenewable distributed generation, etc.) Compliance mechanisms AZ 15% by 2025 Solar, wind, biomass, hydropower, landfill gas (LFG), anaerobic digestion built after January 1, 1997 Direct use of solar heat, ground-source heat pumps, and renewable-fueled combined heat and power (CHP), cogeneration, and fuel cells Credit trading is allowed, with some bundling restrictions. Includes distributed generation requirement, starting at 5% of target in 2007, growing to 30% in 2012 and beyond. CA 33% by 2020 Solar, wind, biomass, geothermal, LFG and municipal solid waste (MSW), small hydro, biodiesel, anaerobic digestion, and marine Energy storage Credit trading is allowed, with some restrictions. Renewable energy credit prices are capped at $50 per megawatthour.

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2011 cases Reference Baseline economic growth (2.7 percent per year from 2009 through 2035), world oil price, and technology assumptions. Complete projection tables in Appendix A. World light, sweet crude oil prices rise to about $125 per barrel by 2035 in year 2009 dollars. Assumes RFS target to be met as soon as possible. Fully integrated Low Economic Growth Real GDP grows at an average annual rate of 2.1 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated High Economic Growth Real GDP grows at an average annual rate of 3.2 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated

462

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates 3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates State Target Qualifying renewables Qualifying other (thermal, efficiency, nonrenewable distributed generation, etc.) Compliance mechanisms AZ 15% by 2025 Solar, wind, biomass, hydropower, landfill gas (LFG), anaerobic digestion built after January 1, 1997 Direct use of solar heat, ground-source heat pumps, and renewable-fueled combined heat and power (CHP), cogeneration, and fuel cells Credit trading is allowed, with some bundling restrictions. Includes distributed generation requirement, starting at 5% of target in 2007, growing to 30% in 2012 and beyond. CA 33% by 2020 Solar, wind, biomass, geothermal, LFG and municipal solid waste (MSW), small hydro, biodiesel, anaerobic digestion, and marine Energy storage Credit trading is allowed, with some restrictions. Renewable energy credit prices are capped at $50 per megawatthour.

463

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2012 cases Reference Baseline economic growth (2.5 percent per year from 2010 through 2035), oil price, and technology assumptions. Complete projection tables in Appendix A. Light, sweet crude oil prices rise to about $145 per barrel (2010 dollars) in 2035. Assumes RFS target to be met as soon as possible. Low Economic Growth Real GDP grows at an average annual rate of 2.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.. High Economic Growth Real GDP grows at an average annual rate of 3.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.

464

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

465

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book [EERE]

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

466

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

467

Coal exports may make Australia's energy sector among least sustainable  

SciTech Connect (OSTI)

Plentiful coal and cheap energy prices have resulted in an unusually heavy carbon footprint. Clearly, Australia has to rethink how much coal it will use to feed its own growing economy while becoming more conscious of its significant carbon export problem. For a country long used to digging the coal out of the ground and shipping it overseas, climate change will be a game changer.

NONE

2009-11-15T23:59:59.000Z

468

Profiles in Renewable Energy: Case Studies of Successful Utility-Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Projects The Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Falls Wood-Fired Plant Washington Power Company Regulatory Changes Spur Wood-Fired Plant Grayling Generating Station Decker Energy International, Inc. Community Partnership Leads to Waste-Burning Plant Bristol Waste-to-Energy Plant Ogden Martin Systems Geothermal Geothermal Loan Encourages New Power Industry Ormesa Geothermal Complex OESI Power Corporation (Orman Group) Project Consolidation Rescues Geothermal Development Dixie Valley Project Oxbow Geothermal (Oxbow Corporation) Hydropower Run-of-River Plant Minimizes Environmental Impacts Sidney A. Murray Hydroelectric Station Catalyst Energy Corporation

469

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book [EERE]

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

470

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

471

World Institute for Nuclear Security Launch | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

472

World Institute for Nuclear Security Launch | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institute for Nuclear Security Launch Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

473

Institut fur Solartechnologien GmbH IST | Open Energy Information  

Open Energy Info (EERE)

Institut fur Solartechnologien GmbH IST Institut fur Solartechnologien GmbH IST Jump to: navigation, search Name Institut fur Solartechnologien GmbH (IST) Place Frankfurt, Germany Zip D-15236 Sector Solar Product Solar technology research institute, founded in 1994. Coordinates 50.112065°, 8.683415° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.112065,"lon":8.683415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect (OSTI)

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

475

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

to energy conservation. The Springfield, Illinois Cityof Illinois, 1977. Public Reactions to Wind Energy Devices.

York, C.M.

2011-01-01T23:59:59.000Z

476

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

9 9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018 1,982 2019 1,973 2020 1,963 2021 1,961 2022 1,964 2023 1,962 2024 1,959 2025 1,957 2026 1,959 2027 1,960 2028 1,953 2029 1,938 2030 1,932 2031 1,937 2032 1,946 2033 1,956 2034 1,967 2035 1,978 Source(s): Average Expenditure EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2, p. 3-

477

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

478

Overseas Development Institute | Open Energy Information  

Open Energy Info (EERE)

Overseas Development Institute Overseas Development Institute Jump to: navigation, search Logo: Overseas Development Institute Name Overseas Development Institute Address Overseas Development Institute 111 Westminster Bridge Road Place London, United Kingdom Phone number +44 (0)20 7922 0300 Website http://www.odi.org.uk/default. Coordinates 51.4993346°, -0.1133956° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.4993346,"lon":-0.1133956,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

World Resources Institute (WRI) | Open Energy Information  

Open Energy Info (EERE)

Resources Institute (WRI) Resources Institute (WRI) (Redirected from World Resources Institute) Jump to: navigation, search Logo: World Resources Institute Name World Resources Institute Address 10 G Street, NE (Suite 800) Place Washington, District of Columbia Zip 20002 Year founded 1982 Phone number (202) 729-7600 Coordinates 38.8989821°, -77.0081139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8989821,"lon":-77.0081139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

Note: This page contains sample records for the topic "institute sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book [EERE]

1 1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - - Engine/Turbine Generators 6% 2004 2,447 2,507 Consulting/Master Planning 3% 2005 2,949 3,004 Other 2% 2006 3,579 3,627 2007 - - 2008 4,087 4,171 Note(s): Source(s): Estimated Revenue ($Million Nominal) (1) 2008 Revenue Sources 1) Estimates based on surveys of major ESCOs and input from industry experts. 2) Includes municipal and state governments, universities

482

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

483

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Description of battery-powered electric vehicles 0. Description of battery-powered electric vehicles Vehicle type Description Micro or "mild" hybrid Vehicles with ICEs, larger batteries, and electrically powered auxiliary systems that allow the engine to be turned off when the vehicle is coasting or idle and then be quickly restarted. Regenerative braking recharges the batteries but does not provide power to the wheels for traction. Micro and mild hybrids are not connected to the electrical grid for recharging and are not considered as HEVs in this analysis. Full hybrid electric (HEV) Vehicles that combine an internal combustion engine with electric propulsion from an electric motor and battery. The vehicle battery is recharged by capturing some of the energy lost during braking. Stored energy is used to eliminate engine operation during idle, operate the vehicle at slow speeds for limited distances, and assist the ICE drivetrain throughout its drive cycle. Full HEV systems are configured in parallel, series, or power split systems, depending on how power is delivered to the drivetrain. HEVs are not connected to the electric grid for recharging.

484

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

485

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Title Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Publication Type Conference Proceedings Year of Publication 2008 Authors Selkowitz, Stephen E., Jessica Granderson, Philip Haves, Paul A. Mathew, and Jeffrey P. Harris Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Asilomar, California, USA Abstract It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings.

486

Two Paths to Transforming Markets through Public Sector EnergyEfficiency: Bottom Up versus Top Down  

SciTech Connect (OSTI)

The evolution of government purchasing initiatives in Mexicoand China, part of the PEPS (Promoting an Energy-efficient Public Sector)program, demonstrates the need for flexibility in designingenergy-efficiency strategies in the public sector. Several years ofpursuing a top-down (federally led) strategy in