Powered by Deep Web Technologies
Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Instantaneous Power Radiated from Magnetic Dipole Moments  

E-Print Network [OSTI]

We compute the power radiated per unit solid angle of a moving magnetic dipole moment, and its instantaneous radiated power, both non-relativistically and relativistically. This is then applied to various interesting situations: solar neutrons, electron synchrotrons and cosmological Dirac neutrinos. Concerning the latter, we show that hypothesized early-universe Big Bang conditions allow for neutrino radiation cooling and provide an energy loss-mechanism for subsequent neutrino condensation.

Peter D. Morley; Douglas J. Buettner

2014-07-04T23:59:59.000Z

2

Radiative Flux Analysis  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

Long, Chuck [NOAA

3

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

4

Radiation from Kinetic Poynting Flux Acceleration  

E-Print Network [OSTI]

We derive analytic formulas for the power output and critical frequency of radiation by electrons accelerated by relativistic kinetic Poynting flux, and validate these results with Particle-In-Cell plasma simulations. We find that the in-situ radiation power output and critical frequency are much below those predicted by the classical synchrotron formulae. We discuss potential astrophysical applications of these results.

Edison Liang; Koichi Noguchi

2007-11-18T23:59:59.000Z

5

Constructing Instantaneous  

E-Print Network [OSTI]

Lecture 3: Constructing Instantaneous Codes Sam Roweis September 19, 2005 Review: Course Content of content). . Both problems involve two distinct tasks: 1) Modeling. We have to represent the stochastic­Zi#,gzip,PPM) which combine modeling and coding together. Review: Mathematical Setup . A stochastic source emits

Roweis, Sam

6

Design of a differential radiometer for atmospheric radiative flux measurements  

SciTech Connect (OSTI)

The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

1994-11-01T23:59:59.000Z

7

ENTROPY PRODUCTION AND RADIATION ENTROPY FLUX OF THE EARTH SYSTEM  

E-Print Network [OSTI]

the assumption of an isotropic gray-body Earth and isotropic reflecting TOA shortwave (SW) radiation. It is shown entropy flux can be improved by relaxing the commonly used Lambertian assumption. __________ NOTICE- 98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript

8

Total aerosol effect: forcing or radiative flux perturbation?  

SciTech Connect (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

9

Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating theDepartmentSensitivity of Radiative Fluxes and

10

Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent Solar-like Convection  

E-Print Network [OSTI]

We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch (2011, Astrophys. J., 741, 11; 2013, Solar Phys., 287, 239), now taking into account the influence of radiative heating on flux tubes of large-scale active regions. Our simulations show that flux tubes of less than or equal to 60 kG subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward due to the increased buoyancy of the flux tube earlier in its evolution as a result of the inclusion of radiative diffusion. Flux tubes of magnetic fie...

Weber, Maria A

2015-01-01T23:59:59.000Z

11

Numerical analysis of the coherent radiation emission by two stacked Josephson flux-flow oscillators  

SciTech Connect (OSTI)

The numerical investigation of the radiation emission by a system of two magnetically coupled, long Josephson junctions is reported. Time-dependent synchronized voltage response in the flux-flow regime is analyzed for the case of in-phase and out-of-phase oscillations in the junctions. Simulations show that Josephson junctions operating in the in-phase flux-flow mode may generate rf radiation power by a factor of more than 4 larger than that of a single Josephson junction. The radiation in the out-of-phase flux-flow mode is characterized by nearly completely suppressed amplitudes of odd harmonics and considerably damped even harmonics as compared to that of a single barrier junction. The dependence of the radiation power on the parameter spread between the junctions is investigated. The advantages of using stacked Josephson junctions as oscillators for the sub-mm wave band are discussed. {copyright} {ital 1996 American Institute of Physics.}

Wallraff, A.; Goldobin, E.; Ustinov, A.V. [Institute of Thin Film and Ion Technology, Research Center Juelich (KFA), D-52425 (Germany)] [Institute of Thin Film and Ion Technology, Research Center Juelich (KFA), D-52425 (Germany)

1996-12-01T23:59:59.000Z

12

Photodegradation effects in materials exposed to high flux solar and solar simulated radiation  

SciTech Connect (OSTI)

This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number_sign}304 as a prototypical stainless steel system.

Ignatiev, A. [Houston Univ., TX (United States)

1992-04-01T23:59:59.000Z

13

Photodegradation effects in materials exposed to high flux solar and solar simulated radiation  

SciTech Connect (OSTI)

This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number sign}304 as a prototypical stainless steel system.

Ignatiev, A [Houston Univ., TX (United States)

1992-04-01T23:59:59.000Z

14

Three-dimensional discrete ordinates radiation transport calculations of neutron fluxes for beginning-of-cycle at several pressure vessel surveillance positions in the high flux isotope reactor  

SciTech Connect (OSTI)

The objective of this research was to determine improved thermal, epithermal, and fast fluxes and several responses at mechanical test surveillance location keys 2, 4, 5, and 7 of the pressure vessel of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) for the beginning of the fuel cycle. The purpose of the research was to provide essential flux data in support of radiation embrittlement studies of the pressure vessel shell and beam tubes at some of the important locations.

Pace, J.V. III; Slater, C.O.; Smith, M.S.

1993-11-01T23:59:59.000Z

15

The prototype of a detector for monitoring the cosmic radiation neutron flux on ground  

SciTech Connect (OSTI)

This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio [Instituto de Estudos Avancados - IEAv/DCTA - Sao Jose dos Campos, SP (Brazil); Semmler, Renato [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP - Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

16

Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement  

E-Print Network [OSTI]

Radiative transfer plays a key role in the star formation process. Due to a high computational cost, radiation-hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multi-frequency radiation-hydrodynamics models have started to emerge, in an attempt to better account for the large variations of opacities as a function of frequency. We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy proto-stellar collapse calculations. Due to prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit solver based on a stabilised bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approximation. We present a series of tests which demonstrate the high performance of our scheme in dealing with frequency-dependent radiation-hydrodynamic flows. We also present a preliminary simulation of a three-dimensional p...

González, Matthias; Commerçon, Benoît; Masson, Jacques

2015-01-01T23:59:59.000Z

17

Back-reaction of the Hawking radiation flux on a gravitationally collapsing star II: Fireworks instead of firewalls  

E-Print Network [OSTI]

A star collapsing gravitationally into a black hole emits a flux of radiation, knowns as Hawking radiation. When the initial state of a quantum field on the background of the star, is placed in the Unruh vacuum in the far past, then Hawking radiation corresponds to a flux of positive energy radiation travelling outwards to future infinity. The evaporation of the collapsing star can be equivalently described as a negative energy flux of radiation travelling radially inwards towards the center of the star. Here, we are interested in the evolution of the star during its collapse. Thus we include the backreaction of the negative energy Hawking flux in the interior geometry of the collapsing star and solve the full 4-dimensional Einstein and hydrodynamical equations numerically. We find that Hawking radiation emitted just before the star passes through its Schwarzschild radius slows down the collapse of the star and substantially reduces its mass thus the star bounces before reaching the horizon. The area radius starts increasing after the bounce. Beyond this point our program breaks down due to shell crossing. We find that the star stops collapsing at a finite radius larger than its horizon, turns around and its core explodes. This study provides a more realistic investigation of the backreaction of Hawking radiation on the collapsing star, that was first presented in [1].

Laura Mersini-Houghton; Harald P. Pfeiffer

2014-09-05T23:59:59.000Z

18

Computing Instantaneous Frequency by normalizing Hilbert Transform  

DOE Patents [OSTI]

This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

Huang, Norden E.

2005-05-31T23:59:59.000Z

19

Fish Population and Behavior Revealed by Instantaneous  

E-Print Network [OSTI]

Fish Population and Behavior Revealed by Instantaneous Continental Shelf­Scale Imaging Nicholas C-transect methods from slow-moving research vessels. These methods significantly undersample fish populations in time and space, leaving an incomplete and ambiguous record of abundance and behavior. We show that fish

20

Effect of radiation flux on test particle motion in the Vaidya spacetime  

E-Print Network [OSTI]

Motion of massive test particles in the nonvacuum spherically symmetric radiating Vaidya spacetime is investigated, allowing for physical interaction of the particles with the radiation field in terms of which the source energy-momentum tensor is interpreted. This "Poynting-Robertson-like effect" is modeled by the usual effective term describing a Thomson-type radiation drag force. The equations of motion are studied for simple types of motion including free motion (without interaction), purely radial and purely azimuthal (circular) motion, and for the particular case of "static" equilibrium; appropriate solutions are given where possible. The results---mainly those on the possible existence of equilibrium positions---are compared with their counterparts obtained previously for a test spherically symmetric radiation field in a vacuum Schwarzschild background.

Donato Bini; Andrea Geralico; Robert T. Jantzen; Oldrich Semerák

2014-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Investigation of radiation flux in certain band via the preheat of aluminum sample  

SciTech Connect (OSTI)

Quantitative evaluation of the fractions of high energy x-rays in a hohlraum is crucial to the indirect driven-drive scheme of inertial confinement fusion and many other applications in high energy density physics. Preheat of a sample due to x-rays sensitively depends on optical thin photons. Analyzing the motion of a sample due to preheat can thus provide valuable information of those x-rays. In this article, we propose a method to infer the temporal evolution of the x-ray fluxes in the bands of our interest. By matching the simulation results to the motions of an aluminum sample, we can infer the time-resolved x-ray fluxes around the aluminum K-edge and the gold M-band inside the hohlraum.

Zhang, Chen [Department of Modern Physics, CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China) [Department of Modern Physics, CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China); Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Zhebin; Wang, Feng; Peng, Xiaoshi; Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)] [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Zhao, Bin; Hu, Guangyue; Zheng, Jian [Department of Modern Physics, CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)] [Department of Modern Physics, CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)

2013-12-15T23:59:59.000Z

22

On Some Properties of Instantaneous Active and Reactive Powers  

E-Print Network [OSTI]

On Some Properties of Instantaneous Active and Reactive Powers Leszek S. CZARNECKI, Fellow IEEE Louisiana State University, USA Abstract: Some features of the instantaneous active and reactive powers p control. Also it was shown that the instantaneous reactive power q cannot be interpreted as a measure

Czarnecki, Leszek S.

23

Comparison of different global information sources used in surface radiative flux calculation  

E-Print Network [OSTI]

), the Laboratoire de Me´te´orologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project surface albedos in the near-infrared remain poorly constrained (highly uncertain), they do not cause too

24

Instantaneous monitoring of heart beat dynamics during anesthesia and sedation  

E-Print Network [OSTI]

Anesthesia-induced altered arousal depends on drugs having their effect in specific brain regions. These effects are also reflected in autonomic nervous system (ANS) outflow dynamics. To this extent, instantaneous monitoring ...

Valenza, Gaetano

25

Contrasting the direct radiative effect and direct radiative forcing of aerosols  

E-Print Network [OSTI]

The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

Heald, Colette L.

26

Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source  

E-Print Network [OSTI]

Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation Simon.ozerov@telecom-paristech.fr Abstract. The underdetermined blind audio source separation prob- lem is often addressed in the time. Other approaches which are not blind assume a more structured model, like the Spectral Gaussian Mixture

Paris-Sud XI, Université de

27

Smart Grid Voltage Sag Detection using Instantaneous Features Extraction  

E-Print Network [OSTI]

Smart Grid Voltage Sag Detection using Instantaneous Features Extraction Yassine Amirat, Mohamed Benbouzid, Tianzhen Wang and Sylvie Turri Abstract--Smart grids have initiated a radical reappraisal, and effective use of the network are indexed as the most important keys for smart grid expansion and deployment

Boyer, Edmond

28

MEASUREMENT OF CIRCUMSOLAR RADIATION - STATUS REPORT  

E-Print Network [OSTI]

15, 1976. "Circumsolar Radiation Data for Central Receiverdata on the instantaneous values of circum- solar radiation andradiation over the course of a day, month or year; and 3) detailed data

Grether, D.F.

2011-01-01T23:59:59.000Z

29

Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility  

SciTech Connect (OSTI)

The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

Salah, Wa'el [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan); Department of Physics, The Hashemite University, Zarqa 13115 (Jordan); Sanchez del Rio, M. [European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France); Hoorani, H. [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan)

2009-09-15T23:59:59.000Z

30

Study on Total Instantaneous Blockage Accident for CEFR  

SciTech Connect (OSTI)

Chinese Experimental Fast Reactor (CEFR) is under construction in China. It is essential to investigate core disruptive accidents (CDAs) for the evaluation of CEFR's safety characteristic. Accident of total instantaneous blockage in single assembly scale had already been modeled and analyzed. The degradation scenario had been calculated by a fluid-dynamics analysis code for liquid-metal fast reactors (LMFRs). For further investigation of accident process and influence to the near bundles, the seven assembly scale were then simulated and calculated. Total instantaneous blockage was assumed to occur in the center assembly under normal operating conditions and consequences to neighboring assemblies were studied. The result shows that the key events such as sodium boiling, clad melting, fuel particles relocation, hexcan failure and melt discharge into neighboring six assemblies symmetrically were adequately simulated. All the key events appeared in the same sequence as the single assembly simulation, while hexcan failure occurred later than that of single assembly simulation. The reason for the different timing may be the boundary condition assumption can influence the heat removal from the blocked assembly. The seven-assembly scale model can reduce the boundary condition's uncertainties and help to give a better understanding and prediction of hypothetical accident scenario in subassembly blockage accidents for CEFR. (authors)

Zhe Wang; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

31

Detecting solar chameleons through radiation pressure  

E-Print Network [OSTI]

Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

Baum, S; Hoffmann, D H H; Karuza, M; Semertzidis, Y K; Upadhye, A; Zioutas, K

2014-01-01T23:59:59.000Z

32

Cross-Fertilization between Spallation Neutron Source and Third Generation Synchrotron Radiation Detectors  

SciTech Connect (OSTI)

Suffering presently from relatively low source strengths compared to synchrotron radiation investigations, neutron scattering methods will greatly benefit from the increase of instantaneous flux attained at the next generation of pulsed spallation neutron sources. In particular at ESS, the strongest projected source, the counting rate load on the detectors will rise by factors of up to 50-150 in comparison with present generic instruments. For these sources the detector requirements overlap partly with those for modern synchrotron radiation detectors as far as counting rate capability and two-dimensional position resolution are concerned. In this paper, examples of the current and forthcoming detector development, comprising e.g. novel solutions for low-pressure micro-strip gas chamber detectors, for silicon micro-strip detectors and for the related front-end ASICs and data acquisition (DAQ) systems, are summarized, which will be of interest for detection of synchrotron radiation as well.

Gebauer, B.; Schulz, Ch.; Alimov, S.S.; Wilpert, Th. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Levchanovsky, F.V. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation); Litvinenko, E.I.; Nikiforov, A.S. [Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation)

2004-05-12T23:59:59.000Z

33

Near-Core and In-Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements  

SciTech Connect (OSTI)

MPFDs are a new class of detectors that utilize properties from existing radiation detector designs. A majority of these characteristics come from fission chamber designs. These include radiation hardness, gamma-ray background insensitivity, and large signal output.

Douglas S. McGregor; Marvin L. Adams; Igor Carron; Paul Nelson

2006-06-12T23:59:59.000Z

34

Instantaneous Action at a Distance in a Holistic Universe  

E-Print Network [OSTI]

The early work of Lorentz, Abraham and others, evolved through the work of Fokker, Dirac and others to ultimately culminate in the Feynman- Wheeler direct action at a distance theory. However this theory has encountered certain conceptual difficulties like non-locality in time, self force of the electron, pre acceleration and the perfect absorption condition of Feynman and Wheeler, that is the instantaneous action of the remaining charges in the universe on the charge in question. More recently, Hoyle and Narlikar have resurrected this theory, but within the context of a Steady State or Quasi Steady State cosmology. They argue that the theory infact has a better standing than the generally accepted quantum theoretic description. In this article we consider a quantum theoretic description and a cosmology which parallels the Hoyle-Narlikar approach. This leads to a synthesis and justification of the Dirac and Feynman-Wheeler approaches, clarifying the conceptual problems in the process. We deduce a scenario with quantized space-time and a holistic cosmology, consistent with physical and astrophysical data. The non-locality is now seen to be meaningful within the minimum space-time intervals, as also the perfect absorption within the holistic description. Local realism, and the usual causal field theory are seen to have an underpinning of direct action. For example this is brought out by the virtual photons which mediate interactions in Quantum Electro Dynamics, and the emergence of the inverse square law in the above approach from a background Zero Point Field.

B. G. Sidharth

1998-12-01T23:59:59.000Z

35

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect (OSTI)

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

36

A method of obtaining instantaneous plots of antenna field patterns  

E-Print Network [OSTI]

CERTAIN AMOUNT OF POWER AVAILABLE TO BE RADIATED AND SINCE THE RECEIVED ENERGYA UNDER CERTAIN ADVERSE CONDITIONS' AT A GIVEN POINT OF RECEPTION VARIES INVERSELY AS THE FOURTH POWER OF THE DISTANCE/ THE COIvIMERCIAL COMMUNICATION COM- PANIES SOON...

McMillin, John Maurice

1950-01-01T23:59:59.000Z

37

Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits  

E-Print Network [OSTI]

The angular momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to non-linear memory. We average the angular momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular momentum flux provides the final input needed for gravitational wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order $e^2$. This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-Newtonian results with the numerical relativity simulations of the plunge and merger of eccentric binaries.

K. G. Arun; Luc Blanchet; Bala R. Iyer; Siddhartha Sinha

2009-12-16T23:59:59.000Z

38

09/02/2011 16:08Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere Page 1 of 2http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verbo...2%2054369834%20%2fdata2%2fepubs%2fwais%2fdata%2ffm10%2f  

E-Print Network [OSTI]

%2054369834%20%2fdata2%2fepubs%2fwais%2fdata%2ffm10%2ffm10.txt 2010 Fall Meeting Search Results Cite abstracts as Author is termed AARDDVARK (Antarctic-Arctic Radiation-belt (Dynamic) Deposition - VLF Atmospheric Research fluxes from the observations of this network, which is termed AARDDVARK (Antarctic-Arctic Radiation

Ulich, Thomas

39

Fish population and behavior revealed by instantaneous continental-shelf scale imaging  

E-Print Network [OSTI]

The application of a technique to instantaneously image and continuously monitor the abundance, spatial distribution, and behavior of fish populations over thousands of square kilometers using Ocean Acoustic Waveguide ...

Symonds, Deanelle T

2008-01-01T23:59:59.000Z

40

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 19, OCTOBER 1, 2010 1437 Instantaneous Microwave Frequency Measurement  

E-Print Network [OSTI]

accuracy better than 0.2 GHz is experimentally demonstrated. Index Terms--Electronic warfare, instantaneous, polarization modulator. I. INTRODUCTION I N the field of electronic warfare, it is important to analyze

Yao, Jianping

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...  

Open Energy Info (EERE)

statistical regression of EC energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line),...

42

Performance Evaluation of Undulator Radiation at CEBAF  

SciTech Connect (OSTI)

The performance of undulator radiation (UR) at CEBAF with a 3.5 m helical undulator is evaluated and compared with APS undulator-A radiation in terms of brilliance, peak brilliance, spectral flux, flux density and intensity distribution.

Chuyu Liu, Geoffrey Krafft, Guimei Wang

2010-05-01T23:59:59.000Z

43

Estimates of the effect of a plasma momentum flux on the free surface of a thin film of liquid metal  

SciTech Connect (OSTI)

The idea of using a flowing thin film of liquid metal (LM) to protect the divertor surface of a tokamak from untimely erosion and radiation damage has gained some attention over the years but has met with criticism on several key issues. One such issue in particular is the effect the momentum flux of a very obliquely incident plasma particle stream on the shape of the free surface of LM. This momentum may push to LM to one side of the duct and cause the formation of dry spots no longer protected from the plasma beam. It is this issue that this paper addresses in the air of a first approximation. Estimates are made of the magnitude and direction of the flux of plasma momentum at the LM divertor surface. The effect of this flux is modeled with a modified version of the ordinary fluid dynamics code RIPPLE, designed for transient free surface fluid flow problems in which surface tension plays an important role. Initial results indicate that in the OHD approximation, ITER-like magnitudes of the momentum flux are comparable to the hydrostatic pressure of a thin LM film. The momentum can have a significant effect on the form of the free surface, causing both significant splashing as well as shifting of the LM to one side of the channel. Due to the inertial nature of this problem, movement of the metal cannot occur instantaneously and a maximum exposure time of the LM to the plasma, as a function of momentum flux magnitude and direction, is defined and estimated from the results of RIPPLE predictions. Full MHD calculations, while beyond the scope of this initial assessment, will be required to more fully and accurately characterize this effect.

Morley, N.B.; Gaizer, A.A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

44

FREQUENCY DOMAIN INSTANTANEOUS WAVENUMBER ESTIMATION FOR DAMAGE QUANTIFICATION IN LAYERED PLATE STRUCTURES  

E-Print Network [OSTI]

FREQUENCY DOMAIN INSTANTANEOUS WAVENUMBER ESTIMATION FOR DAMAGE QUANTIFICATION IN LAYERED PLATE, US 3 G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA of promising techniques for the identification and the characterization of damage in plate structures. Among

Boyer, Edmond

45

Respiratory Oxygen Uptake Is Not Decreased by an Instantaneous Elevation of [CO2], But Is Increased with  

E-Print Network [OSTI]

of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratoryRespiratory Oxygen Uptake Is Not Decreased by an Instantaneous Elevation of [CO2], But Is Increased an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts

DeLucia, Evan H.

46

Fast flux locked loop  

DOE Patents [OSTI]

A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-09-10T23:59:59.000Z

47

Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps  

E-Print Network [OSTI]

Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time- amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences, and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a chi-square goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

Alexander Stroeer; Lindy Blackburn; Jordan Camp

2011-05-24T23:59:59.000Z

48

"Instantaneous superluminality" in a bimetallic wire consisting of a superconducting aluminum wire plated with a thick copper covering  

E-Print Network [OSTI]

Maxwell's equations applied to a superconducting wire (aluminum) covered with a thick nonsuperconducting sheath (copper), in combination with the superfluid velocity equation for Cooper pairs which obeys DeWitt's minimal coupling rule, implies an instantaneous streamline flow that leads to the phenomenon of "instantaneous superluminality," in which a Cooper pair can disappear from the left end of the wire and instantaneously reappear at the right end of the wire. Relativistic causality is not violated by this superluminal phenomenon, which involves analytic, finite bandwidth waveforms whose spectrum lies below the BCS gap frequency. Experiments are proposed to test these ideas.

R. Y. Chiao

2010-11-14T23:59:59.000Z

49

Pulse flux measuring device  

DOE Patents [OSTI]

A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

Riggan, William C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

50

High-Flux Microchannel Solar Receiver  

Broader source: Energy.gov [DOE]

This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

51

PUBLISHED ONLINE: 21 JULY 2013 | DOI: 10.1038/NMAT3711 User-interactive electronic skin for instantaneous  

E-Print Network [OSTI]

diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting

California at Irvine, University of

52

ARM - PI Product - Radiative Flux Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethaneProductsCSSEFProductsMerged

53

Plutonium radiation surrogate  

DOE Patents [OSTI]

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

54

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

55

Six-Week Time Series Of Eddy Covariance CO2 Flux At Mammoth Mountain...  

Open Energy Info (EERE)

statistical regression of EC energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line),...

56

Radiative effects of the smoke clouds from the Kuwait oil fires  

SciTech Connect (OSTI)

The radiative effects of the smoke from the Kuwait oil fires were assessed by measuring downwelling and upwelling solar flux, as well as spectral solar extinction beneath, above, and within the smoke plume. Seven radiation flight missions were undertaken between May 16 and June 2, 1991, to characterize the plume between the source region in Kuwait and approximately 200 km south, near Manama, Bahrain. The authors present results from one flight representative of conditions of the composite plume. On May 18, 1991, in a homogeneous, well-mixed region of smoke approximately 100 km downstream of the fires, visible optical depths as high as 2 were measured, at which time transmission to the surface was 8%, while 78% of the solar radiation was absorbed by the smoke. The calculated instantaneous heating rate inside the plume reached 24 K/d. While these effects are probably typical of those regions in the Persian Gulf area directly covered by the smoke, there is no evidence to suggest significant climatic effects in other regions. 13 refs., 3 figs., 1 tab.

Pilewskie, P.; Valero, F.P.J. [NASA/Ames Research Center, Moffett Field, CA (United States)

1992-09-20T23:59:59.000Z

57

High-Flux Stress Testing of Encapsulants for Medium-Concentration CPV Applications  

SciTech Connect (OSTI)

This study involved developing methods to expose transparent encapsulant materials to high (40 to 45 UV suns) optical fluxes of UV radiation to enable rapid evaluation of materials.

Kempe, M. D.; Kilkenny, M.; Moricone, T. J.; Zhang, J. Z.

2009-09-01T23:59:59.000Z

58

Instantaneous and efficient surface wave excitation of a low pressure gas or gases  

DOE Patents [OSTI]

A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

Levy, Donald J. (Berkeley, CA); Berman, Samuel M. (San Francisco, CA)

1988-01-01T23:59:59.000Z

59

Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes  

E-Print Network [OSTI]

In quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schroedinger equation can be mapped to solutions of the Schroedinger equation for harmonic potentials, both the trapping oscillator and the inverted 'oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time-dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-a 1,920 characters

Ole Steuernagel

2014-06-17T23:59:59.000Z

60

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view  

SciTech Connect (OSTI)

By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

Chen, Yu-Chun; Tang, Ping-Han [Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan (China)] [Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan (China); Wu, Ten-Ming, E-mail: tmw@faculty.nctu.edu.tw [Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan (China) [Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan (China); National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)

2013-11-28T23:59:59.000Z

62

Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with Current Limiter  

SciTech Connect (OSTI)

Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power is provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.

Xu, Yan [ORNL; Li, Huijuan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2010-01-01T23:59:59.000Z

63

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

64

IEEE Transactions on Power Delivery, Vol. 21, No.1, Jan. 2006, pp. 362-367. Instantaneous Reactive Power p-q Theory and Power Properties  

E-Print Network [OSTI]

IEEE Transactions on Power Delivery, Vol. 21, No.1, Jan. 2006, pp. 362-367. Instantaneous Reactive and interpreted by the Instantaneous Reactive Power (IRP) p-q Theory. The paper demonstrates that this theory misinterprets power properties of electrical systems or provides some results that at least defy a common sense

Czarnecki, Leszek S.

65

Solar Magnetic Flux Ropes  

E-Print Network [OSTI]

The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they loose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field which is estimated as decay index (n). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are therefore good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by the comparison of observed filament heights with...

Filippov, Boris; Srivastava, Abhishek K; Uddin, Wahab

2015-01-01T23:59:59.000Z

66

Divertor Heat Flux Mitigation in the National Spherical Torus Experiment  

SciTech Connect (OSTI)

Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

2008-08-04T23:59:59.000Z

67

Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite  

SciTech Connect (OSTI)

The theoretical studies shown here indicate that the best bands to measure and derive the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression are (1) the band between 800 and 1,200 cm{sup {minus}1} for OLR, (2) the band between 500 and 660 cm{sup {minus}1} or 660 and 800 cm{sup {minus}1} for SDF, and (3) the band between 660 and 800 cm{sup {minus}1} for CRs. These results are obtained from scatter plots of total fluxes and cooling rates associated with the various bands. The advanced very high resolution radiometer OLR is damped compared with the Nimbus 7 Earth radiation budget (ERB) OLR, which is derived from the broadband, narrow field of view ERB instrument, owing to its use of only one narrow band (centered around the 11-{mu}m window region) measurement.

Man-Li C. Wu (NASA Goddard Space Flight Center, Greenbelt, MD (United States))

1990-04-15T23:59:59.000Z

68

Optical heat flux gauge  

DOE Patents [OSTI]

A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

1991-04-09T23:59:59.000Z

69

Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical bulk Richardson number  

E-Print Network [OSTI]

Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical in the monthly mean surface energy budget and to investigate the behavior of turbulent heat fluxes under stable and one as the residual of the surface energy budget (i.e., subsurface heat fluxes minus net radiation

Walden, Von P.

70

ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

Cook, David

71

SYNCHROTRON RADIATION SOURCES  

SciTech Connect (OSTI)

Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

HULBERT,S.L.; WILLIAMS,G.P.

1998-07-01T23:59:59.000Z

72

HIGS Flux Performance Projection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux performance table

73

Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220237  

E-Print Network [OSTI]

discontinuities associated with the propagation of a radiation front in transient radiation transport. r 2005 q heat flux s geometric path length S source term in the radiative transfer equation t time tc timeJournal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220­237 Modified method

Pilon, Laurent

74

The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes  

E-Print Network [OSTI]

Diurnal sea surface warming affects the fluxes of latent heat, sensible heat, and upwelling longwave radiation. Diurnal warming most typically reaches maximum values of 3°C, although very localized events may reach 7°–8°C. ...

Clayson, Carol Anne

75

Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment  

E-Print Network [OSTI]

P1-030 Suppressed gross erosion of high-temperature lithium films under high-flux deuterium) and thick (~500 m) lithium films under high-flux deuterium and neon plasma bombardment were studied. For Ne plasmas, Li erosion rates inferred from measurements of Li-I radiation are consistent

Princeton Plasma Physics Laboratory

76

ECG-Derived Respiration and Instantaneous Frequency based on the Synchrosqueezing Transform: Application to Patients with Atrial Fibrillation  

E-Print Network [OSTI]

The acquisition of information about respiratory patterns without directly recording the respiratory signals would be beneficial in many clinical settings. The electrocardiogram (ECG)-derived respiration (EDR) algorithm, which derives the respiratory pattern by using the information encoded in ECG signals, enables data acquisition in this manner. However, the traditional EDR algorithm cannot be used in patients with atrial fibrillation (AF) because they have highly irregular heart rates. In this paper, we first provide a definition of ideal instantaneous frequency (IIF) of respiratory signals and then describe how a novel time-frequency representation technique referred to as the Synchrosqueezing transform (SST) was used for the accurate estimation of the IIF of respiratory signals, i.e., SST-IF. Then, we introduce a new EDR algorithm based on the evaluation of the SST-IF. We tested the applicability of our new EDR algorithm in patients with comorbid cardiovascular diseases, most of which were complicated by ...

Yi-Hsin, Chan; Shu-Shya, Hseu; Chi-Tai, Kuo; Yung-Hsin, Yeh

2011-01-01T23:59:59.000Z

77

Physics of String Flux Compactifications  

E-Print Network [OSTI]

We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.

Frederik Denef; Michael R. Douglas; Shamit Kachru

2007-01-06T23:59:59.000Z

78

Fluxes, Gaugings and Gaugino Condensates  

E-Print Network [OSTI]

Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.

J. -P. Derendinger; C. Kounnas; P. M. Petropoulos

2006-02-10T23:59:59.000Z

79

A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications  

E-Print Network [OSTI]

radiative heat flux through the grid element boundary ˆ sstair-case grid. Figure 5 shows the net radiative heat fluxgrid consisted of 6872 tetrahedral elements. The dimensionless radiative heat

He, Xing; Lee, Euntaek; Wilcox, Lucas; Munipalli, Ramakanth; Pilon, Laurent

2013-01-01T23:59:59.000Z

80

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES  

SciTech Connect (OSTI)

We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick 'adiabatic' regime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

Jacquet, Emmanuel [Laboratoire de Mineralogie et Cosmochimie de Museum (LMCM), CNRS and Museum National d'Histoire Naturelle, UMR 7202, 57 rue Cuvier, 75005 Paris (France); Krumholz, Mark R., E-mail: ejacquet@mnhn.fr, E-mail: krumholz@ucolick.org [Department of Astronomy, University of California, Santa Cruz, CA 95064 (United States)

2011-04-01T23:59:59.000Z

82

Heat flux solarimeter  

SciTech Connect (OSTI)

The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

2010-12-15T23:59:59.000Z

83

Simulation of plasmaneutral dynamics for radiation cooling  

E-Print Network [OSTI]

the heat flux effectively for future power plants. That is, radiation due to impurities will lower and increase the required pumping speed con- siderably in a power plant. In principle, the plasma energySimulation of plasma­neutral dynamics for radiation cooling Bong Ju Lee , F. Najmabadi Fusion

Najmabadi, Farrokh

84

Detecting gravity modes in the solar $^8B$ neutrino flux  

E-Print Network [OSTI]

The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the $^{8}B$ neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order $2$, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than $5.8\\times 10^{-4}$. This study clearly shows that due to their high sensitivity to the temperature, the $^8B$ neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the $^{8}B$ neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

Ilídio Lopes; Sylvaine Turck-Chièze

2014-08-28T23:59:59.000Z

85

The Directional Dependence of Apertures, Limits and Sensitivity of the Lunar Cherenkov Technique to a UHE Neutrino Flux  

E-Print Network [OSTI]

We use computer simulations to obtain the directional-dependence of the lunar Cherenkov technique for ultra-high energy (UHE) neutrino detection. We calculate the instantaneous effective area of past lunar Cherenkov experiments as a function of neutrino arrival direction, and hence the directional-dependence of the combined limit imposed by GLUE and the experiment at Parkes. We also determine the directional dependence of the aperture of future planned experiments with ATCA, ASKAP and the SKA to a UHE neutrino flux, and calculate the potential annual exposure to astronomical objects as a function of angular distance from the lunar trajectory through celestial coordinates.

C. W. James; R. J. Protheroe

2008-03-26T23:59:59.000Z

86

RADIATION MONITORING  

E-Print Network [OSTI]

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

87

Corrections to the mean-field model are needed to describe the instantaneous Coulombic interactions among the electrons. This is achieved by including more than one Slater  

E-Print Network [OSTI]

Chapter 19 Corrections to the mean-field model are needed to describe the instantaneous Coulombic-Fock (UHF) theory in which each spin-orbital i has its own orbital energy i and LCAO-MO coefficients C flexible than the single-determinant HF procedure are needed. In particular, it may be necessary to use

Simons, Jack

88

High Heat Flux Components Program  

SciTech Connect (OSTI)

Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

Whitley, J.B.

1983-01-01T23:59:59.000Z

89

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

SciTech Connect (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

90

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect (OSTI)

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

91

E-Print Network 3.0 - atmospheric longwave radiation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 1995, Dallas, TX. (56.12) THE GREENHOUSEEFFECT VISUALIZER Summary: to greenhouse effect is provided by subtracting the top of the atmosphere longwave radiation flux...

92

Entanglement-assisted electron microscopy based on a flux qubit  

SciTech Connect (OSTI)

A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

2014-02-10T23:59:59.000Z

93

The Solar Wind Energy Flux  

E-Print Network [OSTI]

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

94

Journal of Quantitative Spectroscopy & Radiative Transfer 94 (2005) 357371  

E-Print Network [OSTI]

rights reserved. Keywords: Time dependent radiation transport; M1 approximation; Multigroup models; Mean that solve the radiative transfer equation at a low cost. Among these models, we find diffusion, flux this equation, see [3] and [4]. The first three angular moments of the radiative intensity are defined as Eðn

Coudière, Yves

95

Examining How Radiative Fluxes Are Affected by Cloud and Particle  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScattering |Characteristics | U.S. DOE

96

ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOtherCF

97

Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ. Dudhia51 Posters7 Posters537

98

The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe RoadDavidof

99

Measurements and model calculations of radiative fluxes for the Cabauw  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG4, 2012magnetic

100

Transient critical heat flux and blowdown heat-transfer studies  

SciTech Connect (OSTI)

Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

Leung, J.C.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

THE USE OF THE ELECTRICAL CONDUCTIVITY OF GRAPHITE AS A RADIATION...  

Office of Scientific and Technical Information (OSTI)

THE USE OF THE ELECTRICAL CONDUCTIVITY OF GRAPHITE AS A RADIATION DAMAGE AND FLUX MONITOR. IMPLICATIONS OF THE RESULTS TO THE GENERAL THEORY OF RADIATION DAMAGE Re-direct...

102

Multiscale Interactions between Water and Carbon Fluxes and Environmental Variables in A Central U.S. Grassland  

E-Print Network [OSTI]

field in the central U.S. Time-series of the entropy of water and carbon fluxes exhibit pronounced annual cycles, primarily explained by the modulation of the diurnal flux amplitude by other variables, such as the net radiation. Entropies of soil...

Brunsell, Nathaniel A.; Wilson, Cassandra J.

2013-04-10T23:59:59.000Z

103

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

1991-04-09T23:59:59.000Z

104

Beta ray flux measuring device  

DOE Patents [OSTI]

A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

1990-01-01T23:59:59.000Z

105

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

106

Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability  

E-Print Network [OSTI]

Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both...

Boss, Alan P

2008-01-01T23:59:59.000Z

107

Danger radiations  

ScienceCinema (OSTI)

Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

108

Superconducting flux flow digital circuits  

DOE Patents [OSTI]

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

1995-02-14T23:59:59.000Z

109

Superconducting flux flow digital circuits  

DOE Patents [OSTI]

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

110

Experimental determination of radiated internal wave power without pressure field Frank M. Lee,1  

E-Print Network [OSTI]

= S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p is the perturbed pressure field, v to determine, using only velocity field data, the time-averaged energy flux J and total radiated power P) that can be used to compute the energy flux and power from any two-dimensional velocity field data. PACS

Morrison, Philip J.,

111

Plasma focus ion beam fluence and flux—For various gases  

SciTech Connect (OSTI)

A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

2013-06-15T23:59:59.000Z

112

Radiation source with shaped emission  

DOE Patents [OSTI]

Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

Kubiak, Glenn D.; Sweatt, William C.

2003-05-13T23:59:59.000Z

113

An Analysis of Fluxes by Duality  

E-Print Network [OSTI]

M-theory on K3xK3 with non-supersymmetry-breaking G-flux is dual to M-theory on a Calabi-Yau threefold times a 2-torus without flux. This allows for a thorough analysis of the effects of flux without relying on supergravity approximations. We discuss several dual pairs showing that the usual rules of G-flux compactifications work well in detail. We discuss how a transition can convert M2-branes into G-flux. We see how new effects can arise at short distances allowing fluxes to obstruct more moduli than one expects from the supergravity analysis.

Paul S. Aspinwall

2005-04-05T23:59:59.000Z

114

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

115

Reversal of Hugoniot locus for strong shocks due to radiation  

SciTech Connect (OSTI)

Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

2011-04-15T23:59:59.000Z

116

New solar opacities, abundances, helioseismology, and neutrino fluxes  

E-Print Network [OSTI]

We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances. We compare results from the new models with predictions of a series of models that use OPAL radiative opacities, older determinations of the surface heavy element abundances, and refinements of nuclear reaction rates. For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund et al. (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the 8B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9% experimental uncertainty and a 16% theoretical uncertainty, 1 sigma errors.

John N. Bahcall; Aldo M. Serenelli; Sarbani Basu

2005-01-19T23:59:59.000Z

117

Center vortices as composites of monopole fluxes  

E-Print Network [OSTI]

We study the relation between the flux of a center vortex obtained from the center vortex model and the flux formed between monopoles obtained from the Abelian gauge fixing method. Motivated by the Monte Carlo simulations which have shown that almost all monopoles are sitting on the top of vortices, we construct the fluxes of center vortices for $SU(2)$ and $SU(3)$ gauge groups using fractional fluxes of monopoles. Then, we compute the potentials in the fundamental representation induced by center vortices and fractional fluxes of monopoles. We show that by combining the fractional fluxes of monopoles one can produce the center vortex fluxes for $SU(3)$ gauge group in a "center vortex model". Comparing the potentials, we conclude that the fractional fluxes of monopoles attract each other.

Deldar, Sedigheh

2015-01-01T23:59:59.000Z

118

Today's Material Gauss' Law and Flux  

E-Print Network [OSTI]

by the contents of the box, the box must contain zero net electric charge. Slide 27-31 #12;Gauss' Law and Flux: · The Concept of Flux · Calculating Electric Flux · Symmetry · Gauss's Law · Using Gauss's Law · Conductors that the box must contain net positive electric charge. Slide 27-29 #12;© 2013 Pearson Education, Inc

Ashlock, Dan

119

DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement  

SciTech Connect (OSTI)

We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

Fobel, Ryan [Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9 (Canada) [Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9 (Canada); Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, Ontario M5S 3E1 (Canada); Fobel, Christian [School of Computer Science, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada)] [School of Computer Science, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada); Wheeler, Aaron R. [Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9 (Canada) [Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9 (Canada); Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, Ontario M5S 3E1 (Canada); Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6 (Canada)

2013-05-13T23:59:59.000Z

120

Fast Flux Test Facility final safety analysis report. Amendment 73  

SciTech Connect (OSTI)

This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

Gantt, D.A.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiation detector  

DOE Patents [OSTI]

Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

Fultz, Brent T. (Berkeley, CA)

1983-01-01T23:59:59.000Z

122

Radiation detector  

DOE Patents [OSTI]

Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

Fultz, B.T.

1980-12-05T23:59:59.000Z

123

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

124

Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability  

E-Print Network [OSTI]

Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both with and without the flux-limiter. These models suggest that the reason for the different outcomes of numerical models of disk instability by different groups cannot be attributed solely to the handling of radiative transfer, but rather appears to be caused by a range of numerical effects and assumptions. Given the observational imperative to have disk instability form at least some extrasolar planets, these models imply that disk instability remains as a viable giant planet formation mechanism.

Alan P. Boss

2008-01-28T23:59:59.000Z

125

CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

126

Integration of Novel Flux Coupling Motor and Current Source Inverter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling...

127

High Heat Flux Thermoelectric Module Using Standard Bulk Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

128

Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A: HandlingJeffersonThree-yearyears Earlyin

129

Radiation from an accelerated quark via AdS/CFT  

E-Print Network [OSTI]

In this paper we investigate radiation by an accelerated quark in a strongly coupled gauge theory via AdS/CFT correspondence. According to AdS/CFT dictionary, we can read off energy density or energy flux of the radiation from asymptotic gravitational field in AdS bulk sourced by an accelerated string trailing behind the quark. In the case of an oscillating quark with frequency $\\Omega$, we show that the time averaged energy density is asymptotically isotropic and it falls off as $(g_{\\text{YM}}^2 N)^{1/2} \\Omega^4/R^{2}$ with distance $R$ from the source. In a toy model of a scattered quark by an external field, we simply estimate Poynting vector by the bremsstrahlung radiation and show that the energy flux is anisotropic outgoing radiation. Based on these investigations, we discuss the properties of strongly coupled gauge theory radiation in comparison with electromagnetic radiation.

Kengo Maeda; Takashi Okamura

2008-04-20T23:59:59.000Z

130

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

131

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

132

Radiation-Dominated Disks Are Thermally Stable  

E-Print Network [OSTI]

When the accretion rate is more than a small fraction of Eddington, the inner regions of accretion disks around black holes are expected to be radiation-dominated. However, in the alpha-model, these regions are also expected to be thermally unstable. In this paper, we report two 3-d radiation MHD simulations of a vertically-stratified shearing box in which the ratio of radiation to gas pressure is ~ 10, and yet no thermal runaway occurs over a timespan ~ 40 cooling times. Where the time-averaged dissipation rate is greater than the critical dissipation rate that creates hydrostatic equilibrium by diffusive radiation flux, the time-averaged radiation flux is held to the critical value, with the excess dissipated energy transported by radiative advection. Although the stress and total pressure are well-correlated as predicted by the alpha-model, we show that stress fluctuations precede pressure fluctuations, contrary to the usual supposition that the pressure controls the saturation level of the magnetic energy. This fact explains the thermal stability. Using a simple toy-model, we show that independently-generated magnetic fluctuations can drive radiation pressure fluctuations, creating a correlation between the two while maintaining thermal stability.

Shigenobu Hirose; Julian H. Krolik; Omer Blaes

2008-09-10T23:59:59.000Z

133

Tropical Cloud Properties and Radiative Heating Profiles  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

Mather, James

134

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office  

E-Print Network [OSTI]

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office 130 DeSoto Street G-7 Parran with sources of ionizing radiation are required to be instructed in the basic principles of radiation protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide

Sibille, Etienne

135

Appendix G. Radiation Appendix G. Radiation  

E-Print Network [OSTI]

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

136

Black/White hole radiation from dispersive theories  

E-Print Network [OSTI]

We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Application to four dimensional black holes and Bose-Einstein condensates are in preparation.

Jean Macher; Renaud Parentani

2009-06-02T23:59:59.000Z

137

Radiative acceleration and transient, radiation-induced electric fields  

E-Print Network [OSTI]

The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of $10^{27}$ ${\\rm erg} {\\rm cm}^{-2} {\\rm s}^{-1}$, the radiative force on a diluted plasma ($n\\la 10^{11}$ cm$^{-3}$) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors $\\approx 100$, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.

L. Zampieri; R. Turolla; L. Foschini; A. Treves

2003-04-14T23:59:59.000Z

138

On solar neutrino fluxes in radiochemical experiments  

E-Print Network [OSTI]

We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

2005-12-08T23:59:59.000Z

139

Fluxing agent for metal cast joining  

DOE Patents [OSTI]

A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)

2002-11-05T23:59:59.000Z

140

Contribution of GRB Emission to the GeV Extragalactic Diffuse Gamma-Ray Flux  

E-Print Network [OSTI]

TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we evaluate the contribution of the GRB prompt and scattered emissions to the measured extragalactic gamma-ray flux. To estimate this contribution we optimistically require that the energy flux at TeV energies is about 10 times stronger than the energy flux at MeV energies. The resulting gamma-ray diffuse background is only a small fraction of what is observed, allowing blazars and other sources to give the dominant contribution.

S. Casanova; B. L. Dingus; Bing Zhang

2006-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Radiation Embrittlement Archive Project  

SciTech Connect (OSTI)

The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

Klasky, Hilda B [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Williams, Paul T [ORNL] [ORNL; Phillips, Rick [ORNL] [ORNL; Erickson, Marjorie A [ORNL] [ORNL; Kirk, Mark T [ORNL] [ORNL; Stevens, Gary L [ORNL] [ORNL

2013-01-01T23:59:59.000Z

142

Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.  

SciTech Connect (OSTI)

Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

Blanchat, Thomas K.; Hanks, Charles R.

2013-04-01T23:59:59.000Z

143

Radiation receiver  

DOE Patents [OSTI]

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

144

Radiation receiver  

DOE Patents [OSTI]

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

145

PHELIX for flux compression studies  

SciTech Connect (OSTI)

PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory

2010-06-28T23:59:59.000Z

146

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network [OSTI]

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÃ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

147

NEW SOURCES OF RADIATION  

E-Print Network [OSTI]

Stanford Synchrotron Radiation Project Report No. 75/07.IBL 79M0733 Fig. 20. Radiation emission pattern by electronsWinick, Stanford Synchrotron Radiation Laboratory. Fig. 21.

Schimmerling, W.

2010-01-01T23:59:59.000Z

148

Radiation-induced angiosarcoma  

E-Print Network [OSTI]

1a Figure 1b Figure 1. Radiation-induced angiosarcoma in afollowing completion of radiation therapy. Figure 2a Figurecell histiocytosis after radiation for breast carcinoma: can

Anzalone, C Lane; Cohen, Philip R; Diwan, Abdul H; Prieto, Victor G

2013-01-01T23:59:59.000Z

149

Radiation Protection Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

150

Nonlocal fluxes at a plasma sheath  

SciTech Connect (OSTI)

The particle and energy fluxes of electrons at the boundary of a plasma in contact with a perfectly absorbing plate are considered. In general, the fluxes are shown not to be determined by the plasma temperature and density at the plate but rather by a convolution of the plasma profiles in the vicinity of the plate. A simple empirical expression is proposed for the nonlocal fluxes, which approximately reproduces the results of a full kinetic calculation. The implications of this, to divertor plasmas near the neutralizer plate, are discussed.

Marchand, R.; Abou-Assaleh, Z.; Matte, J.P. (INRS-Energie, C. P. 1020, Varennes, Quebec, J3X 1S2, Canada (CA))

1990-06-01T23:59:59.000Z

151

Eddy Correlation Flux Measurement System (ECOR) Handbook  

SciTech Connect (OSTI)

The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

Cook, DR

2011-01-31T23:59:59.000Z

152

AIP/123-QED Experimental determination of radiated internal wave power without pressure field  

E-Print Network [OSTI]

S is given by, P = S d2 x J · ^n = S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p, using only velocity field data, the time-averaged energy flux J and total radiated power P for two the energy flux and power from any two-dimensional velocity field data. PACS numbers: Valid PACS appear here

Texas at Austin. University of

153

Remote sensing of soil radionuclide fluxes in a tropical ecosystem  

SciTech Connect (OSTI)

We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

1980-11-06T23:59:59.000Z

154

Evaluation of Arctic Broadband Surface Radiation Measurements  

SciTech Connect (OSTI)

The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

2012-02-24T23:59:59.000Z

155

Coherent Transition Radiation in Askaryan radio detectors  

E-Print Network [OSTI]

We discuss the coherent transition radiation emitted by a macroscopic bunch of particles with a net charge traversing the boundary of two different media. The obtained expression is compared to the emission from a relativistically moving steady charge, as well the emission from a time-varying charge or current. As a first application, we discuss the transition radiation from high-energy cosmic-ray induced air showers hitting Earth's surface before the cascade has died out in the atmosphere. The induced emission gives rise to a radio signal which should be detectable in the currently operating Askaryan radio detectors built to search for the GZK neutrino flux.

de Vries, Krijn D; van Eijndhoven, Nick; Meures, Thomas; O'Murchadha, Aongus; Scholten, Olaf

2015-01-01T23:59:59.000Z

156

Limit on the ultrahigh-energy cosmic-ray flux with the Westerbork synthesis radio telescope  

SciTech Connect (OSTI)

A particle cascade (shower) in a dielectric, for example, as initiated by an ultra-high-energy cosmic ray, will have an excess of electrons which will emit coherent Cerenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 10{sup 22} eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.

Veen, S. ter; James, C. W. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen (Netherlands); Buitink, S. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Falcke, H. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen (Netherlands); ASTRON, Dwingeloo, Post Office Box 2, 7990AA Dwingeloo (Netherlands); Mevius, M.; Scholten, O.; Vries, K. D. de [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen (Netherlands); Singh, K. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen (Netherlands); Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels (Belgium); Stappers, B. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2010-11-15T23:59:59.000Z

157

A low cost high flux solar simulator  

E-Print Network [OSTI]

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

Codd, Daniel S.

158

Tetrakis-amido high flux membranes  

DOE Patents [OSTI]

Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

McCray, S.B.

1989-10-24T23:59:59.000Z

159

Soft pion emission from fat flux tubes  

SciTech Connect (OSTI)

The emission of pions from multiquark flux tubes is examined as an explanation of the soft pion puzzle. Although the soft pion spectra from the decay of fat flux tubes can account for some low {ital p}{sub {perpendicular}} enhancement, the dependence on the number of involved quarks is too weak to provide a plausible explanation of the observed enhancement in the pion spectrum at low transverse momenta.

Kusnezov, D.; Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan (USA))

1991-08-01T23:59:59.000Z

160

Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary  

E-Print Network [OSTI]

Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers of methane, held to be responsible for 18% of the radiative forcing, to the atmosphere. Periods of lake but potentially one of the most important periods for methane emissions. We studied methane emissions using four

Wehrli, Bernhard

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?  

E-Print Network [OSTI]

Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

Overholt, A C; Atri, D

2015-01-01T23:59:59.000Z

162

Constraints on GRB TeV Emission from the GeV Extragalactic Diffuse Gamma-Ray Flux  

E-Print Network [OSTI]

TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we use the measured GeV extragalactic gamma-ray flux to set upper limits on the GRB emission in TeV gamma rays that is predicted in several models.

Casanova, S; Zhang, B; Zhang, Bing

2006-01-01T23:59:59.000Z

163

Novel Flux Coupling Machine without Permanent Magnets - U Machine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Flux Coupling Machine without Permanent Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle...

164

CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

165

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

166

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

167

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

168

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A...

169

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

170

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

171

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

172

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCHThermal SolarAllocatioBasics of Radiation Gamma

173

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

174

Adaptors for radiation detectors  

DOE Patents [OSTI]

Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

Livesay, Ronald Jason

2014-04-22T23:59:59.000Z

175

Super-radiance and flux conservation  

E-Print Network [OSTI]

The theoretical foundations of the phenomenon known as super-radiance still continues to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that super-radiance in a quantum field theory [QFT] context is not the same as super-radiance (super-fluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation, (and, in the presence of dissipation, a controlled amount of flux non-conservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of super-radiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both super-radiance and damping.

Petarpa Boonserm; Tritos Ngampitipan; Matt Visser

2014-07-28T23:59:59.000Z

176

Real Time Flux Control in PM Motors  

SciTech Connect (OSTI)

Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

Otaduy, P.J.

2005-09-27T23:59:59.000Z

177

7, 1324313269, 2007 EC fluxes of sea  

E-Print Network [OSTI]

of radiation, and hence the radiation budget near the surface, over the open oceans (Haywood et al., 1999 Discussions Eddy covariance measurements of sea spray particles over the Atlantic Ocean S. Norris1 , I. Brooks the literature. 1 Introduction Sea spray particles are salt water droplets ejected from the ocean. The aerosols15

Paris-Sud XI, Université de

178

Coronal mass ejections and magnetic flux buildup in the heliosphere  

E-Print Network [OSTI]

electron heat flux. The first panel shows the preeruption heliospheric flux, which consists of the an open the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high

California at Berkeley, University of

179

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks  

E-Print Network [OSTI]

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks Andreas Wallraff¨ulich (KFA) January 27, 1997 #12;#12; Contents Introduction 1 1 Basic properties of Josephson junctions 5 2 Electrodynamics in long Josephson junctions 11 3 Radiation emission by stacked flux­flow oscillators 29 1

Leonardo, Degiorgi

180

Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electronsa...  

E-Print Network [OSTI]

laser facilities in which the nature divergence and total x-ray flux of the betatron radiation has been is able to discern changes of the betatron emission x-ray spec- trum with differing laser parametersSpectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electronsa

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cloud properties and associated radiative heating rates in the tropical western Pacific  

E-Print Network [OSTI]

Cloud properties and associated radiative heating rates in the tropical western Pacific James H set of atmospheric remote sensing instruments at sites around the world, including three radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper

182

Plasma momentum meter for momentum flux measurements  

DOE Patents [OSTI]

Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

1993-01-01T23:59:59.000Z

183

Uniform flux dish concentrators for photovoltaic application  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have designed a unique and innovative molded dish concentrator capable of producing a uniform flux profile on a flat target plane. Concentration levels of 100--200 suns, which are uniform over an area of several square inches, can be directly achieved for collection apertures of a reasonable size ({approximately}1.5-m diameter). Such performance would be immediately applicable to photovoltaic (PV) use. Economic concerns have shown that the proposed approach would be less expensive thatn Fresnel lens concepts or other dish concentrator designs that require complicated and costly receivers to mix the flux to obtain a uniform distribution. 12 refs.

Jorgensen, G; Wendelin, T

1992-05-01T23:59:59.000Z

184

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND  

E-Print Network [OSTI]

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND RADIATION SAFETY MANUAL UNIVERSITY OF MARYLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Radiation Safety Committee (RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Radiation Safety Office (RSO

Rubloff, Gary W.

185

6, 52515268, 2006 Turbulent fluxes over  

E-Print Network [OSTI]

´exico, 04510 Mexico City, Mexico Received: 24 March 2006 ­ Accepted: 10 May 2006 ­ Published: 26 June 2006 wind speed conditions (up to 25 ms -1 ). The estimates of total momentum flux and turbulent kinetic energy can be represented very5 accurately (r2 =0.99, when data are binned every 1 ms-1 ) by empirical

Boyer, Edmond

186

Recommended Procedures for Measuring Radon Fluxes from  

E-Print Network [OSTI]

of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission#12;#12;Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual'nat the average annual l'elease of radon-222 from the disposal sites to t.he atmosp~1er0 by residuai radioactive

187

Radiation Control (Virginia)  

Broader source: Energy.gov [DOE]

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

188

Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations  

SciTech Connect (OSTI)

Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

Zou, Shiyang; Song, Peng; Pei, Wenbing [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Guo, Liang [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

2013-09-15T23:59:59.000Z

189

Simple Magnetic Flux Balance as an Indicator of Neon VIII Doppler Velocity Partitioning in an Equatorial Coronal Hole  

E-Print Network [OSTI]

We present a novel investigation into the relationship between simple estimates of magnetic flux balance and the Ne VIII Doppler velocity partitioning of a large equatorial coronal hole observed by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer (SUMER) on the Solar and Heliospheric Observatory (SOHO) in November 1999. We demonstrate that a considerable fraction of the large scale Doppler velocity pattern in the coronal hole can be qualitatively described by simple measures of the local magnetic field conditions, i.e., the relative unbalance of magnetic polarities and the radial distance required to balance local flux concentrations with those of opposite polarity.

Scott W. McIntosh; Alisdair R. Davey; Scott W. McIntosh

2006-05-22T23:59:59.000Z

190

Characterizing the hohlraum radiation via one-end driven experiments  

SciTech Connect (OSTI)

A new experiment is designed and performed on the Shenguang III laser facility with the first eight available beams to characterizing the hohlraum radiation, in which the hohlraum with laser entrance holes on both ends is driven through one-end only. The experiment enables us to identify the x-ray radiations originated from the hohlraum reemission wall and high-Z bubble plasmas utilizing their position and spectral characters, which provides a better test on the associated hohlraum models. The total and M-band x-ray radiation fluxes are measured with the flat response x-ray detectors and the filtered M-band x-ray detectors, respectively. Numerical simulations are conducted with the two-dimensional radiation hydrodynamic code LARED-INTEGRATION using the multi-group radiation transfer and/or diffusion models. It is found that the experimentally measured temporal profiles and angular distributions of hohlraum radiation are in good agreement with the predictions of simulation using radiation transfer models, but differ significantly from the results obtained with the multi-group radiation diffusion calculations. We thus note that to accurately represent the hohlraum radiation, a true radiation transfer model is essential.

Zhao, Yiqing; Zou, Shiyang, E-mail: zou-shiyang@iapacm.ac.cn [Institute of Applied Physics and Computational, Beijing 100094 (China); Li, Sanwei; Li, Zhichao; Guo, Liang [Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

2014-07-15T23:59:59.000Z

191

Additional measurements of the radiation environment at the Los Alamos Spallation Radiation Effects Facility at LAMPF  

SciTech Connect (OSTI)

Foil activation dosimetry experiments were conducted in a ''rabbit'' system at the completed Los Alamos Spallation Radiation Effects Facility (LASREF). The ''raffit'' system contains four tubes spaced radially outward 0.12, 0.18, 0.27, and 0.38 meters off beam centerline. Foils were irradiated for 3 to 62 hours to measure the neutron flux and energy spectrum radially from beam centerline, along the beamline, and the effect of the Isotope Production (IP) target loadings on the neutron flux in the neutron irradiation locations. Irradiations showed a decrease in the radial flux by a factor of 6 in 0.15 meters of iron outside the IP targets. An enchancement was seen in the 24-keV energy region outside 0.15 meters. There was little difference in the shape of the spectra outside the IP targets and the beam stop with the exception of the high energy tail (energies above 20 MeV). The decrease in the high energy tail outside the beam stop is due to the degradation of the energy of the proton beam in the IP targets. Irradiations outside the beam stop with zero and eight IP targets gave the same spectral shape with the exception of the high energy tail. The magnitude of the integral flux decreased by a factor of 2 when eight IP targets were present. Irradiations with five ''rabbits'' stacked on top of each other showed no difference in the integral flux below, on and above beam centerline.

Davidson, D.R.; Reedy, R.C.; Greenwood, L.R.; Sommer, W.F.; Wechsler, M.S.

1986-01-01T23:59:59.000Z

192

The effect of nonuniform axial heat flux distribution on the critical heat flux  

E-Print Network [OSTI]

A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

Todreas, Neil E.

1965-01-01T23:59:59.000Z

193

Energy Flux We discuss various ways of describing energy flux and related quantities.  

E-Print Network [OSTI]

.0.4 Radiance Radiance is the energy flux density per solid angle.[W/(m2 � steradian)] 6.0.5 Radiant Intensity Radiant intensity is the energy flux per solid angle [W/steradian] (radiometry) 6.0.6 Intensity Intensity)· ^Ndt (6.4) Intensity is again measured in [W/m2 ] 6.0.7 Fluence Fluence is radiant energy per area

Palffy-Muhoray, Peter

194

High Flux Isotope Reactor power upgrade status  

SciTech Connect (OSTI)

A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

Rothrock, R.B.; Hale, R.E. [Oak Ridge National Lab., TN (United States); Cheverton, R.D. [Delta-21 Resources Inc., Oak Ridge, TN (United States)

1997-03-01T23:59:59.000Z

195

ARM - VAP Product - lblch1flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation Data Management Facility PlotsuthProductslbllblch1flux

196

Real-Time Optical Flux Limits From Gamma-Ray Bursts Measured By The GROCSE Experiment  

E-Print Network [OSTI]

The Gamma-Ray Optical Counterpart Search Experiment (GROCSE) presents new experimental upper limits on the optical flux from gamma-ray bursts (GRBs). Our experiment consisted of a fully-automated very wide-field opto-electronic detection system that imaged locations of GRBs within a few seconds of receiving trigger signals provided by BATSE's real-time burst coordinate distribution network (BACODINE). The experiment acquired ~3800 observing hours, recording 22 gamma-ray burst triggers within $\\sim$30 s of the start of the burst event. Some of these bursts were imaged while gamma-ray radiation was being detected by BATSE. We identified no optical counterparts associated with gamma-ray bursts amongst these events at the m$_V$ $\\sim$ 7.0 to 8.5 sensitivity level. We find the ratio of the upper limit to the V-band optical flux, F$_\

H. S. Park; E. Ables; D. L. Band; S. D. Barthelmy; R. M. Bionta; P. S. Butterworth; T. L. Cline; D. H. Ferguson; G. J. Fishman; N. Gehrels; K. Hurley; C. Kouveliotou; B. C. Lee; C. A. Meegan; L. L. Ott; E. L. Parker

1997-02-28T23:59:59.000Z

197

Coupling spin ensembles via superconducting flux qubits  

E-Print Network [OSTI]

We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.

Yueyin Qiu; Wei Xiong; Lin Tian; J. Q. You

2014-09-10T23:59:59.000Z

198

Heat flux dynamics in dissipative cascaded systems  

E-Print Network [OSTI]

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

Salvatore Lorenzo; Alessandro Farace; Francesco Ciccarello; G. Massimo Palma; Vittorio Giovannetti

2014-12-19T23:59:59.000Z

199

Flux Expulsion - Field Evolution in Neutron Stars  

E-Print Network [OSTI]

Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.

M. Jahan-Miri

1999-10-27T23:59:59.000Z

200

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Boosted Fast Flux Loop Final Report  

SciTech Connect (OSTI)

The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006 that further funding for the project would be suspended. Remaining funds have been used to prepare and irradiate mini-plates of the proposed booster fuel. The current baseline design is for a set of three test positions inside an in-pile tube with a thermal neutron absorber and heat sink made of aluminum mixed with hafnium. Operating the ATR at power levels needed to achieve the required fast flux will result in an estimated increase in ATR fuel consumption between 15 and 20% above present rates and a reduction in the time between fuel replacements. Preliminary safety analyses conducted have indicted safe operation of the ATR with the GTL under normal, abnormal, and postulated accident conditions. More comprehensive analyses are needed.

Boosted Fast Flux Loop Project Staff

2009-09-01T23:59:59.000Z

202

Blade Motion and Nutrient Flux to the Kelp, Eisenia arborea  

E-Print Network [OSTI]

Blade Motion and Nutrient Flux to the Kelp, Eisenia arborea MARK DENNY* AND LORETTA ROBERSON- plore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp-averaged flux to both kelp mor- phologies, but not to the plate. In fast flow (equivalent to 20 cm s 1 in water

Denny, Mark

203

Energy flux of timeharmonic waves in anisotropic dissipative media  

E-Print Network [OSTI]

Energy flux of time­harmonic waves in anisotropic dissipative media Vlastislav Ÿ Cerven 2, Czech Republic. E­mail vcerveny@seis.karlov.m#.cuni.cz Summary The energy flux of time to consider the average energy flux, which is real­valued and time­independent. An extension

Cerveny, Vlastislav

204

SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT  

E-Print Network [OSTI]

SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT Troy C.Hiatt A thesis submitted University August 2010 Copyright © 2010 Troy C. Hiatt All Rights Reserved #12;ABSTRACT Sediment Flux through Climate has historically been recognized as an influence on sediment flux and deposition. The North

Seamons, Kent E.

205

Model of Trace Gas Flux in Boundary Layer  

E-Print Network [OSTI]

Mathematical model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the nonzero vorticity. Generalized advection-diffusion-reaction equation is derived for arbitrary number components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers.

I. I. Vasenev; I. S. Nurgaliev

2013-03-04T23:59:59.000Z

206

Spheromak reactor with poloidal flux-amplifying transformer  

DOE Patents [OSTI]

An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)

1987-01-01T23:59:59.000Z

207

AmeriFlux Network Data from the ORNL AmeriFlux Website  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.

208

Cosmic-ray Muon Flux In Belgrade  

SciTech Connect (OSTI)

Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

2007-04-23T23:59:59.000Z

209

Contactless heat flux control with photonic devices  

E-Print Network [OSTI]

The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

Ben-Abdallah, Philippe

2015-01-01T23:59:59.000Z

210

Parametric amplification by coupled flux qubits  

SciTech Connect (OSTI)

We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3?×?10{sup ?3}) and a measured gain of about 20?dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

Rehák, M.; Neilinger, P.; Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics, Slovak Academy of Science, 845 11 Bratislava (Slovakia); Oelsner, G.; Hübner, U.; Meyer, H.-G. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Il'ichev, E. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk (Russian Federation)

2014-04-21T23:59:59.000Z

211

Flux Power Incorporated | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux Power Incorporated Jump to:

212

MiniBooNE Flux Data Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMinding the GapThe Neutrino Flux

213

Optimisation of a transverse flux linear PM generator using 3D Finite Element Analysis.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Several transverse flux and longitudinal flux linear generator topologies exist for freepiston Stirling engine applications. In this thesis the transverse flux permanent magnet… (more)

Schutte, Jacques

2011-01-01T23:59:59.000Z

214

Radiator Labs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of steam buildings. Radiator Labs developed a mechanism that allows heating systems to control heat transfer at each radiator. The Radiator Labs design utilizes an...

215

The universal radiative transport equation  

E-Print Network [OSTI]

THE UNIVERSAL RADIATIVE TRANSPORT EQUATION Rudolph W.The Universal Radiative Transport Equation Rudolph W.The various radiative transport equations used in general

Preisendorfer, Rudolph W

1959-01-01T23:59:59.000Z

216

Tachyons and Gravitational Cherenkov Radiation  

E-Print Network [OSTI]

AND GRAVITATIONAL CHERENKOV RADIATION CHARLES SCHWARTZwould emit gravitational radiation. It is very small.gravitational waves; Cherenkov radiation. In a recent work,

Schwartz, Charles

2011-01-01T23:59:59.000Z

217

Radiation Safety Program Annual Review  

E-Print Network [OSTI]

........................................................................10 AREA RADIATION SURVEYS AND CONTAMINATION CONTROL...........................................11.....................................................................................................13 RADIOACTIVE WASTE MANAGEMENT meetings of the Radiation Safety Committee where new users and uses of radioactive materials, radiation

Lyubomirsky, Ilya

218

WI Radiation Protection  

Broader source: Energy.gov [DOE]

This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

219

Maryland Radiation Act (Maryland)  

Broader source: Energy.gov [DOE]

The policy of the state is to provide for the constructive use of radiation and control radiation emissions. This legislation authorizes the Department of the Environment to develop comprehensive...

220

RADIONUCLIDE RADIATION PROTECTION  

E-Print Network [OSTI]

COPYRIGHT 2002 Nuclear Technology Publishing #12;3 #12;4 #12;5 Radiation Protection Dosimetry Vol. 98, No'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

Healy, Kevin Edward

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radiation Damping with Inhomogeneous  

E-Print Network [OSTI]

Radiation Damping with Inhomogeneous Broadening: Limitations of the Single Bloch Vector Model of inhomoge- neous broadening on radiation damping of free precession signals have been described using 13: 1 7, 2001 KEY WORDS: radiation damping; FID shape; inhomogeneous broadening The phenomenon

Augustine, Mathew P.

222

astroph/9507030 Gravitational Radiation  

E-Print Network [OSTI]

astro­ph/9507030 10 Jul 95 Gravitational Radiation and Very Long Baseline Interferometry Ted Pyne of gravitational radiation on astrometric observations. We derive an equation for the time delay measured by two antennae observing the same source in an Einstein­de Sitter spacetime containing gravitational radiation

Fygenson, Deborah Kuchnir

223

Radiation Processing -an overview  

E-Print Network [OSTI]

of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

224

Graphene-assisted near-field radiative heat transfer between corrugated polar materials  

SciTech Connect (OSTI)

Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-06-23T23:59:59.000Z

225

Radiation Shielding and Radiological Protection  

E-Print Network [OSTI]

Radiation Shielding and Radiological Protection J. Kenneth Shultis Richard E. Faw Department@triad.rr.com Radiation Fields and Sources ................................................ . Radiation Field Variables........................................................... .. Direction and Solid Angle Conventions ......................................... .. Radiation Fluence

Shultis, J. Kenneth

226

AmeriFlux Measurement Network: Science Team Research  

SciTech Connect (OSTI)

Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

Law, B E

2012-12-12T23:59:59.000Z

227

Radiation detector using a bulk high T[sub c] superconductor  

DOE Patents [OSTI]

A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

1993-12-07T23:59:59.000Z

228

TERSat: Trapped Energetic Radiation Satellite  

E-Print Network [OSTI]

Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

Clements, Emily B.

2012-01-01T23:59:59.000Z

229

MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE  

SciTech Connect (OSTI)

We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation ({sigma}) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan {gamma}-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of {approx}< 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) {gamma}-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.

Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Beilicke, M.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

2013-09-20T23:59:59.000Z

230

Radiation effects on reactor pressure vessel supports  

SciTech Connect (OSTI)

The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

1996-05-01T23:59:59.000Z

231

Radiation Related Terms Basic Terms  

E-Print Network [OSTI]

Radiation Related Terms Basic Terms Radiation Radiation is energy in transit in the form of high not carry enough energy to separate molecules or remove electrons from atoms. Ionizing radiation Ionizing radiation is radiation with enough energy so that during an interaction with an atom, it can remove tightly

Vallino, Joseph J.

232

Radiation: Facts, Risks and Realities  

E-Print Network [OSTI]

of Radiation 3 Understanding Radiation Risks 6 Naturally Occurring (Background) Radiation 7 Man-Made Radiation, beta particles and gamma rays. Other types, such as x-rays, can occur naturally or be machine-produced. Scientists have also learned that radiation sources are naturally all around us. Radiation can come from

233

Plasma momentum meter for momentum flux measurements  

DOE Patents [OSTI]

An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

1993-08-24T23:59:59.000Z

234

Time dependences of atmospheric Carbon dioxide fluxes  

E-Print Network [OSTI]

Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

DeSalvo, Riccardo

2014-01-01T23:59:59.000Z

235

Anomalous diffusion modifies solar neutrino fluxes  

E-Print Network [OSTI]

Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be u...

Kaniadakis, G; Lissia, M; Quarati, P

1998-01-01T23:59:59.000Z

236

Renewed experimentation with Ranchero flux compression genereators  

SciTech Connect (OSTI)

In the late 1990s, Los Alamos pursued a coaxial flux compression generator (FCG) concept that was described in several publications under the name 'Ranchero.' These FCGs were designed to be cost effective high current generators, and a variety of configurations were tested. The Ranchero armature is a 152 mm diameter aluminum cylinder with a 6 mm thick wall. The high explosive (HE) is detonated simultaneously on axis, and as the armature expands a factor of two, the wall thins to {approx}3 mm. At the final 300 mm diameter, the circumference is over 900 mm, and this should allow currents to be generated in the 90 MA range. No tests significantly over 50 MA have been performed but an experiment is planned. We have recently begun using Ranchero devices for a new application and we continue to improve the design. In this paper we describe recent tests of Ranchero and its subsystems. The load for our new application is an imploding aluminum liner that would deform due to the magnetic pressure applied during the initial flux loading. It will, however, implode properly when powered only during the {approx}29 {micro}s Ranchero flux compression time. This gives rise to a new system with explOSively formed fuse (EFF) opening switches and an integral closing switch that isolates the load. A capacitor bank delivers 2.8 MA to the Ranchero circuit in {approx}85 {micro}s. During this time, four parallel 63.5 mm wide EFFs, external to the coaxial system, complete the circuit. After armature motion begins, insulation which initially isolates the load is severed, connecting the load to the FCG in parallel with the EFFs. External HE charges are initiated on each of the EFFs to produce a resistance rise timed to not precede closure of the load isolation switch. The EFFs achieve significant resistance, and the flux remaining in the 191 nH generator and 3 nH transmission line is compressed to generate 30.85 MA in a {approx}12.5 nH static load. On three tests, the EFF system has operated flawlessly, and only {approx}100kA is driven back into the EFFs during peak voltage of the generator output. A test incorporating a 19.5 nH dual liner dynamic load has also been completed, and these results are also presented. Ranchero generators have been operated with armatures from 43 cm to 1.4 m long, corresponding to initial inductances from 56 to 191 nH. MHD code modeling gives better agreement with experiments using modules 43 cm long than the 1.4 m modules, and these results will also be presented.

Goforth, James H [Los Alamos National Laboratory; Herrera, Dennis H [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Torres, David T [Los Alamos National Laboratory; Atchison, W. L. [Los Alamos National Laboratory; Colgate, S. A. [Los Alamos National Laboratory; Griego, J. R. [Los Alamos National Laboratory; Guzik, J. [Los Alamos National Laboratory; Holtkamp, D. B. [Los Alamos National Laboratory; Idzorek, G. [Los Alamos National Laboratory; Kaul, A [Los Alamos National Laboratory; Kirkpatrick, R. C. [Los Alamos National Laboratory; Menikoff, R. [Los Alamos National Laboratory; Meyer, R. K. [Los Alamos National Laboratory; Oona, H. [Los Alamos National Laboratory; Reardon, P. T. [Los Alamos National Laboratory; Reinovsky, R. E. [Los Alamos National Laboratory; Rousculp, C. L. [Los Alamos National Laboratory; Sgro, A. G. [Los Alamos National Laboratory; Tabaka, L. J. [Los Alamos National Laboratory; Watt, R. G. [Los Alamos National Laboratory; Riesman, D. B. [LLNL

2010-11-08T23:59:59.000Z

237

ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR  

E-Print Network [OSTI]

@fe.infn.it 2 Centre for Sustainable Energy Systems, Australian National University, Canberra ACT 0200 AUSTRALIA on the incident light, the current in a string of identical solar cells will be limited by the cell with the least, due to the need for both a tightly toleranced mirror support structure and a precise solar tracking

238

Comparison of surface radiative flux data sets over the Arctic Ocean Jiping Liu,1,2  

E-Print Network [OSTI]

. The reduced surface heat loss is partly offset by the reduction of solar heating due to much higher snow of these surface parameters was compared to the high-quality in situ measurements from the Surface Heat Budget; Intergovernmental Panel on Climate Change, 2001]. However, physical processes in the Arctic are not well understood

239

Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8,Materials Characterization Technique

240

Best Estimate Radiation Flux Value-Added Procedure: Algorithm Operational Details and Explanations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernard Matthew Poelker,8 Best Estimate

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tracking heat flux sensors for concentrating solar applications  

DOE Patents [OSTI]

Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

Andraka, Charles E; Diver, Jr., Richard B

2013-06-11T23:59:59.000Z

242

as4 flux morfologiya: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guido D'Amico; Roberto Gobbetti; Matthew Kleban; Marjorie Schillo 2012-11-14 11 Solar Magnetic Flux Ropes CERN Preprints Summary: The most probable initial magnetic...

243

Integration of Novel Flux Coupling Motor and Current Source Inverter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

244

annual particle flux: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a cascade Wehrli, Bernhard 20 Earth Planets Space, 62, 333345, 2010 Cosmic ray and solar energetic particle flux in paleomagnetospheres Biology and Medicine Websites Summary:...

245

Ising interaction between capacitively-coupled superconducting flux qubits  

E-Print Network [OSTI]

Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.

Takahiko Satoh; Yuichiro Matsuzaki; Kosuke Kakuyanagi; Koichi Semba; Hiroshi Yamaguchi; Shiro Saito

2015-01-30T23:59:59.000Z

246

Gaugino Condensates and Fluxes in N = 1 Effective Superpotentials  

E-Print Network [OSTI]

In the framework of orbifold compactifications of heterotic and type II orientifolds, we study effective N = 1 supergravity potentials arising from fluxes and gaugino condensates. These string solutions display a broad phenomenology which we analyze using the method of N = 4 supergravity gaugings. We give examples in type II and heterotic compactifications of combined fluxes and condensates leading to vacua with naturally small supersymmetry breaking scale controlled by the condensate, cases where the supersymmetry breaking scale is specified by the fluxes even in the presence of a condensate and also examples where fluxes and condensates conspire to preserve supersymmetry.

Jean-Pierre Derendinger; Costas Kounnas; P. Marios Petropoulos

2008-01-30T23:59:59.000Z

247

antineutrino flux measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Terrestrial Antineutrino Flux Measurements CERN Preprints Summary: Uranium and thorium are the main heat producing elements in the earth. Their quantities and...

248

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

249

Current Status of the Synchrotron Radiation Center  

SciTech Connect (OSTI)

The Synchrotron Radiation Center (SRC) operates the Aladdin electron storage ring at energies of 800 MeV or 1 GeV in support of a broad range of national and international research programs. A low emittance configuration is in routine operation during 800-MeV shifts and offers improved photon flux density with about the same beam lifetime. An improved undulator compensation algorithm and new optical beam position monitors have been implemented improving beam stability and maintaining vertical beam size variations to < 2% peak-to-peak during undulator scanning. Instrumentation initiatives include construction of a modified Wadsworth beamline (7.8 - 50 eV) and a variable-line-spacing plane-grating monochromator (VLS-PGM, 75 - 2000 eV) to utilize radiation from a permanent magnet undulator. The Wadsworth beamline is being commissioned for photoelectron spectroscopy (PES) experiments using high-resolution Scienta analyzers. The VLS-PGM is being constructed for experiments that require higher photon energies and high flux density such as x-ray photoemission electron microscopy (X-PEEM) and x-ray absorption spectroscopy (XAS). It is scheduled to be available in early 2004. Recent research at the SRC has produced exciting results in a variety of fields, culminating in eight articles published in Physical Review Letters and three in Nature since October 2002, in addition to articles in many other publications. An outreach program offers research experiences for undergraduates and provides the general public with an awareness of synchrotron radiation. Hands-on workshops and activities on FTIR microscopy and X-PEEM are offered for graduate students and scientists. SRC sponsors a summer Research Experience for Undergraduates (REU) program and offers opportunities to non-research universities and high schools. Tours and educational events are coordinated with local civic groups and schools. Open houses are offered that include tours, demonstrations, and family activities.

Kinraide, R.; Moore, C.J.; Jacobs, K.D.; Severson, M.; Bissen, M.J.; Frazer, B.; Bisognano, J.J.; Bosch, R.A.; Eisert, D.; Fisher, M.; Green, M.A.; Gundelach, C.T.; Hansen, R.W.C.; Hochst, H.; Julian, R.L.; Keil, R.; Kleman, K.; Kubala, T.; Legg, R.A.; Pedley, B. [Synchrotron Radiation Center (United States)] [and others

2004-05-12T23:59:59.000Z

250

RHOBOT: Radiation hardened robotics  

SciTech Connect (OSTI)

A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

251

Solar radiation intensity calculations  

E-Print Network [OSTI]

SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

Levine, Randolph Steven

1978-01-01T23:59:59.000Z

252

Atomic Radiation (Illinois)  

Broader source: Energy.gov [DOE]

This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

253

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

254

Rotating bubble membrane radiator  

DOE Patents [OSTI]

A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

1988-12-06T23:59:59.000Z

255

Appendix F. Radiation Appendix F. Radiation F-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix F. Radiation #12;#12;Appendix F. Radiation F-3 Appendix F. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for understanding

Pennycook, Steve

256

Appendix F: Radiation Appendix F: Radiation F-3  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix F: Radiation #12;#12;Appendix F: Radiation F-3 P P P E E E N NN HYDROGEN ATOM DEUTERIUM

Pennycook, Steve

257

Appendix F: Radiation Appendix F: Radiation F-3  

E-Print Network [OSTI]

to naturally occurring radiation constantly. For example, cosmic radiation; radon in air; potassium in food on the environment and biological systems. Radiation comes from natural and human-made sources. People are exposedAppendix F: Radiation #12;#12;Appendix F: Radiation F-3 Fig. F.1. The hydrogen atom and its

Pennycook, Steve

258

Appendix G. Radiation Appendix G. Radiation G-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix G. Radiation #12;#12;Appendix G. Radiation G-3 Appendix G. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for un- derstanding

Pennycook, Steve

259

Appendix F. Radiation Appendix F. Radiation F-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix F. Radiation #12;#12;Appendix F. Radiation F-3 Appendix F. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for un- derstanding

Pennycook, Steve

260

Radiation physics, biophysics, and radiation biology  

SciTech Connect (OSTI)

The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

Hall, E.J.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings  

E-Print Network [OSTI]

In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

Yang, Yue

2015-01-01T23:59:59.000Z

262

Anomalous diffusion modifies solar neutrino fluxes  

E-Print Network [OSTI]

Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.

G. Kaniadakis; A. Lavagno; M. Lissia; P. Quarati

1997-10-16T23:59:59.000Z

263

Wave momentum flux parameter: a descriptor for nearshore waves  

E-Print Network [OSTI]

Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

US Army Corps of Engineers

264

Thermal neutron flux perturbation due to indium foils in water  

E-Print Network [OSTI]

press) 13. Axford, R. A. , and Day, G. M. , personnel communication. 14. Ritchie, R. H. , Thermal Neutron Flux De ression, Health Physics Division Annual Prog. Rep. July, 1958, ORNL-2806, p. 133. 27 i 5, Walker, J. V. , "The Measurement of Absolute... Fluxes in Water and Graphite, " 'ORNL- 2842, 204 (f959). ...

Stinson, Ronald Calvin

1961-01-01T23:59:59.000Z

265

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Murata, Tomoya

2015-01-01T23:59:59.000Z

266

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Tomoya Murata; Toru Sato

2015-01-23T23:59:59.000Z

267

Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE  

SciTech Connect (OSTI)

Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

2011-12-02T23:59:59.000Z

268

Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution  

E-Print Network [OSTI]

Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the pres...

Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo

2012-01-01T23:59:59.000Z

269

Acoustic emission from magnetic flux tubes in the solar network  

E-Print Network [OSTI]

We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

Vigeesh, G

2013-01-01T23:59:59.000Z

270

SCIENTIFIC CORRESPONDENCE Radiation doses  

E-Print Network [OSTI]

SCIENTIFIC CORRESPONDENCE Radiation doses and cancert-A T. w- - SIR- In February 1990, the Soviet. Nikipelov et al. published in g Priroda (Nature)' the radiation doses for each year, averaged over environmental impact on the Gulf waters is rapidly ex- ported to the Arabian Sea and then to the Indian Ocean

Shlyakhter, Ilya

271

Radiation-resistant microorganism  

DOE Patents [OSTI]

An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

Fliermans, Carl B.

2010-06-15T23:59:59.000Z

272

JOURNAL DE PHYSIQUE Colloque C10, suppliment au no 11-12, Tome 34, Novembre-Dkcembre 1973,page C10-27 GRAVITATIONAL RADIATION AND GENERAL RELATIVITY (*)  

E-Print Network [OSTI]

a detectable flux of gravitational waves in the laboratory, but naturally occurring astronomical explosions-27 GRAVITATIONAL RADIATION AND GENERAL RELATIVITY (*) D. W. SCIAMA (**) International Centre for Theoretical of gravitational radiation, as predicted by general relativity, are described and compared with those

Paris-Sud XI, Université de

273

Nuclear radiation actuated valve  

DOE Patents [OSTI]

A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

1985-01-01T23:59:59.000Z

274

Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle  

E-Print Network [OSTI]

. Instruments on polar orbiting satellites, such as advanced very high resolution radiometer (AVHRR) or Moderate. This approach is based on the surface energy balance with the soil heat flux being treated by a conventional in temperate and tropical regions, observed empirical relationships between solar radiative energy and skin

Jin, Menglin

275

ESTIMATING GROUND-LEVEL SOLAR RADIATION AND EVAPOTRANSPIRATION IN PUERTO RICO  

E-Print Network [OSTI]

REMOTE SENSING Eric. W. Harmsen1 , John Mecikalski2 , Vanessa Acaron3 and Jayson Maldonado3 1 Department insolation, other meteorological variables (e.g., net radiation, soil heat flux, air temperature dew point remote sensing product. As a practical example of the use of the methodology, the Hargraeves-Samani ETo

Gilbes, Fernando

276

Analytical and experimental determination of radiation and temperature distributions inside solar receivers  

E-Print Network [OSTI]

the cavity are calculated. An air-cooled solar receiver has been set up at a 6 kW solar furnace. Flux solar receivers C. Haziza and D. Blay Laboratoire d'Energétique Solaire, 40, avenue du Recteur Pineau concentrated solar radiation is modelized, using the diffuse and semi-gray surface hypothesis and the net

Paris-Sud XI, Université de

277

A FLUX ROPE ERUPTION TRIGGERED BY JETS  

SciTech Connect (OSTI)

We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Liu Yu, E-mail: guojuan@bao.ac.c [Yunnan Astronomical Observatory, National Astronomical Observatories, Kunming 650011 (China)

2010-03-10T23:59:59.000Z

278

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

V. Ramanathan (2008), Solar radiation budget and radiativeV. Ramanathan (2008), Solar radiation budget and radiativeapproximation for solar radiation in the NCAR Community

Zhu, Aihua

2010-01-01T23:59:59.000Z

279

The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability  

SciTech Connect (OSTI)

A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

Hollinger, D. Y.; Evans, R. S.

2003-05-20T23:59:59.000Z

280

Coherent Radiation in an Undulator  

E-Print Network [OSTI]

solving the particle-radiation system in a self-consistentto clarify the coherent radiation mechanism. References 1.the Proceedings Coherent Radiation in an Undulator Y,H. Chin

Chin, Y.H.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Properties of Undulator Radiation  

E-Print Network [OSTI]

of a Dedicated Synchrotron Radiation Facility," IEEE Trans.1983), "Characteristics of Synchrotron Radiation and of itsHandbook on Synchrotron Radiation, E. -E. Koch.1A. 65-172,

Howells, M.R.

2011-01-01T23:59:59.000Z

282

Radiation Safety (Revised March 2010)  

E-Print Network [OSTI]

Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated Environmental Health and Safety, Stanford University, Stanford California #12; CREDITS This Radiation Safety

Kay, Mark A.

283

A CLASS OF PHYSICALLY MOTIVATED CLOSURES FOR RADIATION HYDRODYNAMICS  

SciTech Connect (OSTI)

Radiative transfer and radiation hydrodynamics use the relativistic Boltzmann equation to describe the kinetics of photons. It is difficult to solve the six-dimensional time-dependent transfer equation unless the problem is highly symmetric or in equilibrium. When the radiation field is smooth, it is natural to take angular moments of the transfer equation to reduce the degrees of freedom. However, low order moment equations contain terms that depend on higher order moments. To close the system of moment equations, approximations are made to truncate this hierarchy. Popular closures used in astrophysics include flux-limited diffusion and the M{sub 1} closure, which are rather ad hoc and do not necessarily capture the correct physics. In this paper, we propose a new class of closures for radiative transfer and radiation hydrodynamics. We start from a different perspective and highlight the consistency of a fully relativistic formalism. We present a generic framework to approximate radiative transfer based on relativistic Grad's moment method. We then derive a 14-field method that minimizes unphysical photon self-interaction.

Chan, Chi-kwan, E-mail: ckchan@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-02-01T23:59:59.000Z

284

Ultraviolet radiation in the southern seas in early spring 1993  

SciTech Connect (OSTI)

The National Science Foundation research vessel Nathaniel B. Palmer carried out a cruise to Antarctica in early spring of 1993. It left Punta Arenas, Chile, close to the tip of South America on 11 August 1993. sailed south for 3 days to the tip of The Antarctic Peninsula, stopping at O`Higgens and Palmer Stations, and from there went southwest and into the Bellingshausen sea. On 10 September, it reached the most southerly position, 71{degrees}S, some distance north of the Thurston Island. From there, it went as far as 110{degrees}W before returning to Punta Arenas. The main purpose of the cruise was to investigate the snow- and sea-ice thickness, properties, and structures in this part of the southern oceans. It also allowed us to carry out continuous radiation measurements. We measured the following fluxes: global radiation (Eppley PSP), infrared incoming radiation (Eppley Pyrgeometer PIR), ultraviolet-A radiation (Eppley UV meter), ultraviolet-B radiation (Yankee Environmental Systems), and pitch and roll of the ship (Lucas Sensing Systems, Inc.). All instruments were sampled twice per second (Campbell Scientific, Model 21 X), and a notebook computer (ASI Patriot) stored 1-minute averages of the radiation data and 1-minute standard deviation of the ship`s pitch and roll. Visual observations of cloud cover were also recorded. 2 refs., 3 figs.

Wendler, G.; Quakenbush, T. [Univ. of Alaska, Fairbanks, AK (United States)

1994-12-31T23:59:59.000Z

285

Lyman Alpha Flux Power Spectrum and Its Covariance  

E-Print Network [OSTI]

We analyze the flux power spectrum and its covariance using simulated Lyman alpha forests. We find that pseudo-hydro techniques are good approximations of hydrodynamical simulations at high redshift. However, the pseudo-hydro techniques fail at low redshift because they are insufficient for characterizing some components of the low-redshift intergalactic medium, notably the warm-hot intergalactic medium. Hence, to use the low-redshift Lyman alpha flux power spectrum to constrain cosmology, one would need realistic hydrodynamical simulations. By comparing one-dimensional mass statistics with flux statistics, we show that the nonlinear transform between density and flux quenches the fluctuations so that the flux power spectrum is much less sensitive to cosmological parameters than the one-dimensional mass power spectrum. The covariance of the flux power spectrum is nearly Gaussian. As such, the uncertainties of the underlying mass power spectrum could still be large, even though the flux power spectrum can be precisely determined from a small number of lines of sight.

Hu Zhan; Romeel Dave; Daniel Eisenstein; Neal Katz

2005-08-10T23:59:59.000Z

286

Colour flux-tubes in static Pentaquark systems  

E-Print Network [OSTI]

The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge invariant lattice operators, in a 24^3 x 48 lattice at beta=6.2 . We generate our quenched configurations with GPUs, and detail the respective benchmanrks in different SU(N) groups. While at smaller distances the coulomb potential is expected to dominate, at larger distances it is expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order to minimize the potential the fundamental flux tubes should connect at 120o angles. We compute the square of the colour fields utilizing plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and we have an X-shaped flux-tube, with one Steiner point. The pentaquark system is well described by a three-Y-shaped flux-tube where the three flux the junctions are Steiner points.

Pedro Bicudo; Nuno Cardoso; Marco Cardoso

2011-11-01T23:59:59.000Z

287

Radiation environment along the INTEGRAL orbit measured with the IREM monitor  

E-Print Network [OSTI]

The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting instrument on board the INTEGRAL satellite. The monitor continually measures electron and proton fluxes along the orbit and provides this information to the spacecraft on board data handler. The mission alert system broadcasts it to the payload instruments enabling them to react accordingly to the current radiation level. Additionally, the IREM conducts its autonomous research mapping the Earth radiation environment for the space weather program. Its scientific data are available for further analysis almost without delay.

W. Hajdas; P. Bühler; C. Eggel; P. Favre; A. Mchedlishvili; A. Zehnder

2003-08-15T23:59:59.000Z

288

Calculation of the scattering function of a multichannel scintillation detector used to record high-energy photon radiation  

SciTech Connect (OSTI)

This paper describes a method of calculating the scattering function for a linear array of detectors. The authors consider the detector arrangement which in the best way utilizes the radiation flux but which to the greatest extent is affected by the scattering of radiation from one detector to another: optically separated scintillatorsf in the form of parallelepipeds are assumed to be closely packed in a linear array and directed toward the radiation source. In order to obtain estimates of the scattering function with an accuracy of 3-5% for x close to zero at radiation not less than 2 MeV, the leakage of secondary electrons are taken into account.

Zav'yalkin, F.M.; Osipov, S.P.

1986-08-01T23:59:59.000Z

289

Varying trends in surface energy fluxes and associated climatebetween 1960-2002 based on transient climate simulations  

SciTech Connect (OSTI)

The observed reduction in land surface radiation over the last several decades (1960-1990)---the so-called ''dimming effect''--- and the more recent evidence of a reversal in ''dimming'' over some locations beyond 1990 suggest several consequences on climate, notably on the hydrological cycle. Such a reduction in radiation should imply reduced surface temperature (Ts) and precipitation, which have not occurred. We have investigated the possible causes for the above climate features using a climate model coupled to a dynamic ocean model under natural and anthropogenic conditions. To isolate the aerosol influence on surface radiation trends, we have analyzed transient climate simulations from1960 to 2002 with and without anthropogenic aerosols. Based on a linear trend with aerosol effects included, the global mean change in the surface solar radiation absorbed over land is -0.021+-0.0033 Wm-2yr-1. Although the overall trend is negative, we do note a reversal in dimming after 1990, consistent with observations. Without aerosol effects, the surface solar radiation absorbed over land increases throughout 1960 to 2002, mainly due to the decrease in cloud cover associated with increased greenhouse warming. In spite of a simulated increase in Ts of 0.012 Kyr-1 for 1960 to 2002, the global mean latent heat flux and associated intensity of the hydrological cycle decrease overall, however with increases over some land locations due mainly to moisture advection. Simulated changes correspond more closely to observed changes when accounting for aerosol effects on climate.

Nazarenko, Larissa; Menon, Surabi

2005-07-20T23:59:59.000Z

290

Materials Compatibility and Aging for Flux and Cleaner Combinations.  

SciTech Connect (OSTI)

A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

Archuleta, Kim; Piatt, Rochelle

2015-01-01T23:59:59.000Z

291

Radiation Protection | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

292

Florida Radiation Protection Act (Florida)  

Broader source: Energy.gov [DOE]

The Department of Public Health is responsible for administering a statewide radiation protection program. The program is designed to permit development and utilization of sources of radiation for...

293

Direct control of air gap flux in permanent magnet machines  

DOE Patents [OSTI]

A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

Hsu, John S. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

294

Energy flux fluctuations in a finite volume of turbulent flow  

E-Print Network [OSTI]

The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

2006-07-19T23:59:59.000Z

295

Bounded limit for the Monte Carlo point-flux-estimator  

SciTech Connect (OSTI)

In a Monte Carlo random walk the kernel K(R,E) is used as an expected value estimator at every collision for the collided flux phi/sub c/ r vector,E) at the detector point. A limiting value for the kernel is derived from a diffusion approximation for the probability current at a radius R/sub 1/ from the detector point. The variance of the collided flux at the detector point is thus bounded using this asymptotic form for K(R,E). The bounded point flux estimator is derived. (WHK)

Grimesey, R.A.

1981-01-01T23:59:59.000Z

296

Composition for radiation shielding  

DOE Patents [OSTI]

A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

297

Miniaturized radiation chirper  

DOE Patents [OSTI]

The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

298

The Intense Radiation Gas  

E-Print Network [OSTI]

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2005-03-08T23:59:59.000Z

299

The Method of Manufactured Solutions for RattleSnake A SN Radiation Transport Solver Inside the MOOSE Framework  

SciTech Connect (OSTI)

The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.

Yaqi Wang

2012-06-01T23:59:59.000Z

300

RESEARCH SAFETY RADIATION SAFETY  

E-Print Network [OSTI]

RESEARCH SAFETY RADIATION SAFETY ENVIRONMENTAL PROGRAMS HAZARDOUS MATERIALS CONTROLLED SUBSTANCES INTEGRATED WASTE MANAGEMENT LABORATORY SAFETY AUDITS & COMPLIANCE BIOSAFETY and ENVIRONMENTAL HEALTH EMERGENCY MANAGEMENT and MISSION CONTINUITY FIRE PREVENTION and LIFE SAFETY GENERAL SAFETY TRAINING

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

302

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

303

Ionizing radiation detector  

DOE Patents [OSTI]

An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

Thacker, Louis H. (Knoxville, TN)

1990-01-01T23:59:59.000Z

304

Adaptive multigroup radiation diffusion  

E-Print Network [OSTI]

This thesis describes the development and implementation of an algorithm for dramatically increasing the accuracy and reliability of multigroup radiation diffusion simulations at low group counts. This is achieved by ...

Williams, Richard B., Sc. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

305

Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading  

SciTech Connect (OSTI)

The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.

Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.

1985-10-01T23:59:59.000Z

306

Method of enhancing radiation response of radiation detection materials  

DOE Patents [OSTI]

The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

Miller, Steven D. (Richland, WA)

1997-01-01T23:59:59.000Z

307

Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY  

E-Print Network [OSTI]

Radiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual ­ Dec 2012 Page 1 Table of Contents Introduction Chapter I: Radiation Safety Program A. Program

Grishok, Alla

308

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;Radiation Safety Department, University of Tennessee Purpose: To provide basic radiation safety training to the users of sealed sources located

Dai, Pengcheng

309

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;#12;Radiation Safety Department, University of Tennessee Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers

Dai, Pengcheng

310

A Measurement of the Flux of Cosmic Ray Iron at 5 x 10^13 eV  

E-Print Network [OSTI]

We present results from the initial flight of our Balloon Air CHerenkov (BACH) payload. BACH detects air Cherenkov radiation from cosmic ray nuclei as coincident flashes in two optical modules. The flight (dubbed PDQ BACH) took place on April 22, 1998 from Ft. Sumner, New Mexico. During an exposure of 2.75 hours, with a typical threshold energy for iron nuclei of 2.2$\\times10^{13}$ eV, we observed several events cleanly identifiable as iron group nuclei. Analysis of the data yields a new flux measurement that is fully consistent with that reported by other investigations.

J. Clem; W. Droege; P. A. Evenson; H. Fischer; G. Green; D. Huber; H. Kunow; D. Seckel

2001-03-23T23:59:59.000Z

311

Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations  

SciTech Connect (OSTI)

Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

2010-04-02T23:59:59.000Z

312

GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies  

E-Print Network [OSTI]

The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical va...

al., M Ackermann et

2010-01-01T23:59:59.000Z

313

Simplified model for determining local heat flux boundary conditions for slagging wall  

SciTech Connect (OSTI)

In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

2009-07-15T23:59:59.000Z

314

FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT  

SciTech Connect (OSTI)

Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); MartInez Pillet, V.; Bonet, J. A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Schmidt, W.; Berkefeld, T. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstrasse 6, 79104 Freiburg (Germany); Del Toro Iniesta, J. C. [Instituto de Astrofisica de AndalucIa (CSIC), Apartado de Correos 3004, 18080 Granada (Spain); Domingo, V. [Grupo de AstronomIa y Ciencias del Espacio, Universidad de Valencia, 46980 Paterna, Valencia (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Title, A. M., E-mail: lagg@mps.mpg.d [Lockheed Martin Solar and Astrophysics Laboratory, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2010-11-10T23:59:59.000Z

315

CO2 and CH4 Fluxes across Polygon Geomorphic Types, Barrow, Alaska, 2006-2010  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment site on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type.

Tweedie, Craig; Lara, Mark

316

Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes  

E-Print Network [OSTI]

We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.

Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami; S. T. Petcov

2006-08-30T23:59:59.000Z

317

The Momentum flux in two-phase flow  

E-Print Network [OSTI]

The average momentum flux at a section of a pipe with twophase upflow has been measured by the impulse technique. Steamwater and air-water mixtures were tested in one-inch and onehalf inch nominal pipes. Homogeneous ...

Andeen, Gerry B.

1965-01-01T23:59:59.000Z

318

Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

319

Elevated carbon dioxide flux at the Dixie Valley geothermal field...  

Open Energy Info (EERE)

geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids...

320

affecting carbon fluxes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(IFN) (2 Paris-Sud XI, Universit de 43 High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak* Plasma Physics and Fusion Websites Summary: ,. 1. *...

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New constraints on Northern Hemisphere growing season net flux  

E-Print Network [OSTI]

AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

2007-01-01T23:59:59.000Z

322

Coherence characterization with a superconducting flux qubit through NMR approaches  

E-Print Network [OSTI]

This thesis discusses a series of experimental studies that investigate the coherence properties of a superconducting persistent-current or flux qubit, a promising candidate for developing a scalable quantum processor. A ...

Yan, Fei, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

323

OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND  

SciTech Connect (OSTI)

Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

Arnold, L.; Li, G.; Li, X. [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)] [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, Y., E-mail: gang.li@uah.edu [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

2013-03-20T23:59:59.000Z

324

atmospheric muon flux: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

325

Determination of pool boiling Critical Heat Flux enhancement in nanofluids  

E-Print Network [OSTI]

Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

Truong, Bao H. (Bao Hoai)

2007-01-01T23:59:59.000Z

326

Effect of tensile strain on grain connectivity and flux pinning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tensile strain on grain connectivity and flux pinning in Bi 2 Sr 2 Ca 2 Cu 3 O x tapes D. C. van der Laan and J. W. Ekin National Institute of Standards and Technology, Boulder,...

327

Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities  

E-Print Network [OSTI]

Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

2015-01-01T23:59:59.000Z

328

Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments  

E-Print Network [OSTI]

This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

2015-01-01T23:59:59.000Z

329

The flux measure of influence in engineering networks  

E-Print Network [OSTI]

The objective of this project is to characterize the influence of individual nodes in complex networks. The flux metric developed here achieves this goal by considering the difference between the weighted outdegree and ...

Schwing, Kyle Michael

2009-01-01T23:59:59.000Z

330

Model of critical heat flux in subcooled flow boiling  

E-Print Network [OSTI]

The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

Fiori, Mario P.

1968-01-01T23:59:59.000Z

331

Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide  

E-Print Network [OSTI]

Global sea-to-air flux climatology Ko, M. K. W. , Poulet,Global sea-to-air flux climatology Vogt, R. , Sander, R. ,sea-to-air flux climatology for bromoform, dibromomethane

2013-01-01T23:59:59.000Z

332

Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas  

E-Print Network [OSTI]

correlation with measured traffic counts collected on local thoroughfares. Due to a presumed small bias in the flux calculation methodology, neither flux contribution truly measured zero, so anthropogenic and biogenic “background” fluxes were calculated (0...

Werner, Nicholas D

2013-04-29T23:59:59.000Z

333

Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

334

Packet personal radiation monitor  

DOE Patents [OSTI]

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

Phelps, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

335

Radiation analysis devices, radiation analysis methods, and articles of manufacture  

DOE Patents [OSTI]

Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

Roybal, Lyle Gene

2010-06-08T23:59:59.000Z

336

Modification of flux profiles using a faceted concentrator  

SciTech Connect (OSTI)

The use of a faceted solar concentrator allows for some flexibility in aiming strategy and in the intensity of the resulting flux profile at the target. This can be an advantage when considering applications that do not necessarily require maximum concentration, particularly emerging, new applications in solar processed advanced materials. This paper will describe both an analysis of predicted flux profiles for several different aiming strategies using the SOLFUR computer code and experiments to characterize the actual flux profiles realized with a selected aiming strategy. The SOLFUR code models each of the furnace components explicitly. Aim points for each facet can be specified. Thus many strategies for adjusting aim points can be easily explored. One strategy calls for creating as uniform a flux over as large an area as possible. We explored this strategy analytically and experimentally. The experimental data consist of flux maps generated by a video imaging system calibrated against absolute flux measurements taken with circular foil calorimeters. Results from the analytical study and a comparison with the experimental data indicate that uniform profiles can be produced over fairly large areas.

Lewandowski, A; Scholl, K; Bingham, C

1993-01-01T23:59:59.000Z

337

Field dynamics and tunneling in a flux landscape  

E-Print Network [OSTI]

We investigate field dynamics and tunneling between metastable minima in a landscape of Type IIB flux compactifications, utilizing monodromies of the complex structure moduli space to continuously connect flux vacua. After describing the generic features of a flux-induced potential for the complex structure and Type IIB axio-dilaton, we specialize to the Mirror Quintic Calabi--Yau to obtain an example landscape. Studying the cosmological dynamics of the complex structure moduli, we find that the potential generically does not support slow-roll inflation and that in general the landscape separates neatly into basins of attraction of the various minima. We then discuss tunneling, with the inclusion of gravitational effects, in many-dimensional field spaces. A set of constraints on the form of the Euclidean paths through field space are presented, and then applied to construct approximate instantons mediating the transition between de Sitter vacua in the flux landscape. We find that these instantons are generically thick-wall and that the tunneling rate is suppressed in the large-volume limit. We also consider examples where supersymmetry is not broken by fluxes, in which case near-BPS thin-wall bubbles can be constructed. We calculate the bubble wall tension, finding that it scales like a D- or NS-brane bubble, and comment on the implications of this correspondence. Finally, we present a brief discussion of eternal inflation in the flux-landscape.

Matthew C Johnson; Magdalena Larfors

2008-11-06T23:59:59.000Z

338

On the Chaotic Flux Dynamics in a Long Josephson Junction  

E-Print Network [OSTI]

Flux dynamics in an annular long Josephson junction is studied. Three main topics are covered. The first is chaotic flux dynamics and its prediction via Melnikov integrals. It turns out that DC current bias cannot induce chaotic flux dynamics, while AC current bias can. The existence of a common root to the Melnikov integrals is a necessary condition for the existence of chaotic flux dynamics. The second topic is on the components of the global attractor and the bifurcation in the perturbation parameter measuring the strength of loss, bias and irregularity of the junction. The global attractor can contain co-existing local attractors e.g. a local chaotic attractor and a local regular attractor. In the infinite dimensional phase space setting, the bifurcation is very complicated. Chaotic attractors can appear and disappear in a random fashion. Three types of attractors (chaos, breather, spatially uniform and temporally periodic attractor) are identified. The third topic is ratchet effect. Ratchet effect can be achieved by a current bias field which corresponds to an asymmetric potential, in which case the flux dynamics is ever lasting chaotic. When the current bias field corresponds to a symmetric potential, the flux dynamics is often transiently chaotic, in which case the ratchet effect disappears after sufficiently long time.

Z. C. Feng; Y. Charles Li

2009-07-16T23:59:59.000Z

339

ADAPTIVE RADIATION ROSEMARY G. GILLESPIE  

E-Print Network [OSTI]

1 A ADAPTIVE RADIATION ROSEMARY G. GILLESPIE University of California, Berkeley Adaptive radiation- tions and convergence of species groups on different land masses. Since then, adaptive radiation has diversity within a rapidly multiplying lineage." There are radiations that are not adaptive

Gillespie, Rosemary

340

REPORT NO. 8 radiation hazards  

E-Print Network [OSTI]

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Appendix G: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix G: Radiation #12;#12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

342

Appendix A: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix A: Radiation #12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

343

E-Print Network 3.0 - atp synthetic flux Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flux Search Powered by Explorit Topic List Advanced Search Sample search results for: atp synthetic flux Page: << < 1 2 3 4 5 > >> 1 A genetically encoded fluorescent reporter...

344

I. AN INTRODUCTION TO THE PROPELLANT-DRIVEN MAGNETIC FLUX COMPRESSION...  

Office of Scientific and Technical Information (OSTI)

is perfectly conducting (R 0) , the well-known electrodynamic result of flux (LI) conservation is obtained. Under this condition the conservation of flux leads to the result:...

345

Etalon-induced Baseline Drift And Correction In Atom Flux Sensors...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based...

346

Optimization of superconducting flux qubit readout using near-quantum-limited amplifiers  

E-Print Network [OSTI]

junctions . . . . . . . 1.4 Superconducting QuantumInterference 1.5 Superconducting qubits . . . . . . . . .2 Superconducting flux qubits 2.1 The one-junction flux

Johnson, Jedediah Edward Jensen

2012-01-01T23:59:59.000Z

347

E-Print Network 3.0 - au flux diffus Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chauffage (Fig. l), le flux... lumineux diffus diminue au lieu d'augmenter. Temperature (OC) FIG. 1. -Etude du flux lumineux diffus par... ternaire perpendiculaire au...

348

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

349

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

350

Radiation delivery system and method  

DOE Patents [OSTI]

A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2002-01-01T23:59:59.000Z

351

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

SciTech Connect (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

352

Packet personal radiation monitor  

DOE Patents [OSTI]

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

Phelps, J.E.

1988-03-31T23:59:59.000Z

353

Remote radiation dosimetry  

DOE Patents [OSTI]

Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

1991-03-12T23:59:59.000Z

354

Semiconductor radiation detector  

DOE Patents [OSTI]

A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

2010-03-30T23:59:59.000Z

355

Composition for radiation shielding  

DOE Patents [OSTI]

A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

Kronberg, J.W.

1994-08-02T23:59:59.000Z

356

The Synchronic Frame of Photospheric Magnetic Flux: The Improved Synoptic Frame  

E-Print Network [OSTI]

of the middle panel). Because of the differential rotation of magnetic elements, the solar surface distribution from a synoptic chart do not cover the whole solar surface at any time within the period of one solar transpot models to predict better instantaneous photospheric field distribution on the portions of solar

Zhao, Xuepu

357

Measurements and modeling of soot formation and radiation in microgravity jet diffusion flames  

SciTech Connect (OSTI)

This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. On modeling, the authors have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed {beta}-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude-Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H{sub 2}O and CO{sub 2}. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar flames and turbulent jet flames. Predicted soot volume fraction results also agree with the data for 1-g and 0-g laminar jet flames as well as 1-g turbulent jet flames.

Ku, J.C.; Tong, L. [Wayne State Univ., Detroit, MI (United States). Mechanical Engineering Dept.; Greenberg, P.S. [NASA Lewis Research Center, Cleveland, OH (United States). Microgravity Combustion Branch

1996-12-31T23:59:59.000Z

358

QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY  

SciTech Connect (OSTI)

Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

Eric Nixon; Michelle Pantoya

2009-07-01T23:59:59.000Z

359

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect (OSTI)

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

360

The Dynamics of Flux Tubes in a High Beta Plasma  

E-Print Network [OSTI]

We suggest a new model for the structure of a magnetic field embedded high $\\beta$ turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter the macroscopic properties of the fluid or the large scale magnetic field. In either case we show that the Sweet-Parker reconnection rate is much faster than an eddy turnover time. Realistic stellar plasmas are expected to either be in the ideal limit (e.g. the solar photosphere) or the resistive limit (most of the solar convection zone). All current numerical simulations of three dimensional MHD turbulence are in the viscous regime and are inapplicable to stars or accretion disks.

E. T. Vishniac

1994-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tunable terahertz radiation source  

SciTech Connect (OSTI)

Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.

Boulaevskii, Lev; Feldmann, David M; Jia, Quanxi; Koshelev, Alexei; Moody, Nathan A

2014-01-21T23:59:59.000Z

362

Wireless passive radiation sensor  

DOE Patents [OSTI]

A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

2013-12-03T23:59:59.000Z

363

Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element  

SciTech Connect (OSTI)

The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

Ruggles, A.E.

1990-10-12T23:59:59.000Z

364

Measuring Radiation Damage from Heavy Energetic Ions in Aluminum  

SciTech Connect (OSTI)

An intense beam of 122 MeV/u (9.3 GeV) 76Ge ions was stopped in aluminum samples at the Coupled Cyclotron Facility at NSCL, MSU. Attempts were made at ORNL to measure changes in material properties by measuring changes in electrical resistivity and microhardness, and by transmission electron microscopy characterization, for defect density caused by radiation damage, as a function of depth and integrated ion flux. These measurements are relevant for estimating damage to components at a rare isotope beam facility.

Kostin, M., PI-MSU; Ronningen, R., PI-MSU; Ahle, L., PI-LLNL; Gabriel, T., Scientific Investigation and Development; Mansur, L., PI-ORNL; Leonard, K., ORNL; Mokhov, N., FNAL; Niita, K., RIST, Japan

2009-02-21T23:59:59.000Z

365

Diagnostic options for radiative divertor feedback control on NSTX-U  

SciTech Connect (OSTI)

A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q{sub peak} Less-Than-Or-Slanted-Equal-To 15 MW/m{sup 2}), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D{sub 2} or CD{sub 4} gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m{sup 2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic 'security' monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

Soukhanovskii, V. A.; McLean, A. G. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States); Gerhardt, S. P.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States)

2012-10-15T23:59:59.000Z

366

ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program  

SciTech Connect (OSTI)

Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

1995-09-27T23:59:59.000Z

367

Unruh radiation and Interference effect  

E-Print Network [OSTI]

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

2011-02-23T23:59:59.000Z

368

Advancements in the ADAPT Photospheric Flux Transport Model  

E-Print Network [OSTI]

Maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind which makes photospheric simulations important predictors of solar events on Earth. However, observations of the solar photosphere are only made intermittently over small regions of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the ADAPT model and the implementation of the LETKF. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

Kyle S. Hickmann; Humberto C. Godinez; Carl J. Henney; C. Nick Arge

2014-10-22T23:59:59.000Z

369

Primary Cosmic Ray Proton Flux Measured by AMS-02  

E-Print Network [OSTI]

The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle detector designed to study origin and nature of cosmic rays up to a few TV from space. It was installed on the International Space Station (ISS) on May 19, 2011. During the first two years of operation AMS-02 performed precise measurements of the proton flux. In the low rigidity range, from 1 GV to 20 GV, the proton flux was daily measured with a statistical error less than 1%. In the same rigidity range a gradual decrease due to Solar modulation effect and transit variations due to Solar Flares and Coronal Mass Ejection were also observed. In the rigidity range from 20 GV up to 100 GV instead, AMS-02 data show no drastic variation and the results are consistent with other experiments. Above 100 GV, AMS-02 proton flux exhibits a single power low behavior with no fine structures nor brakes.

C. Consolandi; on Behalf of the AMS-02 Collaboration

2014-02-06T23:59:59.000Z

370

Type II superconductivity and magnetic flux transport in neutrons stars  

E-Print Network [OSTI]

The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

P. B. Jones

2005-10-13T23:59:59.000Z

371

Remote high-temperature insulatorless heat-flux gauge  

DOE Patents [OSTI]

A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

Noel, B.W.

1993-12-28T23:59:59.000Z

372

Remote high-temperature insulatorless heat-flux gauge  

DOE Patents [OSTI]

A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

Noel, Bruce W. (Espanola, NM)

1993-01-01T23:59:59.000Z

373

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

SciTech Connect (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

374

Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments  

E-Print Network [OSTI]

This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.

Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia

2015-01-02T23:59:59.000Z

375

Psoriasis and ultraviolet radiation  

SciTech Connect (OSTI)

Prevention and detection screening programs as a public health service in curtailing the ever-increasing incidence of all forms of skin cancer are reviewed. The effect of solar and artificial ultraviolet radiation on the general population and persons with psoriasis is examined. 54 refs.

Farber, E.M.; Nall, L. (Psoriasis Research Institute, Palo Alto, CA (United States))

1993-09-01T23:59:59.000Z

376

Thermostatic Radiator Valve Evaluation  

SciTech Connect (OSTI)

A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

2015-01-01T23:59:59.000Z

377

Radiation Source Replacement Workshop  

SciTech Connect (OSTI)

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

378

Photovoltaic radiation detector element  

DOE Patents [OSTI]

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, D.C.

1980-12-17T23:59:59.000Z

379

Local microwave background radiation  

E-Print Network [OSTI]

An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

Domingos Soares

2014-11-13T23:59:59.000Z

380

Radiation detector spectrum simulator  

DOE Patents [OSTI]

A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, Michael A. (Los Alamos, NM); Crowell, John M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiation Dose Estimates from  

E-Print Network [OSTI]

Summary: Radiation Dose Estimates from Hanford Radioactive Material Releases to the Air and the Columbia River April 21,1994 TheTechnid Steering Panel of the Hanford - Environmental Dose Reconstruction than 40years, the U.S. Government made plutonium for nuclear weapons at the Hanford

382

Radiation detector spectrum simulator  

DOE Patents [OSTI]

A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, M.A.; Crowell, J.M.

1985-04-09T23:59:59.000Z

383

Assessing exposure to radiation  

SciTech Connect (OSTI)

Since the founding of Lawrence Livermore National Laboratory, we have been world leaders in evaluating the risks associated with radiation. Ultrasensitive tools allow us not only to measure radionuclides present in the body but also to reconstruct the radiation dose from past nuclear events and to project the levels of radiation that will still be present in the body for 50 years after the initial intake. A variety of laboratory procedures, including some developed here, give us detailed information on the effects of radiation at the cellular level. Even today, we are re-evaluating the neutron dose resulting from the bombing at Hiroshima. Our dose reconstruction and projection capabilities have also been applied to studies of Nagasaki, Chernobyl, the Mayak industrial complex in the former Soviet Union, the Nevada Test Site, Bikini Atoll, and other sites. We are evaluating the information being collected on individuals currently working with radioactive material at Livermore and elsewhere as well as previously collected data on workers that extends back to the Manhattan Project.

Walter, K.

1997-01-01T23:59:59.000Z

384

RADIATION ALERT User Manual  

E-Print Network [OSTI]

Environmental Area Monitoring 16 Checking for Surface Contamination 16 5 Maintenance 17 Calibration 17 · Monitoring possible radiation exposure while working with radionuclides · Screening for environmental. Water can damage the circuitry and the mica surface of the Geiger tube. · Do not put the Inspector

Haller, Gary L.

385

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling  

E-Print Network [OSTI]

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

Sugrue, Rosemary M

2012-01-01T23:59:59.000Z

386

Improved approximate formulas for flux from cylindrical and rectangular sources  

SciTech Connect (OSTI)

This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.

Wallace, O.J.; Bokharee, S.A.

1993-03-01T23:59:59.000Z

387

A Novel Detector for High Neutron Flux Measurements  

SciTech Connect (OSTI)

Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of {sup 6}Li and {sup 12}C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

Singo, T. D.; Wyngaardt, S. M. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Papka, P. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Nuclear Physics group, iThemba labs, P. O. Box 722, Somerset West 7129 (South Africa); Dobson, R. T. [Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa)

2010-01-05T23:59:59.000Z

388

Development of a passive soil gas flux sampler  

E-Print Network [OSTI]

DEVELOPMENT OF A PASSIVE SOIL GAS FLUX SAMPLER A Thesis by BRIAN C. McQUOWN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991... Major Subject: Civil Engineering DEVELOPMENT OF A PASSIVE SOIL GAS FLUX SAMPLER A Thesis by BRIAN C. McQUOWN Approved as to style and content by: Stuart A. a terman (Co-chair of Committee) Andrew . cFa land (Member) Bill Batchelor (Co...

McQuown, Brian C

2012-06-07T23:59:59.000Z

389

Electrically-gated near-field radiative thermal transistor  

E-Print Network [OSTI]

In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

Yang, Yue

2015-01-01T23:59:59.000Z

390

ACS WFC CCD Radiation Test: The Radiation Environment  

E-Print Network [OSTI]

of external surfaces by naturally occurring atomic oxygen. CCD detectors are particularly vulnerable to damage damage. A comprehensive discussion of the types of radiation damage known to occur in CCDs is beyond1 ACS WFC CCD Radiation Test: The Radiation Environment Michael R. Jones Space Telescope Science

Sirianni, Marco

391

Betatron radiation from density tailored plasmas  

E-Print Network [OSTI]

Betatron radiation from density tailored plasmas K. Tathe resulting betatron radiation spectrum can therefore bepro?le, the betatron radiation emitted by theses electrons

Ta Phuoc, Kim

2010-01-01T23:59:59.000Z

392

Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

393

Health Physicist (Radiation Protection Specialist)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Health Physicist (Radiation Protection Specialist) senior subject matter expert for health physics/radiation safety at the sites. You will...

394

Acceleration and Classical Electromagnetic Radiation  

E-Print Network [OSTI]

Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.

E. N. Glass

2008-01-09T23:59:59.000Z

395

Pacific Northwest Solar Radiation Data  

E-Print Network [OSTI]

Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data

Oregon, University of

396

DOE Radiation Records Contacts List  

Broader source: Energy.gov [DOE]

DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

397

Gamma radiation field intensity meter  

DOE Patents [OSTI]

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1995-10-17T23:59:59.000Z

398

Gamma radiation field intensity meter  

DOE Patents [OSTI]

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1994-08-16T23:59:59.000Z

399

Gamma radiation field intensity meter  

DOE Patents [OSTI]

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1995-01-01T23:59:59.000Z

400

Gamma radiation field intensity meter  

DOE Patents [OSTI]

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Multiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation Response Effects of Radiation Quality and HypoxiaEffects of Radiation Quality and Hypoxia  

E-Print Network [OSTI]

Multiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation ResponseMultiscale Modeling of Radiation Response Effects of Radiation Quality and HypoxiaEffects of Radiation Quality and Hypoxia Robert D. Stewart, Ph.D.Robert D. Stewart, Ph

Stewart, Robert D.

402

Radiation Protection Guidance Hospital Staff  

E-Print Network [OSTI]

Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford The privilege to use ionizing radiation at Stanford University, Stanford Hospital and Clinics, Lucile Packard with radioactive materials or radiation devices are responsible for knowing and adhering to applicable requirements

Kay, Mark A.

403

COLUMBIA UNIVERSITY Radiation Safety Program  

E-Print Network [OSTI]

COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

Jia, Songtao

404

Fluctuations of energy flux in wave turbulence Eric Falcon,1  

E-Print Network [OSTI]

Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

Falcon, Eric

405

AHR 3/16/06 Equilibrium Flux Surface Calculations  

E-Print Network [OSTI]

preserved, with no flattening in edge stochastic region. · Assume zero net current (00 = 0). #12;#12;2 AHR 31 AHR 3/16/06 Equilibrium Flux Surface Calculations for W7AS and NCSX A. Reiman1, M. Zarnstorff1, D resonant magnetic field near plasma edge. Coil calculated to have little effect on rotational transform

Hudson, Stuart

406

Self-field and magnetic-flux quantum mechanics  

E-Print Network [OSTI]

Self-field and quantized magnetic-flux are employed to generate the quantum numbers n, m, and l of atomic physics. Wave-particle duality is shown to be a natural outcome of having a particle and its self-field.

Paul Harris

2005-04-06T23:59:59.000Z

407

4, 28772914, 2007 Air-sea O2 flux  

E-Print Network [OSTI]

Variability in air-sea O2 and CO2 fluxes and its impact on atmospheric potential oxygen (APO 2 1 National Center for Atmospheric Research, Boulder, Colorado, USA 2 Dept. of Marine Chemistry-friendly Version Interactive Discussion EGU Abstract A three dimensional, time-evolving field of atmospheric

Paris-Sud XI, Université de

408

Solar Neutrino Fluxes Using The Exponential S-Factor  

SciTech Connect (OSTI)

Recently we propose an exponential form for the astrophysical S-factor. This form produces about 20% more solar 3He production through the 3He-3He reaction. In this note, we investigate the effects on the 7Be and 8B neutrino productions since the neutrino fluxes depend on the 3He abundance.

Kassim, Hasan Abu; Jalil, Ithnin Abdul; Yusof, Norhasliza [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2006-07-12T23:59:59.000Z

409

Sediment permeability, distribution, and influence on fluxes in oceanic basement  

E-Print Network [OSTI]

6 Sediment permeability, distribution, and influence on fluxes in oceanic basement Glenn A. Spinelli, Emily R. Giambalvo, and Andrew T. Fisher 6.1 Introduction Sediments blanketing oceanic igneous basement rocks control the communication between fluid within the crust and the oceans. Seafloor sediments

Fisher, Andrew

410

Analytical model for flux saturation in sediment transport  

E-Print Network [OSTI]

The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and can thus be applied under different physical conditions.

T. Pähtz; E. J. R. Parteli; J. F. Kok; H. J. Herrmann

2014-05-30T23:59:59.000Z

411

Magnetic and Electric Flux Quanta: the Pion Mass  

SciTech Connect (OSTI)

The angular momentum of the magnetic flux quantum is balanced by that of the associated supercurrent, such that in condensed matter the resultant angular momentum is zero. The notion of a flux quantum in free space is not so simple, needing both magnetic and electric flux quanta to propagate the stable dynamic structure of the photon. Considering these flux quanta at the scale where quantum field theory becomes essential, at the scale defined by the reduced Compton wavelength of the electron, exposes variants of a paradox that apparently has not been addressed in the literature. Leaving the paradox unresolved in this note, reasonable electromagnetic rationales are presented that permit to calculate the masses of the electron, muon, pion, and nucleon with remarkable accuracy. The calculated mass of the electron is correct at the nine significant digit limit of experimental accuracy, the muon at a part in one thousand, the pion at two parts in ten thousand, and the nucleon at seven parts in one hundred thousand. The accuracy of the pion and nucleon mass calculations reinforces the unconventional common notion that the strong force is electromagnetic in origin.

P Cameron

2011-12-31T23:59:59.000Z

412

CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

413

CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

414

CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

415

High flux heat transfer in a target environment  

E-Print Network [OSTI]

High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere

McDonald, Kirk

416

Section 2: Solar Energy Flux Variations H. S. Hudson  

E-Print Network [OSTI]

Section 2: Solar Energy Flux Variations H. S. Hudson Space Sciences Laboratory, University discuss this subject. We might also note for completeness the neutrino energy loss from the solar core of California, Berkeley The chapters in this section of the monograph deal with the basic raw material of solar

Hudson, Hugh

417

Confinement and the Short Type I' Flux Tube  

E-Print Network [OSTI]

We show that the recent world-sheet analysis of the quantum fluctuations of a short flux tube in type II string theory leads to a simple and precise description of a pair of stuck D0branes in an orientifold compactification of the type I' string theory. The existence of a stable type I' flux tube of sub-string-scale length is a consequence of the confinement of quantized flux associated with the scalar dualized ten-form background field strength *F_{10}, evidence for a -2brane in the BPS spectrum of M theory. Using heterotic-type I duality, we infer the existence of an M2brane of finite width O(\\sqrt{\\alpha'}) in M-theory, the strong coupling resolution of a spacetime singularity in the D=9 twisted and toroidally compactified E_8 x E_8 heterotic string. This phenomenon has a bosonic string analog in the existence of a stable short electric flux tube arising from the confinement of photons due to tachyon field dynamics. The appendix clarifies the appearance of nonperturbative states and enhanced gauge symmetry in toroidal compactifications of the type I' string. We account for all of the known disconnected components of the moduli space of theories with sixteen supercharges, in striking confirmation of heterotic-type I duality.

Shyamoli Chaudhuri

2000-07-18T23:59:59.000Z

418

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

419

Extracting the Green's function from measurements of the energy flux  

E-Print Network [OSTI]

Extracting the Green's function from measurements of the energy flux Roel Sniedera) Center for Wave, Cambridge CB3 0EL, United Kingdom ivasconc@gmail.com Abstract: Existing methods for Green's function extraction give the Green's function from the correlation of field fluctuations recorded at those points

Snieder, Roel

420

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Quantifying global marine isoprene fluxes using MODIS chlorophyll observations  

E-Print Network [OSTI]

, with considerable spatial and temporal variability, resulting in a global annual total of 0.1 Tg C/yr. Air vegetation [Guenther et al., 1995], with the tropics responsible for most of the global annual total ($500 TgQuantifying global marine isoprene fluxes using MODIS chlorophyll observations Paul I. Palmer

Palmer, Paul

422

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

423

Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry  

DOE Patents [OSTI]

Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

Miller, Steven D. (Richland, WA); Smith, Leon Eric (Richland, WA); Skorpik, James R. (Kennewick, WA)

2006-03-07T23:59:59.000Z

424

Apparatus and method for OSL-based, remote radiation monitoring and spectrometry  

DOE Patents [OSTI]

Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

Smith, Leon Eric (Richland, WA); Miller, Steven D. (Richland, WA); Bowyer, Theodore W. (Oakton, VA)

2008-05-20T23:59:59.000Z

425

Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles  

E-Print Network [OSTI]

The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities c...

Beth, Arnaud; Toublanc, Dominique; Dandouras, Iannis; Mazelle, Christian

2015-01-01T23:59:59.000Z

426

The role of trace gas flux networks in biogeosciences  

SciTech Connect (OSTI)

Vast networks of meteorological sensors ring the globe, providing continuous measurements of an array of atmospheric state variables such as temperature, humidity, rainfall, and the concentration of carbon dioxide [New etal., 1999; Tans etal., 1996]. These measurements provide input to weather and climate models and are key to detecting trends in climate, greenhouse gases, and air pollution. Yet to understand how and why these atmospheric state variables vary in time and space, biogeoscientists need to know where, when, and at what rates important gases are flowing between the land and the atmosphere. Tracking trace gas fluxes provides information on plant or microbial metabolism and climate-ecosystem interactions. The existence of trace gas flux networks is a relatively new phenomenon, dating back to research in 1984. The first gas flux measurement networks were regional in scope and were designed to track pollutant gases such as sulfur dioxide, ozone, nitric acid, and nitrogen dioxide. Atmospheric observations and model simulations were used to infer the depositional rates of these hazardous chemicals [Fowler etal., 2009; Meyers etal., 1991]. In the late 1990s, two additional trace gas flux measurement networks emerged. One, the United States Trace Gas Network (TRAGNET), was a short-lived effort that measured trace gas emissions from the soil and plants with chambers distributed throughout the country [Ojima etal., 2000]. The other, FLUXNET, was an international endeavor that brought many regional networks together to measure the fluxes of carbon dioxide, water vapor, and sensible heat exchange with the eddy covariance technique [Baldocchi etal., 2001]. FLUXNET, which remains active today, currently includes more than 400 tower sites, dispersed across most of the world's climatic zones and biomes, with sites in North and South America, Europe, Asia, Africa, and Australia. More recently, several specialized networks have emerged, including networks dedicated to urban areas (Urban Fluxnet), nitrogen compounds in Europe (NitroEurope), and methane (MethaneNet). Technical Aspects of Flux Networks Eddy covariance flux measurements are the preferred method by which biogeoscientists measure trace gas exchange between ecosystems and the atmosphere [Baldocchi, 2003].

Baldocch, Dennis [Department of Environmental Science, Policy and Management, University of California, Berkeley,; Reichstein, Markus [Max Planck Institute for Biogeochemistry; Papale, D. [University of Tuscia; KOTEEN, LAURIE [University of California, Berkeley; VARGAS, RODRIGO [Ensenada Center for Scientific Research and Higher Education (CICESE); Agarwal, D.A [Lawrence Berkeley National Laboratory (LBNL); Cook, Robert B [ORNL

2012-01-01T23:59:59.000Z

427

LOCAL RADIATION MAGNETOHYDRODYNAMIC INSTABILITIES IN MAGNETICALLY STRATIFIED MEDIA  

SciTech Connect (OSTI)

We study local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. We include the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. Apart from factors that depend on wavenumber orientation, the Parker instability exists for wavelengths longer than a characteristic wavelength {lambda}{sub tran}, while photon bubbles exist for wavelengths shorter than {lambda}{sub tran}. The growth rate in the Parker regime is independent of the orientation of the horizontal component of the wavenumber when radiative diffusion is rapid, but the range of Parker-like wavenumbers is extended if there exists strong horizontal shear between field lines (i.e., horizontal wavenumber perpendicular to the magnetic field). Finite gas pressure introduces an additional short-wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at short wavelengths. We also consider the effects of differential rotation with accretion disk applications in mind. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths.

Tao, Ted; Blaes, Omer [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2011-11-20T23:59:59.000Z

428

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect (OSTI)

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

429

Terahertz radiation mixer  

DOE Patents [OSTI]

A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

Wanke, Michael C. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA); Lee, Mark (Albuquerque, NM)

2008-05-20T23:59:59.000Z

430

Radiation shielding composition  

DOE Patents [OSTI]

A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

2000-12-26T23:59:59.000Z

431

Radiation shielding composition  

DOE Patents [OSTI]

A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

432

Radiation shielding composition  

DOE Patents [OSTI]

A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

Quapp, W.J.; Lessing, P.A.

1998-07-28T23:59:59.000Z

433

Time encoded radiation imaging  

DOE Patents [OSTI]

The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

Marleau, Peter; Brubaker, Erik; Kiff, Scott

2014-10-21T23:59:59.000Z

434

National Ambient Radiation Database  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

Dziuban, J.; Sears, R.

2003-02-25T23:59:59.000Z

435

Handheld CZT radiation detector  

DOE Patents [OSTI]

A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

Murray, William S.; Butterfield, Kenneth B.; Baird, William

2004-08-24T23:59:59.000Z

436

Semiconductor radiation detector  

DOE Patents [OSTI]

A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

2002-01-01T23:59:59.000Z

437

High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors  

SciTech Connect (OSTI)

We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

Buxbaum, Robert

2010-06-30T23:59:59.000Z

438

Response of structural materials to radiation environments  

SciTech Connect (OSTI)

An evaluation of proton and neutron damage to aluminum, stainless steel, nickel alloys, and various aluminum alloys has been performed. The proton studies were conducted at energies of 200 MeV, 800 MeV, and 23.5 GeV. The proton studies consisted of evaluation and characterization of proton-irradiated window/target materials from accelerators and comparison to nonirradiated archival materials. The materials evaluated for the proton irradiations included 99.9999 wt% aluminum, 1100 aluminum, 5052 aluminum, 304 stainless steel, and inconel 718. The neutron damage research centered on 6061 T-6 aluminum which was obtained from a control-rod follower from the Brookhaven National Laboratory`s (BNL) High Flux Beam Reactor (HFBR). This material had received thermal neutron fluence up to {approximately}4 {times} 10{sup 23} n/cm{sup 2}. The possible effects of thermal-to-fast neutron flux ratios are discussed. The increases in tensile strength in the proton-irradiated materials is shown to be the result of atomic displacements. These displacements cause interstitials and vacancies which aggregate into defect clusters which result in radiation hardening of the materials. Production of gas (helium) in the grain boundaries of proton irradiated 99.9999 wt% aluminum is also discussed. The major factor contributing to the mechanical-property changes in the neutron-irradiated 6061 T-6 aluminum is the production of transmutation products formed by interactions of the aluminum with thermal neutrons. The metallurgical and mechanical-property evaluations for the research consisted of electron microscopy (both scanning and transmission), tensile testing, and microhardness testing.

Czajkowski, C.J.

1997-12-01T23:59:59.000Z

439

Purely radiative perfect fluids  

E-Print Network [OSTI]

We study `purely radiative' (div E = div H = 0) and geodesic perfect fluids with non-constant pressure and show that the Bianchi class A perfect fluids can be uniquely characterized --modulo the class of purely electric and (pseudo-)spherically symmetric universes-- as those models for which the magnetic and electric part of the Weyl tensor and the shear are simultaneously diagonalizable. For the case of constant pressure the same conclusion holds provided one also assumes that the fluid is irrotational.

B. Bastiaensen; H. R. Karimian; N. Van den Bergh; L. Wylleman

2007-05-08T23:59:59.000Z

440

Photon Clusters in Thermal Radiation  

E-Print Network [OSTI]

Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

Aleksey Ilyin

2014-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Training For Radiation Emergencies, First Responder Operations...  

Energy Savers [EERE]

Training For Radiation Emergencies, First Responder Operations - Instructors Guide Training For Radiation Emergencies, First Responder Operations - Instructors Guide COURSE...

442

POLARIZATION OF THE COSMIC BACKGROUND RADIATION  

E-Print Network [OSTI]

a 45° angle. Radiation whose electric field (polarization)radiation field, it can be uniquely characterized by its electric

Lubin, Philip Lubin

2010-01-01T23:59:59.000Z

443

Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase  

SciTech Connect (OSTI)

Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

444

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

445

Systematic errors in ground heat flux estimation and their correction  

E-Print Network [OSTI]

Incoming radiation forcing at the land surface is partitioned among the components of the surface energy balance in varying proportions depending on the time scale of the forcing. Based on a land-atmosphere analytic continuum ...

Gentine, P.

446

Global aspects of radiation memory  

E-Print Network [OSTI]

Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the "electric" type, or E mode, as characterized by the even parity of the polarization pattern. Although "magnetic" type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged particles obtain a net "kick". Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B mode radiation memory and the non-existence of E mode radiation memory due to a bound charge distribution.

J. Winicour

2014-10-11T23:59:59.000Z

447

Method for microbeam radiation therapy  

DOE Patents [OSTI]

A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

1994-08-16T23:59:59.000Z

448

Anisotropic radiation elds: causality and quantum statistics  

E-Print Network [OSTI]

radiation transport 5 2.1 Radiation transport equation . . . . . . . . . . . . . . . . . . 5 2.2 Closures The transport of radiation through a medium is described by the radiation transport equation for the radiative is used to describe anisotropic radiation. Because the two moment equations do not form a closed set

Honingh, Aline

449

Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product  

SciTech Connect (OSTI)

The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be attainable, thus affecting public policy decisions with great impact to public life.

Dr. Lazaros Oreopoulos and Dr. Peter M. Norris

2010-03-14T23:59:59.000Z

450

A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER  

SciTech Connect (OSTI)

We present a new version of our code for modeling the atmospheric circulation on gaseous exoplanets, now employing a 'double-gray' radiative transfer scheme, which self-consistently solves for fluxes and heating throughout the atmosphere, including the emerging (observable) infrared flux. We separate the radiation into infrared and optical components, each with its own absorption coefficient, and solve standard two-stream radiative transfer equations. We use a constant optical absorption coefficient, while the infrared coefficient can scale as a power law with pressure; however, for simplicity, the results shown in this paper use a constant infrared coefficient. Here we describe our new code in detail and demonstrate its utility by presenting a generic hot Jupiter model. We discuss issues related to modeling the deepest pressures of the atmosphere and describe our use of the diffusion approximation for radiative fluxes at high optical depths. In addition, we present new models using a simple form for magnetic drag on the atmosphere. We calculate emitted thermal phase curves and find that our drag-free model has the brightest region of the atmosphere offset by {approx}12 Degree-Sign from the substellar point and a minimum flux that is 17% of the maximum, while the model with the strongest magnetic drag has an offset of only {approx}2 Degree-Sign and a ratio of 13%. Finally, we calculate rates of numerical loss of kinetic energy at {approx}15% for every model except for our strong-drag model, where there is no measurable loss; we speculate that this is due to the much decreased wind speeds in that model.

Rauscher, Emily [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

2012-05-10T23:59:59.000Z

451

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

SciTech Connect (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

452

Radiation embrittlement of PWR vessel supports  

SciTech Connect (OSTI)

Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100/degree/C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs.

Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

1989-01-01T23:59:59.000Z

453

Method of fission heat flux determination from experimental data  

DOE Patents [OSTI]

A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

Paxton, Frank A. (Schenectady, NY)

1999-01-01T23:59:59.000Z

454

Predicting low-frequency radio fluxes of known extrasolar planets  

E-Print Network [OSTI]

Context. Close-in giant extrasolar planets (''Hot Jupiters'') are believed to be strong emitters in the decametric radio range. Aims. We present the expected characteristics of the low-frequency magnetospheric radio emission of all currently known extrasolar planets, including the maximum emission frequency and the expected radio flux. We also discuss the escape of exoplanetary radio emission from the vicinity of its source, which imposes additional constraints on detectability. Methods. We compare the different predictions obtained with all four existing analytical models for all currently known exoplanets. We also take care to use realistic values for all input parameters. Results. The four different models for planetary radio emission lead to very different results. The largest fluxes are found for the magnetic energy model, followed by the CME model and the kinetic energy model (for which our results are found to be much less optimistic than those of previous studies). The unipolar interaction model does ...

Grießmeier, J -M; Spreeuw, H

2008-01-01T23:59:59.000Z

455

Vorticity Preserving Flux Corrected Transport Scheme for the Acoustic Equations  

SciTech Connect (OSTI)

Long term research goals are to develop an improved cell-centered Lagrangian Hydro algorithm with the following qualities: 1. Utilizes Flux Corrected Transport (FCT) to achieve second order accuracy with multidimensional physics; 2. Does not rely on the one-dimensional Riemann problem; and 3. Implements a form of vorticity control. Short term research goals are to devise and implement a 2D vorticity preserving FCT solver for the acoustic equations on an Eulerian mesh: 1. Develop a flux limiting mechanism for systems of governing equations with symmetric wave speeds; 2. Verify the vorticity preserving properties of the scheme; and 3. Compare the performance of the scheme to traditional MUSCL-Hancock and other algorithms.

Lung, Tyler B. [Los Alamos National Laboratory; Roe, Phil [University of Michigan; Morgan, Nathaniel R. [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

456

Traveling-wave device with mass flux suppression  

DOE Patents [OSTI]

A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)

2000-01-01T23:59:59.000Z

457

Superconducting and Spinning Non-Abelian Flux Tubes  

E-Print Network [OSTI]

We find new non-Abelian flux tube solutions in a model of $N_f$ scalar fields in the fundamental representation of SU(N)xU(1) with $N \\leq N_f$ (the ``extended non-Abelian Higgs model''), and study their main properties. Among the solutions there are spinning strings as well as superconducting ones. The solutions exist only in a non trivial domain of the parameter space defined by the ratio between the SU(N) and U(1) coupling constants, the scalar self-interaction coupling constants, the magnetic fluxes (Abelian as well as non-Abelian) and the ``twist parameter'' which is a non-trivial relative phase of the Higgs fields.

Y. Brihaye; Y. Verbin

2008-04-11T23:59:59.000Z

458

FLUXCAP: A flux-coupled ac/dc magnetizing device  

E-Print Network [OSTI]

We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

Gopman, Daniel B; Kent, Andrew D

2012-01-01T23:59:59.000Z

459

Radiative ?(1S) decays  

E-Print Network [OSTI]

— wW~ ii~ ~ + v~ 1''&WV'' V 0.20 0.45 0.70 ~y ~ EBFA~ 0.95 l.20 FIG. 4. Energy spectrum (normalized to beam energy) for Y~y2(h+h ) event candidates, with continuum data and ex- pected background from Y~m 2(h +h ) overplotted. 40 30— ~ 20— LLI IO— hl...PHYSICAL REVIEW 0 VOLUME 41, NUMBER 5 Radiative T(lS) decays 1 MARCH 1990 R. Fulton, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, and J. Whitmore Ohio State University, Columbus, Ohio 43210 W.-Y. Chen, J. Dominick, R. L. Mc...

Baringer, Philip S.

1990-03-01T23:59:59.000Z

460

Radiation Field on Superspace  

E-Print Network [OSTI]

We study the dynamics of multiwormhole configurations within the framework of the Euclidean Polyakov approach to string theory, incorporating a modification to the Hamiltonian which makes it impossible to interpret the Coleman Alpha parameters of the effective interactions as a quantum field on superspace, reducible to an infinite tower of fields on space-time. We obtain a Planckian probability measure for the Alphas that allows $\\frac{1}{2}\\alpha^{2}$ to be interpreted as the energy of the quanta of a radiation field on superspace whose values may still fix the coupling constants.

P. F. Gonzalez-Diaz

1994-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Radiation imaging apparatus  

DOE Patents [OSTI]

A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

Anger, H.O.; Martin, D.C.; Lampton, M.L.

1983-07-26T23:59:59.000Z

462

Radiation imaging apparatus  

DOE Patents [OSTI]

A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

1983-01-01T23:59:59.000Z

463

Radiation.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,Performance QualityRadiation August

464

Courses on Synchrotron Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3. |ID#:Synchrotron Radiation The following is

465

THE PHOTOSPHERIC ENERGY AND HELICITY BUDGETS OF THE FLUX-INJECTION HYPOTHESIS  

SciTech Connect (OSTI)

The flux-injection hypothesis for driving coronal mass ejections (CMEs) requires the transport of substantial magnetic energy and helicity flux through the photosphere concomitant with the eruption. Under the magnetohydrodynamics approximation, these fluxes are produced by twisting magnetic field and/or flux emergence in the photosphere. A CME trajectory, observed 2000 September 12 and fitted with a flux-rope model, constrains energy and helicity budgets for testing the flux-injection hypothesis. Optimal velocity profiles for several driving scenarios are estimated by minimizing the photospheric plasma velocities for a cylindrically symmetric flux-rope magnetic field subject to the flux budgets required by the flux-rope model. Ideal flux injection, involving only flux emergence, requires hypersonic upflows in excess of the solar escape velocity 617 km s{sup -1} over an area of 6 x 10{sup 8} km{sup 2} to satisfy the energy and helicity budgets of the flux-rope model. These estimates are compared with magnetic field and Doppler measurements from Solar and Heliospheric Observatory/Michelson Doppler Imager on 2000 September 12 at the footpoints of the CME. The observed Doppler signatures are insufficient to account for the required energy and helicity budgets of the flux-injection hypothesis.

Schuck, P. W., E-mail: peter.schuck@nasa.go [NASA Goddard Space Flight Center, Room 250, Building 21 Space Weather Laboratory, Code 674, Heliophysics Science Division, 8801 Greenbelt Rd., Greenbelt, MD 20771 (United States)

2010-05-01T23:59:59.000Z

466

Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture  

SciTech Connect (OSTI)

The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

Scott Wilde, Raymond Keegan

2008-07-01T23:59:59.000Z

467

Measurement of Radiation Damage on Silica Aerogel \\v Cerenkov Radiator  

E-Print Network [OSTI]

We measured the radiation damage on silica aerogel \\v Cerenkov radiators originally developed for the $B$-factory experiment at KEK. Refractive index of the aerogel samples ranged from 1.012 to 1.028. The samples were irradiated up to 9.8~MRad of equivalent dose. Measurements of transmittance and refractive index were carried out and these samples were found to be radiation hard. Deteriorations in transparency and changes of refractive index were observed to be less than 1.3\\% and 0.001 at 90\\% confidence level, respectively. Prospects of using aerogels under high-radiation environment are discussed.

S. K. Sahu et al

1996-04-11T23:59:59.000Z

468

Radiation Control Program and Radiation Control Act (Nebraska)  

Broader source: Energy.gov [DOE]

This statute authorizes the state to implement a regulatory program for sources of radiation, and contains rules for the Department, licensing and registration, and taxation of radioactive materials.

469

Fusion Rules in Turbulent Systems with Flux Equilibrium  

E-Print Network [OSTI]

Fusion rules in turbulence specify the analytic structure of many-point correlation functions of the turbulent field when a group of coordinates coalesce. We show that the existence of flux equilibrium in fully developed turbulent systems combined with a direct cascade induces universal fusion rules. In certain examples these fusion rules suffice to compute the multiscaling exponents exactly, and in other examples they give rise to an infinite number of scaling relations that constrain enormously the structure of the allowed theory.

Victor L'vov; Itamar Procaccia

1995-07-27T23:59:59.000Z

470

Refined topological amplitudes in N=1 flux compactification  

E-Print Network [OSTI]

We study the implication of refined topological string amplitudes in the supersymmetric N=1 flux compactification. They generate higher derivative couplings among the vector multiplets and graviphoton with generically non-holomorphic moduli dependence. For a particular term, we can compute them by assuming the geometric engineering. We claim that the Dijkgraaf-Vafa large N matrix model with the beta-ensemble measure directly computes the higher derivative corrections to the supersymmetric effective action of the supersymmetric N=1$ gauge theory.

Yu Nakayama

2010-10-05T23:59:59.000Z

471

Measuring the Magnetic Flux Density in the CMS Steel Yoke  

E-Print Network [OSTI]

The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; A. Ball; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; M. Mulders; R. Loveless

2012-12-06T23:59:59.000Z

472

Conversion feasibility studies for the Grenoble high flux reactor  

SciTech Connect (OSTI)

Feasibility studies for conversion of the High Flux Reactor (RHF) at Grenoble France have been performed at the Argonne National Laboratory in cooperation with the Institut Laue-Langevin (ILL). The uranium densities required for conversion of the RHF to reduced enrichment fuels were computed to be 7.9 g/cm{sup 3} with 20% enrichment, 4.8 g/cm{sup 3} with 29% enrichment, and 2.8 g/cm{sup 3} with 45% enrichment. Thermal flux reductions at the peak in the heavy water reflector were computed to be 3% with 45% enriched fuel and 7% with 20% enriched fuel. In each case, the reactor's 44 day cycle length was preserved and no changes were made in the fuel element geometry. If the cladding thickness could be reduced from 0.38 mm to 0.30 mm, the required uranium density with 20% enrichment would be about 6.0 g/cm{sup 3} and the thermal flux reduction at the peak in the heavy water reflector would be about 7%. Significantly higher uranium densities are required in the RHF than in heavy water reactors with more conventional designs because the neutron spectrum is much harder in the RHF. Reduced enrichment fuels with the uranium densities required for use in the RHF are either not available or are not licensable at the present time. 6 refs., 6 figs., 3 tabs.

Mo, S.C.; Matos, J.E.

1989-01-01T23:59:59.000Z

473

The High Flux Beam Reactor at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

Shapiro, S.M.

1994-12-31T23:59:59.000Z

474

Operation of the ORNL High Particle Flux Helicon Plasma Source  

SciTech Connect (OSTI)

A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

Goulding, Richard Howell [ORNL; Biewer, Theodore M [ORNL; Caughman, John B [ORNL; Chen, Guangye [ORNL; Owen, Larry W [ORNL; Sparks, Dennis O [ORNL

2011-01-01T23:59:59.000Z

475

Operation of the ORNL High Particle Flux Helicon Plasma Source  

SciTech Connect (OSTI)

A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)

2011-12-23T23:59:59.000Z

476

Constraints on the ionizing flux emitted by T Tauri stars  

E-Print Network [OSTI]

We present the results of an analysis of ultraviolet observations of T Tauri Stars (TTS). By analysing emission measures taken from the literature we derive rates of ionizing photons from the chromospheres of 5 classical TTS in the range ~10^41-10^44 photons/s, although these values are subject to large uncertainties. We propose that the HeII/CIV line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTS. By studying this line ratio in a much larger sample of objects we find evidence for an ionizing flux which does not decrease, and may even increase, as TTS evolve. This implies that a significant fraction of the ionizing flux from TTS is not powered by the accretion of disc material onto the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.

R. D. Alexander; C. J. Clarke; J. E. Pringle

2005-01-06T23:59:59.000Z

477

Radiation transport in inhomogeneous media  

SciTech Connect (OSTI)

Calculations of radiation transport in heated materials are greatly complicated by the presence of regions in which two or more materials are inhomogeneously mixed. This phenomenon is important in many systems, such as astrophysical systems where density clumps can be found in star-forming regions and molecular clouds. Laboratory experiments have been designed to test the modeling of radiation transport through inhomogeneous plasmas. A laser-heated hohlraum is used as a thermal source to drive radiation through polymer foam containing randomly distributed gold particles. Experimental measurements of radiation transport in foams with gold particle sizes ranging from 5-9 {mu}m to submicrometer diameters as well as the homogeneous foam case are presented. The simulation results of the radiation transport are compared to the experiment and show that an inhomogeneous transport model must be applied to explain radiation transport in foams loaded with 5 {mu}m diameter gold particles.

Keiter, Paul; Gunderson, Mark [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Foster, John; Rosen, Paula; Comley, Andrew; Taylor, Mark [AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Perry, Ted [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2008-05-15T23:59:59.000Z

478

E-Print Network 3.0 - average solar-cosmic-ray fluxes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar-cosmic-ray fluxes Search Powered by Explorit Topic List Advanced Search Sample search results for: average solar-cosmic-ray fluxes Page: << < 1 2 3 4 5 > >> 1 Annales...

479

Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components  

E-Print Network [OSTI]

The steady and unsteady components of the momentum flux in a twophase flow have been measured at the exit of a vertical pipe. Measured momentum flux data has been machine processed by standard random vibration techniques ...

Yih, Tien Sieh

1968-01-01T23:59:59.000Z

480

E-Print Network 3.0 - air-sea co2 flux Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2 flux Search Powered by Explorit Topic List Advanced Search Sample search results for: air-sea co2 flux Page: << < 1 2 3 4 5 > >> 1 Scott Miller Atmospheric Sciences Research...

Note: This page contains sample records for the topic "instantaneous radiative flux" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Flux Motion in Anisotropic Type-Ii Superconductors Near H(c2)  

E-Print Network [OSTI]

Flux motion in anisotropic type-II superconductors is studied in the framework of the time-dependent Ginzburg-Landau theory. Expressions for the flux-flow resistivity tensor (including all the longitudinal and Hall elements) are obtained...

HAO, ZD; Hu, Chia-Ren.

1993-01-01T23:59:59.000Z

482

An experimental investigation of critical heat flux in subcooled internal flow  

E-Print Network [OSTI]

An experimental investigation has been conducted to determine the critical heat flux for subcooled refrigerant-11 and refrigerant-113 flowing upward in a vertical cylindrical tube. Critical heat flux (CHF) values are determined for a range of tube...

Shatto, Donald Patrick

1997-01-01T23:59:59.000Z

483

Estimation of turbulent surface heat fluxes using sequences of remotely sensed land surface temperature  

E-Print Network [OSTI]

Fluxes of heat and moisture at the land-surface play a significant role in the climate system. These fluxes interact with the overlying atmosphere and influence the characteristics of the planetary boundary layer (e.g. ...

Bateni, Sayed Mohyeddin

2011-01-01T23:59:59.000Z

484

E-Print Network 3.0 - argonne high flux reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: argonne high flux reactor Page: << < 1 2 3 4 5 > >> 1 Thirteenth National School on Neutron and X-ray Scattering Summary: Neutron Source and High Flux Isotope Reactor...

485

Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas  

E-Print Network [OSTI]

010-0184-0 ORIGINAL Gas flux and carbonate occurrence atof thermogenic natural gas Franklin S. Kinnaman & Justine B.comprehensive survey of gas flux at Brian Seep yielded a

2010-01-01T23:59:59.000Z

486

Imaging of Diesel Particulate Filters using a High-Flux Neutron...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

487

E-Print Network 3.0 - axial heat flux Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is provided by Elsevier for the Summary: pipe, such as working temperature, heat flux, inclination angle, working fluid fill ratio (defined... , heat flux 5.0 kwm2 -40 kwm2 ,...

488

A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines  

E-Print Network [OSTI]

A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines Sofiane turbines (MCTs). Due to the submarine environment, maintenance operations are very hard, very costly current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine

Brest, Université de

489

Study on premixed combustion in cylindrical micro combustors: Transient flame behavior and wall heat flux  

SciTech Connect (OSTI)

The micro combustor is a key component of the micro thermophotovoltaic (TPV) system. Improving the wall temperature of the micro combustor is an effective way to elevate the system efficiency. An experimental study on the wall temperature and radiation heat flux of a series of cylindrical micro combustors (with a backward-facing step) was carried out. For the micro combustors with d = 2 mm, the regime of successful ignition (under the cold wall condition) was identified for different combustor lengths. Acoustic emission was detected for some cases and the emitted sound was recorded and analyzed. Under the steady-state condition, the effects of the combustor diameter (d), combustor length (L), flow velocity (u{sub 0}) and fuel-air equivalence ratio ({phi}) on the wall temperature distribution were investigated by measuring the detailed wall temperature profiles. In the case that the micro combustor is working as an emitter, the optimum efficiency was found at {phi} {approx} 0.8, independent of the combustor dimensions (d and L) and the flow velocity. Under the experimental conditions employed in the present study, the positions of the peak wall temperature were found to be about 8-11 mm and 4-6 mm from the step for the d = 3 mm and d = 2 mm micro combustors, respectively, which are 8-11 and 8-12 times of their respective step heights. This result suggests that the backward-facing step employed in the combustor design is effective in stabilizing the flame position. (author)

Li, J.; Chou, S.K.; Huang, G.; Yang, W.M. [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Li, Z.W. [SSLS, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore)

2009-04-15T23:59:59.000Z

490

High-heat-flux removal by phase-change fluid and particulate flow  

SciTech Connect (OSTI)

A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

1993-07-01T23:59:59.000Z

491

Radiation Safety Work Control Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

492

Electromagnetic radiation by gravitating bodies  

E-Print Network [OSTI]

Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2008-05-06T23:59:59.000Z

493

Radiator Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat...

494

Enhanced radiation resistant fiber optics  

DOE Patents [OSTI]

A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

Lyons, P.B.; Looney, L.D.

1993-11-30T23:59:59.000Z

495

Quality Services: Radiation (New York)  

Broader source: Energy.gov [DOE]

These regulations establish standards for protection against ionizing radiation resulting from the disposal and discharge of radioactive material to the environment. The regulations apply to any...

496

PUBLISHED VERSION Characterization of local heat fluxes around ICRF antennas on JET  

E-Print Network [OSTI]

) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography

497

The estimation of neutrino flux produced by $\\mathbf{pep}$ reactions in the Sun  

E-Print Network [OSTI]

The experimental result of the solar neutrino flux at one AU produced by the $p+p+e \\rightarrow d+\

B. F. Irgaziev; V. B. Belyaev; Jameel-Un Nabi

2014-08-20T23:59:59.000Z

498

RADIATION SAFETY COMMITTEE The Radiation Safety Committee shall advise the Provost on all policy matters relating to radiation safety;  

E-Print Network [OSTI]

RADIATION SAFETY COMMITTEE Functions The Radiation Safety Committee shall advise the Provost on all policy matters relating to radiation safety; formulate campus radiation safety policies in compliance the Risk Manager) monitor the performance of the Radiation Safety Officer as it relates to implementation

Sze, Lawrence

499

Analysis of global radiation budgets and cloud forcing using three-dimensional cloud nephanalysis data base. Master's thesis  

SciTech Connect (OSTI)

A one-dimensional radiative transfer model was used to compute the global radiative budget at the top of the atmosphere (TOA) and the surface for January and July. 1979. The model was also used to determine the global cloud radiative forcing for all clouds and for high and low cloud layers. In the computations. the authors used the monthly cloud data derived from the Air Force Three-Dimensional Cloud Nephanalysis (3DNEPH). These data were used in conjunction with conventional temperature and humidity profiles analyzed during the 1979 First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) year. Global surface albedos were computed from available data and were included in the radiative transfer analysis. Comparisons of the model-produced outgoing solar and infrared fluxes with those derived from Nimbus 7 Earth Radiation Budget (ERS) data were made to validate the radiative model and cloud cover. For reflected solar and emitted infrared (IR) flux, differences within 20 w/sq m meters were shown.

Mitchell, B.

1990-12-01T23:59:59.000Z

500

Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems  

E-Print Network [OSTI]

April 2008 Accepted 18 April 2008 Keywords: Energy balance Soil heat flux Available energy Eddy variability in soil heat flux contributing to energy balance closure (EBC), by deploying a mobile energySpatial variability in soil heat flux at three Inner Mongolia steppe ecosystems Changliang Shao a

Chen, Jiquan