Powered by Deep Web Technologies
Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews This page lists all About Wind

2

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt Wind FarmSouthwestSpain

3

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

4

WINDExchange: Wind Potential Capacity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

5

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

2008-01-01T23:59:59.000Z

6

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

7

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalled Geothermal Capacity Jump to:

8

PNNL Reports Distributed Wind Installations Down, Exports Up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According...

9

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

10

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

11

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

12

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

13

Capacity Value of PV and Wind Generation in the NV Energy System  

SciTech Connect (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2014-03-21T23:59:59.000Z

14

Wind Farm Portfolio Optimization under Network Capacity Constraints  

E-Print Network [OSTI]

1 Wind Farm Portfolio Optimization under Network Capacity Constraints Hel`ene Le Cadre, Anthony of wind farms in a Market Coupling organization, for two Market Designs (exogenous prices and endogenous of efficient wind farm portfolios, is derived theoretically as a function of the number of wind farms

Paris-Sud XI, Universit de

15

Capacity Requirements to Support Inter-Balancing Area Wind Delivery  

SciTech Connect (OSTI)

Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

Kirby, B.; Milligan, M.

2009-07-01T23:59:59.000Z

16

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network [OSTI]

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

17

Sizing Storage and Wind Generation Capacities in Remote Power Systems  

E-Print Network [OSTI]

Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

Victoria, University of

18

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network [OSTI]

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

19

Gravity base foundations for offshore wind farms : marine operations and installation processes.  

E-Print Network [OSTI]

??ABSTRACT. Marine operations required in the installation of gravity base foundations for offshore wind farms were studied. This dissertation analyses the operations of transport, seabed (more)

Ruiz de Temio Alonso, Ismael

2013-01-01T23:59:59.000Z

20

Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an  

E-Print Network [OSTI]

Abstract--The offshore wind farm with installed back-to- back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken installed in wind turbines are presented. Harmonic load flow analysis and impedance frequency

Bak, Claus Leth

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power  

E-Print Network [OSTI]

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

22

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

SciTech Connect (OSTI)

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

23

Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint  

SciTech Connect (OSTI)

This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

Milligan, M.; Porter, K.

2008-06-01T23:59:59.000Z

24

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformationPotentialOffshoreWindArea Jump to:PotentialOnshoreWindCapacity

25

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network [OSTI]

reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system...

Pierson, T. L.; Andrepont, J. S.

26

Tracking Progress Last updated 10/7/2013 Installed Capacity 1  

E-Print Network [OSTI]

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Capacity (MW) Wind Solar Small Hydro Large Hydro,813 Large Hydro 11,890 11,755 11,755 12,114 12,103 12,194 11,945 12,226 12,226 12,257 12,297 12,297 Small 2008 2009 2010 2011 2012 Energy (GWh) Wind Solar Small Hydro Large Hydro Natural Gas Nuclear Geothermal

27

Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation  

SciTech Connect (OSTI)

Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

2012-09-01T23:59:59.000Z

28

Perceived Socioeconomic Impacts of Wind Energy in West Texas  

E-Print Network [OSTI]

Wind power is a fast growing alternative energy source. Since 2000, wind energy capacity has increased 24 percent per year with Texas leading the U.S. in installed wind turbine capacity. Most socioeconomic research in wind energy has focused...

Persons, Nicole D.

2010-07-14T23:59:59.000Z

29

E-Print Network 3.0 - american large wind Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

installation capacity, growth rate, costs of wind power, small versus large wind turbines, and onshore ver- sus... strategies. Many large wind power generation facilities...

30

Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems  

SciTech Connect (OSTI)

When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

Kirby, B.; Milligan, M.

2008-07-01T23:59:59.000Z

31

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network [OSTI]

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

32

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network [OSTI]

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

33

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

34

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

35

Abstract--This paper introduces the power quality issues of wind power installations in a historic perspective, as the  

E-Print Network [OSTI]

1 Abstract--This paper introduces the power quality issues of wind power installations large offshore wind farms connected at transmission level. In this perspective, the power quality issues and global issues related to the power system control and stability. Power quality characteristics of wind

36

Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy  

SciTech Connect (OSTI)

Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

2013-07-01T23:59:59.000Z

37

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network [OSTI]

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

38

INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2)  

E-Print Network [OSTI]

Conditioner is listed in the ARI database with a specified furnace or air handler and that furnace or air handler is to be installed. Otherwise, if the proposed Air Conditioner is listed in the ARI database (Watt) = ARI Rated Total Cooling Capacity (Btu/hr) / ARI Rated EER (Btu/Watt-hr) if the proposed Air

39

Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system  

SciTech Connect (OSTI)

This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

BOGER, R.M.

1999-05-12T23:59:59.000Z

40

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network [OSTI]

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

42

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

43

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)  

SciTech Connect (OSTI)

This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Sinclair, K.; Oteri, F.

2011-05-01T23:59:59.000Z

44

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio  

SciTech Connect (OSTI)

This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Oteri, F.; Sinclair, K.

2011-11-01T23:59:59.000Z

45

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Results from Major Wind Integration Studies Completed 2003-a mini- mum) show that wind integration costs are generallyA number of additional wind integration analyses are planned

2008-01-01T23:59:59.000Z

46

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOEs Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

47

Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty  

SciTech Connect (OSTI)

This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-11-28T23:59:59.000Z

48

Determining the Capacity Value of Wind: A Survey of Methods and Implementation; Preprint  

SciTech Connect (OSTI)

This paper focuses on methodologies for determining the capacity value of generating resources, including wind energy and summarizes several important state and regional studies. Regional transmission organizations, state utility regulatory commissions, the North American Electric Reliability Council, regional reliability councils, and increasingly, the Federal Energy Regulatory Commission all advocate, call for, or in some instances, require that electric utilities and competitive power suppliers not only have enough generating capacity to meet customer demand but also have generating capacity in reserve in case customer demand is higher than expected, or if a generator or transmission line goes out of service. Although the basic concept is the same across the country, how it is implemented is strikingly different from region to region. Related to this question is whether wind energy qualifies as a capacity resource. Wind's variability makes this a matter of great debate in some regions. However, many regions accept that wind energy has some capacity value, albeit at a lower value than other energy technologies. Recently, studies have been published in California, Minnesota and New York that document that wind energy has some capacity value. These studies join other initiatives in PJM, Colorado, and in other states and regions.

Milligan, M.; Porter, K.

2005-05-01T23:59:59.000Z

49

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

result, these prices do not represent wind energy generationprices presumably reflect only the value of energy, whereas wind

2008-01-01T23:59:59.000Z

50

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformationPotentialOffshoreWindArea Jump to: navigation, search

51

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verificationthe latest turbine models. The U.S. DOE Wind Energy Program

2008-01-01T23:59:59.000Z

52

The Economic Implications of Adding Wind Capacity to a Bulk Power Transmission Network  

E-Print Network [OSTI]

The Economic Implications of Adding Wind Capacity to a Bulk Power Transmission Network by Tim Mount, these are precisely the prices that must be determined correctly to measure the economic value of equipment the economic value of improved reliability. The objective of this paper is to extend the co

53

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 (Revised)  

SciTech Connect (OSTI)

This report focuses on key trends in the U.S. wind power market, with an emphasis on the latest year, and presents a wealth of data, some of which has not historically been mined by wind power analysts.

Wiser, R.; Bolinger, M.

2008-05-01T23:59:59.000Z

54

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

levelized costs; (2) in regions where capacity markets exist, wholesale prices presumably reflect only the value of energy,

2008-01-01T23:59:59.000Z

55

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

Hallgren, Willow

56

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australias wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

Hallgren, Willow

57

Capacity Value of Wind Plants and Overview of U.S. Experience (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview and summary of the capacity value of wind power plants, based primarily on the U.S. experience. Resource adequacy assessment should explicitly consider risk. Effective load carrying capability (ELCC) captures each generators contribution to resource adequacy. On their own, reserve margin targets as a percent of peak can't capture risks effectively. Recommend benchmarking reliability-based approaches with others.

Milligan, M.

2011-08-01T23:59:59.000Z

58

First U.S. Grid-Connected Offshore Wind Turbine Installed Off...  

Office of Environmental Management (EM)

deepwater offshore floating wind turbine near Bangor. When the turbine was turned on and electricity began flowing through an undersea cable to Central Maine Power on June 13, the...

59

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

SciTech Connect (OSTI)

This report--the first in what is envisioned to be an ongoing annual series--attempts to fill this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2006.

Wiser, R.; Bolinger, M.

2007-05-01T23:59:59.000Z

60

Wind Resource Assessment of Gujarat (India)  

SciTech Connect (OSTI)

India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

Draxl, C.; Purkayastha, A.; Parker, Z.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Regulatory and technical barriers to wind energy integration in northeast China  

E-Print Network [OSTI]

China leads the world in installed wind capacity, which forms an integral part of its long-term goals to reduce the environmental impacts of the electricity sector. This primarily centrally-managed wind policy has concentrated ...

Davidson, Michael (Michael Roy)

2014-01-01T23:59:59.000Z

62

Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the country's largest and fastest growing market. With 12,214 megawatts of total wind capacity installed at the end of last year, Texas has more than twice as much wind power...

63

Xcel Energy Wind and Biomass Generation Mandate  

Broader source: Energy.gov [DOE]

Minnesota law (Minn. Stat. 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

64

2012-2013_Wind_Data.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MW would be counted as 24, no matter when in the hour the action occurred.) Installed Wind Capacity (as of the end of each month) Curtail Events (INC) 4516 Limit Events (DEC)...

65

Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation  

E-Print Network [OSTI]

Reliability analysis for wind turbines with incomplete failure data collected from after the date model Maximum likelihood Least squares Wind turbines a b s t r a c t Reliability has an impact on wind analysis. In wind energy industry, wind farm operators have greater interest in recording wind turbine

McCalley, James D.

66

2013 Wind Technologies Market Report  

SciTech Connect (OSTI)

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

67

Obtaining data for wind farm development and management: the EO-WINDFARM project  

E-Print Network [OSTI]

, there are huge wind resources and European companies are world leaders at converting it into electric power. Wind). That sector has a mean growth rate of 30% for the last two years. The total installed wind power capacity objective for 2010 in Europe amounts to 75 GW (EWEA, 2004). The total power currently installed (mid 2004

68

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

SciTech Connect (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

69

In 2001 Massachusetts' first modern wind turbine was installed in at Windmill Point, at the tip of the  

E-Print Network [OSTI]

potential wind power projects with the Hull Municipal Light Plant (HMLP) in the 1980's and 1990's. Work by the Hull Municipal Light Plant (HMLP), a municipally owned utility. Annual average power consumption for more wind power. Wind Power On the Community Scale Community Wind Case Study: Hull Renewable Energy

Massachusetts at Amherst, University of

70

Photo of the Week: Wheat and Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana, generating electricity for portions of the northwest United States. With an installed capacity of 135 MW, the Judith Gap Energy Center is one of the strongest wind farms...

71

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis  

E-Print Network [OSTI]

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis Elie Al-Ahmar1,2 , Mohamed El, induction generator, Discrete Wavelet Transform (DWT), failure diagnosis. I. Introduction Wind energy the condition of induction machines. Fig. 1. Worldwide growth of wind energy installed capacity [1]. 1 E. Al

Paris-Sud XI, Université de

72

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network [OSTI]

; a capped landfill was chosen. Resource assessment took advantage of the Hull Wind I experience, nearby data made the wind power projects economically feasible; and a citizenry willing to participate actively for salt production. Hull's pursuit of modern wind power began more than 20 years ago, with the 1985

Massachusetts at Amherst, University of

73

White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or  

E-Print Network [OSTI]

rapidly but faces grid integration problems; yet the cost of PV solar panels has plummeted thanks1 White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear renewable power generation from wind and solar as a non- emitting alternative to replace a nuclear phase

Paris-Sud XI, Universit de

74

Dynamic modelling of generation capacity investment in electricity markets with high wind penetration  

E-Print Network [OSTI]

The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

Eager, Daniel

2012-06-25T23:59:59.000Z

75

Comparison of Feed in Tariff, Quota and Auction Mechanisms to Support Wind Power Development  

E-Print Network [OSTI]

A comparison of policy instruments employed to support onshore wind projects suggests that in terms of capacity installed, policies adopted in Germany have been more effective than those adopted in the UK. Price comparisons have frequently...

Butler, Lucy; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

76

Control and Protection of Wind Power Plants with VSC-HVDC Connection  

E-Print Network [OSTI]

advantage of the lower cost per MW of installed wind power capacity. The current trend is that these largeControl and Protection of Wind Power Plants with VSC-HVDC Connection By Sanjay K Chaudhary Wind power plants are the fastest growing source of renewable energy. The European Union expects

Chaudhary, Sanjay

77

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

78

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

79

Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables  

E-Print Network [OSTI]

AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Speed (MPH) T u rb in e P o w er (k W h /h ) Hourly electricity produced vs on- site wind data acceptable for hourly modeling. Issue: hourly on-site data not always available. Calculating NOx Reductions from Wind Farms Energy...

Haberl, J.; Yazdani, B.; Culp, C.

80

Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008  

E-Print Network [OSTI]

-wind renewables. This legislation also requires the Public Utilities Commission of Texas (PUCT) to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires the Texas Commission on Environmental Quality (TCEQ) to develop...

Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

82

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

83

Wind Spires as an Alternative Energy Source  

SciTech Connect (OSTI)

This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

Majid Rashidi, Ph.D., P.E.

2012-10-30T23:59:59.000Z

84

Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald Mellinghoff, Kai Monnich, Hans-Peter Waldl  

E-Print Network [OSTI]

Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald of wind turbines connected to the public electricity grid will be intro- duced. Using this procedure and Northern Germany. At the moment, the installed capacity of wind turbines is in the order of magnitude

Heinemann, Detlev

85

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. State-of-the-Art on Methods and Software Tools for Short-Term  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production G. Giebel*, L. Landberg, Risoe National Roskilde, Denmark Abstract: The installed wind energy capacity in Europe today is 20 GW, while

Paris-Sud XI, Université de

86

Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012  

SciTech Connect (OSTI)

This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

Rogers, J.; Porter, K.

2012-03-01T23:59:59.000Z

87

Statewide Air Emissions Calculations from Wind and Other Renewables. Summary Report.  

E-Print Network [OSTI]

, the capacity of installed wind turbine totals was 12,372 MW with another 7,582 MW announced for new projects by 2016. Figure 1-1 shows the growth pattern of the installed wind power capacity in Texas and their power generation in the ERCOT region from...ESL-TR-14-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period January 2013 December 2013 Jeff...

Haberl, J.S.; Baltazar, J.C.; Yazdani, B.; Claridge, D.; Do, S.L.; Oh, S.

88

Factors driving wind power development in the United States  

SciTech Connect (OSTI)

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-05-15T23:59:59.000Z

89

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

Wiser, Ryan

2014-01-01T23:59:59.000Z

90

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

Wiser, Ryan

2010-01-01T23:59:59.000Z

91

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers [EERE]

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

92

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

93

Wind Power Price Trends in the United States  

SciTech Connect (OSTI)

For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

Bolinger, Mark; Wiser, Ryan

2009-07-15T23:59:59.000Z

94

Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?  

SciTech Connect (OSTI)

Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

Butterfield, S.; Sheng, S.; Oyague, F.

2009-12-01T23:59:59.000Z

95

Meta-analysis of net energy return for wind power systems Ida Kubiszewski a,*, Cutler J. Cleveland b  

E-Print Network [OSTI]

in the global annual installed wind power capacity graph created by the Global Wind Energy Council (Fig. 1. Global electricity use is projected to double from 2005 to 2030, with its share of final energy the comparison of the electricity generated to the amount of primary energy used in the manufac- ture, transport

Vermont, University of

96

BRAZILS QUEST TO ALSO FOSTER WIND ENERGY IN THE DEREGULATED MARKET: WILL IT WORK? Authors:  

E-Print Network [OSTI]

Brazil began fostering wind energy in 2004 through a feed-in incentive program named Proinfa, with limited success. In 2009 wind energy began to be contracted through a series of government auctions within the regulated market, known in Brazil as ACR, with the objective of increasing the current 1.8GW in installed capacity to over 8 GW by 2016.

Marta Corra Dalbem Unigranrio; Luiz Eduardo Teixeira Brando Puc-rio; Leonardo Lima Gomes Puc-rio

97

Economic Development Impact of 1,000 MW of Wind Energy in Texas  

SciTech Connect (OSTI)

Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

Reategui, S.; Hendrickson, S.

2011-08-01T23:59:59.000Z

98

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

99

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

100

TMCC WIND RESOURCE ASSESSMENT  

SciTech Connect (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea JumpActive

102

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

Building a national wind turbine industry: experiences fromthe worlds largest manufacturer of wind turbines. 1 Inthe worlds installed wind turbines were erected in China,

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

103

Toward a 20% Wind Electricity Supply in the United States: Preprint  

SciTech Connect (OSTI)

Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

Flowers, L.; Dougherty, P.

2007-05-01T23:59:59.000Z

104

Final Technical Report - Kotzebue Wind Power Project - Volume II  

SciTech Connect (OSTI)

The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEAs wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

2007-10-31T23:59:59.000Z

105

Optimizing Installation, Operation, and Maintenance at Offshore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind industries, and significant first-hand knowledge of offshore installation, operation and maintenance (IO&M) activities. The aim of the GL GH study was to enable project...

106

Utilization of Wind Energy at High Altitude  

E-Print Network [OSTI]

Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

107

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind power capacity stood at roughly 4,000 MW, with the vast majority located in Europe.in Europe. Just 470 MW of new offshore wind power capacity

Bolinger, Mark

2013-01-01T23:59:59.000Z

108

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

109

2012 Market Report on U.S. Wind Technologies in Distributed Applications  

SciTech Connect (OSTI)

At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind projects location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agricultures Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

2013-08-06T23:59:59.000Z

110

Renewable Energy RFPs: Solicitation Response and Wind Contract Prices  

E-Print Network [OSTI]

Energy RFPs: Solicitation Response and Wind Contract Pricesenergy capacity (especially wind). Though detailed information on bid prices

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

111

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

112

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network [OSTI]

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

113

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

114

Wind Development on Tribal Lands  

SciTech Connect (OSTI)

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

115

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

116

Wind Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

117

Commercial Scale Wind Incentive Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregons Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

118

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

119

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

120

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Great Plains Wind Energy Transmission Development Project  

SciTech Connect (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

122

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

123

Digital Book Showcases Washington Wind Project | Department of...  

Broader source: Energy.gov (indexed) [DOE]

It will be one of the largest wind farms in the United States and supply energy for California municipalities. Addthis Related Articles Genoa Township, Mich., installed five wind...

124

Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 Wind turbines installed in Kwigillingok, Alaska, as part of the Chaninik Wind Group...

125

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

126

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

solar panels are too expensive to install domestically, ChinaChina,? as Chinese wind resources are abundant and wind power is cheaper than solar

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

127

1.5 MW turbine installation at NREL's NWTC on Aug. 21  

ScienceCinema (OSTI)

Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

None

2013-05-29T23:59:59.000Z

128

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

The Annual Report on U.S. Wind Power Installation, Cost, andState of the U.S. Wind Power Market Intro Sidebar: The U.S.Annual Report on U.S. Wind Power Installation, Cost, and

Bolinger, Mark A

2009-01-01T23:59:59.000Z

129

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

States, new large-scale wind turbines were installed in 18The average size of wind turbines installed in the Uniteddominant manufacturer of wind turbines supplying the U.S.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

130

Solar and Wind Rights  

Broader source: Energy.gov [DOE]

Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

131

County Wind Ordinance Standards  

Broader source: Energy.gov [DOE]

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

132

EA-1852: Cloud County Community College Wind Energy Project,...  

Energy Savers [EERE]

County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for...

133

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

134

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network [OSTI]

Modeling Utility-Scale Wind Power Plants Part 2: Capac- ityas the capacity factor of the wind power plant during the 10Wind Plant Integration: Costs, Status, and Issues," IEEE Power &

Wiser, Ryan H

2008-01-01T23:59:59.000Z

135

The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind  

E-Print Network [OSTI]

the potential benefits of a wind power installation, wind speeds and other characteristics of a site's wind for potential wind power sites. However, these maps do not elimi- nate the need for more precise and thoroughThe amount of power in the wind is very dependent on the speed of the wind. Because the power

Massachusetts at Amherst, University of

136

20% Wind Energy by 2030  

SciTech Connect (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

137

RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine  

E-Print Network [OSTI]

installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

Hu, Hui

138

CCPExecutiveSummary Storing Wind  

E-Print Network [OSTI]

CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

Feigon, Brooke

139

Wind Energy Conversion Systems (Minnesota)  

Broader source: Energy.gov [DOE]

This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

140

Installation and Acceptance Stage  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

1997-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Department Announces Offshore Wind Demonstration Awardees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

142

Solar and Wind Easements and Rights Laws  

Broader source: Energy.gov [DOE]

Nevada's general statutes provide owners of solar and wind energy systems protection against restrictions that would otherwise prevent them from installing these systems on their property. NRS ...

143

10th Annual Small Wind Conference  

Broader source: Energy.gov [DOE]

This conference is designed for small wind professionals, including installers, manufacturers, dealers, distributors, educators, and advocates. The conference features presentations, exhibits,...

144

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and support innovative offshore installations for commercial deployment by 2017. Offshore wind is a large, untapped energy resource, with the potential to generate 4,000 gigawatts...

145

Large-Scale Wind Training Program  

SciTech Connect (OSTI)

Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

Porter, Richard L. [Hudson Valley Community College

2013-07-01T23:59:59.000Z

146

Camden County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

147

Watauga County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

148

Currituck County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to...

149

Effect of Wind Intermittency on the Electric Grid: Mitigating the Risk of Energy Deficits  

E-Print Network [OSTI]

Successful implementation of California's Renewable Portfolio Standard (RPS) mandating 33 percent renewable energy generation by 2020 requires inclusion of a robust strategy to mitigate increased risk of energy deficits (blackouts) due to short time-scale (sub 1 hour) intermittencies in renewable energy sources. Of these RPS sources, wind energy has the fastest growth rate--over 25% year-over-year. If these growth trends continue, wind energy could make up 15 percent of California's energy portfolio by 2016 (wRPS15). However, the hour-to-hour variations in wind energy (speed) will create large hourly energy deficits that require installation of other, more predictable, compensation generation capacity and infrastructure. Compensating for the energy deficits of wRPS15 could potentially cost tens of billions in additional dollar-expenditure for fossil and / or nuclear generation capacity. There is a real possibility that carbon dioxide and other greenhouse gas (GHG) emission reductions will miss the California ...

George, Sam O; Nguyen, Scott V

2010-01-01T23:59:59.000Z

150

Sandia National Laboratories: Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

151

Initial Economic Analysis of Utility-scale Wind Integration in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from OWITSTRC Wind Curtailment (MWhyear) -90,000 Sourced from OWITSTRC Delivered Energy Capacity Factor (%) 42.29% Sourced from OWITSTRC CAPITAL COST FACTORS Wind Farm &...

152

Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint  

SciTech Connect (OSTI)

This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

Ibanez, E.; Mai, T.; Coles, L.

2012-09-01T23:59:59.000Z

153

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

154

Client Configuration and Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instructions below. In certain environments (e.g., if your installation is on a machine which has more than one network interface or has a high bandwidth network connection...

155

HVAC Installed Performance  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

156

Solar and Wind Contractor Licensing  

Broader source: Energy.gov [DOE]

All solar and wind energy installations must be performed by a contractor duly licensed by and in good standing with the Louisiana Contractors Licensing Board with a classification of "Solar Energy...

157

Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy  

SciTech Connect (OSTI)

This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

Reategui, S.; Tegen, S.

2008-08-01T23:59:59.000Z

158

Short-term Wind Power Prediction for Offshore Wind Farms -Evaluation of Fuzzy-Neural Network Based Models  

E-Print Network [OSTI]

Short-term Wind Power Prediction for Offshore Wind Farms - Evaluation of Fuzzy-Neural Network Based of wind power capacities are likely to take place offshore. As for onshore wind parks, short-term wind of offshore farms and their secure integration to the grid. Modeling the behavior of large wind farms

Paris-Sud XI, Université de

159

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

adds 18.9 GW of new wind power capacity in 2010. ? GlobalEnd Challenged Subsidies in Wind Power Case. ? Internationalemergence in the global wind power industry. ? Ph. D.

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

160

Wind Power Price Trends in the United States  

E-Print Network [OSTI]

should eventually help wind power regain the downward priceModern Energy Review] Wind Power Price Trends in the Unitedled the world in adding new wind power capacity in 2008, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mapping the Frontier of New Wind Power Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mapping the Frontier of New Wind Power Potential Mapping the Frontier of New Wind Power Potential February 18, 2015 - 11:40am Addthis This map shows wind potential capacity for...

162

The Wind Integration National Dataset (WIND) toolkit (Presentation)  

SciTech Connect (OSTI)

Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Caroline Draxl: NREL

2014-01-01T23:59:59.000Z

163

11march2007 Blowing in the wind  

E-Print Network [OSTI]

11march2007 Blowing in the wind Part of the answer to rising energy needs and costs may literally be blowing in the wind. Among sustainable sources of electricity, only wind energy has the capacity and technology needed to compete in the open marketplace. The largest onshore wind farm in Europe is being built

Genton, Marc G.

164

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? zerdem

165

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed JumpMoverNercErcot Jump

166

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation,PVYears

167

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation, search PropertyTransfer Method JumpCity

168

VAX/ASPEN installation guide  

SciTech Connect (OSTI)

Information necessary to install the ASPEN computerized simulation program on the VAX system is provided.

Williams, K.E.

1984-11-01T23:59:59.000Z

169

Siting handbook for small wind energy conversion systems  

SciTech Connect (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

170

Sixth Northwest Conservation and Electric Power Plan Chapter 12: Capacity and Flexibility Resources  

E-Print Network [OSTI]

............................................................................................ 6 Flexibility Issues Raised By Wind Generation system capacity and flexibility a new priority. Wind generation needs back-up, flexible resources new wind generation with a more constrained hydrosystem, there are solutions. The first step

171

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines  

E-Print Network [OSTI]

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines Yassine Amirat1 and proactive maintenance of wind turbines assumes more importance with the increasing number of installed wind current sensors installed within the wind turbine generator. This paper describes then an approach based

Boyer, Edmond

172

Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool  

SciTech Connect (OSTI)

The market for small wind systems in the United States, often defined as systems less than or equal to 100 kW that produce power on the customer side of the meter, is small but growing steadily. The installed capacity of domestic small wind systems in 2002 was reportedly 15-18 MW, though the market is estimated to be growing by as much as 40 percent annually (AWEA, 2002). This growth is driven in part by recent technology advancements and cost improvements and, perhaps more importantly, by favorable policy incentives targeted at small wind systems that are offered in several states. Currently, over half of all states have incentive policies for which residential small wind installations are eligible. These incentives range from low-interest loan programs and various forms of tax advantages to cash rebates that cover as much as 60 percent of the total system cost for turbines 10 kW or smaller installed in residential applications. Most of these incentives were developed to support a ran ge of emerging renewable technologies (most notably photovoltaic systems), and were therefore not specifically designed with small wind systems in mind. As such, the question remains as to which incentive types provide the greatest benefit to small wind systems, and how states might appropriately set the level and type of incentives in the future. Furthermore, given differences in incentive types and levels across states, as well as variations in retail electricity rates and other relevant factors, it is not immediately obvious which states offer the most promising markets for small wind turbine manufacturers and installers, as well as potential residential system owners. This paper presents results from a Berkeley Lab analysis of the impact of existing and proposed state and federal incentives on the economics of grid-connected, residential small wind systems. Berkeley Lab has designed the Small Wind Analysis Tool (SWAT) to compare system economics under current incentive structures a cross all 50 states. SWAT reports three metrics to characterize residential wind economics in each state and wind resource class: (1) Break-Even Turnkey Cost (BTC): The BTC is defined as the aggregate installed system cost that would balance total customer payments and revenue over the life of the system, allowing the customer to ''break-even'' while earning a specified rate of return on the small wind ''investment.'' (2) Simple Payback (SP): The SP is the number of years it takes a customer to recoup a cash payment for a wind system and all associated costs, assuming zero discount on future revenue and payments (i.e., ignoring the time value of money). (3) Levelized Cost of Energy (LCOE): The LCOE is the levelized cost of generating a kWh of electricity over the lifetime of the system, and is calculated assuming a cash purchase for the small wind system and a 5.5 percent real discount rate. This paper presents SWAT results for a 10 kW wind turbine and turbine power production is based on a Bergey Excel system. These results are not directly applicable to turbines with different power curves and rated outputs, especially given the fact that many state incentives are set as a fixed dollar amount, and the dollar per Watt amount will vary based on the total rated turbine capacity.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-12-01T23:59:59.000Z

173

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network [OSTI]

Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

Wiser, Ryan H

2009-01-01T23:59:59.000Z

174

Lillgrund Wind Farm Modelling and Reactive Power Control.  

E-Print Network [OSTI]

?? The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources. (more)

Boulanger, Isabelle

2009-01-01T23:59:59.000Z

175

September 18, 2012, Webinar: Wind Energy in Urban Environments  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar was held September 18, 2012, and provided information on wind energy installations in Boston Harbor in Hull, Massachusetts, and near downtown Milwaukee, Wisconsin. Download the...

176

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy Savers [EERE]

seventy percent of the equipment installed at U.S. wind farms last year - including wind turbines and components like towers, blades, gears, and generators - is now from domestic...

177

Lessons Learned: Milwaukees Wind Turbine Project  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

178

Town of Kill Devil Hills- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

179

A New Wind Turbine Control Method to Smooth Power Generation. Modelling and Comparison to Wind Turbine Frequency Control.  

E-Print Network [OSTI]

??Following the significant increase of world wide installed wind power during the first decade of the 21st century, transmission system operators are faced with new (more)

Solberg, Olov

2012-01-01T23:59:59.000Z

180

A preliminary benefit-cost study of a Sandia wind farm.  

SciTech Connect (OSTI)

In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint  

SciTech Connect (OSTI)

Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

2013-10-01T23:59:59.000Z

182

Wind Speed Data Analysis using Wavelet Transform  

E-Print Network [OSTI]

AbstractRenewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential. KeywordsWind potential, Wind speed data, Wavelet transform.

S. Avdakovic; A. Lukac; A. Nuhanovic; M. Music

183

Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies  

E-Print Network [OSTI]

.........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

184

EIS-0418: PrairieWinds Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

185

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

186

2011 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

187

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

SciTech Connect (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

188

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

189

2014 Year-End Wind Power Capacity  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews This page lists allMaps2 0 1 4

190

Illinois Wind Workers Group  

SciTech Connect (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

191

Wind energy, with an annual growth of about 30%, represents one of the fastest growing renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance  

E-Print Network [OSTI]

renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance the profitability of wind turbines. A decentralized wind turbine monitoring system has been developed and installed on a 500 kW wind turbine in Germany. During its operation, temporary malfunctions of the installed sensing

Stanford University

192

Compensation Packages Wind Energy Easements  

E-Print Network [OSTI]

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

193

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

194

INL Wind Farm Project Description Document  

SciTech Connect (OSTI)

The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

Gary Siefert

2009-07-01T23:59:59.000Z

195

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network [OSTI]

Build a Durable Market for Wind Power in the United StatesAnnual Report on U.S. Wind Power Installation, Cost, andcrisis on the U.S. wind power market. A sizable literature

Bolinger, Mark A

2009-01-01T23:59:59.000Z

196

Promotion of Wind Energy: Lessons Learned from International...  

Open Energy Info (EERE)

power use remains geographically concentrated, with more than 75 per cent of global installed capacity found in just five countries. These countries have implemented various...

197

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

198

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

199

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role?  

E-Print Network [OSTI]

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role? C. V. Long & J. A at wind turbine installations has been generating increasing con- cern, both for the continued development the phenomenon of avian and bat mortality at wind turbine installations, an issue that could potentially

Paris-Sud XI, Université de

200

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave  

E-Print Network [OSTI]

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

202

Operational Impacts of Large Deployments of Offshore Wind (Poster)  

SciTech Connect (OSTI)

The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

Ibanez, E.; Heaney, M.

2014-10-01T23:59:59.000Z

203

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

204

New England Wind Forum: A Wind Powering America Project; Volume 1, Issue 2 -- December 2006  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 2 features an interview with John MacLeod of Hull Municipal Light Plant. Hull 2, a 1.8-MW Vestas turbine installed in the Town of Hull in Massachusetts in 2006, is the largest wind turbine in New England and the first U.S. installation on a capped landfill.

Grace, R. C.; Gifford, J.

2006-12-01T23:59:59.000Z

205

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

206

A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS  

E-Print Network [OSTI]

the full capacity of the wind power plant at all times. Theto wind projects than to conventional power plants. Thecoal plants) can be leveraged to efficiently move wind power

Mills, Andrew; Wiser, Ryan; Porter, Kevin

2007-01-01T23:59:59.000Z

207

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

more than 600 GW of potential wind capacity is available forafter 2006 (No New Wind) to quantify the potential costs andThe potential benefits associated with using wind energy to

Hand, Maureen

2008-01-01T23:59:59.000Z

208

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

209

Refinery Capacity Report  

Gasoline and Diesel Fuel Update (EIA)

Refinery Capacity Report Released: June 15, 2006 Refinery Capacity Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006...

210

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

211

DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets  

SciTech Connect (OSTI)

Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

2011-11-29T23:59:59.000Z

212

Main Coast Winds - Final Scientific Report  

SciTech Connect (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

213

Offshore Wind Energy Market Overview (Presentation)  

SciTech Connect (OSTI)

This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

Baring-Gould, I.

2013-07-01T23:59:59.000Z

214

Energy Department Announces New Regional Approach to Wind Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Initiates New Outreach Efforts to Address a Changing Wind Industry This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

215

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

216

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeatingof

217

Optimizing Installation, Operation, and Maintenance at Offshore Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects in the United States |

218

PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSempriusEnergy PARTDepartment of

219

New England Breeze Solar and Wind Installers | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica

220

Installing and Maintaining a Small Wind Electric System | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1the researchEnergy

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Community Wind Handbook/Find an Installer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information FeedColombia:|Calculate SimpleFind an

222

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource  

E-Print Network [OSTI]

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind

Pryor, Sara C.

223

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network [OSTI]

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

224

Mechanisms of amplitude modulation in wind turbine , A. J. Bullmoreb  

E-Print Network [OSTI]

Mechanisms of amplitude modulation in wind turbine noise M. Smitha , A. J. Bullmoreb , M. M. Candb produced by wind turbines is inherently time varying. This amplitude modulation is normally due The environmental noise impact of wind turbine generators has to be assessed when planning new installations

Paris-Sud XI, Université de

225

Empirically Derived Strength of Residential Roof Structures for Solar Installations.  

SciTech Connect (OSTI)

Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

2014-12-01T23:59:59.000Z

226

Establishing a Comprehensive Wind Energy Program  

SciTech Connect (OSTI)

This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

Fleeter, Sanford [Purdue University

2012-09-30T23:59:59.000Z

227

Magnet Girder Assembly and Installation  

ScienceCinema (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2013-07-17T23:59:59.000Z

228

Solar Installation Labor Market Analysis  

SciTech Connect (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

229

Magnet Girder Assembly and Installation  

SciTech Connect (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2012-12-12T23:59:59.000Z

230

Net Zero Energy Installations (Presentation)  

SciTech Connect (OSTI)

A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Booth, S.

2012-05-01T23:59:59.000Z

231

New Report Evaluates Impacts of DOE's Wind Powering America Initiative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

address current and emerging barriers that could affect large-scale growth in wind energy capacity. Another recommendation was to continue utilizing the initiative's ability to...

232

New Report Highlights Trends in Offshore Wind with 14 Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

233

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

234

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

2014-01-01T23:59:59.000Z

235

Overcoming Technical and Market Barriers for Distributed Wind Applications: Reaching the Mainstream; Preprint  

SciTech Connect (OSTI)

This paper describes how the distributed wind industry must overcome hurdles including system costs and interconnection and installation restrictions to reach its mainstream market potential.

Rhoads-Weaver, H.; Forsyth, T.

2006-07-01T23:59:59.000Z

236

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect (OSTI)

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

237

Data Mining using Python --exercises for installation  

E-Print Network [OSTI]

ipython (e.g., by pip) Start with: ipython -pylab Once installed make sure you can write: In [1]: plot for installation Install IPython Notebook Check that you can run a IPython Notebook file. Test that the IPython

238

Why Are We Talking About Capacity Markets? (Presentation)  

SciTech Connect (OSTI)

Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

Milligan, M.

2011-06-01T23:59:59.000Z

239

1 INTRODUCTION Suitable sites for wind farms on land are scarce in  

E-Print Network [OSTI]

viability of offshore wind farms depends on the compensation of the additional installation cost by a higher. In the current planing phase offshore wind measure- ments are being made at three prospective wind farm sites offshore wind farm which is lo- cated about 2 km from the coast. Thus the measure- ments cover

Heinemann, Detlev

240

Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations  

SciTech Connect (OSTI)

Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to which this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNLs established renewable resource assessment methodology.

Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

2010-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

242

Wasted Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

243

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

244

Vanadium redox-flow batteries Installation at Ris for characterisation measurements  

E-Print Network [OSTI]

and investigating distributed power systems. SYSLAB consists of two wind turbines, a pv-array, a diesel genset features including independent sizing of power and energy capacity, long lifetime, high efficiency and fast in August 2007. Power systems with high penetration of Wind energy/Renewable energy Renewable energy

245

2010 Wind Technologies Market Report  

SciTech Connect (OSTI)

The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

2011-06-27T23:59:59.000Z

246

Wind Energy  

Broader source: Energy.gov [DOE]

Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

247

Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1the research community

248

STATE OF CALIFORNIA INSTALLATION CERTIFICATE  

E-Print Network [OSTI]

ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-25-HERS Refrigerant Charge Verification ­ Standard to refrigerant charge verification for compliance, a MECH-24 Certificate (instead of this MECH-25 Certificate) should be used to demonstrate compliance with the refrigerant charge verification requirement. TMAH

249

STATE OF CALIFORNIA INSTALLATION CERTIFICATE  

E-Print Network [OSTI]

ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-26-HERS Refrigerant Charge Verification ­ Alternate are specified in Reference Residential Appendix RA3.2. If refrigerant charge verification is requiredR-MECH-26-HERS Refrigerant Charge Verification ­ Alternate Measurement Procedure (Page 2 of 3) Site

250

Radar-cross-section reduction of wind turbines. part 1.  

SciTech Connect (OSTI)

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

2012-03-05T23:59:59.000Z

251

Pitch-controlled variable-speed wind turbine generation  

SciTech Connect (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

Muljadi, E.; Butterfield, C.P.

2000-03-01T23:59:59.000Z

252

EIS-0255: Kenetech/Pacificorp Wind Power Program  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's proposed agreement with Sea West Corporation, a wind developer, of San Diego, California, to install additional turbines at the Wyoming Windpower Plant in Carbon County, Wyoming.

253

Excise Tax Deduction for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

254

Non-Residential Solar and Wind Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

Arizonas tax credit for solar and wind installations in commercial and industrial applications was established in June 2006 ([http://www.azleg.gov/legtext/47leg/2r/bills/hb2429s.pdf HB 2429]). In...

255

Exploring the Wind Manufacturing Map | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

growth in domestic manufacturing has increased the percentage of U.S.-built wind turbines installed in the United States from 35 percent in 2005-2006 to nearly 70 percent...

256

Non-Residential Solar and Wind Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

Arizonas tax credit for solar and wind installations in commercial and industrial applications was established in June 2006 ([http://www.azleg.gov/legtext/47leg/2r/bills/hb2429s.pdf HB 2429]). In...

257

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza |...  

Broader source: Energy.gov (indexed) [DOE]

major components of the renovation are about to appear at the building's highest point: solar panels and wind turbines are being installed on the roof. The 80 photovoltaic (PV)...

258

Wind and Solar-Electric (PV) Systems Exemption  

Broader source: Energy.gov [DOE]

Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is...

259

Residential Solar and Wind Energy Systems Tax Credit  

Broader source: Energy.gov [DOE]

Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind energy device at the taxpayer's Arizona residence. The credit is allowed against the taxpayer's...

260

Wind power forecasting : state-of-the-art 2009.  

SciTech Connect (OSTI)

Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

2009-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Implications of a PTC Extension on U.S. Wind Deployment  

SciTech Connect (OSTI)

This analysis explores the potential effects of wind production tax credit expiration and various extension scenarios on future wind deployment with the Regional Energy Deployment System (ReEDS), a model of the U.S. electricity sector. The analysis does not estimate the potential implications on government tax revenue associated with the PTC. Key findings include: Under a scenario in which the PTC is not extended and all other policies remain unchanged, wind capacity additions are expected to be between 3 and 5 GW per year from 2013-2020; PTC extension options that ramp-down from the current level to zero-credit by year-end 2022 appear to be insufficient to support deployment at the recent historical average; Extending the PTC at its historical level may provide the best opportunity to support deployment consistent with recent levels across a range of potential market conditions; it therefore may also provide the best opportunity to sustain wind power installation and manufacturing sector at current levels.

Lantz, E.; Steinberg, D.; Mendelsohn, M.; Zinaman, O.; James, T.; Porro, G.; Hand, M.; Mai, T.; Logan, J.; Heeter, J.; Bird, L.

2014-04-01T23:59:59.000Z

262

Process Improvement at Army Installations  

E-Print Network [OSTI]

recommendations are for the Fill and Press line where most of the Level I focused LESSONS LEARNED On completion of the project, the researchers assessed the results and some of the 198 ESL-IE-97-04-31 Proceedings from the Nineteenth Industrial Energy.... Finally, the energy issues included initiate an energy team; install energy efficient lighting; and decommission unused steam lines. After the first cost, savings, and simple payback time was calculated for all of the proposed improvements, a...

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

263

Wind Energy Learning Curves for Reference in Expert Elicitations  

E-Print Network [OSTI]

Wind Energy Learning Curves for Reference in Expert Elicitations Sarah Mangels, Erin Baker. Abstract: This study presents future projections of wind energy capacity and cost based on historical data. The study will be used during wind- energy expert elicitations (formal interviews aimed to quantify

Mountziaris, T. J.

264

Dynamics and Fatigue Damage of Wind Turbine Rotors  

E-Print Network [OSTI]

6 3 RiS0-Rr512 Dynamics and Fatigue Damage of Wind Turbine Rotors during Steady Operation Peter OF WIND TURBINE ROTORS DURING STEADY OPERATION Peter Hauge Madsen, Sten Frandsen, William E. Holley-carrying capacity of a wind turbine rotor with respect to short-term strength and material fatigue are presented

265

WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE  

E-Print Network [OSTI]

1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

Massachusetts at Amherst, University of

266

Community wind power ownership schemes in Europe and their relevance to the United States  

SciTech Connect (OSTI)

With varying success, the United States and Europe have followed a more or less parallel path of policies to support wind development over the past twenty years. Feed-in laws and tax incentives first popularized in California in the early 1980s and greatly expanded upon in Europe during the 1990s are gradually giving way to market-based support mechanisms such as renewable portfolio standards, which are being implemented in one form or another in ten US states and at least three European nations. At the same time, electricity markets are being liberalized in both the US and Europe, and many electricity consumers are being given the choice to support the development of renewable energy through higher tariffs, both in traditionally regulated and newly competitive markets. One notable area in which wind development in Europe and United States has not evolved in common, however, is with respect to the level of community ownership of wind turbines or clusters. While community ownership of wind projects is unheard of in the United States, in Europe, local wind cooperatives or other participatory business schemes have been responsible for a large share of total wind development. In Denmark, for example, approximately 80% of all wind turbines are either individually or cooperatively owned, and a similar pattern holds in Germany, the world leader in installed wind capacity. Sweden also has a strong wind cooperative base, and the UK has recently made forays into community wind ownership. Why is it that wind development has evolved this way in Europe, but not in the United States? What incremental effect have community-owned wind schemes had on European wind development? Have community-owned wind schemes driven development in Europe, or are they merely a vehicle through which the fundamental driving institutions have been channeled? Is there value to having community wind ownership in the US? Is there reason to believe that such schemes would succeed in the US? If so, which model seems most appropriate, and what barriers--legal, regulatory, tax, market, or investment--stand in the way of implementing such a scheme? These are the questions this report seeks to address. The report begins with a discussion of the relative advantages and disadvantages of community wind ownership, as opposed to the large commercially-owned projects that have so far dominated US wind development. Next, four detailed case studies relate community-owned wind experience in Denmark, Sweden, the UK, Germany, focusing primarily on the different participatory models employed in each country. The report then categorizes the various models into three main groupings--community-led, developer-led, and investment funds--and draws general conclusions about the success of each category in Europe, and the conditions that dictate the effective use of one approach over another. Finally, the focus shifts to the US, where the report discusses the domestic barriers facing each model category, and identifies the category offering the most value with the fewest barriers to implementation. The report concludes with a high-level introduction to potential applications for community wind ownership within the United States.

Bolinger, Mark

2001-05-15T23:59:59.000Z

267

Robust 1550-nm single-frequency all-fiber ns-pulsed fiber amplifier for wind-turbine predictive control by wind lidar  

E-Print Network [OSTI]

Oldenburg, Germany ABSTRACT Scaling of the power yield of offshore wind farms relies on the capacity powers [1]. To reach the ambitious and politically motivated aims of Multi-GW offshore wind farms belongs to this category. Clustered in wind farms, today's wind turbines produce Megawatt-level output

Oldenburg, Carl von Ossietzky Universität

268

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

269

High resolution reanalysis of wind speeds over the British Isles for wind energy integration  

E-Print Network [OSTI]

The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. ...

Hawkins, Samuel Lennon

2012-11-29T23:59:59.000Z

270

A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology  

E-Print Network [OSTI]

A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes, Paris-Erdogan law, rotor blade, wind turbine SUMMARY & CONCLUSIONS Based on the modeling and the better quality of the wind resource in the sea, the installation of wind turbines is shifting from

McCalley, James D.

271

A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1  

E-Print Network [OSTI]

A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1 1 prototype offshore wind farms, developed and installed during the 1990's, to the commercial wind farms offshore wind farms compete with moderate onshore locations. We summarise the transition to increasing

Pryor, Sara C.

272

Automated solar collector installation design  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-08-26T23:59:59.000Z

273

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network [OSTI]

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy inhibit the potential growth of the California photovoltaic market: high installation costs, expenses improvements have been made in recent years on the assembly and deployment of flatplate photovoltaic

274

2009 Wind Technologies Market Report  

SciTech Connect (OSTI)

The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

Wiser, R.; Bolinger, M.

2010-08-01T23:59:59.000Z

275

ACS Installation During SM3B Introduction  

E-Print Network [OSTI]

ACS Installation During SM3B Introduction: · Installed during SM3B in March 2002 · Powerful 3rd · Over-voltage Protection kit installed · Optical Control Electronics connected · New Outer Blanket Layer, and coronagraph ­ Solar Blind Channel (SBC) : HST's most sensitive ultraviolet photon-counting detector 115-180 nm

Sirianni, Marco

276

ATLAS Installation Guide R. Clint Whaley  

E-Print Network [OSTI]

ATLAS Installation Guide R. Clint Whaley November 2, 2007 Abstract This note provides a brief overview of ATLAS, and describes how to install it. It includes extensive discussion of common configure to configure and build the ATLAS package, this note also describes how an installer can confirm

Whaley, R. Clint

277

Analysis of MIT campus wind resources for future wind turbine installation  

E-Print Network [OSTI]

As our nation's continuing dependence on fossil energy and the problems that result from that dependence grow more apparent, we must look to alternative sources of energy to power the country. As a global scientific and ...

Hack, Brian E

2008-01-01T23:59:59.000Z

278

EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas  

Broader source: Energy.gov [DOE]

This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

279

20% Wind Energy 20% Wind Energy  

E-Print Network [OSTI]

(government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

Powell, Warren B.

280

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST  

E-Print Network [OSTI]

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

Chen, Zhe

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network [OSTI]

Data Bank Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara December 2010 Keywords: Wind Wind speed Energy Capacity factor Electricity Chile a b s t r a c t Bearing role in any future national energy generation matrix. With a view to understanding the local wind

Catholic University of Chile (Universidad Católica de Chile)

282

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

283

Wind power manufacturing and supply chain summit USA.  

SciTech Connect (OSTI)

The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

Hill, Roger Ray

2010-12-01T23:59:59.000Z

284

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

285

Assessment of Vessel Requirements for the U.S. Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

a very good wind resource and a vibrant supply chain around the offshore oil & gas industry in the North Sea. Figure 5: Annual Offshore Wind Capacity Additions in Europe Source:...

286

IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.  

SciTech Connect (OSTI)

Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz (MIT LL); Keck, Chris (MIT LL); Sullivan, Jonathan (MIT LL); Brigada, David (MIT LL); Parker, Lorri (MIT LL); Younger, Richard (MIT LL); Biddle, Jason (MIT LL)

2014-10-01T23:59:59.000Z

287

Operating the Irish Power System with Increased Levels of Wind Power  

E-Print Network [OSTI]

Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member-- This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power

288

A Review of "Small-Scale Wind Turbines Policy Perspectives and  

E-Print Network [OSTI]

ERG/200607 A Review of "Small-Scale Wind Turbines ­ Policy Perspectives and Recommendations of Engineering Mathematics at Dalhousie University. #12;Hughes-Long: A Review of Small-Scale Wind Turbines proposed changes to their municipal Bylaws to allow the installation of "small-scale" wind turbines (i

Hughes, Larry

289

ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN  

E-Print Network [OSTI]

A-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN Hundreds of wind turbines have been installed in the oceans surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

Sweetman, Bert

290

EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component  

E-Print Network [OSTI]

EEMD-based wind turbine bearing failure detection using the generator stator current homopolar turbine generators for stationary and non stationary cases. Keyword: Wind turbine, induction generator on the installed equipment because they are hardly accessible or even inaccessible [1]. 1.1. Wind turbine failure

Boyer, Edmond

291

Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar  

E-Print Network [OSTI]

a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances Offshore wind farms have increased in size from the first phase of installation with up to 20 turbinesComparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R

Pryor, Sara C.

292

Hurricane Katrina Wind Investigation Report  

SciTech Connect (OSTI)

This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof damage to be minimal. One team speculated that damage to all roofs in the area they examined was les

Desjarlais, A. O.

2007-08-15T23:59:59.000Z

293

Siting guidelines for utility application of wind turbines. Final report  

SciTech Connect (OSTI)

Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

Pennell, W.T.

1983-01-01T23:59:59.000Z

294

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

Hand, Maureen

2008-01-01T23:59:59.000Z

295

Wisconsin Start-up Taps into Wind Supply Chain | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Foundation Expands Weatherization Training Center The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County...

296

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

297

Focus Series: Maine-Residential Direct Install Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maine-Residential Direct Install Program Focus Series: Maine-Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: MAINE-Residential Direct Install...

298

Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint  

SciTech Connect (OSTI)

The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

Kirby, B.; King, J.; Milligan, M.

2012-06-01T23:59:59.000Z

299

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

300

Distributed Wind Diffusion Model Overview (Presentation)  

SciTech Connect (OSTI)

Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect (OSTI)

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

302

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

303

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

304

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect (OSTI)

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

305

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

306

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

307

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

308

NREL: Wind Research - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

309

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

310

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

311

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

312

Coastal Ohio Wind Project  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

313

The National Wind Technology Center  

SciTech Connect (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

314

GIS Method for Developing Wind Supply Curves  

SciTech Connect (OSTI)

This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries.

Kline, D.; Heimiller, D.; Cowlin, S.

2008-06-01T23:59:59.000Z

315

Shaped Offset QPSK Capacity  

E-Print Network [OSTI]

In this work we compute the capacities and the pragmatic capacities of military-standard shaped-offset quadrature phase-shift keying (SOQPSK-MIL) and aeronautical telemetry SOQPSK (SOQPSK-TG). In the pragmatic approach, SOQPSK is treated as a...

Sahin, Cenk

2012-08-31T23:59:59.000Z

316

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

317

Assessment of Ports for Offshore Wind Development in the United States  

SciTech Connect (OSTI)

As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GHs review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventiona

Elkinton, Chris [DNV GL] [DNV GL; Blatiak, Alicia; Ameen, Hafsa

2014-03-21T23:59:59.000Z

318

Newport Power Meter Drivers CD Installation Software  

E-Print Network [OSTI]

Newport Power Meter Drivers CD Installation Software Version 2.3.1 Revision Date: October 16, 2008 IMPORTANT NOTES: The USB drivers on your CD must be installed before the Newport Power Meter is connected to your PC (via USB cable). Manual: The latest manuals for the Newport Power Meters can be found

Kleinfeld, David

319

Want to Install A Satellite Dish ?  

E-Print Network [OSTI]

listed below to ensure proper installation of your dish. 1. Permanent alterations or modification utility lines would be interfered with by satellite dish post installation. 6. Entry into the unit in case of nearby utility lines or other factors. 3--Point of entry for satellite dish cable

Maxwell, Bruce D.

320

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS  

E-Print Network [OSTI]

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS V.R. Kozak Budker Institute There was designed a set of devices for automation systems of physical installations. On this basis approach. KEY WORDS Automation, systems, applications, CANBUS, embedded, controller. 1. Introduction Budker

Kozak, Victor R.

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network [OSTI]

generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

Aalberts, Daniel P.

322

Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

Jimenez, A. C.

2013-12-01T23:59:59.000Z

323

Arduino Tool: For Interactive Artwork Installations  

E-Print Network [OSTI]

The emergence of the digital media and computational tools has widened the doors for creativity. The cutting edge in the digital arts and role of new technologies can be explored for the possible creativity. This gives an opportunity to involve arts with technologies to make creative works. The interactive artworks are often installed in the places where multiple people can interact with the installation, which allows the art to achieve its purpose by allowing the people to observe and involve with the installation. The level of engagement of the audience depends on the various factors such as aesthetic satisfaction, how the audience constructs meaning, pleasure and enjoyment. The method to evaluate these experiences is challenging as it depends on integration between the artificial life and real life by means of human computer interaction. This research investigates "How Adriano fits for creative and interactive artwork installations?" using an artwork installation in the campus of NTNU (Norwegian University...

Shaikh, Murtaza Hussain

2012-01-01T23:59:59.000Z

324

Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy  

SciTech Connect (OSTI)

The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

None

1980-12-01T23:59:59.000Z

325

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

326

To users of the Western Wind Dataset: We have run into some issues on the wind dataset. For many uses of the dataset  

E-Print Network [OSTI]

To users of the Western Wind Dataset: We have run into some issues on the wind dataset. For many uses of the dataset (general capacity factor comparisons, diurnal or seasonal profile comparisons, etc), these issues may not affect you. However, if you are using the dataset for an extensive wind integration study

327

Wind Generation on Winnebago Tribal Lands  

SciTech Connect (OSTI)

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the projects proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

328

New England Wind Forum, Volume 1, Issue 1 -- January 2006  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 1 features an interview with Brother Joseph of Portsmouth Abbey. A commercial-scale Vestas V47 wind turbine will soon be installed on the grounds of the Benedictine monastery and prep school in Rhode Island, with the assistance of a grant from the Rhode Island Renewable Energy Fund. This will be the first large-scale turbine located behind the customer meter in the region.

Not Available

2006-01-01T23:59:59.000Z

329

Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation  

SciTech Connect (OSTI)

The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

2009-08-28T23:59:59.000Z

330

Aleutian Pribilof Islands Wind Energy Feasibility Study  

SciTech Connect (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

331

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

SciTech Connect (OSTI)

Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

2008-05-01T23:59:59.000Z

332

Candidate wind turbine generator site: annual data summary, January 1981-December 1981  

SciTech Connect (OSTI)

Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

1982-07-01T23:59:59.000Z

333

Forward capacity market CONEfusion  

SciTech Connect (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

334

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity

335

Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.  

SciTech Connect (OSTI)

Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

Richards, Elizabeth H.; Schindel, Kay (City of Madison, WI); Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William (Lindau Companies, Inc., Hudson, WI); Harper, Alan (City of Madison, WI)

2011-12-01T23:59:59.000Z

336

Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,  

E-Print Network [OSTI]

Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

Massachusetts at Amherst, University of

337

The Application of Suction Caisson Foundations to Offshore Wind Turbines Extracts from a proposal to the DTI  

E-Print Network [OSTI]

The market for offshore wind farms in the UK is expected to be substantial. The initial sites proposed offshore wind farm development may require the installation of up to fifty similar or identical units for application on offshore wind farms for the following reasons: · Suction caissons are simple steel fabrications

Byrne, Byron

338

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)  

SciTech Connect (OSTI)

This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

Not Available

2008-12-01T23:59:59.000Z

339

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

340

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Challenges and strategies for increasing adoption of small wind turbines in urban areas  

E-Print Network [OSTI]

A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small ...

Ferrigno, Kevin J. (Kevin James)

2010-01-01T23:59:59.000Z

342

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

343

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

344

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

345

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

346

Community Wind Handbook/Understand Your Wind Resource and Conduct...  

Open Energy Info (EERE)

Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

347

2015 Iowa Wind Power Conference and Iowa Wind Energy Association...  

Energy Savers [EERE]

2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

348

Structural Code Considerations for Solar Rooftop Installations.  

SciTech Connect (OSTI)

Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

2014-12-01T23:59:59.000Z

349

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network [OSTI]

Tables 2.0.2a 2.0.2b PAGE Air Leakage Through Sash/FrameOperation Types . . . . . Air Leakage of Installed WindowsComparison of Window Types Air Leakage Performance of

Weidt, John

2013-01-01T23:59:59.000Z

350

Install an Automatic Blowdown Control System  

SciTech Connect (OSTI)

This revised ITP steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

351

Peoples Gas Single Family Direct Install (Illinois)  

Broader source: Energy.gov [DOE]

Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, and faucet aerators through...

352

Install Removable Insulation on Valves and Fittings  

SciTech Connect (OSTI)

This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

353

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

Wiser, Ryan

2012-01-01T23:59:59.000Z

354

2005 Year End Wind Power Capacity for the United States  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews This page lists allMaps

355

EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

356

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

357

The impact of electricity market schemes on predictability being a decision factor in the wind farm  

E-Print Network [OSTI]

The impact of electricity market schemes on predictability being a decision factor in the wind farm used criterion of capacity factor on the investment phase of a wind farm and on spatial planning, it is now recognized that accurate short-term forecasts of wind farms power output over the next few hours

Paris-Sud XI, Universit de

358

The impact of electricity market schemes on predictability being a decision factor in the wind farm  

E-Print Network [OSTI]

The impact of electricity market schemes on predictability being a decision factor in the wind farm of capacity factor on the investment phase of a wind farm and on spatial planning in an electricity market, it is now recognized that accurate short-term forecasts of wind farms power output over the next few hours

Paris-Sud XI, Universit de

359

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network [OSTI]

with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One ­ the size of PV arrays, the number of wind turbines and the capacity of battery storage ­ that limit

Low, Steven H.

360

Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind  

E-Print Network [OSTI]

1 Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind Integration and Conservation Council Outline · Wind Integration Costs ­ Modeling Assumptions ­ Current methodology ­ Proposed and Conservation Council Wind Integration Costs · Reserving capacity for within-hour balancing is costly

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New report assesses offshore wind technology challenges and potential risks and benefits.  

E-Print Network [OSTI]

New report assesses offshore wind technology challenges and potential risks and benefits. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater wind resources can provide many potential benefits, and with effective research, policies

362

Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.  

SciTech Connect (OSTI)

CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundations for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.

United States. Bonneville Power Administration; Klickitat County (Wash.)

1995-09-01T23:59:59.000Z

363

Retrofit SCADA installation combines SCADA and process control functions  

SciTech Connect (OSTI)

When Gulf States Utilities Company`s (now part of Entergy Operations, Inc.) River Bend Nuclear Plant, decided to add a closed cooling water system for the plant service water, a new SCADA system was required. Previously the normal service water system shared common cooling towers and flume with the plant`s circulating water system. Closing the system required a new cooling tower with pumps and heat exchangers to be constructed in a remote location. Existing equipment in the area was controlled via a multichannel tone SCADA system that did not have sufficient spare capacity for control of the new components. This paper will discuss how a new SCADA system was designed and installed, that also included process control. It will also address the operational experience to date.

Moffitt, T.O. [Entergy Operations, Inc., St. Francisville, LA (United States)

1995-09-01T23:59:59.000Z

364

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

365

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

366

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect (OSTI)

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

2012-05-31T23:59:59.000Z

367

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect (OSTI)

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

2012-06-29T23:59:59.000Z

368

Wind turbine reliability : a database and analysis approach.  

SciTech Connect (OSTI)

The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

2008-02-01T23:59:59.000Z

369

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

370

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

371

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

372

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

373

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

374

Kaneohe, Hawaii Wind Resource Assessment Report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

Robichaud, R.; Green, J.; Meadows, B.

2011-11-01T23:59:59.000Z

375

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report June 2014

376

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report June

377

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report

378

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report Operable

379

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report

380

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Reportof Last

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Reportof

382

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity ReportofVacuum

383

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1CapacityCORPORATION /

384

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1CapacityCORPORATION

385

Mean and peak wind load reduction on heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.

Peterka, J.A.; Tan, L.; Bienkiewcz, B.; Cermak, J.E.

1987-09-01T23:59:59.000Z

386

Wind power application for low flow irrigation from the Edwards-Trinity aquifer of West Texas  

E-Print Network [OSTI]

Attempts were made to reduce the cost of energy for irrigation in West Texas. To do this two wind turbines of 10 kW size were installed in Garden City and Stiles, Texas to pump water. The turbines were installed on 30 m towers. The pumping water...

Molla, Saiful Islam

1997-01-01T23:59:59.000Z

387

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

388

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

389

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

SciTech Connect (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

390

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

SciTech Connect (OSTI)

We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios one with no farmland included, the other with all farmland included. Under the no farmland included case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the all farmland included case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

2011-09-15T23:59:59.000Z

391

Utility Scale Renewable Energy Development Near DOD Installations...  

Broader source: Energy.gov (indexed) [DOE]

Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations:...

392

Database (Report) of U.S. CHP Installations Incorporating Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations...

393

Obama Administration Announces Plans to Install New Solar Panels...  

Broader source: Energy.gov (indexed) [DOE]

Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 -...

394

Building America Expert Meeting Report: Achieving the Best Installed...  

Broader source: Energy.gov (indexed) [DOE]

Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces Building America Expert Meeting Report: Achieving the Best Installed Performance from...

395

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

396

Commonwealth Wind Incentive Program Micro Wind Initiative  

Broader source: Energy.gov [DOE]

Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

397

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

398

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

399

TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE  

E-Print Network [OSTI]

TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE Anthony L@ecs.umass.edu, rerl@ecs.umass.edu Abstract While offshore wind farms have been installed in Europe for over a decade, developers in the United States are only beginning to look toward the offshore resource. This paper provides

Massachusetts at Amherst, University of

400

WINDExchange: Wind for Schools Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

SciTech Connect (OSTI)

The present report describes installed cost trends for grid-connected PV projects installed from 1998 through 2010 (with some limited and preliminary results presented for projects installed in the first six months of 2011). The analysis is based on project-level cost data from approximately 116,500 residential, non-residential, and utility-sector PV systems in the United States. The inclusion of utility-sector PV is a new element in this years report. The combined capacity of all systems in the data sample totals 1,685 MW, equal to 79% of all grid-connected PV capacity installed in the United States through 2010 and representing one of the most comprehensive sources of installed PV cost data for the U.S. Based on this dataset, the report describes historical installed cost trends over time, and by location, market segment, technology type, and component. The report also briefly compares recent PV installed costs in the United States to those in Germany and Japan, and describes trends in customer incentives for PV installations and net installed costs after receipt of such incentives. The analysis presented here focuses on descriptive trends in the underlying data, serving primarily to summarize the data in tabular and graphical form.

Darghouth, Naim; Wiser, Ryan

2011-09-07T23:59:59.000Z

402

Wind Energy | www.ncsc.ncsu.edu North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 1 919-515-3480 | www.ncsc.ncsu.edu  

E-Print Network [OSTI]

wind potential is over 10,000 gigawatts (GW) in areas with capacity factors at or above 30 percent. For offshore wind, the Department of Interior estimates that over 4,000 GW of offshore wind potential exist in the oceans and Great Lakes. Only a portion of this potential will be necessary for wind energy to supply

403

China ups ethylene capacity  

SciTech Connect (OSTI)

China is continuing with plans to build up its petrochemical sector. Following government approval the Dongying petrochemical complex in Shandong province is expected to get under way early next year. It will be based on a 140,000-m.t./year ethylene plant and will be the second-largest petrochemical complex in the province, after Qilu, about 50 km away. In addition, there are plans to expand capacities of existing ethylene plants. The Dongying complex will be owned by Shengli Oil Field (50%). Shandong province (35%), and the Dongying municipality (15%). Downstream capacities will comprise 80,000 m.t./year of linear low-density polyethylene (LLDPE) and 20,000 m.t./year of high-density PE. Butene-1 to be used as comonomer for LLDPE will be shipped from Qilu.

Alperowicz, N.; Wood, A.

1992-12-23T23:59:59.000Z

404

WindWaveFloat Final Report  

SciTech Connect (OSTI)

Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

405

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISE developsRelatedCapacity

406

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1

407

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on

408

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic Crackers Hydrocrackers

409

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic Crackers

410

Installation & Commissioning same basic idea as CTB  

E-Print Network [OSTI]

requires Freon-only gas system HV spare TCPU and one LV supply laptop with pcan dongle simple water flow though too heavy for two people need rail holder on the scissor lift or rail holder on spreader bar be installed beforehand, and "short" LV bus Canbus Data cables Water in/out HV (2) and Gas in/out attached

Llope, William J.

411

IEA HPP Annex 36 Installation/Quality  

E-Print Network [OSTI]

on installation of air to air heat pump The aim is to use an ergonomic approach, in order to reduce Laboratory European Heat Pump Summit Nuremberg, Germany October 15, 2013 #12;3 Managed by UT), USA 3 10-11 October 2013 EdF, France 4 12 May 2014 Workshop at IEA Heat Pump conference, Montreal

Oak Ridge National Laboratory

412

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect (OSTI)

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

413

Wind Resource Assessment in Europe Using Emergy  

E-Print Network [OSTI]

mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

2014-01-01T23:59:59.000Z

414

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

415

Coming Soon! 2011 Wind Technologies Market Report (Postcard)  

SciTech Connect (OSTI)

This valuable report will be available this summer! Prepared by the Energy Department's Lawrence Berkeley National Laboratory, the report is a must read, providing a comprehensive overview of United States wind industry: Installation Trends, Industry Trends, Price, Cost, and Performance Trends, Policy and Market Drivers, Future Outlook.

Not Available

2012-06-01T23:59:59.000Z

416

Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)  

SciTech Connect (OSTI)

New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

Not Available

2011-09-01T23:59:59.000Z

417

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K McLaren S Ziada  

E-Print Network [OSTI]

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K wind turbines in the urban environment: Current Research at McMaster University Nominal performance #12;Horizontal axis small wind turbines Numerous suppliers of turbines for tower/field installation

Tullis, Stephen

418

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)  

SciTech Connect (OSTI)

Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

Not Available

2012-04-01T23:59:59.000Z

419

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

420

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

422

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

423

Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features  

SciTech Connect (OSTI)

Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

Toole, Gasper L. [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

424

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

425

NREL: Wind Research - Boosting Wind Plant Power Output by 4%...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

426

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

427

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

428

Upcoming Funding Opportunity for Tower Manufacturing and Installation...  

Office of Environmental Management (EM)

systems with hub heights of at least 120 meters. Scaling to taller towers allows wind turbines to capture less turbulent and often stronger wind resources, thereby increasing...

429

Upcoming Funding Opportunity for Tower Manufacturing and Installation...  

Broader source: Energy.gov (indexed) [DOE]

and logistics constraints affecting the deployment of taller utility-scale wind turbine systems with hub heights of at least 120 meters. Scaling to taller towers allows wind...

430

Manuel pour installer une station sismologique OSIRIS  

E-Print Network [OSTI]

installation Tout d'abord, enterrer le sismom`etre, s'assurer de l'horizontalit´e du sismo c'est-`a-dire, bulle le c^able sur le sismo, v´erifier de nouveau l'horizontalit´e. GPS Batterie ` Station d "sismo" puis cd osiris puis ./nrtd -set eth0 #12;7- Lancer Firefox (web browser) depuis la barre de menu

Perrot, Julie

431

Onshore wind max capacity 50.4% - what wind farm, what year? | OpenEI  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPAC Energy Jump

432

Next-Generation Wind Technology  

Broader source: Energy.gov [DOE]

The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

433

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

434

Wind Farms in North America  

E-Print Network [OSTI]

About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

Hoen, Ben

2014-01-01T23:59:59.000Z

435

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

436

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

437

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

438

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

439

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

440

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

442

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

443

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

444

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

445

WIND DATA REPORT FALMOUTH, MA  

E-Print Network [OSTI]

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

446

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

447

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

448

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

449

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

Bolinger, Mark

2013-01-01T23:59:59.000Z

450

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

451

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

Wiser, Ryan

2012-01-01T23:59:59.000Z

452

Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations  

SciTech Connect (OSTI)

The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks.

Anderson, E.; Antkowiak, M.; Butt, R.; Davis, J.; Dean, J.; Hillesheim, M.; Hotchkiss, E.; Hunsberger, R.; Kandt, A.; Lund, J.; Massey, K.; Robichaud, R.; Stafford, B.; Visser, C.

2011-08-01T23:59:59.000Z

453

A novel hybrid (wind-photovoltaic) system sizing procedure  

SciTech Connect (OSTI)

Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

2009-11-15T23:59:59.000Z

454

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

455

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

456

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

457

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

458

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

459

Want to Put an End to Capacity Markets? Think Real-Time Pricing  

SciTech Connect (OSTI)

The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

Reeder, Mark

2006-07-15T23:59:59.000Z

460

Regional Field Verification -- Case Study of Small Wind Turbines in the Pacific Northwest: Preprint  

SciTech Connect (OSTI)

The U.S. Department of Energy/National Renewable Energy Laboratory's (DOE/NREL) Regional Field Verification (RFV) project supports industry needs for gaining initial field operation experience with small wind turbines and verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. In addition, RFV aims to help expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Between August 2003 and August 2004, six turbines were installed at different host sites. At least one year of data has been collected from five of these sites. This paper describes DOE/NREL's RFV project, reviews some of the lessons learned with regards to small wind turbine installations, summarizes operations data from these sites, and provides preliminary BOS costs.

Sinclair, K.

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report  

SciTech Connect (OSTI)

The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

Schwabe, P.; Lensink, S.; Hand, M.

2011-03-01T23:59:59.000Z

462

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

463

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

464

See the Wind  

Broader source: Energy.gov (indexed) [DOE]

See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

465

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

466

Wind Energy Act (Maine)  

Broader source: Energy.gov [DOE]

The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

467

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

Wiser, Ryan

2012-01-01T23:59:59.000Z

468

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

Bolinger, Mark

2013-01-01T23:59:59.000Z

469

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

470

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

471

File:Install.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jumptight-gas.pdfFut gaspHIak.pdfwy.pdf JumpInstall.pdf

472

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

gas combustion turbine capacity is In the WinDS model themodel selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine

Hand, Maureen

2008-01-01T23:59:59.000Z

473

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

SciTech Connect (OSTI)

We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

2014-06-17T23:59:59.000Z

474

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

475

Solar Industry At Work: Streamlining Home Solar Installation...  

Broader source: Energy.gov (indexed) [DOE]

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar...

476

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations...  

Broader source: Energy.gov (indexed) [DOE]

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations ARRA Program Celebrates Milestone 600,000 Smart Meter Installations April 17, 2012 - 3:09pm Addthis On April 11,...

477

Net Zero Energy Military Installations: A Guide to Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Net Zero Energy Military Installations: A Guide to Assessment and Planning Net Zero Energy Military Installations: A Guide to Assessment and Planning In 2008, DoD and DOE defined a...

478

Pasadena Water and Power- Solar Power Installation Rebate  

Broader source: Energy.gov [DOE]

Pasadena Water and Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

479

Portland Advancing Green Image With Solar Installs | Department...  

Broader source: Energy.gov (indexed) [DOE]

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering...

480

Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home Field Offices Welcome to the NNSA Production Office NPO News Releases Energy Saving "Cool Roofs" Installed at Y-12 Energy Saving "Cool Roofs" Installed at Y-12 The...

Note: This page contains sample records for the topic "installed wind capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

482

Energy Department Launches SunShot Prize Competition to Install...  

Broader source: Energy.gov (indexed) [DOE]

SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a...

483

Secretary Chu Announces Two Million Smart Grid Meters Installed...  

Energy Savers [EERE]

Two Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an...

484

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

485

Wind power outlook 2006  

SciTech Connect (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

486

Wind Economic Development (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

487

Wind farm electrical system  

DOE Patents [OSTI]

An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

Erdman, William L.; Lettenmaier, Terry M.

2006-07-04T23:59:59.000Z

488

Turbine Inflow Characterization at the National Wind Technology Center: Preprint  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

2012-01-01T23:59:59.000Z

489

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

490

NREL Job Task Analysis: Retrofit Installer Technician (Revised)  

SciTech Connect (OSTI)

A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

Kurnik, C.; Woodley, C.

2012-04-01T23:59:59.000Z

491

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

492

Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind  

E-Print Network [OSTI]

Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

Nebraska-Lincoln, University of

493

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

494

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

495

Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint  

SciTech Connect (OSTI)

Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

2013-09-01T23:59:59.000Z

496

Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint  

SciTech Connect (OSTI)

This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

2014-08-01T23:59:59.000Z

497

EA-1611: Colorado Highlands Wind Project, Logan County, Colorado  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Westerns transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western is preparing a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

498

Performance of Installed Cooking Exhaust Devices  

SciTech Connect (OSTI)

The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) including exhaust fan/microwave combination appliances were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

2011-11-01T23:59:59.000Z

499

RMP Standard PreInstalled Software Page 1 of 2  

E-Print Network [OSTI]

RMP Standard PreInstalled Software Page 1 of 2 Standard Software PreInstalled with RMP Windows@lmu.edu or 310-338-7777 RMP Standard PreInstalled Software Page 2 of 2 · Photo Booth EndNote Apple DVD Player

Dahlquist, Kam D.

500

A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology installing photovoltaic (PV) systems under the Emerging Renewables Buydown Program. This is the first