National Library of Energy BETA

Sample records for installed capacity mw

  1. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  2. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 + MHK ProjectsADM 5 + 1 + MHK ProjectsAWS II + 1 + MHK Projects...

  3. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  4. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  5. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  6. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  7. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  8. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of ...

  9. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant

  10. Spain Installed Wind Capacity Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  11. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    Charateristics",,,,,,"Photovoltaic",,,,,,,,,,,,,,,"Wind",,,,,,,,,,,,,,,"Other",,,,,,,,,,,,,,,"All Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity

  12. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect (OSTI)

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  13. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  14. New Optical Fiber Network Being Installed at Lab to Expand Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Fiber Network Being Installed at Lab to Expand Capacity Speed of New Optical Fiber Network Being Installed New Optical Fiber Network Being Installed at Lab to Expand ...

  15. 1.5 MW turbine installation at NREL's NWTC on Aug. 21

    ScienceCinema (OSTI)

    None

    2013-05-29

    Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

  16. PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According to the second annual Market Report on Wind Technologies in Distributed Applications soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at the end of 2013, reflecting nearly 72,000

  17. The 1.5 MW wind turbine of tomorrow

    SciTech Connect (OSTI)

    De Wolff, T.J.; Sondergaard, H.

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  18. NREL and Alstom Celebrate Wind Turbine Installation - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Alstom Celebrate Wind Turbine Installation 3 MW, 60 Hz Alstom ECO 100 Now Fully Operational at National Wind Technology Center April 26, 2011 Golden, Colo., April 26, 2011 - Officials from the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from Alstom, today commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at NREL's National Wind Technology Center. This event

  19. Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Peterman, Carla

    2009-02-11

    As installations of grid-connected solar photovoltaic (PV) systems have grown, so too has the desire to track the installed cost of these systems over time, by system characteristics, by system location, and by component. This report helps to fill this need by summarizing trends in the installed cost of grid-connected PV systems in the United States from 1998 through 2007. The report is based on an analysis of installed cost data from nearly 37,000 residential and non-residential PV systems, totaling 363 MW of capacity, and representing 76percent of all grid-connected PV capacity installed in the U.S. through 2007.

  20. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  1. installed_capacity_2013.pdf

    Wind Powering America (EERE)

  2. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  3. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    SciTech Connect (OSTI)

    Jack Q. Richardson

    2012-06-28

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

  4. Pasadena Water and Power- Solar Power Installation Rebate

    Broader source: Energy.gov [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

  5. Hopper Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a host of other scientific endeavors. 00.JPG Delivery 1.JPG Unloading 3.JPG Earthquake protection 4.JPG Installing cabinets 6.JPG Half way there 8.JPG Inspection and...

  6. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  7. Installed Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Geothermal Power Plants List of Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of...

  8. Property:InstalledCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  9. Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010

    SciTech Connect (OSTI)

    Darghouth, Naim; Wiser, Ryan

    2011-09-07

    The present report describes installed cost trends for grid-connected PV projects installed from 1998 through 2010 (with some limited and preliminary results presented for projects installed in the first six months of 2011). The analysis is based on project-level cost data from approximately 116,500 residential, non-residential, and utility-sector PV systems in the United States. The inclusion of utility-sector PV is a new element in this year’s report. The combined capacity of all systems in the data sample totals 1,685 MW, equal to 79% of all grid-connected PV capacity installed in the United States through 2010 and representing one of the most comprehensive sources of installed PV cost data for the U.S. Based on this dataset, the report describes historical installed cost trends over time, and by location, market segment, technology type, and component. The report also briefly compares recent PV installed costs in the United States to those in Germany and Japan, and describes trends in customer incentives for PV installations and net installed costs after receipt of such incentives. The analysis presented here focuses on descriptive trends in the underlying data, serving primarily to summarize the data in tabular and graphical form.

  10. Final row of solar panels installed at Livermore | National Nuclear...

    National Nuclear Security Administration (NNSA)

    When complete, the 3.3 MW fixed-tilt solar photovoltaic facility will represent the largest DOENNSA purchase of solar energy from an onsite facility. Electrical installation will ...

  11. Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008

    SciTech Connect (OSTI)

    Barbose, Galen L; Wiser, Ryan; Peterman, Carla; Darghouth, Naim

    2009-10-05

    Installations of solar photovoltaic (PV) systems have been growing at a rapid pace in recent years. In 2008, 5,948 MW of PV was installed globally, up from 2,826 MW in 2007, and was dominated by grid-connected applications. The United States was the world's third largest PV market in terms of annual capacity additions in 2008, behind Spain and Germany; 335 MW of PV was added in the U.S. in 2008, 293 MW of which came in the form of grid-connected installations. Despite the significant year-on-year growth, however, the share of global and U.S. electricity supply met with PV remains small, and annual PV additions are currently modest in the context of the overall electric system. The market for PV in the U.S. is driven by national, state, and local government incentives, including up-front cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy, and by the positive attributes of PV - modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. To address this need, Lawrence Berkeley National Laboratory initiated a report series focused on describing trends in the installed cost of grid-connected PV systems in the U.S. The present report, the second in the series, describes installed cost trends from 1998 through 2008. The analysis is based on project-level cost data from more than 52,000 residential and non-residential PV systems in the U.S., all of

  12. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... SunShot Grand Challenge: Regional Test Centers 50MW extreme-scale turbine HomeTag:50MW ...

  13. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief PDF-342KB Airpol, ... Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, ...

  14. Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009

    SciTech Connect (OSTI)

    Barbose, Galen; Darghouth, Naim; Wiser, Ryan

    2010-12-13

    Installations of solar photovoltaic (PV) systems have been growing at a rapid pace in recent years. In 2009, approximately 7,500 megawatts (MW) of PV were installed globally, up from approximately 6,000 MW in 2008, consisting primarily of grid-connected applications. With 335 MW of grid-connected PV capacity added in 2009, the United States was the world's fourth largest PV market in 2009, behind Germany, Italy, and Japan. The market for PV in the United States is driven by national, state, and local government incentives, including up-front cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy, and by the positive attributes of PV - modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the possible deployment of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. Despite the significant year-on-year growth, however, the share of global and U.S. electricity supply met with PV remains small, and annual PV additions are currently modest in the context of the overall electric system. To address this need, Lawrence Berkeley National Laboratory initiated a report series focused on describing trends in the installed cost of grid-connected PV systems in the United States. The present report, the third in the series, describes installed cost trends from 1998 through 2009, and provides preliminary cost data for systems installed in 2010. The analysis is based on project-level cost data from approximately 78

  15. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  16. Sandia Energy - Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Installation InstallationTara Camacho-Lopez2015-03-20T19:23:2...

  17. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  18. 20-MW Magnicon for ILC

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2006-11-29

    The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, with no loss of output power or electronic efficiency.

  19. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    SciTech Connect (OSTI)

    Barbose, Galen; Peterman, Carla; Wiser, Ryan

    2009-04-15

    Installations of PV systems have been expanding at a rapid pace in recent years. In the United States, the market for PV is driven by national, state, and local government incentives, including upfront cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy and by the positive attributes of PV - e.g., modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. A new Lawrence Berkeley National Laboratory report, 'Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007', helps to fill this need by summarizing trends in the installed cost (i.e., the cost paid by the system owner) of grid-connected PV systems in the U.S. The report is based on an analysis of project-level cost data from nearly 37,000 residential and non-residential PV systems completed from 1998-2007 and installed on the utility-customer-side of the meter. These systems total 363 MW, equal to 76% of all grid-connected PV capacity installed in the U.S. through 2007, representing the most comprehensive data source available on the installed cost of PV in the United States. The data were obtained from administrators of PV incentive programs around the country, who typically collect installed cost data for systems receiving incentives. A total of 16 programs, spanning 12 states, ultimately provided data for the study. Reflecting the broader geographical trends in the

  20. HTAR Configuration and Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a

  1. Principles of providing inherent self-protection and passive safety characteristics of the SVBR-75/100 type modular reactor installation for nuclear power plants of different capacity and purpose

    SciTech Connect (OSTI)

    Toshinsky, G.I.; Komlev, O.G.; Novikova, N.N.; Tormyshev, I.V.; Stepanov, V.S.; Klimov, N.N.; Dedoul, A.V.

    2007-07-01

    The report presents a brief description of the reactor installation SVBR-75/100, states a concept of providing the RI safety and presents the basic results of the analysis of the most dangerous pre-accidental situations and beyond the design basis accidents, which have been obtained in the process of validating the RI safety. It has been shown that the safety functions concerning the accidental shutdown of the reactor, total blacking out of the NPP and localization of the accidental situation relating to the postulated simultaneous rupture of several steam-generator tubes are not subject to influence of the human factor and are entirely realized in a passive way. (authors)

  2. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal

  3. Installation and Acceptance Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

  4. Ormat's North Brawley plant with 17MW short of its 50MW potential...

    Open Energy Info (EERE)

    Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI...

  5. HVAC Installed Performance

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

  6. HSI Configuration and Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructions below. In certain environments (e.g., if your installation is on a machine which has more than one network interface or has a high bandwidth network connection...

  7. 550 MW | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  8. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  9. MHK Projects/Wave Energy AS Project 1 | Open Energy Information

    Open Energy Info (EERE)

    Project Installed Capacity (MW) 0 Device Nameplate Capacity (MW) Concept implemented in breakwater structures capacity will depend on local wave energy and length of breakwater...

  10. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  11. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation...

    Office of Environmental Management (EM)

    Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Beacon Power will design, ...

  12. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  13. Spallation Neutron Source Power Level Exceeds 1 MW (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source Power Level Exceeds 1 MW Citation Details In-Document Search Title: Spallation Neutron Source Power Level Exceeds 1 MW No abstract prepared. Authors: ...

  14. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  15. Property:EZFeed/InstalledCapacity | Open Energy Information

    Open Energy Info (EERE)

    and County of Denver - Elevations Energy Loans (Colorado) City and County of Denver - Solar Panel Permitting (Colorado) City and County of Honolulu - Real Property Tax...

  16. Small Scale LNG Terminals Market Installed Capacity is anticipated...

    Open Energy Info (EERE)

    Although large scale LNG terminals have been preferably constructed across the world till date, the emergence of small demand centers for natural gas within small...

  17. Installed Geothermal Capacity/Data | Open Energy Information

    Open Energy Info (EERE)

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  18. Demonstration of 5MW PAFC power plant

    SciTech Connect (OSTI)

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  19. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  20. DOE 1.5 Installation Time Lapse Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 1.5 Installation Time Lapse Video (Text Version) DOE 1.5 Installation Time Lapse Video (Text Version) Below is the text version for the DOE 1.5 Installation Time Lapse Video. The National Renewable Energy Laboratory installs a 1.5-MW wind turbine for the U.S. Department of Energy at its National Wind Technology Center located just south of Boulder, Colorado. The construction site is a grassy field that overlooks the eastern plains of Colorado. Two blue construction cranes work together to

  1. Heating equipment installation system

    DOE Patents [OSTI]

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  2. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Resilient Electric Infrastructures Military...

  3. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-MW Dynamometer Ground Breaking 5-MW Dynamometer Ground Breaking December 19, 2011 - 3:04pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D ...

  4. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  5. Property:Permit/License Buildout (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 40 + MHK ProjectsAlgiers Light Project + 20 + MHK ProjectsAnconia Point...

  6. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    1980-12-01

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  7. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing mw_rf_workshop_background_july2012.pdf (178.12 KB) More Documents & Publications Microwave and Radio Frequency Workshop

  8. A 75 MW S-Band Klystron

    SciTech Connect (OSTI)

    Ferguson, Patrick; Read, Michael; Ives, Robert Lawrence; Marsden, David

    2013-12-16

    This program performed computational and preliminary mechanical design for a klystron producing 75 MW at 2.856 GHz using periodic permanent magnet (PPM) focusing. The performance specifications achieved were those for the Matter-Radiation Interactions in the Extremes (MaRIE) project at Los Alamos National Laboratory. The klystron is designed to provide 10 microsecond pulses at 60 Hz with 56 dB gain. The PPM-Focusing eliminates requirements for solenoids and their associated power supplies, cooling systems, interlocks, control and diagnostic instrumentation, and maintenance. The represents a significant in both acquisition and operating costs. It also increases reliability by eliminating many potential failure modes.

  9. Quadrennial Energy Review: First Installment | Department of...

    Energy Savers [EERE]

    Quadrennial Energy Review: First Installment Quadrennial Energy Review: First Installment QUADRENNIAL ENERGY REVIEW FIRST INSTALLMENT: TRANSFORMING U.S. ENERGY INFRASTRUCTURES IN A ...

  10. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  11. 3 MW Solid Rotating Target Design

    SciTech Connect (OSTI)

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  12. Enhanced Control Installations.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    correctness. Title: Individual Permit, High Priority Sites, Examples of Enhanced Control Installations, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759...

  13. Safety Culture in Nuclear Installations

    Broader source: Energy.gov [DOE]

    IAEA-TECDOC-1329 Safety Culture in Nuclear Installations, Guidance for use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002.

  14. Factors Affecting PMU Installation Costs

    Broader source: Energy.gov (indexed) [DOE]

    ... information to improve the modeling, forecasting and controls of the grid Standards ... Department of Energy |September 2014 Factors Affecting PMU Installation Costs | Page 3 ...

  15. New Eddy Correlation Systems Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary results were very promising, indicating that the new system could operate flawlessly and could withstand power outages. Subsequently, four systems have been installed ...

  16. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  17. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect (OSTI)

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  18. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect (OSTI)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  19. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  20. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  1. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  2. New Metallization Technique Suitable for 6-MW Pilot Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December ...

  3. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  4. Northern Cheyenne Tribe30 MW Wind Energy Development Grant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Location * Colstrip coal fired power plant is 25 miles to the north. * Transmission and interconnection study ...

  5. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    SciTech Connect (OSTI)

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  6. Overview and status of first 25 MW(e) IR-CFB boiler in India

    SciTech Connect (OSTI)

    Kavidass, S.; Bakshi, V.K.; Diwakar, K.K.

    1997-12-31

    The Babcock and Wilcox (B and W) internal recirculation CFB (IR-CFB) boiler is unique in design. Worldwide, B and W offers IR-CFB boilers up to 150 MW(e) both reheat and non-reheat, and is pursuing units up to 300 MW(e). This paper discusses an overview and status of the construction, commissioning, initial start-up operation and milestones of the ongoing 25 MW(e) IR-CFB boiler project at Kanoria Chemicals and Industries Ltd., Renukoot, India. This IR-CFB boiler is designed, supplied and installed by Thermax Babcock and Wilcox Ltd. (TBW), a joint venture company of the B and W and Thermax in India. The boiler parameters are, steam flow of 29.2 kg/s (23,420 lbs/hr), 6.4 MPa (925 psig), and 485 C (905 F) with feedwater temperature of 180 C (356 F). The boiler will utilize high-ash content (> 45%), subbituminous coal with a heating value of 3,500 KCal/kg (6,300 Btu/lb). This paper also discusses the various aspects of the boiler design, performance, auxiliary equipment, advantages and initial start-up operating performance.

  7. Microhydro System Design and Installation

    Broader source: Energy.gov [DOE]

    This 1-1/2 day workshop will cover the basics of small scale hydro power with a field trip to local microhydro installation. Participants will learn about: site assessment techniques including the...

  8. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  9. Magnet Girder Assembly and Installation

    ScienceCinema (OSTI)

    None

    2013-07-17

    It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

  10. Solar Installation Labor Market Analysis

    SciTech Connect (OSTI)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  11. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,"AK",599,"Anchorage Municipal Light and

  12. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,"AK",219,"Alaska Power and Telephone

  13. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,"AK",219,"Alaska Power and Telephone

  14. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  15. TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Steven T. Derenne

    2006-04-28

    With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single

  16. Structural considerations for solar installers : an approach...

    Office of Scientific and Technical Information (OSTI)

    Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits. Citation Details In-Document Search Title: Structural ...

  17. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  18. Solar Technologies Installations Ltd | Open Energy Information

    Open Energy Info (EERE)

    Installations Ltd Jump to: navigation, search Name: Solar Technologies Installations Ltd Place: Hampshire, United Kingdom Zip: S051 OHR Sector: Renewable Energy Product: A UK-based...

  19. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  20. CNTA_Well_Installation_Report.book

    Office of Legacy Management (LM)

    Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye ... WELL INSTALLATION REPORT FOR CORRECTIVE ACTION UNIT 443, CENTRAL NEVADA TEST AREA NYE ...

  1. Better Buildings Neighborhood Program Data Installed Measures...

    Energy Savers [EERE]

    Installed Measures Better Buildings Neighborhood Program Data Installed Measures Building project data for 75,110 single-family homes upgraded between July 1, 2010, and September ...

  2. Aasgard subsea installation on schedule

    SciTech Connect (OSTI)

    Perdue, J.M.

    1998-09-01

    Statoil`s Aasgard A FPSO vessel is set to sail away from the Aker Stord yard on November 22, 1998, and construction of the Aasgard B semisubmersible gas platform has begun at the Daewoo yard in Korea. While Aasgard A and Aasgard B are receiving a lot of attention on land, the Aasgard subsea installation is quietly being readied for the big day.

  3. 10 MW Supercritical CO2 Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 MW Supercritical CO2 Turbine Project 10 MW Supercritical CO2 Turbine Project This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_turchi.pdf (1.86 MB) More Documents & Publications 10-Megawatt Supercritical Carbon Dioxide Turbine - FY13 Q2 10-MW Supercritical-CO2 Turbine Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials

  4. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    SciTech Connect (OSTI)

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  5. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  6. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    SciTech Connect (OSTI)

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  7. Oklahoma Tribe to Install Solar Roof

    Broader source: Energy.gov [DOE]

    An Indian tribe in Anadarko, Oklahoma is installing solar panel roofs on two tribal government buildings.

  8. Infiniband cables installed | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiniband cables installed Download original image « Back to galleryItem 8

  9. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    Open Energy Info (EERE)

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  10. MHK Projects/Georgetown Bend | Open Energy Information

    Open Energy Info (EERE)

    33.5735, -91.1986 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 117 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Duncan Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.3743, -91.2403 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Cow Island Bend | Open Energy Information

    Open Energy Info (EERE)

    35.0269, -90.2792 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/Wickliffe Project | Open Energy Information

    Open Energy Info (EERE)

    36.9756, -89.1193 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 29 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Turnbull Island | Open Energy Information

    Open Energy Info (EERE)

    31.0652, -91.711 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 26 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Point Menoir Project | Open Energy Information

    Open Energy Info (EERE)

    30.6436, -91.3029 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 66 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  16. MHK Projects/Fitler Bend | Open Energy Information

    Open Energy Info (EERE)

    32.8007, -91.1586 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/Kempe Bend Project | Open Energy Information

    Open Energy Info (EERE)

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Live Oak Project | Open Energy Information

    Open Energy Info (EERE)

    29.7638, -90.0278 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Saint Catherine Bend | Open Energy Information

    Open Energy Info (EERE)

    31.4111, -91.4953 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 190 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Burke Landing | Open Energy Information

    Open Energy Info (EERE)

    34.2776, -90.7836 Project Phase Phase ? Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 81 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  1. MHK Projects/South Myette Point | Open Energy Information

    Open Energy Info (EERE)

    29.8902, -91.4391 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 27 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  2. MHK Projects/Little Cypress Bend | Open Energy Information

    Open Energy Info (EERE)

    36.3482, -89.5892 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 127 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  3. MHK Projects/Krotz Springs | Open Energy Information

    Open Energy Info (EERE)

    30.5459, -91.7518 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 44 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  4. MHK Projects/Davis Island Bend | Open Energy Information

    Open Energy Info (EERE)

    32.1299, -91.0636 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 147 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  5. MHK Projects/Helena Reach Project | Open Energy Information

    Open Energy Info (EERE)

    34.5795, -90.5722 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  6. MHK Projects/Lake Chicot | Open Energy Information

    Open Energy Info (EERE)

    30.0767, -91.4738 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  7. MHK Projects/Avondale Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9301, -90.2215 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  8. MHK Projects/Kenner Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9596, -90.2868 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  9. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    Open Energy Info (EERE)

    30.7879, -91.5469 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 94 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  10. MHK Projects/Brilliant Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.0835, -90.912 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 56 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Remy Bend Project | Open Energy Information

    Open Energy Info (EERE)

    30.0121, -90.754 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 28 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Anconia Point Project | Open Energy Information

    Open Energy Info (EERE)

    33.2952, -91.168 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 15 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/General Hampton Project | Open Energy Information

    Open Energy Info (EERE)

    30.1019, -90.9562 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 46 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Gouldsboro Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9177, -90.0673 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 20 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Island 14 Bend | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 132 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0 Number of Build Out...

  16. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  17. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    SciTech Connect (OSTI)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-11-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 {times} 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in renewable energy facilities between 1 MW and 10 MW with a cumulative installed capacity equal to one p... Eligibility: Investor-Owned Utility, Municipal Utilities,...

  19. Microsoft Word - BUGS_The Next Smart Grid Peak Resource Final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Capacity of Dispersed and Distributed Generators Installed per Year by Technology Type (MW) Internal Combustion Combustion Turbine Steam Turbine Hydropower Wind and Other MW Backup ...

  20. Engineering report for simulated riser installation

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  1. Largest Taiwan SPM terminal installed

    SciTech Connect (OSTI)

    Schultz, A.R. )

    1992-02-17

    This paper reports on the largest Taiwan single-point mooring (SPM) terminal. Chinese Petroleum Corp. (CPC) last year installed and commissioned Taiwan's SPM terminal. This, the third of four planned SPM terminals, is unloading 100,000-300,000 dwt crude-oil tankers 5 miles offshore Kaohsiung, Taiwan, on the southwest coast of the Republic of China. Construction on the fourth SPM terminal, for unloading naphtha and diesel gas oil from 20,000 -100,000 dwt tankers, began late last year. The third terminal consists of a catenary anchor leg mooring (CALM) system, a 56-in, (1,422 mm) OD crude-oil pipeline and a 16-in. (406 mm) OD fuel-oil pipeline. The subsea pipelines extend from the CALM installed in a water depth of 118 ft to an existing shore tank farm tie-in valve station.

  2. LANL installs additional protective measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes additional protections LANL installs additional protective measures Work crews completed additional flood and erosion-control measures this week to reduce the environmental effects of any flash floods following the Las Conchas Fire. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  3. Federal Energy Regulatory Commission Interconnection Queue Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    500 MW installed hydro capacity * Lignite Coal - 4,000 MW installed capacity - Mine-mouth ... in up 2 Billion in reduced costs for consumers Conclusions * Resolving the North Dakota ...

  4. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  5. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl; Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  6. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  7. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  8. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine...

    Office of Scientific and Technical Information (OSTI)

    for Testing MW-Scale Wind Turbine Generators (Poster) Citation Details In-Document Search Title: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators ...

  9. Automated solar collector installation design

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  10. File:Install.pdf | Open Energy Information

    Open Energy Info (EERE)

    Install.pdf Jump to: navigation, search File File history File usage File:Install.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Full resolution...

  11. ADA Requirements for Workplace Charging Installation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging...

  12. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  13. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Second Installment Electricity: Generation to End Use ... Midwest and Florida Regions, Duke Energy Corporation * Mike Langford, National ...

  14. 1-2 MW Community Scale Solar Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 MW Community Scale Solar Feasibility Study Ute Mountain Ute Tribe Ute Mountain Ute Tribe- Towaoc, CO Total Acres= 582,321.53 □ TRUST □ CO- 431,910.45 □ NM- 104,964.00 □ UT- 4,334.80 □ FEE □ CO- 39,429.96 □ UT- 1,682.28 Overview □ 1-2 MW Community Scale Solar Farm □ 18 sites □ Fixed Panel/Single Axis Project Location Project Participants UTE MOUNTAIN UTE TRIBE Gary Hayes- Tribal Chairman Bradley Height- Tribal Vice Chairman Troy Ralstin- Tribal Executive Director Terry

  15. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  16. Development of a 50 MW 30 GHz Gyroklystron Amplifier

    SciTech Connect (OSTI)

    Michael Read; Wesely Lawson, Lawrence Ives, Jeff Neilson

    2009-05-20

    DOE requires sources for testing of high gradient accelerator structures. A power of 50 MW is required at K and Ka band. The pulse length must be ~ 1 microsecond and the pulse repetition frequency at least 100 Hz. At least some applications may require phase stability not offered by a free running oscillator. CCR proposed to build a 50 MW 30 GHz gyrklystron amplifier. This approach would give the required phase stability. The frequency was at the second harmonic of the cycltron frequency and used the TE02 mode. This makes it possible to design a device without an inner conductor, and with a conventional (non-inverted) MIG. This minimizes cost and the risk due to mechanical alignment issues. A detailed design of the gyroklystron was produced. The design was based on simulations of the cavity(ies), electron gun, output coupler and output window. Two designs were produced. One was at the fundamental of the cyclotron frequency. Simulations predicted an output power of 72 MW with an efficiency of 48%. The other was at the second harmonic, producing 37 MW with an efficiency of 37%.

  17. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect (OSTI)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  18. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  19. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic installations throughout 2014. The performance of utility-scale solar installations, those with a nameplate capacity of one megawatt (MW) or greater, is a...

  20. How to Build a Small Wind Energy Business: Lessons from California; Preprint

    SciTech Connect (OSTI)

    Sinclair, K.

    2007-07-01

    This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

  1. Community Wind Handbook/Find an Installer | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Find an Installer Homeowners, ranchers, and small businesses can install wind...

  2. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  3. Environmental Assessment Kotzebue Wind Installation Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment \ Kotzebue Wind Installation Project Kotzebue, Alaska U. S. Department of Energy Golden Field Office 16 17 Cole Boulevard Golden, Colorado May 1998 Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska U. S . Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado May 1998 Finding of No Significant Impact Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska F'INDING OF NO SIGNIFICANT IMPACT for KOTZEBUE WIND

  4. ADA Requirements for Workplace Charging Installation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This Guidance provides best practices, special design guidelines and requirements for installing plug-in electric vehicle charging stations in compliance with ADA. When designing ...

  5. Photovoltaic Systems Installed in Philadelphia Neighborhood

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.

  6. Hawaii Well Construction & Pump Installation Standards | Open...

    Open Energy Info (EERE)

    Handbook Abstract This document provides an overview of the well construction and pump installation standards in Hawaii. Author State of Hawaii Commission on Water Resource...

  7. Hawaii Well Construction & Pump Installation Standards Webpage...

    Open Energy Info (EERE)

    Standards Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage...

  8. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... North America with a wide array of strategic and ... Northwestern University. 6 Panel 2: Electricity Distribution ... largest distributed solar installation project and ...

  9. Active solar heating systems installation manual

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides an industry consensus of the best available installation procedures for large commercial-scale solar service water and space heating systems.

  10. Backup Power Installed for WIPP EOC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Backup Power Installed for WIPP EOC The Waste Isolation Pilot Plant's (WIPP) Emergency Operations Center (EOC) will soon have guaranteed operation in the event of a power outage. ...

  11. Quadrennial Energy Review - Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Second Installment Electricity: Generation to End-Use Stakeholder Meeting Number 3: ... ancillary service, day-ahead energy, and unit commitment markets while becoming the balancing ...

  12. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Installment Electricity: Generation to End-Use ... Power Generation and Transmission: How Can We Plan, ... recent announcement represents a 3.6 billion investment. ...

  13. Low Beam Voltage, 10 MW, L-Band Cluster Klystron

    SciTech Connect (OSTI)

    Teryaev, V.; Yakovlev, V.P.; Kazakov, S.; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

    2009-05-01

    Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

  14. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect (OSTI)

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  15. Active control of low frequency sound in a gas turbine compressor installation

    SciTech Connect (OSTI)

    Swinbanks, M.A.

    1982-01-01

    During the last decade, the development of active attenuators has progressed from theoretical analysis, through laboratory experiments of increasing sophistication to the stage where their practical application to certain large scale industrial sources has finally become reality. This paper outlines some features which the author has investigated in the laboratory, and concludes with a description of the results achieved in applying these techniques to an 11 M.W. Avon Gas Turbine Compressor Installation. The active control hardware necessary to achieve these results represented a very considerable cost saving compared to the estimated cost of achieving similar performance by passive means.

  16. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

    2009-05-04

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  19. WPN 93-5: Recommended Installation Standards for Mobile Homes

    Broader source: Energy.gov [DOE]

    To provide technical assistance to the states on recommended installation techniques for weatherization materials installed on mobile homes.

  20. Seneca Nation of Indians Project: 1.8 MW Wind Turbine on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAST ACTIVITIES & PROJECTS 1.8 MW Wind Turbine on Common Lands Department of Energy ... and NG. PROJECT OBJECTIVES 1.8 MW Wind Turbine on Common Lands Design procure and ...

  1. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS Eaton Corporation - Arden, NC A 15 ...

  2. Property:MeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    Area + 132 MW132,000 kW 132,000,000 W 132,000,000,000 mW 0.132 GW 1.32e-4 TW + B Bac-Man Laguna Geothermal Area + 150 MW150,000 kW 150,000,000 W 150,000,000,000 mW 0.15 GW...

  3. RAPID/Roadmap/7-OR-b | Open Energy Information

    Open Energy Info (EERE)

    electric generating capacity of 35 MW or more. Radioactive waste disposal sites and nuclear installations. Definitions Nominal electric generating capacity means the maximum...

  4. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  5. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2016 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 2,062,300 Valero Refining Co Texas LP

  7. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  9. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  10. Digital, remote control system for a 2-MW research reactor

    SciTech Connect (OSTI)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  11. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab November 18, 2014, 2:00pm to 3:00pm Colloquia MBG Auditorium COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective Dr. Michael Bell Princeton Plasma Physics Laboratory "The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond

  12. Latest developments on the Dutch 1MW free electron maser

    SciTech Connect (OSTI)

    Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

    1999-05-01

    The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec

  13. Cray to Install Cascade System at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cray to Install Cascade System at NERSC Cray to Install Cascade System at NERSC June 27, 2012 by Richard Gerber Cray will install a next-generation supercomputer code-named "Cascade" and a next-generation Cray Sonexion storage system at NERSC. Read the press release. Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December

  14. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    SciTech Connect (OSTI)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William; Harper, Alan

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  15. Workplace Charging Equipment and Installation Costs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  16. North Shore Gas- Single Family Direct Install

    Broader source: Energy.gov [DOE]

    Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, Compact Fluorescent Bulbs (CFLs...

  17. Help Your Employer Install Electric Vehicle Charging

    Broader source: Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  18. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  19. Install an Automatic Blowdown Control System

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Weatherization Installer/Technician Fundamentals 2.0 - Roofing, Flashing,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Attic Ventilation Installation Needs | Department of Energy Roofing, Flashing, and Attic Ventilation Installation Needs Weatherization Installer/Technician Fundamentals 2.0 - Roofing, Flashing, and Attic Ventilation Installation Needs Roofing, Flashing, and Attic Ventilation Installation Needs - Complete (4.45 MB) Lesson Plan: Roofing, Flashing, and Attic Ventilation Installation Needs (127.32 KB) PowerPoint: Roofing, Flashing, and Attic Ventilation Installation Needs (4.39 MB) More

  1. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  2. Installation on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Retrofits » Installation on Multifamily Retrofits Installation on Multifamily Retrofits Over the last thirty years, DOE's Weatherization Assistance Program has cultivated the most experienced and connected group of whole-building energy retrofit professionals in the nation. The Weatherization Program has weatherized nearly 300,000 multifamily units since Graphic describing the Weatherization workforce as trained, equipped, and accountable. 2010. Many groups within the Weatherization

  3. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  4. Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study.

    SciTech Connect (OSTI)

    Rubinstein, Francis; Xiaolei, Li; Watson, David S.

    2010-12-03

    The objective of this Feasibility Study was to identify the potential of dimmable lighting for providing regulation capacity and contingency reserves if massively-deployed throughout the State. We found that one half of the total electric lighting load in the California commercial sector is bottled up in larger buildings that are greater an 50,000 square feet. Retrofitting large California buildings with dimmable lighting to enable fast DR lighting would require an investment of about $1.8 billion and a"fleet" of about 56 million dimming ballasts. By upgrading the existing installed base of lighting and controls (primarily in large commercial facilities) a substantial amount of ancillary services could be provided. Though not widely deployed, today's state-of-the art lighting systems, control systems and communication networks could be used for this application. The same lighting control equipment that is appropriate for fast DR is also appropriate for achieving energy efficiency with lighting on a daily basis. Thus fast DR can leverage the capabilities that are provided by a conventional dimming lighting control system. If dimmable lighting were massively deployed throughout large California buildings (because mandated by law, for example) dimmable lighting could realistically supply 380 MW of non-spinning reserve, 47percent of the total non-spinning reserves needed in 2007.

  5. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2016 | Release Date: June 22, 2016 | Next Release Date: June 23, 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators

  7. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Beginning in 2001, data are for electric utility and unregulated generating plants",,,,,,"Plant Operation and Design Report."" * 1997-2005-EIA, Electric Power Annual 2008 (January ...

  8. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  9. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  10. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  11. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  12. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  13. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  14. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  15. Foldtrack Installation in C-110 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installation in C-110 Foldtrack Installation in C-110 Addthis Description Crews successfully installed a new and improved version of the Foldtrack into tank C-110, a single-shell tank with about 17,200 gallons of waste remaining

  16. Fluid assisted installation of electrical cable accessories

    DOE Patents [OSTI]

    Mayer, Robert W.; Silva, Frank A.

    1977-01-01

    An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, 1987 16,460 6,935 1,928 5,251 466 1,189 3,805 9,083 230 JAN 1, 1988 16,825 7,198

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  20. Development of a coiled tubing cable installation system

    SciTech Connect (OSTI)

    Newman, K.R.; Haver, N.A.; Stone, L.R.

    1995-12-31

    A system has been developed which installs and de-installs an electric wireline cable in coiled tubing (CT) while the CT is still on the reel. This cable installation system reduces the cost of a cable installation significantly compared with previous installation methods. This paper discusses the need for such a system, the theory used to develop this system, the various concepts considered, the system that was developed and test installation cases.

  1. Alternative Fuels Data Center: Installing New E85 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data

  2. Fact #893: October 5, 2015 Incentives for the Installation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: October 5, 2015 Incentives for the Installation of Electric Vehicle Charging Stations - Dataset Fact 893: October 5, 2015 Incentives for the Installation of Electric Vehicle ...

  3. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  4. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork You are ...

  5. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork Germicidal ...

  6. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork Ultraviolet; UV; ...

  7. Design and Installation of a Disposal Cell Cover Field Test ...

    Office of Environmental Management (EM)

    Design and Installation of a Disposal Cell Cover Field Test Design and Installation of a Disposal Cell Cover Field Test Paper presented at the Waste Management 2011 Conference. ...

  8. U.S. Installation, Operation, and Performance Standards for Microturbi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installation, Operation, and Performance Standards for Microturbine Generator Sets, August 2000 U.S. Installation, Operation, and Performance Standards for Microturbine Generator ...

  9. Evaluation of Trenchless Technologies for Installation of Pipelines...

    Office of Scientific and Technical Information (OSTI)

    for Installation of Pipelines in Radioactive Environments - 10249 Citation Details In-Document Search Title: Evaluation of Trenchless Technologies for Installation of ...

  10. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  11. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device 12_aquantisawp_da_alexfleming.pptx (2.06 MB) More Documents & Publications Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Pumped Storage Hydropower (Project Development Support)&mdash;Geotechnical Investigation and Value

  12. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy...

    Open Energy Info (EERE)

    NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  13. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  14. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  15. Portland Advancing Green Image With Solar Installs

    Broader source: Energy.gov [DOE]

    A quick Internet search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become even greener.

  16. Electron circuits: semiconductor laser multiple use installation

    SciTech Connect (OSTI)

    Zhou, F.; Fan, J.; Weng, D.

    1983-04-01

    A light source for a multiple use installation using a same matter junction or different matter junction GaAlAs/GaAs semiconductor laser, which has the advantages of high interference resistance, long transmission distance (tens to hundreds of meters), good security, and low power consumption in addition, the controller of the light source has multiple usages of alarming, switching and counting is presented. The multiple use installation can be used in control of breaking warps and counting on roving waste machines, warping machines and silk weaving machines in the textile industry long distance speed measurement, alarming and counting in machinery, electricity and chemical industries and alarming and control of water levels in reservoirs, rivers and water towers, as well as blockade alarming and control of important divisions. This multiple use installation is composed of two parts a laser emitter and a receiving device. The former component is used to produce the laser after the receiver receives the laser, the installation completes operations of alarming, switching and counting.

  17. Factors Affecting PMU Installation Costs (October 2014)

    Broader source: Energy.gov [DOE]

    The Department of Energy investigated the major cost factors that affected PMU installation costs for the synchrophasor projects funded through the Recovery Act Smart Grid Programs. The data was compiled through interviews with the nine projects that deployed production grade synchrophasor systems.

  18. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  19. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped storage","Los Angeles

  20. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  1. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",426.4 4,"Delaware City Plant","Other

  2. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3540 4,"Manatee","Petroleum","Florida Power &

  3. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",299.7 4,"Evander Andrews Power Complex","Natural gas","Idaho Power

  4. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Nine Mile Point","Natural gas","Entergy Louisiana LLC",2083.3 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.9 3,"Big Cajun 2","Coal","Louisiana Generating LLC",1743 4,"Brame Energy Center","Petroleum","Cleco Power

  5. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","Talen Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  6. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1830 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1784.3 3,"Seminole (OK)","Natural gas","Oklahoma Gas & Electric Co",1506.5 4,"Muskogee","Coal","Oklahoma Gas &

  7. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  8. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 2,"Hunter","Coal","PacifiCorp",1361 3,"Lake Side Power Plant","Natural gas","PacifiCorp",1176 4,"Huntington","Coal","PacifiCorp",909 5,"Currant

  9. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North Anna","Nuclear","Virginia Electric & Power Co",1893 3,"Possum Point","Natural gas","Virginia Electric & Power Co",1733 4,"Surry","Nuclear","Virginia Electric

  10. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky