Powered by Deep Web Technologies
Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar Energy Development onSolar Energy Development on DoD Installations in the  

E-Print Network [OSTI]

Solar Energy Development onSolar Energy Development on DoD Installations in the Mojave & Colorado/how solar can contribute to installation level energy· Assess whether/how solar can contribute to installation-level energy security · Recommend policy and programmatic modifications to accelerate solar

2

Solar Installation Labor Market Analysis  

SciTech Connect (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

3

Spurring Solar Installations in Hawaii | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report: OAS-RA-14-01 OctoberSpurring Solar

4

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHot andguide|SeasonsLorelei Laird

5

New England Breeze Solar and Wind Installers | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica

6

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeatingof

7

Home Solar Installations: Things to Consider | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many|Humans haveVersion)12345ofDepartmentHome

8

Solar Industry At Work: Streamlining Home Solar Installation...  

Broader source: Energy.gov (indexed) [DOE]

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar...

9

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

Not Available

2012-03-01T23:59:59.000Z

10

Energy Department Launches SunShot Prize Competition to Install...  

Broader source: Energy.gov (indexed) [DOE]

SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a...

11

Automated solar collector installation design  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-08-26T23:59:59.000Z

12

SunShot Initiative Installs Solar Energy System | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |EnergySubscriptionSunShot

13

Energy Department Launches SunShot Prize Competition to Install Solar  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolarResearchClean EnergyofofChallenge

14

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Soft costs now account for more than 60% of the total price of installing residential solar energy systems. energy.goveerearticlesinfographic-lets-get-wo...

15

Obama Administration Announces Plans to Install New Solar Panels...  

Broader source: Energy.gov (indexed) [DOE]

Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 -...

16

Milwaukee Installer Reflects on His Career In Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared TemansonEnergySAR.doc More DocumentsMikeBrian

17

Structural Code Considerations for Solar Rooftop Installations.  

SciTech Connect (OSTI)

Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

2014-12-01T23:59:59.000Z

18

Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.  

SciTech Connect (OSTI)

Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

Richards, Elizabeth H.; Schindel, Kay (City of Madison, WI); Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William (Lindau Companies, Inc., Hudson, WI); Harper, Alan (City of Madison, WI)

2011-12-01T23:59:59.000Z

19

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a solar energy system on a Habitat for Humanity home. GRID installed solar electric systems on 10 affordable homes developed by Habitat for Humanity in the Ivy City neighborhood...

20

Net Zero Energy Installations (Presentation)  

SciTech Connect (OSTI)

A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Booth, S.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect (OSTI)

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

22

Solar heating system installed at Jackson, Tennessee. Final report  

SciTech Connect (OSTI)

The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

None

1980-10-01T23:59:59.000Z

23

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

24

Portland Advancing Green Image With Solar Installs | Department...  

Broader source: Energy.gov (indexed) [DOE]

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering...

25

Solar energy at Forest Research Solar Power at Alice Holt  

E-Print Network [OSTI]

Solar energy at Forest Research Solar Power at Alice Holt research station provides a renewable to install a solar photovoltaic system to meet some of the research station's energy needs. #12;In January dioxide emissions, when compared with traditional forms of energy generation. · The solar installation

26

Solar space and water heating system installed at Charlottesville, Virginia  

SciTech Connect (OSTI)

The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

Greer, Charles R.

1980-09-01T23:59:59.000Z

27

Pasadena Water and Power- Solar Power Installation Rebate  

Broader source: Energy.gov [DOE]

Pasadena Water and Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

28

Illinois Company Implementing Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Company Implementing Solar Energy Illinois Company Implementing Solar Energy March 23, 2010 - 2:00pm Addthis J.F. Electric will soon install its own solar rooftop solar panels,...

29

Installation package for a Sunspot Cascade Solar Water Heating System  

SciTech Connect (OSTI)

Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

None

1980-09-01T23:59:59.000Z

30

Plug and Play: Purchase, Install, and Connect Residential Solar...  

Energy Savers [EERE]

roof mounting system, eliminating the need for racking systems. Once the lightweight solar panels are in place, the system then self-tests for proper installation and...

31

Seeing solar on campus : a visible photovoltaic installation on campus  

E-Print Network [OSTI]

This paper presents a methodology for selecting a site on the MIT campus for a visible solar photovoltaic installation. Visibility, solar exposure, advertising potential, aesthetics, interactivity and direct or important ...

Guarda, Daniel Jair Alves

2006-01-01T23:59:59.000Z

32

Yield Comparison for Domestic Photovoltaic Installation across the UK Scottish Institute for Solar Energy Research, May 2014  

E-Print Network [OSTI]

was conducted using Polysun simulation software. The software was validated using data recorded at a domestic to simulate the potential yield for a range of solar technologies. The software is preinstalled with global and the simulation is 4%, taken as validation that the Polysun Software accurately predicts the output of PV

Painter, Kevin

33

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect (OSTI)

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

34

Baltimore Vet Cuts Energy Bills With Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Vet Cuts Energy Bills With Solar Baltimore Vet Cuts Energy Bills With Solar October 28, 2010 - 5:09pm Addthis Baltimore resident Paul Bennett installed 14 solar panels...

35

Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools  

SciTech Connect (OSTI)

This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully.

Coughlin, J.; Kandt, A.

2011-10-01T23:59:59.000Z

36

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power  

E-Print Network [OSTI]

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis by examining the feasibility of installing a solar system, according to information provided by Ray Groom

37

CPS Energy- Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

38

Solar installer training: Home Builders Institute Job Corps  

SciTech Connect (OSTI)

The instructors describe the solar installation training program operated since 1979 by the Home Builders Institute, the Educational Arm of the National Association of Home Builders for the US Department of Labor, Job Corps in San Diego, CA. The authors are the original instructors and have developed the program since its inception by a co-operative effort between the Solar Energy Industries Association, NAHB and US DOL. Case studies of a few of the 605 students who have gone to work over the years after the training are included. It is one of the most successful programs under the elaborate Student Performance Monitoring Information System used by all Job Corps programs. Job Corps is a federally funded residential job training program for low income persons 16--24 years of age. Discussion details the curriculum and methods used in the program including classroom, shop and community service projects. Solar technologies including all types of hot water heating, swimming pool and spa as well as photovoltaics are included.

Hansen, K.; Mann, R. [San Diego Job Corps Center, Imperial Beach, CA (United States). Home Builders Inst.

1996-10-01T23:59:59.000Z

39

Matter & Energy Solar Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy and the Environment · Renewable Energy· Environmental Science · Reference Chemical compound· Semiconductor· Gallium at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry

Rogers, John A.

40

Design and installation manual for thermal energy storage  

SciTech Connect (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EVALUATION OF A PROTOTYPE SOLAR AWNING A prototype solar awning has been designed and installed on  

E-Print Network [OSTI]

and installed on a University of Oregon campus building. The solar awning is composed of a light shelfEVALUATION OF A PROTOTYPE SOLAR AWNING ABSTRACT A prototype solar awning has been designed with photovoltaic modules at- tached tilted 20° to the south. An interior light shelf and LED lights have been

Oregon, University of

42

Utility Scale Renewable Energy Development Near DOD Installations...  

Broader source: Energy.gov (indexed) [DOE]

Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations:...

43

Renewable Energy Opportunities at the Kanto Installations, Japan  

SciTech Connect (OSTI)

This document provides an overview of renewable resource development potential at the U.S. Army installations in the Kanto region in Japan, which includes Camp Zama, Yokohama North Dock, Sagamihara Family Housing Area (SFHA), Sagami General Depot, and Akasaka Press Center. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the Huntsville Army Corps of Engineers, and includes the development of a methodology for renewable resource assessment at Army installations located on foreign soil. The methodology is documented in Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations. The site visit to the Kanto installations took place on April 5 and 6, 2010. At the current time, there are some renewable technologies that show economic potential. Because of siting restrictions and the small size of these installations, development of most renewable energy technologies will likely be limited to Camp Zama. Project feasibility is based on installation-specific resource availability and energy costs and projections based on accepted life-cycle cost methods. Development of any renewable energy project will be challenging, as it will require investigation into existing contractual obligations, new contracts that could be developed, the legality of certain partnerships, and available financing avenues, which involves the U.S. Forces Japan (USFJ), the Government of Japan (GOJ), and a number of other parties on both sides. The Army will not be able to implement a project without involvement and approval from the other services and multiple levels of Japanese government. However, implementation of renewable energy projects could be an attractive method for GOJ to reduce greenhouse gas emissions and lower annual utility payments to USFJ. This report recommends projects to pursue and offers approaches to use. The most promising opportunities include waste-to-energy and ground source heat pumps. Solar photovoltaics (PV) may also prove successful. Other resources were found to be insufficient on the Kanto installations.

Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

2010-09-24T23:59:59.000Z

44

Department of Energy - Solar  

Broader source: Energy.gov (indexed) [DOE]

307 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

45

Solar Energy Entrepreneurs  

E-Print Network [OSTI]

Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

Rubloff, Gary W.

46

Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations  

SciTech Connect (OSTI)

Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to which this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNLs established renewable resource assessment methodology.

Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

2010-08-30T23:59:59.000Z

47

Application of solar energy.  

E-Print Network [OSTI]

??The purpose of the project is to learn the principle and application of solar energy and to know the situation of solar energy in China (more)

Li, Jingcheng

2010-01-01T23:59:59.000Z

48

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

49

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy Savers [EERE]

DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

50

Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-01-01T23:59:59.000Z

51

Empirically Derived Strength of Residential Roof Structures for Solar Installations.  

SciTech Connect (OSTI)

Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

2014-12-01T23:59:59.000Z

52

Defense Energy Support Center: Installation Energy Commodity Business Unit  

Broader source: Energy.gov [DOE]

Presentationgiven at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses the Defense Energy Support Center's (DESC's) Installation Energy Commodity Business Unit (CBU) including its intent, commitment, pilot project, lessons learned, and impending barriers.

53

Austin Energy- Residential Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

54

Rating of Solar Energy Devices (Texas)  

Broader source: Energy.gov [DOE]

The Public Utility Commission has regulatory authority over solar energy devices installed and used in the state of Texas. The Commission can choose to adopt standards pertaining to the rating of...

55

Austin Energy- Solar Water Heating Rebate  

Broader source: Energy.gov [DOE]

Austin Energy offers its residential, commercial, and municipal customers up front rebates or a low interest loan for the purchase and installation of solar hot water heaters. Because the program...

56

SOLAR ENERGY Andrew Blakers  

E-Print Network [OSTI]

and conversion methods usually entail few environmental problems. Solar energy includes both direct radiationSOLAR ENERGY Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National Solar energy is special. It is vast, ubiquitous and indefinitely sustainable. The solar resource

57

Property Tax Exemption for Solar and Wind Energy Systems  

Broader source: Energy.gov [DOE]

In May 2007, Maryland established a property tax exemption for residential solar energy systems. Under this law solar energy devices installed to heat or cool a dwelling, generate electricity to...

58

Residential Solar and Wind Energy Systems Tax Credit  

Broader source: Energy.gov [DOE]

Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind energy device at the taxpayer's Arizona residence. The credit is allowed against the taxpayer's...

59

Solar Thermoelectric Energy Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical...

60

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Plant The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sustainable Energy Resources for Consumers (SERC)- Solar Photovoltaics  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics.

62

NV Energy (Northern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

63

Net Zero Energy Military Installations: A Guide to Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Net Zero Energy Military Installations: A Guide to Assessment and Planning Net Zero Energy Military Installations: A Guide to Assessment and Planning In 2008, DoD and DOE defined a...

64

Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home Field Offices Welcome to the NNSA Production Office NPO News Releases Energy Saving "Cool Roofs" Installed at Y-12 Energy Saving "Cool Roofs" Installed at Y-12 The...

65

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

66

IBM Systems Director Active Energy Manager Installation and User's Guide  

E-Print Network [OSTI]

IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;#12;IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;ii IBM Systems Director Active Energy Manager: Installation and User's Guide #12;About this book This book provides

67

SOLAR ENERGY POTENTIALS  

E-Print Network [OSTI]

In recent years solar energy has experienced phenomenal growth due to the technological improvements resulting in cost reductions and also governments policies supportive of renewable energy development and utilization. In this paper we will present possibilities for development and deployment of solar energy. We will use Kosovo to compare the existing power production potential and future possible potential by using solar energy.

Loreta N. Gashi; Sabedin A. Meha; Besnik A. Duriqi; Fatos S. Haxhimusa

68

Installing and Maintaining a Home Solar Electric System | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstalling a Light

69

Solar Energy Generation in Three Dimensions  

E-Print Network [OSTI]

Optimizing the conversion of solar energy to electricity is central to the World's future energy economy. Flat photovoltaic panels are commonly deployed in residential and commercial rooftop installations without sun tracking systems and using simple installation guidelines to optimize solar energy collection. Large-scale solar energy generation plants use bulky and expensive sun trackers to avoid cosine losses from photovoltaic panels or to concentrate sunlight with mirrors onto heating fluids.[1,2] However, none of these systems take advantage of the three-dimensional nature of our biosphere, so that solar energy collection largely occurs on flat structures in contrast with what is commonly observed in Nature.[3,4] Here we formulate, solve computationally and study experimentally the problem of collecting solar energy in three-dimensions.[5] We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate ...

Bernardi, Marco; Wan, Jin H; Villalon, Rachelle; Grossman, Jeffrey C

2011-01-01T23:59:59.000Z

70

EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...  

Broader source: Energy.gov (indexed) [DOE]

EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

71

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

72

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

73

Solar site test module. [DOE/NASA solar heating and cooling demonstration installations  

SciTech Connect (OSTI)

A solar site test module using the Rockwell AIM 65 micro-computer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool for DOE/NASA commercial solar heating and cooling system demonstration installations. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10 sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

Kissel, R.R.; Scott, D.R.

1980-07-01T23:59:59.000Z

74

SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)  

SciTech Connect (OSTI)

The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

Not Available

2012-06-01T23:59:59.000Z

75

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

collected and discuss what has happened in their stills. June 20, 2014 Photovoltaics and Solar Energy (2 Activities) This module addresses issues dealing with the energy from the...

76

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

77

Solar Installations Experience and Recommendations City of Madison  

Broader source: Energy.gov [DOE]

Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

78

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy Csar Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

79

Utility Scale Renewable Energy Development Near DOD Installations...  

Broader source: Energy.gov (indexed) [DOE]

Aimone, P.E. National Security Global Business Battelle Memorial Institute Utility Scale Renewable Energy Development near DOD Installations Making the Case for Land Use...

80

Pantex installs new meters to help to reduce energy consumption...  

National Nuclear Security Administration (NNSA)

installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

SciTech Connect (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

82

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

83

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16, 2014 Energy From the Sun (10 activities) Hands-on explorations to teach intermediate students the scientific concepts of solar energy. July 16, 2014 The Sun and Its Energy (11...

84

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Research Award Program work on. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Shining Stars of Solar: Meet Three SunShot Postdoctoral Award Recipients...

85

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

86

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

87

Bright Ideas in Solar Energy  

E-Print Network [OSTI]

www.popularmechanics.com/science/energy/solar-wind/3-clever-Molten Nitrate Salt for Solar Energy Storage. Retrieved fromKrisch, J. (2014). 3 Clever New Ways to Store Solar Energy.

Melville, Jo

2014-01-01T23:59:59.000Z

88

Bright Ideas in Solar Energy  

E-Print Network [OSTI]

Molten Nitrate Salt for Solar Energy Storage. Retrieved fromNew Ways to Store Solar Energy. Retrieved from http://new-ways-to-store-solar-energy-16407404 Lenert, Andrej,

Melville, Jo

2014-01-01T23:59:59.000Z

89

Installation guidelines for solar heating system, single-family residence at William O'Brien State Park, Stillwater, Minnesota  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and testing and filling the system are included. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-05-01T23:59:59.000Z

90

File:Install.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jumptight-gas.pdfFut gaspHIak.pdfwy.pdf JumpInstall.pdf

91

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalled Geothermal Capacity Jump to:

92

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea JumpActive

93

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

94

Solar Energy Fundamentals  

E-Print Network [OSTI]

Solar energy travels from the sun to the earth in the form of electromagnetic radiation. In this course properties of electromagnetic radiation will be discussed and basic calculations for electromagnetic radiation will be described. Several solar position parameters will be discussed along with means of calculating

Harlan H. Bengtson; Harlan H. Bengtson

95

Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1the research community

96

Energy 101: Solar PV  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2011-01-01T23:59:59.000Z

97

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

98

Argonne tackles solar energy  

ScienceCinema (OSTI)

At Argonne National Laboratory, scientists and engineers are working to improve the solar cell to allow us to capture more of the sun's energy. Read more: http://www.anl.gov/Media_Center/News/...

George Crabtree

2010-09-01T23:59:59.000Z

100

Solar Energy System Exemption  

Broader source: Energy.gov [DOE]

In Louisiana, any equipment attached to an owner-occupied residential building or swimming pool as part of a solar energy system is considered personal property that is exempt from ad valorem...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mini-Optics Solar Energy Concentrator  

E-Print Network [OSTI]

This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

Mark Davidson; Mario Rabinowitz

2003-09-12T23:59:59.000Z

102

Solar Energy Kit | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy Kit Solar Energy Kit Solar Energy :: Kit Materials List Below is a list of the different Solar Energy kits available. For more details, download the Solar Energy Kit...

103

Beaches Energy Services- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and...

104

Solar and Wind Energy Business Franchise Tax Exemption  

Broader source: Energy.gov [DOE]

Companies in Texas engaged solely in the business of manufacturing, selling, or installing solar energy devices are exempted from the franchise tax. The franchise tax is Texass equivalent to a...

105

City of Tucson- Permit Fee Credit for Solar Energy Systems  

Broader source: Energy.gov [DOE]

The City of Tucson passed Resolution No. 20193 on September 27, 2005, to encourage the installation of solar energy systems throughout the city. The resolution established a policy whereby the...

106

Solar Energy and Small Hydropower Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

107

Solar Energy and Small Hydropower Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

108

2010 Smart Meter Installations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWindDay 12: Drive YourSection 130210

109

Using GIS and Remote Sensing Techniques for Solar Panel Installation Site Selection.  

E-Print Network [OSTI]

??Solar energy replacing conventional non-renewable energy has been widely implemented around the world. Currently, one of the most challenging problems is how to improve the (more)

Li, Dongrong

2013-01-01T23:59:59.000Z

110

53119782000 Solar Energy Conversion  

E-Print Network [OSTI]

; · · 1100019000 1300 #12; · · 93 #12; · 1880 · · 1989 · #12;-1 · · #12;Solar Energy: 3 trillion barrels, 1.7 x 1022 joules = energy of the Sun supplied to Earth in 1.5 days The amount of energy humans use annually: 4.6 x 1020 joules = energy of the Sun supplied to Earth in 1 hour #12;How

Chen, Yang-Yuan

111

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

112

Learning-by-Doing in Solar Photovoltaic Installations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Energy Finance 3 Learning-by-doing (LBD) With greater cumulative experience, productivity improves, lowering costs. Evidence of both "internal" learning (experiential...

113

Decision Support Tool for Desert Tortoises Near Solar Installations  

E-Print Network [OSTI]

energy development, this project will help to ensure that stable, secure, and reliable sources in impact. Project Specifics Grant Number: PIR10048 Recipient: Redlands Institute, University

114

Installing and Maintaining a Home Solar Electric System | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment of Energy4thOnSuccess, CongressionalIf you

115

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

116

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

117

Solar News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar News Solar News RSS March 11, 2014 U.S. and Colombia to Collaborate on First Solar Decathlon in Latin America U.S. Deputy Secretary of Energy Daniel Poneman, Colombia's...

118

Installation and Performance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummary ReportRemovablean

119

Installation on Multifamily Retrofits | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummary

120

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network [OSTI]

Neverthelesswaterandsolarenergysharemanysimilartorealizingadditionalsolarenergygenerationthroughoutinstallationofa solarenergysystems. SolarEasement

Fedman, Anna

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Handbook of experiences in the design and installation of solar heating and cooling systems  

SciTech Connect (OSTI)

A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

Ward, D.S.; Oberoi, H.S.

1980-07-01T23:59:59.000Z

122

Legislative Developments in Solar Energy during 1980  

E-Print Network [OSTI]

is apparent that many solar and energy conservation programsL. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsto -103 (Supp. 1979). SOLAR ENERGY DEVELOPMENTS vegetation

Krueger, Robert B.; Hoffman, Peter C.

1981-01-01T23:59:59.000Z

123

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

124

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel...

125

Helping Ensure High-Quality Installation of Solar Power Technologies |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecemberDepartmentHelp

126

Learning-by-Doing in Solar Photovoltaic Installations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLaborSeptemberof

127

SOLARIZE RALEIGH PILOT PROGRAM DRAFT Request for Proposals from Installers of Residential Solar Photovoltaic Systems  

E-Print Network [OSTI]

Photovoltaic Systems Proposed Posting Date: February 4, 2014 I. OPPORTUNITY SUMMARY: The North Carolina Solar in conjunction with the Solarize Raleigh Program in Raleigh, North Carolina. Solarize Raleigh marketing in areas subject to the City's extra-territorial jurisdiction) are eligible to participate. The Solarize

128

Solar Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

New Jersey offers a full exemption from the state's sales tax (currently 7%) for all solar energy equipment. This exemption is available to all taxpayers. All major types solar energy equipment,...

129

Solar Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

In Minnesota, solar-energy systems purchased on or after August 1, 2005, are exempt from the state's sales tax. Solar energy systems are defined as "a set of devices whose primary purpose is to...

130

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect (OSTI)

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

131

Purdue Solar Energy Utilization Laboratory  

SciTech Connect (OSTI)

The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

Agrawal, Rakesh [Purdue] [Purdue

2014-01-21T23:59:59.000Z

132

Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solar energy technologies.

133

Central solar energy receiver  

DOE Patents [OSTI]

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Drost, M. Kevin (Richland, WA)

1983-01-01T23:59:59.000Z

134

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network [OSTI]

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren ?stergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

135

Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations  

SciTech Connect (OSTI)

Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

2011-09-01T23:59:59.000Z

136

Solar Energy Control System Design.  

E-Print Network [OSTI]

?? This thesis covers design, simulation and implementation of a solar energy control system for an on grid energy storage device. The design covers several (more)

Yang, Sun

2013-01-01T23:59:59.000Z

137

Solar energy collector  

SciTech Connect (OSTI)

A solar energy collector is disclosed comprising a collector core located within a longitudinal parabolic reflector and formed of a series of spaced tubes exposed to the direct rays of the sun and to rays reflected by the reflector and arranged in a cylindrical array extending longitudinally to form a fluid path between two end annular manifolds connected at opposite ends of a storage tank located within the array.

Bale, N.R.

1983-11-22T23:59:59.000Z

138

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

139

Energy 101: Concentrating Solar Power  

SciTech Connect (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

140

Chemistry of Personalized Solar Energy  

E-Print Network [OSTI]

Personalized energy (PE) is a transformative idea that provides a new modality for the planets energy future. By providing solar energy to the individual, an energy supply becomes secure and available to people of both ...

Nocera, Daniel G.

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Solar Wind Energy Flux  

E-Print Network [OSTI]

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

142

Austin Energy's Residential Solar Rate  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW...

143

Clark Public Utilities- Solar Energy Equipment Loan  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and...

144

Consumers Power, Inc.- Solar Energy System Rebate  

Broader source: Energy.gov [DOE]

Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

145

Legislative Developments in Solar Energy during 1980  

E-Print Network [OSTI]

In particular, the Solar Energy and Energy Conservation Bankthermal sytems is the Solar Energy and En- ergy ConservationREP. (CCH) 531. 26. Solar Energy and Energy Conservation Act

Krueger, Robert B.; Hoffman, Peter C.

1981-01-01T23:59:59.000Z

146

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network [OSTI]

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren ?stergaard Jensen Miroslav Bosanac Solar Energy Centre Søren ?stergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

147

Assessing energy behaviours in Queensland schools : a study of the Queensland Solar Schools initiative (2001-2008).  

E-Print Network [OSTI]

??"A strategy adopted by the Australian and Queensland Governments to reduce the carbon footprint of schools involved installing solar energy systems on selected schools. The (more)

Tabert, Stacey.

2009-01-01T23:59:59.000Z

148

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

149

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect (OSTI)

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

150

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

151

Solar Success Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

more efficient and less expensive solar energy technologies translate into easy access and large-scale energy savings. Explore EERE's solar energy success stories below. January...

152

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

153

Foldtrack Installation in C-110 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beam damageFlyer,Installation in

154

Installing a Light Source 'Racetrack' | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstalling a Light Source

155

The solar energy challenge?Seth Darling  

ScienceCinema (OSTI)

Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

Seth Darling

2013-06-05T23:59:59.000Z

156

The solar energy challengeSeth Darling  

SciTech Connect (OSTI)

Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

Seth Darling

2012-08-08T23:59:59.000Z

157

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

158

Energy, Economic, and Environmental Benefits of the Solar America Initiative  

SciTech Connect (OSTI)

The President's Solar America Initiative (SAI) was launched in January 2006 as part of the administration's Advanced Energy Initiative. The SAI is being led by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP), with NREL providing analytical and technical support. The SAI has a goal of installing 5-10 GW of photovoltaic (PV) systems in the United States by 2015 and 70-100 GW of PV systems in the United States by 2030. To make PV cost-competitive with other energy resources, this requires that the installed cost of PV fall from approximately $8/Wdc in 2005 to $3.3/Wdc in 2015 and $2.5/Wdc in 2030. This report presents estimates of the potential energy, economic, and environmental benefits that could result should the SAI PV installation goals be achieved.

Grover, S.

2007-08-01T23:59:59.000Z

159

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-04-29T23:59:59.000Z

160

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2013-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2009-10-01T23:59:59.000Z

162

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

163

Overview of BNL's Solar Energy Research Plans  

E-Print Network [OSTI]

Overview of BNL's Solar Energy Research Plans March 2011 #12;2 Why Solar Energy Research at BNL BNL's capabilities can advance solar energy In the Northeast #12;North Array Field South Array Field Variability and Non-Dispatchability · Solar energy varies · Solar generation cannot be dispatched when needed

Homes, Christopher C.

164

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

165

Argonne National Laboratory's Solar Energy Development Programmatic...  

Open Energy Info (EERE)

Solar Energy Development Programmatic EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar Energy...

166

So You Want to Go Solar? 3 Things to Consider When Installing Solar Power  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAn AudienceEnergyAndreaofat Home

167

Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants  

SciTech Connect (OSTI)

Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

Fthenakis, V.; Turney, Damon

2011-04-23T23:59:59.000Z

168

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Sensor Networks through Solar Energy Harvesting Jason Hsu,Heliomote A integrated solar energy harvesting and storageYellow bar represent solar energy received locally Solar

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

169

Solar heating and cooling demonstration project at the Florida Solar Energy Center  

SciTech Connect (OSTI)

The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

Hankins, J.D.

1980-02-01T23:59:59.000Z

170

Update on BNL's Solar Energy Research Plans  

E-Print Network [OSTI]

Update on BNL's Solar Energy Research Plans Presented to CAC by Bob Lofaro January 12, 2012 #12;2 First, BP Solar is going out of business, but this will not impact BNL's plans for solar energy research! BP Solar will meet all of its contractual commitments with regard to supporting BNL's solar energy

Homes, Christopher C.

171

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

1991-04-09T23:59:59.000Z

172

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

173

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network [OSTI]

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

174

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies...

175

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Local and state governments may utilize funds for solar installations on government buildings and engage in energy strategy

Price, S.

2010-01-01T23:59:59.000Z

176

Multiple reflection solar energy absorber  

SciTech Connect (OSTI)

A method of converting solar energy into heat energy thereby generating power is described comprising the steps: (a) focusing said solar energy by means of a primary concentrator, (b) concentrating said solar energy from said primary concentrator by means of a secondary concentrator located at the focal point of said primary concentrator, (c) slowing the flux of said solar energy from said secondary concentrator by means of a multiple reflection chamber attached to the rear aperture of the secondary concentrator, (d) circulating a working fluid by means of a working fluid delivery tube into said secondary concentrator and said multiple reflection chamber, (e) absorbing said solar energy into said working fluid by means of an ultra high concentration of said solar energy in said multiple reflection chamber, (f) insulating said working fluid by means of a surrounding thermal barrier, (g) exhausting the heat working fluid by means as of a nozzle joined to said multiple reflection chamber, (h) replacing said working fluid by means of a working fluid delivery tube, thereby completing a cycle for generating power.

Cooley, W.L.

1993-06-01T23:59:59.000Z

177

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

solar energy technologies. performance warranties for complete solar installations; building performance applications as alter- natives to building codes

Authors, Various

2013-01-01T23:59:59.000Z

178

Xcel Energy- Solar Production Incentive  

Broader source: Energy.gov [DOE]

Beginning in 2014, Xcel must offer a solar production incentive for systems 20 kW-DC or less. The customer's system capacity may not be more than 120% of the customer's on-site annual energy...

179

Solar Decathlon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

13, 2013 8:45PM EDT Orange County Great Park, Irvine California The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges collegiate teams to...

180

U.S. CHP Installations Incorporating Thermal Energy Storage ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Company of Lisle, Illinois, for UT-Battelle, Oak Ridge National Laboratory. tictesdatabase.pdf More Documents & Publications Database (Report) of U.S. CHP Installations...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar Renewable Energy Certificates  

Broader source: Energy.gov [DOE]

In January 2005, the District of Columbia (D.C.) Council enacted a renewable portfolio standard (RPS) with a solar carve-out that applies to all retail electricity sales in the District. In October...

182

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

183

Solar energy production at Heby Skola.  

E-Print Network [OSTI]

?? Photovoltaic is a renewable energy technology that creates electricity by converting the energy of light. Photovoltaics are usually installed on buildings. In this pilot (more)

Aronsson, Oscar; Nyqvist, Daniel

2013-01-01T23:59:59.000Z

184

Solar Energy Education. Solar solutions: Reader, Part III  

SciTech Connect (OSTI)

A collection of magazine articles which focus on the subject of solar energy is presented in this booklet. This is the third of a four part series of the Solar Energy Reader books. The articles provide brief discussions on the various applications of solar energy including: heat, photovoltaics; wind, hydro, and biomass. A glossary of terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

185

Solar Energy Research Center Instrumentation Facility  

SciTech Connect (OSTI)

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was ?¢????shell space?¢??? that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

186

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolar Energy Solar

187

Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

Romeo, Alessandro

188

Solarity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information SilverSolarStructure LtdSolarSolarion AG Jump

189

Solar Water Heating Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

190

Solar Rights  

Broader source: Energy.gov [DOE]

Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

191

Solar Thermoelectric Energy Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV IncentiveSolarSwapCycleSolar

192

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

193

Office of Educational Programs Solar Energy Lab  

E-Print Network [OSTI]

Office of Educational Programs Solar Energy Lab Overview Kaitlin Thomassen Target student audience: High School Regents Physics High School AP Physics #12;Solar Energy Lab: Goals Highlight research Solar Farm & Northeast Solar Energy Research Center (NSERC) Scientists and engineers will research

Homes, Christopher C.

194

SOLAR ENERGY A New York perspective,  

E-Print Network [OSTI]

SOLAR ENERGY A New York perspective, Richard Perez & Thomas Thompson (Based upon a manuscript the St. Lawrence Seaway to Montauk Point, solar electric PV power can lower the cost of energy in NYS of and markets for solar energy, in all of its forms, but especially in the area of photovoltaics. DEFINING SOLAR

Perez, Richard R.

195

Net Zero Energy Military Installations: A Guide to Assessment and Planning  

Office of Energy Efficiency and Renewable Energy (EERE)

In 2008, DoD and DOE defined a joint initiative to address military energy use by identifying specific actions to reduce energy demand and increase use of renewable energy on DoD installations.

196

Climatic Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic Solar Jump to: navigation,

197

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Blog Energy Blog RSS July 29, 2012 Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. |...

198

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network [OSTI]

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy Solar Energy? · Clean · Nearly unlimited PHYS5320 Chapter Nine 3 #12;S l ll l t PHYS5320 Chapter Nine 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS5320 Chapter Nine 5 #12;Solar Energy

Wang, Jianfang

199

Net Zero Energy Military Installations: A Guide to Assessment and Planning  

SciTech Connect (OSTI)

The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

2010-08-01T23:59:59.000Z

200

Solar and Wind Energy Equipment Exemption  

Broader source: Energy.gov [DOE]

In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of the Supply Chain Optimization and Planning for the Environment (SCOPE) Tool - Applied to Solar Energy  

E-Print Network [OSTI]

Solar Installation Installation (USA) Installation (Germany) Tracker Panel Tracker (China)China, India, the U.S.A, and elsewhere. A single company producing a single solar

Reich-Weiser, Corinne; Fletcher, Tristan; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

202

Solar Utility Networks: Replicable Innovations in Solar Energy  

Broader source: Energy.gov [DOE]

On October 2013, DOE announced nearly $7.8 million to fund eight projects under the Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) funding opportunity. These projects are...

203

Supply Chain Integration, Product Modularity, and Market Valuation: Evidence from the Solar Energy Industry  

E-Print Network [OSTI]

of the solar modules that are ultimately installed as panels on rooftops to Page 15 convert solar energy to electricity. The supply chain for the production of thin-film cells involves a subset of these processes: the production of solar cells... determine the network by identifying the supply chain linkages reported in 119 newswire announcements of solar PV supply contracts in Factiva for the year 2007. We supplement this data with information on customer and supplier relationships provided...

Davies, Jane; Joglekar, Nitin

2013-07-17T23:59:59.000Z

204

Envision Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolar Systems Jump to:Envision Solar

205

Ertex Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolar SystemsPorto dasErtex Solar

206

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

Nevada law requires that solar energy system installers be licensed by the Nevada State Contractors Board. Contractors may be licensed under License Classification C-37 (solar contracting for solar...

207

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

Russo, Bryan J.; Chvala, William D.

2010-09-30T23:59:59.000Z

208

Bosch Solar Energy AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield SectorInformationBosch Solar

209

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourAof EnergyHelios

210

Renewable Energy: Solar Fuels GRC and GRS  

SciTech Connect (OSTI)

This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

Nathan Lewis

2010-02-26T23:59:59.000Z

211

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

212

Next-Generation Thermionic Solar Energy Conversion | Department...  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Thermionic Solar Energy Conversion Next-Generation Thermionic Solar Energy Conversion This fact sheet describes a next-generation thermionic solar energy conversion...

213

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network [OSTI]

sensor node using our solar energy harvesting module. VI. CDesign Considerations for Solar Energy Harvesting Wirelessfactors. For example, solar energy supply is highly time

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

214

Solar Energy Collection and Management for Networked Infomechanical Systems (NIMS)  

E-Print Network [OSTI]

Networked Sensing Solar Energy Collection and Management forProposed Solution: Solar Energy Harvesting Why is Solarbeing recharged Solar energy harvesting and storage allow

2003-01-01T23:59:59.000Z

215

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for more World Cup Action | Photo courtesy of Renato CobucciImprensaMG Shining Some Light on the World Cup's Efficiency Efforts Brazil strives for energy efficiency with...

216

Tribal Solar Energy Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department of Energy

217

So You Want to Go Solar? 3 Things to Consider When Installing...  

Broader source: Energy.gov (indexed) [DOE]

| Photo courtesy of Decker Homes. Planning a Home Solar Electric System Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to...

218

Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations  

SciTech Connect (OSTI)

This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

2010-03-09T23:59:59.000Z

219

Have a great idea about how to cut the cost of solar panel installation? |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowaHaskell County isHavasu Solar

220

Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations  

SciTech Connect (OSTI)

The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks.

Anderson, E.; Antkowiak, M.; Butt, R.; Davis, J.; Dean, J.; Hillesheim, M.; Hotchkiss, E.; Hunsberger, R.; Kandt, A.; Lund, J.; Massey, K.; Robichaud, R.; Stafford, B.; Visser, C.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar We present a different back contact for CdTe solar cell by the application of only a transparent that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells

Romeo, Alessandro

222

Genesis Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: Solar Product:

223

FTL Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolarEuropean WindExelonFPCSolar

224

Philips Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |Facility | OpenPhilips Solar Jump to:

225

Inovateus Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to:PowerSolar LLC

226

Special Assessment for Solar Energy Systems  

Broader source: Energy.gov [DOE]

Illinois offers a special assessment of solar energy systems for property-tax purposes. For property owners who register with a chief county assessment officer, solar energy equipment is valued at...

227

Austin Energy- Residential Solar Loan Program (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy offers two types of loans for residential customers to finance solar water heater and and solar PV systems in eligible homes. [http://www.austinenergy.com/Energy%20Efficiency/Programs...

228

Mythos Solar Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum|Texas:EnergyMythos Solar Energy

229

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolar Energy

230

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolar EnergyPV

231

Solar Thermochemical Energy Storage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV IncentiveSolarSwap

232

Solar Energy Resource Center | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar EnergySolarEnergy

233

Solar Alternative Energy Credits  

Broader source: Energy.gov [DOE]

Pennsylvania's [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=PA06R&re... Alternative Energy Portfolio Standard (AEPS)], created by S.B. 1030 on November 30, 2004, requires...

234

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

Berkeley, California 94720 SOLAR ENERGY Introductionutiliza- tion of solar energy in northern California. Shouldindividual solar stations currently in northern California

authors, Various

2011-01-01T23:59:59.000Z

235

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar PathfinderSolar Energy

236

GA Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGA SNC Solar Jump to:GA-Solar

237

Solar Decathlon | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolar Decathlon Solar

238

Install Electric Vehicle Charging at Work | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, Safety andGeothermalGreen linkInitiatives InitiativesResearchInstall

239

Solar and Wind Equipment Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Arizona provides a sales tax exemption* for the retail sale of solar energy devices and for the installation of solar energy devices by contractors. The statutory definition of "solar energy...

240

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Northeast Solar Energy Research Center (NSERC)  

E-Print Network [OSTI]

Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus-level current and voltage · High Sample Rates ­1 sec data (512 samples per cycle for PQ data) Solar Energy Testing #12;BNL is developing a new Northeast Solar Energy Research Center (NSERC) on its campus

Ohta, Shigemi

242

Overview of BNL's Solar Energy Research Plansgy  

E-Print Network [OSTI]

Overview of BNL's Solar Energy Research Plansgy March 8, 2011, #12;Outline O i f th LISF S l PV P j Field LIPA Substation South Array Field LIPA Substation #12;#12;#12;BNL is developing a solar energy, February 2009 · EERE Renewable Systems interconnection Study, February 2008 · EERE Solar Energy Technology

Homes, Christopher C.

243

Solar | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewableConcentratingofmade ofEnergy

244

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network [OSTI]

BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

245

Central solar-energy receiver  

DOE Patents [OSTI]

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Not Available

1981-10-27T23:59:59.000Z

246

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0High School OilOklahoma

247

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector

248

Solar Energy International Solar PV 101 Training | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar Energy

249

Lex Helius: The Law of Solar Energy  

Broader source: Energy.gov [DOE]

This 85-page document covers a variety of solar legal issues including solar access, power purchase agreements, solar development contracts, regulations, permitting, solar financing contracts, and renewable energy credits. Note that this document is not legal advice or a legal opinion on specific facts or circumstances.

250

Arctic Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata, California: EnergyArco EnergyArctic Solar

251

Alten Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom EnergyEnergy Wind FarmCompany

252

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolar

253

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolarGoal 1:

254

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolarGoal 1:Molten

255

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientificEnergySolarGoal

256

Developing a solar energy industry in Egypt .  

E-Print Network [OSTI]

??This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this (more)

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

257

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

258

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

259

Solar | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortal Thermal Site

260

Solar Energy Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance:DesigningDeployment

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Who Trains the Solar Energy Trainers? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Who Trains the Solar Energy Trainers? Who Trains the Solar Energy Trainers? September 24, 2010 - 3:45pm Addthis Participants in the Energy Department's Train-the-Trainers program...

262

Solar Policy Environment: Tucson  

Broader source: Energy.gov [DOE]

The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

263

Solar Energy Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewable Energy » Solar

264

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

265

Space-Based Solar Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

substantially more energy than terrestrial solar panels. How Does it Work? Solar panel equipped, energy transmitting satellites collect high intensity, uninterrupted solar...

266

Solar Energy Resource Center | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar EnergySolar

267

Solar Energy Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolarSolar Energy

268

Floodplain Assessment for Installation of a Renewable Energy...  

Office of Environmental Management (EM)

Renewable Energy Anaerobic Digester Facility at the University of California, Davis in Yolo County, California, as posted on the U.S. Department of Energy website. Floodplain...

269

Solar Decathlon | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Decathlon Solar Decathlon In the video above, Lakiya Culley talks about how her solar-powered, passive home, which was donated to Habitat for Humanity by a Solar Decathlon...

270

Kosmo Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutzKosmo Solar Jump to: navigation,

271

ICE Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe SecondInformation 3 -2ICE Solar Jump

272

ISI Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation, search Name: ISI

273

Immodo Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha,Information Jump to:Imara

274

Photovoltaics Design and Installation Manual | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics Jump to: navigation,

275

SmartSolarGrid Deciding what to do with Solar Energy production  

E-Print Network [OSTI]

SmartSolarGrid Deciding what to do with Solar Energy production Diogo Morgado and Paulo Ferreira. Solar energy has been subject of great development in the past years, which led to the concept of Solar, Solar energy, Solar road, Smart- SolarGrid 1 Introduction Mankind is facing a threat from the effects

Ferreira, Paulo

276

Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation  

SciTech Connect (OSTI)

Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

Macknick, J.; Beatty, B.; Hill, G.

2013-12-01T23:59:59.000Z

277

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScienceProgramsSAND 2011-5054W CopySocietySolar Energy

278

Hope Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: EnergyHooker County, Nebraska:Hope Solar

279

Auxin Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:andAutodeskAuxin Solar

280

Aztec Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesde discusiónTiposSolar Jump to:

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Munro Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum| Open EnergyMunro Solar Jump to:

282

Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley National Laboratory...

283

SciTech Connect: Solar Energy Education. Renewable energy: a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy: a background text. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Renewable energy: a background text. Includes glossary You...

284

Summary: The First Installment of the Quadrennial Energy Review  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary Chu andEnergy Freedomof4.

285

Summary: The First Installment of the Quadrennial Energy Review  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary Chu andEnergy Freedomof4.1.

286

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

expense of installation is still too high for many. January 12, 2010 Houston is a Solar America Cities participant. | File photo Houston Transforming with Solar Energy Houston is...

287

Net Zero Energy Military Installations: A Guide to Assessment...  

Broader source: Energy.gov (indexed) [DOE]

energy. The majority of DoD energy consumption is fossil fuel based (coal, oil, natural gas, or electricity produced from these), often from foreign sources. DoD accounts for...

288

Solar Energy Systems Tax Credit (Corporate) (Iowa)  

Broader source: Energy.gov [DOE]

Iowa offers a 15% corporate tax credit for solar energy systems. The credit is based on the federal tax credits for solar; a taxpayer may claim 50% of the value of the [http://dsireusa.org...

289

Solar Program Overview Webinar | Department of Energy  

Office of Environmental Management (EM)

Solar Program Overview Webinar Solar Program Overview Webinar January 22, 2015 3:00PM to 4:00PM EST Hosted by the Energy Department and the U.S. Department of Agriculture (USDA),...

290

Solar Energy Systems Tax Credit (Personal) (Iowa)  

Broader source: Energy.gov [DOE]

Iowa offers a 15% individual tax credit for solar energy systems. The credit is based on the federal tax credits for solar; individuals can claim 50% of the [http://dsireusa.org/incentives...

291

Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide  

SciTech Connect (OSTI)

As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

None

1980-11-01T23:59:59.000Z

292

applied solar energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See Also: Matter & Energy Solar Energy Electronics Materials Science Earth & Climate Energy at the University of Illinois, the future of solar energy just got...

293

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

294

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

295

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

Utah's Division of Occupational and Professional Licensing requires installers of solar energy systems to be licensed contractors. General electrical contractors carrying an S200 license are...

296

Solar and Wind Rights  

Broader source: Energy.gov [DOE]

Illinois law prohibits homeowners' associations, common interest community associations and condominium unit owners' associations from preventing homeowners from using or installing solar energy...

297

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar electric capacity on new homes, and to have solar electric systems on 50% of all new homes built in Californiasolar capacity installed; capacity more than quadrupled to 746 MW by the end of 2010 (CPUC 2011). California

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

298

Puerto Rico- Tax Deduction for Solar and Wind Energy Systems  

Broader source: Energy.gov [DOE]

Puerto Rico offers a 30% tax deduction (up to $1500) for expenses incurred in the purchase and installation of solar equipment to heat water for residential use. "Solar equipment" is defined as ...

299

Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.  

SciTech Connect (OSTI)

Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

2012-03-01T23:59:59.000Z

300

Apparatus for solar energy collection  

SciTech Connect (OSTI)

The disclosure is directed to an apparatus for collecting solar energy. A housing is provided with an open top, and a solar radiation-transmissive cover is removably mounted on the top of the housing. A plurality of elongated open-ended troughs are mounted side-by-side in the housing, the troughs having reflective inner surfaces. A fluid-carrying tube system is provided, and has a plurality of branches which respectively extend along each trough near the bottom thereof. A pair of end panel assemblies are mounted in the housing at opposing ends of the row of troughs and form the ends of the troughs. Each of the end panel assemblies includes adjacent elongated upper and lower end panels which are removably coupled to each other and have a common elongated edge. The surface of each of the upper end panels which faces the troughs is reflective of solar radiation. Preferably, the surface of each of the lower end panels which faces the troughs is also reflective of solar energy. In accordance with a feature of the disclosed apparatus, each of the upper and lower end panels has a semicircular aperture at the common edge so as to form a circular aperture at about the lateral center of each trough. The fluid tube branches extend through the apertures of one of the end panel assemblies. A plurality of elongated cylindrical evacuated tubes are provided, each having a hollow core proportioned to fit over a respective branch of the fluid-carrying tube system. The opposing ends of each evacuated tube are supported in the apertures of the end panel assembly of the respective trough.

Ford, R.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

first major B,C,solar energy conference here The Solar Olympics, in which contestants at-  

E-Print Network [OSTI]

first major B,C,solar energy conference here The Solar Olympics, in which contestants at- tempt on solar energy to be held next week at UBC. Solwest 80, the first major solar conference ever held in B.C., is sponsored jointly by the Solar Energy Society of Canada and the Pa,cific North- west Solar Energy

Farrell, Anthony P.

302

Solar Energy Resource Center | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy Smooth BromeSoftwareWakeSolar Energy

303

Guangdong Fivestar Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolarPortocarrio S ABaolihua

304

Safety Culture in Nuclear Installations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002. Developed for use in the IAEA's Safety Culture Services....

305

Floodplain Assessment for Installation of a Renewable Energy Anaerobic  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdf Flash2010-57.pdfFletcher E. Honemondand

306

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

neutral public facility with installation of solar photovoltaic, solar heating, energy efficiency HVAC, energy efficiency lighting and energy star products; and 4) replace LED...

307

Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado  

SciTech Connect (OSTI)

The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

Roberts, B.

2011-07-01T23:59:59.000Z

308

Installation of Cool Roofs on Department of Energy Buildings | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPostingOctober 13,

309

Himin Solar Energy Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop, Ohio: EnergyHimin Solar

310

Matla Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic, New York:Matla Solar Energy Jump

311

Energy 101: Solar Photovoltaics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on .Heat PumpsLumens EnergySolar

312

CETC Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock - BasementCEPIS JumpCETC Solar Energy

313

Aquate Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information theDevelopment Co. Place: FloridaAquate Solar

314

Aspen Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation,Solar Jump to:

315

ITi Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS InnovativeITi Solar Jump to:

316

Khmer Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd Jump to:Kenersys India Pvt LtdKhmer Solar

317

Gate Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGAInformationPVGate Solar

318

Bisfuel links - Solar energy news  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien,BiologicalPresentationsProfessionalSeminarsSolar

319

Afghan Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies Jump to: navigation,Solar GroupAfghan

320

Akeena Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open EnergyAkart AnerjiAkeena Solar

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Trina Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy Information HotTrina Solar

322

NM Installation Requirements for UST Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF Energy

323

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Storage of Solar Thermal Energy, Solar Energy, 18 (3), pp.Power Plants, Journal of Solar Energy Engineering, 124 (2),Cycle Storage of Solar Energy, Energy & Environmental

Coso, Dusan

2013-01-01T23:59:59.000Z

324

Associate at the American Planning Association. Planning for Solar Energy  

E-Print Network [OSTI]

There is a growing desire among communities to become more sustainable. Energy conservation and renewable energy production (including solar energy) play a significant role in community sustainability goals. Public officials and engaged citizens have many opportunities throughout the planning process to help support and advance solar energy initiatives in their communities. LONG-RANGE COMMUNITY VISIONING AND GOAL SETTING Community visioning is often the first step in developing any type of community plan, for establishing new standards, policies, and incentives, for doing development work, and for making public investment decisions. Whether part of a planning process or on its own, visioning is an important first chance to identify new opportunities and prioritiesincluding those related to solar energy. Planners often conduct visioning exercises that produce a communitys long-term goals and objectives. By expressing their views of renewable energy generation during these visioning exercises (including responding to surveys and participating in visioning meetings), citizens enable planners to gauge the level of awareness and importance of solar energy in the community. Planners use this information to develop policies and action items for the community. Once a community agrees upon its long-range goals and objectives, municipal officials should look to them when reviewing development proposals, making budget decisions, and performing other related tasks. Both citizens and public officials should use these visioning meetings to discuss how solar energy is connected to other community goals and values and how solar energy could help achieve other community goals. A PV System installed on a residence. (Photo credit:

This Pas; Quicknotes Erin Musiol

325

Solar Energy and the Florida Environment 1  

E-Print Network [OSTI]

On average, 585,000 Btus of solar energy reach every square foot of Florida each year. Overall, the energy in the sunlight annually falling on the state equals 840 quad. Eight hundred forty quads of energy is

Helen J-h. Whiffen

1994-01-01T23:59:59.000Z

326

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

327

Adaptive, full-spectrum solar energy system  

DOE Patents [OSTI]

An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

Muhs, Jeffrey D.; Earl, Dennis D.

2003-08-05T23:59:59.000Z

328

Energy Jobs: Electric Vehicle Charging Station Installer | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District | Department ofTrackingEnergy

329

Utility Scale Renewable Energy Development Near DOD Installations: Making  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is notthe Case for Land Use

330

The Solar Energy Consortium of New York Photovoltaic Research and Development Center  

SciTech Connect (OSTI)

Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

Klein, Petra M.

2012-10-15T23:59:59.000Z

331

Solar Background Document 6 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6.pdf More Documents & Publications Solar Background Document 5 "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) Dams and Energy Sectors...

332

MDU Solar Energy Project Case Study  

Broader source: Energy.gov [DOE]

Presentation covers the MDU Solar Energy Project Case Study and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

333

Excited State Processes in Solar Energy Materials.  

E-Print Network [OSTI]

??This dissertation covers studies of excited state processes in two types of solar energy materials: alternating polyfluorene polymers and their blends with fullerenes in the (more)

sterman, Tomas

2013-01-01T23:59:59.000Z

334

Explore Solar Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with traditional energy sources by 2020. Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar...

335

Solar Instructor Training Network | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

companies. Contact Henry Tsai, (919) 515-5433, for more information. Southeast Florida Solar Energy Center at University of Central Florida This project will create the Southern...

336

Solar Energy Program: Chapter from the Energy and Environmental Division Annual Report 1980  

E-Print Network [OSTI]

SOLAR ENERGY PROGRAM PERSONNEL Small Particle SuspensionsStrategies for Active Solar Energy Systems M. Warren, S.M. Wahlig, and S Kanzler. SOLAR ENERGY PROGRAM PERSONNEL

Energy and Environment Division

1981-01-01T23:59:59.000Z

337

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Suspensions for Solar Energy Collection A. Hunt . . .Strategies for Active Solar Energy Systems M. Warren, S.ENVIRONMENT DIVISION SOLAR ENERGY PROGRAM CHAPTER FROM THE

Authors, Various

2010-01-01T23:59:59.000Z

338

Solar Energy Program: Chapter from the Energy and Environmental Division Annual Report 1980  

E-Print Network [OSTI]

SOLAR ENERGY PROGRAM PERSONNEL Small Particle SuspensionsStrategies for Active Solar Energy Systems M. Warren, S.tary for Conservation and Solar Energy, Office of Advanced

Energy and Environment Division

1981-01-01T23:59:59.000Z

339

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Suspensions for Solar Energy Collection A. Hunt . . .Strategies for Active Solar Energy Systems M. Warren, S.Sandia Laboratories and Solar Energy Research Institute (

Authors, Various

2010-01-01T23:59:59.000Z

340

Solar Energy Program: Chapter from the Energy and Environmental Division Annual Report 1980  

E-Print Network [OSTI]

SOLAR ENERGY PROGRAM PERSONNEL Small Particle SuspensionsStrategies for Active Solar Energy Systems M. Warren, S.ENVIRONMENT DIVISION I SOLAR ENERGY PROGRAM Chapter from t h

Energy and Environment Division

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Suspensions for Solar Energy Collection A. Hunt . . .Strategies for Active Solar Energy Systems M. Warren, S.Warren, and A. Heitz Solar Energy Staff . . INTRODUCTION

Authors, Various

2010-01-01T23:59:59.000Z

342

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Suspensions for Solar Energy Collection A. Hunt . . .Strategies for Active Solar Energy Systems M. Warren, S.of Selective Surfaces," Solar Energy A. Addeo et aI. , "

Authors, Various

2010-01-01T23:59:59.000Z

343

EC/MS 573 Solar Energy Systems (This course is jointly offered as MS 573 Course)  

E-Print Network [OSTI]

Course Description: This course is designed for first year graduate and senior undergraduate students from engineering disciplines and is intended to educate students in the design and applications of solar energy engineering. It will focus on fundamentals of solar energy conversion, photovoltaic and photothermal engineering, optical systems, photoelectrochemical cells for hydrogen generation, and energy storage and distribution systems. The course covers solar energy insolation and global energy needs, current trends in solar plants, thin film solar cells, and solar cell material science. Design and installation of solar panels for residential and industrial applications and connections to the national grid and cost analysis will be discussed. In addition, basic manufacturing processes for the production of solar panels, environmental impacts, and the related system engineering aspects will be included to provide a comprehensive state-of-the art approach to solar energy utilization. Course Goals: 1. Learn the fundamentals of solar energy conversion systems, available solar energy and the local and national needs, photovoltaic and photothermal engineering applications, emerging technologies,

unknown authors

344

Energy Department Announces $13 Million to Strengthen Local Solar...  

Office of Environmental Management (EM)

13 Million to Strengthen Local Solar Markets and Spur Solar Deployment Across the United States Energy Department Announces 13 Million to Strengthen Local Solar Markets and Spur...

345

Africa - Technical Potential of Solar Energy to Address Energy...  

Open Energy Info (EERE)

Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of...

346

Choosing and Installing Geothermal Heat Pumps | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officer Chief Medical Officer Dr.Choosing

347

Hawaii Well Construction & Pump Installation Standards | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor |Information Abandonment Report

348

Energy Department Completes Cool Roof Installation on DC Headquarters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |Storage Technologies in FueltoTrainof

349

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation,PVYears

350

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation, search PropertyTransfer Method JumpCity

351

Chinese Renewable Energy Society CRES formerly Chinese Solar...  

Open Energy Info (EERE)

CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name: Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) Place: Beijing, Beijing...

352

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

353

EM, County Install Sewer Line for Development | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOEDisabilityContractorsRecoveryOperations |Plants

354

Help Your Employer Install Electric Vehicle Charging | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecemberDepartmentHelp Your

355

Energy Secretary Chu Announces Five Million Smart Meters Installed  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVAC |and Gas SupplyNationwide as

356

Consider Installing a Condensing Economizer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 Department ofHallamOctober 11,Department

357

Install Removable Insulation on Valves and Fittings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummary ReportRemovable Insulation

358

Install an Automatic Blowdown-Control System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummary ReportRemovablean Automatic

359

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Long - Lived Sensor Networks through Solar Energy Harvestingsolar energy harvesting and storage device for sensor

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

360

Solar Energy Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSohamBG Jump to:Solar

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Capitol Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) JumpVerdePartners

362

Nautilus Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc || OpenNatronClick toAccentSolar

363

Sunlight Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar Energy Jump to: navigation,

364

Solar Energy Home | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle,Solutions,Solar Energy

365

Nanowire Solar Energy Harvesting - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilicaAdvanced MaterialsNanowire Solar

366

Renewable Energy Contractor Licensing  

Broader source: Energy.gov [DOE]

Oregon requires trade licenses for people installing solar energy equipment, and contractor licenses for the companies that do construction.

367

Nuclear Processes at Solar Energy  

E-Print Network [OSTI]

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

368

Solar Renewable Energy Certificates (SRECs)  

Broader source: Energy.gov [DOE]

Note: In July 2012 New Jersey enacted S.B. 1925 substantially revising it's solar carve-out. The summary below incorporates information on the changes made to the solar carve-out and while it...

369

NASA Surface meteorology and Solar Energy: Methodology  

E-Print Network [OSTI]

1 NASA Surface meteorology and Solar Energy: Methodology Energy Technology (RET) projects. These climatological profiles are used for designing systems that have for implementing RETs, there are inherent problems in using them for resource assessment. Ground measurement

Firestone, Jeremy

370

CPS Energy- Solar Hot Water Rebate Program  

Broader source: Energy.gov [DOE]

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

371

Energy Revolving Loan Fund- Passive Solar  

Broader source: Energy.gov [DOE]

In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Passive Solar Systems portion of the loan...

372

Developing a solar energy industry in Egypt  

E-Print Network [OSTI]

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

373

Solar and Wind Contractor Licensing  

Broader source: Energy.gov [DOE]

All solar and wind energy installations must be performed by a contractor duly licensed by and in good standing with the Louisiana Contractors Licensing Board with a classification of "Solar Energy...

374

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans- portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

375

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

376

Solar Rights  

Broader source: Energy.gov [DOE]

Hawaii law prohibits the creation of any covenant or restriction contained in any document restricting the installation or use of a solar energy system on a residential dwelling or townhouse. ...

377

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network [OSTI]

sensor node using our solar energy harvesting module. VI. Care not speci?c to solar energy harvesting, but representin the design of a solar energy harvesting module and their

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

378

National Renewable Energy Laboratory Solar Radiation Research Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

379

Review of legal and institutional issues in the use of decentralized solar energy systems  

SciTech Connect (OSTI)

The legal and institutional issues involved in the use of decentralized solar energy systems are examined for the purpose of advising government planners and policymakers, the solar industry, solar researchers, and prospective solar users of present and potential impediments and incentives to solar commercialization. This information was gathered primarily through a comprehensive literature review, with supplementary data provided through interviews with representatives of organizations active in the solar field. Five major issue areas were identified in the course of this study: (1) prohibitions on the use of solar equipment, (2) regulation of the production and placement of solar systems, (3) access to sunlight, (4) financial incentives and impediments to the use of solar technologies, and (5) the public utility-solar user interface. Each can be important in its impacts on the incidence of solar usage. The major actors involved with the issues identified above represent both the private and public sectors. Important private sector participants include solar manufacturers and installers, labor unions, lending institutions, utility companies, solar users themselves, and other community property owners. In the public sector, local, state, and federal governments are all capable of acting in ways that can influence the solar commercialization effort. Implementation options are available for all levels of government seeking to take an active role in addressing the previously mentioned legal and institutional issues. The appropriate actions will vary from federal to state to local governments, but each level can be important in removing existing barriers and creating new incentives for solar use.

Schweitzer, M.

1980-04-01T23:59:59.000Z

380

BSR/CSA C448-201x, Design and Installation of Earth Energy Bi  

E-Print Network [OSTI]

-loop earth energy heat pump systems Annex B Site survey worksheet Annex C Method for determining sizing · CM Engineering · HRAI · City of Calgary · Geo-Flo Products · Heat-Line Corporation · Government for Commercial and Institutional Buildings (ICI) C448.1 Design and Installation for Residential / Small Buildings

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range  

SciTech Connect (OSTI)

Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

Bakewell, C.A.; Renner, J.L.

1982-01-01T23:59:59.000Z

382

Monitoring SERC Technologies Solar Photovoltaics  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

383

Portland's Commercial Solar Permitting Guide  

Broader source: Energy.gov [DOE]

This program guide outlines the application and review procedures for obtaining the necessary permits to install a solar energy system on a new or existing commercial building.

384

Solar Fair in San Jos Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Fair in San Jos Tomorrow Solar Fair in San Jos Tomorrow April 29, 2011 - 12:53pm Addthis Solar panels on display at the the San Jose Solar and Energy Efficiency Fair |...

385

Energy Department's Race to 7-Day Solar Prize Competition to...  

Office of Environmental Management (EM)

Race to 7-Day Solar Prize Competition to Speed Solar Deployment Energy Department's Race to 7-Day Solar Prize Competition to Speed Solar Deployment March 4, 2015 - 2:48pm Addthis...

386

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network [OSTI]

is supplied from the solar panel and only the remainder iscompo- nents, such as solar panels, and energy storageSolar World 4-4.0-100 solar panel. components from either

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

387

Tool to Compare Solar Energy Program Financing Options | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Tool to Compare Solar Energy Program Financing Options Tool to Compare Solar Energy Program Financing Options This model is intended to be used for...

388

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

389

Lobbyist Disclosure Form - First Solar | Department of Energy  

Energy Savers [EERE]

First Solar Lobbyist Disclosure Form - First Solar Susan Richardson, Energy Department loan programs chief counsel; Douglas Schultz, Energy Department senior investment officer;...

390

SciTech Connect: Solar Energy Education. Home economics: student...  

Office of Scientific and Technical Information (OSTI)

Solar Energy Education. Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student...

391

Implementation of Solar Energy in Eco-Cities.  

E-Print Network [OSTI]

?? The purpose of this study is to investigate the potential of implementing solar energy and solar technology systems in the energy systems of two (more)

Nestius Svensson, Olivia

2013-01-01T23:59:59.000Z

392

Integrating Solar PV into Energy Services Performance Contracts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

393

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...  

Open Energy Info (EERE)

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

394

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

395

UNICOR Renewable Energy Group Solar Program and Service Offerings...  

Office of Environmental Management (EM)

UNICOR Renewable Energy Group Solar Program and Service Offerings UNICOR Renewable Energy Group Solar Program and Service Offerings Presentation-for the Federal Utility Partnership...

396

EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie...  

Broader source: Energy.gov (indexed) [DOE]

6: Sempra Mesquite Solar Energy Facility near Gillespie, AZ EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie, AZ February 1, 2011 EA-1796: Final Environmental...

397

MEDIA BRIEFING CONFERENCE CALL: Secretary Chu to Host Solar Energy...  

Broader source: Energy.gov (indexed) [DOE]

BRIEFING CONFERENCE CALL: Secretary Chu to Host Solar Energy Conference Call MEDIA BRIEFING CONFERENCE CALL: Secretary Chu to Host Solar Energy Conference Call February 4, 2011 -...

398

Solar and Wind Equipment Certification  

Broader source: Energy.gov [DOE]

Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The...

399

Northwest Energy Education Institute Lane Community College  

E-Print Network [OSTI]

Commercial Building Energy Audits 2. Trains Students To Install Renewable Energy Systems, Solar Thermal - Second Year ­ Electrical Theory 1 & 2 ­ Renewable Energy Systems ­ Solar Thermal Design and Installation 1 & 2 ­ Solar PV Design and Installation 1 & 2 ­ Energy Investment Analysis #12;Northwest Energy

400

Solar energy at Sandia National Laboratories  

SciTech Connect (OSTI)

Basic concepts for using the energy of the sun have been known for centuries. The challenge today, the goal of the Department of Energy`s National Solar Energy Program is to create the technology needed to establish solar energy as a practical, economical alternative to energy produced by depletable fuels--and to use that solar-produced energy in a wide variety of applications. To assist the DOE in this national effort, Sandia sponsors industrial and university research and development, manages a series of technical programs, operates solar experimental facilities, and carries out its own scientific and engineering research. This booklet describes their projects, their technical objectives, and explains how their experimental facilities are used to find the answers we`re seeking. Prospective participants from companies involved in solar-energy development or applications should find it especially useful since it outlines broad areas of opportunity. Projects include: central receiver technology; line-focus thermal technology; photovoltaic systems technology; wind turbine development; energy storage technology; and applied research in improved polycrystalline materials for solar cells and photoelectrolysis of water.

NONE

1981-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Monitoring well installation plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The installation and development of groundwater monitoring wells is a primary element of the Y-12 Plant Groundwater Protection Program (GWPP), which monitors groundwater quality and hydrologic conditions at the Oak Ridge Y-12 Plant. This document is a groundwater monitoring well installation and development plan for the US Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan formalizes well installation and construction methods, well development methods, and core drilling methods that are currently implemented at the Y-12 Plant under the auspices of the GWPP. Every three years, this plan will undergo a review, during which revisions necessitated by changes in regulatory requirements or GWPP objectives may be made.

NONE

1997-09-01T23:59:59.000Z

402

Austin Energy's Residential Solar Rate | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects. libbyaustinenergy.pdf More Documents & Publications Austin, Texas:...

403

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

Widom, A; Larsen, L

2008-01-01T23:59:59.000Z

404

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

A. Widom; Y. N. Srivastava; L. Larsen

2008-04-16T23:59:59.000Z

405

Permitting Best Practices Make Installing Solar Easier: Technical Assistance (Fact Sheet)  

SciTech Connect (OSTI)

NREL's deployment and market transformation activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. This fact sheet educates partners on how they can advance sustainable energy applications and also provide clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2013-01-01T23:59:59.000Z

406

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new  

E-Print Network [OSTI]

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new low cost point for solar energy. The company plans to manufacture and distribute high-efficiency, high yield, low cost solar panels. The company is making green energy more

Jawitz, James W.

407

Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).  

SciTech Connect (OSTI)

AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

Nourai, Ali (American Electric Power Company, Columbus, OH)

2007-06-01T23:59:59.000Z

408

DOE Solar Energy Technologies Program: Overview and Highlights  

SciTech Connect (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

409

Austin Energy- Value of Solar Residential Rate (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and...

410

Installation-wide energy-conservation demonstration at Fort McClellan, Alabama. Final report  

SciTech Connect (OSTI)

The objective of the installation-wide energy conservation demonstration at Fort McClellan, AL, was to evaluate the effectiveness of applying available energy-conservation technologies and techniques to produce significant and predictable reductions in energy use and cost. Five major areas of energy conservation were identified and investigated: (1) pressure reduction in district-steam-heating systems; (2) reduction of outdoor air in heating, ventilation, and air-conditioning (HVAC) systems; (3) replacement of oversized and inefficient motors in HVAC systems; (4) reduction of outdoor air infiltration in family housing; and (5) combustion optimization of gas-fired heating equipment. Other areas of investigation included radio-controlled exterior lighting, and temperature reduction in the high-temperature hot-water system. Each conservation project was evaluated on a small scale to verify energy savings before it was implemented. An energy-information management system was developed to maintain annual consumption data for each building. The system provides immediate feedback on energy use so managers can make correct decisions on conservation measures. The energy conservation programs implemented at Fort McClellan contributed to the 14% reduction in baseline (weather independent) energy consumption from FY84 to FY86. These programs have wide applicability to other U.S. Army installations. This research has also shown the importance of preliminary, small-scale testing of energy-conservation programs before implementation.

Windingland, L.M.; Lilly, B.P.; Shonder, J.A.; Underwood, D.M.; Augustine, L.J.

1988-11-01T23:59:59.000Z

411

Concentrating Solar Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale,...

412

Solar energy generation in three dimensions  

E-Print Network [OSTI]

We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions. We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build ...

Bernardi, Marco

413

Solar Smarter Faster | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Energy Secretary Steven Chu announced on April 15th the selection of up to 112.5 million over five years for funding to support the development of advanced solar...

414

Property Tax Exclusion for Solar Energy Systems  

Broader source: Energy.gov [DOE]

'''''Note: The California State Board of Equalization (BOE) approved new [http://www.boe.ca.gov/proptaxes/pdf/lta12053.pdf guidelines] for the Active Solar Energy Systems New Construction Exclusion...

415

Solar Energy Option Requirement for Residential Developments  

Broader source: Energy.gov [DOE]

In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential...

416

Solarize Guidebook | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S.Solar Cell |6SolarSolarize

417

Solare AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information SilverSolarStructure Ltd JumpSolarWrightsSolare AG

418

Solar Policy Environment: Philadelphia  

Broader source: Energy.gov [DOE]

The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphias long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

419

Energy savings obtainable through passive solar techniques  

SciTech Connect (OSTI)

A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. The purpose of the paper is to provide a survey of passive solar heating experience, especially in the US. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

420

NRG Solar (California Valley Solar Ranch) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy Efficiency and|Solar (California Valley

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

422

Solar Energy and Residential Building Integration Technology and Application  

E-Print Network [OSTI]

Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

Ding Ma; Yi-bing Xue

423

Solar Magic | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolutionSolar Land

424

Solar Oregon | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolutionSolar

425

Lighthouse Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October,Lighthouse Solar Jump to: navigation,

426

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network [OSTI]

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

427

Procuring Solar Energy: A Guide for Federal Facility Decision Makers  

E-Print Network [OSTI]

Procuring Solar Energy: A Guide for Federal Facility Decision Makers SEPTEMBER 2010 Solar Energy: www.ntis.gov/help/ordermethods.aspx PROCURING SOLAR ENERGY: A GUIDE FOR FEDERAL FACILITY DECISION MAKERS #12;September 2010 3 Procuring Solar Energy: A Guide for Federal Facility Decision Makers Blaise

428

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation)  

SciTech Connect (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.

2012-06-01T23:59:59.000Z

429

EEE 498/EEE591: Solar Energy Instructor: C J Tracy  

E-Print Network [OSTI]

EEE 498/EEE591: Solar Energy Fall 2011 Instructor: C J Tracy Email: clarence.tracy@asu.edu Course solar energy through photovoltaics (PV), starting with the nature and variability of terrestrial solar are details of the solar cell device, cell manufacturing methods, solar modules, batteries, systems

Zhang, Junshan

430

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975  

E-Print Network [OSTI]

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute at temperatures as low as -40°C Employ gas permeable matrices for the pigment encapsulation that make them

431

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar systems and energy efficiency and conservationEnergy Tax Act encouraged homeowners to invest in energy conservation and solarenergy consumption patterns: that some adopters of solar will thereafter become adopters of energy conservation

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

432

Solar Energy Materials & Solar Cells 78 (2003) 567595 Low-mobility solar cells: a device physics primer  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 78 (2003) 567­595 Low-mobility solar cells: a device physics, Syracuse, New York 13244-1130, USA Abstract The properties of pin solar cells based on photogeneration for the solar conversion efficiency of amorphous silicon-based cells that are limited by valence bandtail

Schiff, Eric A.

433

Obama Administration Announces Plans to Install New Solar Panels on the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGas and Oil Research | Department

434

Passive solar energy information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1980-11-01T23:59:59.000Z

435

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network [OSTI]

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

436

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS  

E-Print Network [OSTI]

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

437

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

438

Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010  

SciTech Connect (OSTI)

This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

Stoltenberg, B.; Partyka, E.

2010-09-01T23:59:59.000Z

439

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, Solar Thermal Collectors and Applications,86] Schnatbaum L. , 2009, Solar Thermal Power Plants, Thefor Storage of Solar Thermal Energy, Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

440

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer . Solar Heated Gas Turbine Process

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

energy. Passive Solar Building Design and Design Toolsthermal zones. Passive Solar Building Design and Designof design concepts for commercial passive solar building

Authors, Various

2010-01-01T23:59:59.000Z

442

Solar thermionic energy converter experiment  

SciTech Connect (OSTI)

A one-inch CVD converter was solar tested in a central receiver heliostat array at the Advanced Components Test Facility at the Georgia Institute of Technology. The test examined heat flux cycling control of the operating point and mounting arrangements. The converter was mounted directly in the solar image with no cavity. The input heat flux was 40-60 W/cm/sup 2/. The converter performance was comparable to combustion measurements made on the same diode. Thermal cycling caused no problems with converter operation. The converter showed no degradation after the test.

Goodale, D.; Lieb, D.; Neale, D.

1982-08-01T23:59:59.000Z

443

Melink Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLake GeothermalHomeSolar

444

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar PathfinderSolar

445

AES Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:UseAEE SolarAES Solar

446

SJ Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to:SES SolarSGTE

447

Flix Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix Solar Jump to: navigation, search Name: Flix Solar

448

Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna  

E-Print Network [OSTI]

All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

449

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

450

Smhusutformning och solenergiutnyttjande; Villa Design and Solar Energy Utilization.  

E-Print Network [OSTI]

?? This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the (more)

Olofsson, Martin

2013-01-01T23:59:59.000Z

451

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy...  

Open Energy Info (EERE)

affects the distribution of solar power or photon energy for each wavelength of light. Variations in solar spectral power distributions impact performance of photovoltaic...

452

5 Cool Things about Solar Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

or deductions for solar energy systems. Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for...

453

SunShot Initiative: Solar Energy Resource Center  

Broader source: Energy.gov (indexed) [DOE]

Resources News Events You are here EERE SunShot Initiative Information Resources Solar Energy Resource Center Printable Version Share This resource Send a link to Solar...

454

Applied solar energy at the Shiraz Technical Institute  

E-Print Network [OSTI]

Factors affecting the application of solar energy and the preliminary design of a solar system to supplement the service hot water system at the Shiraz

Meyer, James Wagner

1976-01-01T23:59:59.000Z

455

NEW SOLAR HOMES PARTNERSHIP Fourth Edition  

E-Print Network [OSTI]

NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

456

EECBG Success Story: Sundance, Skiing and Solar: Park City to Install New  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of Energy at 24/7DepartmentPV System |

457

Plug and Play: Purchase, Install, and Connect Residential Solar Power in  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | Department ofpermitPerformance Audit ofProducing cleanDiseaseHours |

458

Port of Galveston Solar Energy Project  

SciTech Connect (OSTI)

This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POGs Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55 display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

Falcioni, Diane [Project Director, Port of Galveston; Cuclis, Alex [Project Manager, Houston Advanced Research Center; Freundlich, Alex [Principal Investigator, University of Houston

2014-03-31T23:59:59.000Z

459

Solar Energy of the North  

SciTech Connect (OSTI)

The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

Davis St. Peter Director of Faclities ( retired) Charles Bonin Vice President of Administration & Finance

2012-01-12T23:59:59.000Z

460

Ch.2 Solar Energy to Earth and the Seasons  

E-Print Network [OSTI]

Light year is a unit of distance!!! #12;Our Solar System #12;Earth's orbit Earth's orbit around energy is radiant energy (i.e., radiant light and heat) from the Sun. #12;How is solar energy created Southern lights Northern lights #12;Learning Objective Three: Solar Radiation #12; Solar radiation

Pan, Feifei

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2015 Pearson Education, Inc. Chapter 2 Solar Energy to Earth  

E-Print Network [OSTI]

. The unit is Joule (J). · Solar energy is radiant energy (i.e., radiant light and heat) from the Sun% solar radiation Solar radiation consists of: 1. Gamma rays, X-rays, UV (8%) 2. Visible light (47%) 3© 2015 Pearson Education, Inc. Chapter 2 Solar Energy to Earth and the Seasons #12;© 2015 Pearson

Pan, Feifei

462

Icon Solar Power, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation,Icon Solar Power, LLC

463

Solar Renewable Energy Credits (SRECs)  

Broader source: Energy.gov [DOE]

NOTE: In February 2013, the Massachusetts Department of Energy Resources (DOER) issued [http://www.mass.gov/eea/energy-utilities-clean-tech/renewable-energy/sol... proposed changes] to its RPS...

464

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

SciTech Connect (OSTI)

Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

Not Available

2009-07-01T23:59:59.000Z

465

Renewable Energy Concepts Solar Inc REC Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California and Hawaii).Inc REC Solar Jump to:

466

Bright Ideas in Solar Energy  

E-Print Network [OSTI]

like fossil fuels or hydrogen, storage is impractical justenergy as hydrogen gas (a common energy storage mechanism,rich hydrogen provides a good solution to energy storage

Melville, Jo

2014-01-01T23:59:59.000Z

467

Solar energy implementation in Nigeria.  

E-Print Network [OSTI]

??This research focuses on energy sector in Nigeria, more precisely, the electricity sector. The current situation in the Nigeria is that energy supply is not (more)

Raudonis, Vytautas

2008-01-01T23:59:59.000Z

468

Solar Renewable Energy Credits (SRECs)  

Broader source: Energy.gov [DOE]

In May 2008, Ohio enacted broad electric industry restructuring legislation (S.B. 221) containing advanced energy and renewable energy generation and procurement requirements for the state's...

469

California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors  

E-Print Network [OSTI]

or after the back-up heater) creates branches of water that have different flow rates. If the hot #12 with recirculation returning to backup heater, no recirculation, and a mixing valve after the backup water heater to the mixing valve. Place the hot sensor on the pipe between the solar tank and the backup water heater. #12

470

National Clean Energy Business Plan Competition: Unified Solar...  

Energy Savers [EERE]

Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan Competition: Unified Solar Wins at MIT Clean Energy Prize May 2, 2014 - 11:01am Addthis Unified...

471

Solar Energy Status and Perspectives Peter Ahm, Director  

E-Print Network [OSTI]

Solar Energy ­ Status and Perspectives Peter Ahm, Director PA Energy A/S (Ltd.) Snovdrupvej 16, DK energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute at present only to the global energy supply at a fraction of 1 %. However, the potential for solar energy

472

Primestar Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new Climate Action Plan

473

Desert Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatang Chifeng SaihanbaDepasolDesert Solar

474

RNY Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History View New PagesElectron srlRFRNY Solar Jump

475

Master thesis Solar Energy Meteorology Comparison of different methods to estimate cloud height for solar  

E-Print Network [OSTI]

Master thesis ­ Solar Energy Meteorology Comparison of different methods to estimate cloud height: · Interest in meteorology and solar energy · Experiences with data handling and analysis · Good programming for solar irradiance calculations In order to derive incoming solar irradiance at the earths surface

Peinke, Joachim

476

Monitoring SERC Technologies Solar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

477

Solar and Wind Easements and Rights Laws  

Broader source: Energy.gov [DOE]

Nevada's general statutes provide owners of solar and wind energy systems protection against restrictions that would otherwise prevent them from installing these systems on their property. NRS ...

478

Solar Energy Materials & Solar Cells 77 (2003) 319330 Structure and photoelectrochemical properties  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 77 (2003) 319­330 Letters Structure and photoelectrochemical a promis- ing strategy for solar energy conversion, with energy conversion efficiency as high monochromatic photon to current conversion efficiency, overall energy conversion yield (Z) and transient

Huang, Yanyi

479

LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

Payam Narvand Supervisors Kate Zocchetti Office Manager Renewable Energy Office Eurlyne Geiszler Office Manager Buildings Standards Development Office Suzanne Korosec Deputy Director Renewable Energy Division for installing solar energy systems on new residential buildings. Incentives from the New Solar Homes

480

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network [OSTI]

and Solar-Energy - Progress, Promise and Problems. J.energy storage problem. Solar fuels are concentrated energy

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "install solar energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Power Systems Find A Professional Solar Energy Installer For Any  

E-Print Network [OSTI]

and distributed on demand. Further, ME requires no biomass feedstock or arable land, uses far less water

Lovley, Derek

482

Manufacture of silicon carbide using solar energy  

DOE Patents [OSTI]

A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

Glatzmaier, Gregory C. (Boulder, CO)

1992-01-01T23:59:59.000Z

483

Solar PV Incentive Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive Programs Solar PV

484

Solar Reflection Panels - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar Thermal Solar

485

Solar Selective Absorption Coatings - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar ThermalSolar

486

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

Conservation and Solar Applications, U.S. Department of Energy.Conservation and Solar Applications, U.S. Depart- ment of Energy,Conservation and Solar Applications, U. S. Department of Energy,

authors, Various

2011-01-01T23:59:59.000Z

487

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Energy through Conservation and Solar Applications (Conservation and Solar Applications, U.S. Department of EnergyEnergy Research Institute; Heating and Cooling Research and Development Branch - Office of Conservation and Solar

Authors, Various

2010-01-01T23:59:59.000Z

488

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

I (t II ! I Solar Energy Michael A. Wahlig GroupWorkshop on the Control of Solar Energy Systems for HeatingCalifornia 94720 SOLAR ENERGY Introduction Measurement of

authors, Various

2011-01-01T23:59:59.000Z

489

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

I (t II ! I Solar Energy Michael A. Wahlig GroupCalifornia 94720 SOLAR ENERGY Introduction Measurement ofWorkshop on the Control of Solar Energy Systems for Heating

authors, Various

2011-01-01T23:59:59.000Z

490

Solar Energy Program: Chapter from the Energy and Environmental Division Annual Report 1980  

E-Print Network [OSTI]

SOLAR ENERGY PROGRAM PERSONNEL Small Particle SuspensionsStrategies for Active Solar Energy Systems M. Warren, S.R a d i a t i o n , " Solar Energy, v o l . 4, no. 3 , 1960,

Energy and Environment Division

1981-01-01T23:59:59.000Z

491

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

I (t II ! I Solar Energy Michael A. Wahlig GroupWorkshop on the Control of Solar Energy Systems for Heatingin the utiliza- tion of solar energy in northern California.

authors, Various

2011-01-01T23:59:59.000Z

492

Laying the Foundation for a Solar America: The Million Solar Roofs Initiative  

SciTech Connect (OSTI)

As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

Strahs, G.; Tombari, C.

2006-10-01T23:59:59.000Z

493

Solar Community | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolution JumpJump to:

494

Solar Connecticut | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolution JumpJump

495

Lumos Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuelsLoupInyoLuminate LLC Jump

496

Antaris Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformation Anson County, NorthAntaris Solar

497

Apex Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolar Jump to:

498

Tessera Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:TennesseeTessera Solar Jump

499

Shengrui Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River,ShakesgeothermalShengrui Solar

500

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginner Jump to:ProspectorSolar