National Library of Energy BETA

Sample records for insolation latitutde tilt

  1. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  2. Photovoltaic Potential and Insolation Maps (Canada) | Open Energy...

    Open Energy Info (EERE)

    Insolation Maps (Canada) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Potential and Insolation Maps (Canada) Focus Area: Renewable Energy Topics:...

  3. Tilted fuel cell apparatus

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  4. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect (OSTI)

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  5. Site insolation and wind power characteristics. Summary report

    SciTech Connect (OSTI)

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  6. Site insolation and wind power characteristics: technical report western region (south section)

    SciTech Connect (OSTI)

    1980-08-01

    This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (South Section) of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

  7. Large optics inspection, tilting, and washing stand

    DOE Patents [OSTI]

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  8. Large optics inspection, tilting, and washing stand

    DOE Patents [OSTI]

    Ayers, Marion Jay (Brentwood, CA); Ayers, Shannon Lee (Brentwood, CA)

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  9. Tilt assembly for tracking solar collector assembly

    DOE Patents [OSTI]

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  10. File:NREL-africa-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    tilt.pdf Jump to: navigation, search File File history File usage Africa - Annual Flat Plate Tilted at Latitude (PDF) Size of this preview: 776 600 pixels. Full resolution...

  11. Prediction of tilted capillary barrier performance

    SciTech Connect (OSTI)

    Webb, S.W.; McCord, J.T.; Dwyer, S.F.

    1997-04-01

    Capillary barriers, consisting of tilted fine-over-coarse layers under unsaturated conditions, have been suggested as landfill covers to divert water infiltration away from sensitive underground regions, especially for arid and semi-arid regions. The Hydrological Evaluation of Landfill Performance (HELP) computer code is an evaluation tool for landfill covers used by designers and regulators. HELP is a quasi-two-dimensional model that predicts moisture movement into and through the underground soil and waste layers. Processes modeled within HELP include precipitation, runoff, evapotranspiration, unsaturated vertical drainage, saturated lateral drainage, and leakage through liners. Unfortunately, multidimensional unsaturated flow phenomena that are necessary for evaluating tilted capillary barriers are not included in HELP. Differences between the predictions of the HELP and those from a multidimensional unsaturated flow code are presented to assess the two different approaches. Comparisons are presented for the landfill covers including capillary barrier configurations at the Alternative Landfill Cover Demonstration (ALCD) being conducted at Sandia.

  12. Stabilizing windings for tilting and shifting modes

    DOE Patents [OSTI]

    Jardin, Stephen C. (Princeton, NJ); Christensen, Uffe R. (Princeton, NJ)

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  13. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect (OSTI)

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  14. File:NREL-afg-10km-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    tilt.pdf Jump to: navigation, search File File history File usage Afghanistan - Annual Flat Plate Tilted at Latitude Size of this preview: 776 600 pixels. Full resolution...

  15. Reconciliation of local and long range tilt correlations in underdoped...

    Office of Scientific and Technical Information (OSTI)

    powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO tilt order with orthogonally inequivalent Cu-O bonds in the CuO planes in...

  16. Research Update: Interface-engineered oxygen octahedral tilts in perovskite

    Office of Scientific and Technical Information (OSTI)

    oxide heterostructures (Journal Article) | SciTech Connect Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures Citation Details In-Document Search Title: Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive

  17. Method to fabricate a tilted logpile photonic crystal

    DOE Patents [OSTI]

    Williams, John D. (Albuquerque, NM); Sweatt, William C. (Albuquerque, NM)

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  18. Tilted dipole model for bias-dependent photoluminescence pattern

    SciTech Connect (OSTI)

    Fujieda, Ichiro Suzuki, Daisuke; Masuda, Taishi

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5?wt.?% coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  19. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  20. Automatic recovery of missing amplitudes and phases in tilt-limited...

    Office of Scientific and Technical Information (OSTI)

    Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals Citation Details In-Document Search Title: Automatic...

  1. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect (OSTI)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat; Stevens, Grant M.; Foley, W. Dennis

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the gantry reduced the dose to the breast, while also increasing noise standard deviation. Overall, the noise increase outweighed the dose reduction for the eight voxelized phantoms, suggesting that tilted gantry acquisition may not be beneficial for reducing breast dose while maintaining image quality.

  2. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  3. Apparatus for raising or tilting a micromechanical structure

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM)

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  4. Microelectromechanical apparatus for elevating and tilting a platform

    DOE Patents [OSTI]

    Miller, Samuel Lee (Albuquerque, NM); McWhorter, Paul Jackson (Albuquerque, NM); Rodgers, Murray Steven (Albuquerque, NM); Sniegowski, Jeffry J. (Edgewood, NM); Barnes, Stephen M. (Albuquerque, NM)

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  5. Microelectromechanical apparatus for elevating and tilting a platform

    DOE Patents [OSTI]

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  6. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  7. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, Joseph Thaddeus (Livermore, CA)

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  8. Precision tip-tilt-piston actuator that provides exact constraint

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA)

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  9. Microsoft Word - Tilted-Rig-TP-Definition-Version1-Aug-14-2012A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies Authors: Malcolm J. Andrews (XCP-4, LANL), 505-606-1430, mandrews@lanl.gov David L. Youngs (AWE) , david.youngs@awe.co.u...

  10. File:NREL-bhutan-10kmsolar-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    File File history File usage Bhutan - Annual - Flat PlateTilted at Latitude Solar Radiation Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  11. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE

    SciTech Connect (OSTI)

    Fixsen, D. J.; Kashlinsky, A. E-mail: alexander.kashlinsky@nasa.gov

    2011-06-10

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to {approx}30% by the COBE satellite. Over the 100-500 {mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of {approx}10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  12. Effects of a tilted magnetic field in a Dirac double layer (Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article) | SciTech Connect Effects of a tilted magnetic field in a Dirac double layer Citation Details In-Document Search Title: Effects of a tilted magnetic field in a Dirac double layer Authors: Pershoguba, Sergey S. ; Abergel, D. S. L. ; Yakovenko, Victor M. ; Balatsky, A. V. Publication Date: 2015-02-20 OSTI Identifier: 1180576 Grant/Contract Number: E304 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 91; Journal

  13. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Journal Article) | SciTech Connect Journal Article: Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media Citation Details In-Document Search Title: Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  14. Effects of a tilted magnetic field in a Dirac double layer (Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article) | DOE PAGES Effects of a tilted magnetic field in a Dirac double layer Title: Effects of a tilted magnetic field in a Dirac double layer Authors: Pershoguba, Sergey S. ; Abergel, D. S. L. ; Yakovenko, Victor M. ; Balatsky, A. V. Publication Date: 2015-02-20 OSTI Identifier: 1180576 Grant/Contract Number: E304 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 91; Journal Issue: 8; Journal ID: ISSN 1098-0121

  15. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    SciTech Connect (OSTI)

    OToole, A. E-mail: riccardo.desalvo@gmail.com; Pea Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R. E-mail: riccardo.desalvo@gmail.com; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  16. Blue-tilted tensor spectrum and thermal history of the Universe

    SciTech Connect (OSTI)

    Kuroyanagi, Sachiko; Takahashi, Tomo; Yokoyama, Shuichiro E-mail: tomot@cc.saga-u.ac.jp

    2015-02-01

    We investigate constraints on the spectral index of primordial gravitational waves (GWs), paying particular attention to a blue-tilted spectrum. Such constraints can be used to test a certain class of models of the early Universe. We investigate observational bounds from LIGO+Virgo, pulsar timing and big bang nucleosynthesis, taking into account the suppression of the amplitude at high frequencies due to reheating after inflation and also late-time entropy production. Constraints on the spectral index are presented by changing values of parameters such as reheating temperatures and the amount of entropy produced at late time. We also consider constraints under the general modeling approach which can approximately describe various scenarios of the early Universe. We show that the constraints on the blue spectral tilt strongly depend on the underlying assumption and, in some cases, a highly blue-tilted spectrum can still be allowed.

  17. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5 of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earths surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  18. Suppression of n=1 Tilt Instability by Magnetic Shaping Coils in Rotamak Plasmas

    SciTech Connect (OSTI)

    Yang, X.; Petrov, Y.; Huang, T. S.

    2009-06-26

    Measurements from the array of Mirnov magnetic coils provide the first evidence for n=1 tilt and radial shift instabilities in a 40 ms field-reversed configuration (FRC) driven by rotating magnetic field. External plasma-shaping magnetic coils are utilized to suppress the n=1 instability modes. It is demonstrated that by energizing the middle shaping coil with 250-500 A current, the tilt mode is completely suppressed when a doublet FRC with an internal figure-of-eight separatrix is formed.

  19. Uranium vacancy mobility at the ?5 symmetric tilt and ?5 twist grain boundaries in UO?

    SciTech Connect (OSTI)

    Uberuaga, Blas Pedro; Andersson, David A.

    2015-10-01

    Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered a simple tilt and a simple twist boundary the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.

  20. First results of a polychromatic artificial sodium star for the correction of tilt

    SciTech Connect (OSTI)

    Friedman, H.; Foy, R..; Tallon, M.; Migus, A.

    1996-03-06

    This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.

  1. Selection of a numerical unsaturated flow code for tilted capillary barrier performance evaluation

    SciTech Connect (OSTI)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-09-01

    Capillary barriers consisting of tilted fine-over-coarse layers have been suggested as landfill covers as a means to divert water infiltration away from sensitive underground regions under unsaturated flow conditions, especially for arid and semi-arid regions. Typically, the HELP code is used to evaluate landfill cover performance and design. Unfortunately, due to its simplified treatment of unsaturated flow and its essentially one-dimensional nature, HELP is not adequate to treat the complex multidimensional unsaturated flow processes occurring in a tilted capillary barrier. In order to develop the necessary mechanistic code for the performance evaluation of tilted capillary barriers, an efficient and comprehensive unsaturated flow code needs to be selected for further use and modification. The present study evaluates a number of candidate mechanistic unsaturated flow codes for application to tilted capillary barriers. Factors considered included unsaturated flow modeling, inclusion of evapotranspiration, nodalization flexibility, ease of modification, and numerical efficiency. A number of unsaturated flow codes are available for use with different features and assumptions. The codes chosen for this evaluation are TOUGH2, FEHM, and SWMS{_}2D. All three codes chosen for this evaluation successfully simulated the capillary barrier problem chosen for the code comparison, although FEHM used a reduced grid. The numerical results are a strong function of the numerical weighting scheme. For the same weighting scheme, similar results were obtained from the various codes. Based on the CPU time of the various codes and the code capabilities, the TOUGH2 code has been selected as the appropriate code for tilted capillary barrier performance evaluation, possibly in conjunction with the infiltration, runoff, and evapotranspiration models of HELP. 44 refs.

  2. Microsoft Word - Tilted-Rig-TP-Definition-Version1-Aug-14-2012A.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies Authors: Malcolm J. Andrews (XCP-4, LANL), 505-606-1430, mandrews@lanl.gov David L. Youngs (AWE) , david.youngs@awe.co.uk Daniel Livescu (CCS-2, LANL), 505-665-1758, livescu@lanl.gov Date: August 10, 2012 Version: 1.0 LA-UR: 12-24091 Contents 1. Introduction................................................................................................................................. 2 2. Problem definition

  3. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    SciTech Connect (OSTI)

    Sekiguchi, Toyokazu; Sugiyama, Naoshi; Tashiro, Hiroyuki; Silk, Joseph E-mail: hiroyuki.tashiro@asu.edu E-mail: naoshi@nagoya-u.jp

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2?tilted isocurvature primordial power spectrum. We also study the consequences for 21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  4. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  5. Entanglement, avoided crossings, and quantum chaos in an Ising model with a tilted magnetic field

    SciTech Connect (OSTI)

    Karthik, J.; Sharma, Auditya; Lakshminarayan, Arul [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-02-15

    We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general, entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.

  6. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    SciTech Connect (OSTI)

    Zhang, Zhelin; Chen, Yanping Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-09-08

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  7. Thermal conductivity of Bi{sub 2}Te{sub 3} tilted nanowires, a molecular dynamics study

    SciTech Connect (OSTI)

    Li, Shen Lacroix, David; Termentzidis, Konstantinos; Chaput, Laurent; Stein, Nicolas; Frantz, Cedric

    2015-06-08

    Evidence for an excellent compromise between structural stability and low thermal conductivity has been achieved with tilted Bi{sub 2}Te{sub 3} nanowires. The latter ones were recently fabricated and there is a need in modeling and characterization. The structural stability and the thermal conductivity of Bi{sub 2}Te{sub 3} nanowires along the tilted [015]* direction and along the [010] direction have been explored. For the two configurations of nanowires, the effect of the length and the cross section on the thermal conductivity is discussed. The thermal conductivity of infinite size tilted nanowire is 0.34?W/m K, significantly reduced compared to nanowire along the [010] direction (0.59?W/m K). This reveals that in Bi{sub 2}Te{sub 3} nanowires the structural anisotropy can be as important as size effects to reduce the thermal conductivity. The main reason is the reduction of the phonon mean free path which is found to be 1.7?nm in the tilted nanowires, compared to 5.3?nm for the nanowires along the [010] direction. The fact that tilted Bi{sub 2}Te{sub 3} nanowire is mechanically stable and it has extremely low thermal conductivity suggests these nanowires as a promising material for future thermoelectric generation application.

  8. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    SciTech Connect (OSTI)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)

  9. THE TRANSIT INGRESS AND THE TILTED ORBIT OF THE EXTRAORDINARILY ECCENTRIC EXOPLANET HD 80606b

    SciTech Connect (OSTI)

    Winn, Joshua N.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F.; Kadakia, Shimonee; Vanderbei, Robert J.; Adams, Elisabeth R.; Lockhart, Matthew; Crossfield, Ian J.; Valenti, Jeff A.; Dantowitz, Ronald

    2009-10-01

    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle lambda is between 32 deg. and 87 deg. with 68.3% confidence and between 14 deg. and 142 deg. with 99.73% confidence. Thus, the orbit of this planet is not only highly eccentric (e = 0.93) but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is worth noting that all three exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate through a different channel than lower mass planets on circular orbits.

  10. Observation of tilting activities in translated field reversed configuration plasma using computer tomography at two different cross sections

    SciTech Connect (OSTI)

    Yoshimura, Satoru; Sugimoto, Satoshi; Okada, Shigefumi

    2007-11-15

    Tilting activities of field reversed configuration (FRC) plasma were observed in translation experiments using computer tomography (CT) at two different cross sections in the FRC injection experiment (FIX) machine [S. Okada et al., Nucl. Fusion 47, 677 (2007)]. In these experiments, two sets of CT devices were installed at the upstream and downstream sides of the confinement chamber of the FIX. Each CT device was composed of three arrays of detectors sensitive to the near-infrared radiation. The peak of the reconstructed emission profile at one side was displaced from the center of the cross section of the chamber. On the other hand, the reconstructed profile at the other side was located around the center. This result suggests that the FRC plasma was tilting in the axial direction. The occurrence of the observed tilting activities had almost no effect on the lifetime of the FRC plasma.

  11. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOE Patents [OSTI]

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  12. Bose-Einstein condensates on tilted lattices: Coherent, chaotic, and subdiffusive dynamics

    SciTech Connect (OSTI)

    Kolovsky, Andrey R.; Gomez, Edgar A.; Korsch, Hans Juergen

    2010-02-15

    The dynamics of a (quasi-) one-dimensional interacting atomic Bose-Einstein condensate in a tilted optical lattice is studied in a discrete mean-field approximation, i.e., in terms of the discrete nonlinear Schroedinger equation. If the static field is varied, the system shows a plethora of dynamical phenomena. In the strong field limit, we demonstrate the existence of (almost) nonspreading states which remain localized on the lattice region populated initially and show coherent Bloch oscillations with fractional revivals in the momentum space (so-called quantum carpets). With decreasing field, the dynamics becomes irregular, however, still confined in configuration space. For even weaker fields, we find subdiffusive dynamics with a wave-packet width growing as t{sup 1/4}.

  13. Uranium vacancy mobility at the Σ5 symmetric tilt and Σ5 twist grain boundaries in UO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uberuaga, Blas Pedro; Andersson, David A.

    2015-10-01

    Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered – a simplemore » tilt and a simple twist boundary – the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.« less

  14. Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies

    SciTech Connect (OSTI)

    Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.

    2012-08-14

    The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chapter include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (an

  15. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    SciTech Connect (OSTI)

    Tskhakaya, D. D.; Kos, L.

    2014-10-15

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths ?{sub D} (electron Debye length), ?{sub i} (ion gyro-radius), and ? (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering ?{sub D}??{sub i}??, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ?{sub Dm}(?{sub D}/?{sub i})?0 and ?{sub mc}(?{sub i}/?)?0 (asymptotic three-scale (A3S) limits), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS MPS and MPS DS) are derived, allowing to avoid the singularities arising from the ?{sub Dm}?0 and ?{sub mc}?0 approximations. The MPS entrance and the related kinetic form of the BohmChodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities.

  16. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    SciTech Connect (OSTI)

    Chaves-O'Flynn, Gabriel D. Wolf, Georg; Pinna, Daniele; Kent, Andrew D.

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.

  17. Uranium vacancy mobility at the sigma 5 symmetric tilt grain boundary in UO2

    SciTech Connect (OSTI)

    Uberuaga, Blas P.

    2012-05-02

    An important consequence of the fissioning process occurring during burnup is the formation of fission products. These fission products alter the thermo-mechanical properties of the fuel. They also lead to macroscopic changes in the fuel structure, including the formation of bubbles that are connected to swelling of the fuel. Subsequent release of fission gases increase the pressure in the plenum and can cause changes in the properties of the fuel pin itself. It is thus imperative to understand how fission products, and fission gases in particular, behave within the fuel in order to predict the performance of the fuel under operating conditions. Fission gas redistribution within the fuel is governed by mass transport and the presence of sinks such as impurities, dislocations, and grain boundaries. Thus, to understand how the distribution of fission gases evolves in the fuel, we must understand the underlying transport mechanisms, tied to the concentrations and mobilities of defects within the material, and how these gases interact with microstructural features that might act as sinks. Both of these issues have been addressed in previous work under NEAMS. However, once a fission product has reached a sink, such as a grain boundary, its mobility may be different there than in the grain interior and predicting how, for example, bubbles nucleate within grain boundaries necessitates an understanding of how fission gases diffuse within boundaries. That is the goal of the present work. In this report, we describe atomic level simulations of uranium vacancy diffusion in the pressence of a {Sigma}5 symmetric tilt boundary in urania (UO{sub 2}). This boundary was chosen as it is the simplest of the boundaries we considered in previous work on segregation and serves as a starting point for understanding defect mobility at boundaries. We use a combination of molecular statics calculations and kinetic Monte Carlo (kMC) to determine how the mobility of uranium vacancies is altered at this particular grain boundary. Given that the diffusion of fission gases such as Xe are tied to the mobility of uranium vacancies, these results given insight into how fission gas mobility differs at grain boundaries compared to bulk urania.

  18. Sedimentation and reservoir distribution related to a tilted block system in the Sardinia Oligocene-Miocene rift (Italy)

    SciTech Connect (OSTI)

    Tremolieres, P.; Cherchi, A.; Eschard, R.; De Graciansky, P.C.; Montadert, L.

    1988-08-01

    In the western Mediterranean basin lies a rift system about 250 km long and 50 km wide and its infilling outcrop (central Sardinia). Seismic reflection surveys show its offshore extension. Block tilting started during the late Oligocene and lasted during Aquitanian-early Burdigalian time. Two main fault trends, with synthetic and antithetic throws, define the more-or-less collapsed blocks. This morphology guided the transit and trapping of sediments. The sedimentation started in a continental environment then, since the Chattian, in marine conditions. In the central part, the series can reach a thickness of 2,000 m. The basement composition and the volcanics products related to the main fault motion controlled the nature of the synrift deposits. According to their location in the rift context, the tilted blocks trap either continental deposits or marine siliciclastic or carbonate deposits. In the deeper part of the graben, sands were redeposited by gravity flows into the basinal marls. The younger prerift deposits are from Eocene to early Oligocene age and locally comprise thick coal layers. Postrift deposits, mainly marls, sealed the blocks and synrift sedimentary bodies. In middle and late Miocene time some faults were reactivated during compressional events. Then, a quaternary extensional phase created the Campidano graben, filled with about 1,000 m of sediments superimposed on the Oligocene-Miocene rift.

  19. Reconciliation of local and long-range tilt correlations in underdoped La2-xBaxCuO4(0 ≤ x ≤ 0.155)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋xBaxCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTO crystallographic phasemore » on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less

  20. Reconciliation of local and long range tilt correlations in underdoped La??xBaxCuO? (0 ? x ? 0.155)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO? octahedral tilt correlations in the underdoped regime of La??xBaxCuO? is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO? tilt order with orthogonally inequivalent Cu-O bonds in the CuO? planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTO crystallographic phasemoreon the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. This study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.less

  1. Unit-cell thick BaTiO{sub 3} blocks octahedral tilt propagation across oxide heterointerface

    SciTech Connect (OSTI)

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2014-05-14

    We fabricated SrRuO{sub 3}/BaTiO{sub 3}/GdScO{sub 3} heterostructures in which the BaTiO{sub 3} layer is one unit cell thick by pulsed laser deposition and elucidated how the BaTiO{sub 3} layer influences structural and magneto-transport properties of the SrRuO{sub 3} layer through octahedral connections across the heterointerface. Our X-ray-diffraction-based structural characterizations show that while an epitaxial SrRuO{sub 3} layer grown directly on a GdScO{sub 3} substrate is in the monoclinic phase with RuO{sub 6} octahedral tilts, a one-unit-cell-thick BaTiO{sub 3} layer inserted between SrRuO{sub 3} and GdScO{sub 3} stabilizes the tetragonal SrRuO{sub 3} layer with largely reduced RuO{sub 6} tilts. Our high-angle annular dark-field and annular bright-field scanning transmission electron microscopy observations provide an atomic-level view of the octahedral connections across the heterostructure and reveal that the BaTiO{sub 3} layer only one unit cell thick is thick enough to stabilize the RuO{sub 6}-TiO{sub 6} octahedral connections with negligible in-plane oxygen atomic displacements. This results in no octahedral tilts propagating into the SrRuO{sub 3} layer and leads to the formation of a tetragonal SrRuO{sub 3} layer. The magneto-transport property characterizations also reveal a strong impact of the octahedral connections modified by the inserted BaTiO{sub 3} layer on the spin-orbit interaction of the SrRuO{sub 3} layer. The SrRuO{sub 3} layer on BaTiO{sub 3}/ GdScO{sub 3} has in-plane magnetic anisotropy. This is in contrast to the magnetic anisotropy of the monoclinic SrRuO{sub 3} films on the GdScO{sub 3} substrate, in which the easy axis is ?45 to the film surface normal. Our results demonstrate that the one-unit-cell-thick layer of BaTiO{sub 3} can control and manipulate the interfacial octahedral connection closely linked to the structure-property relationship of heterostructures.

  2. Generation of short gamma-ray pulses on electron bunches formed in intense interfering laser beams with tilted fronts

    SciTech Connect (OSTI)

    Korobkin, V V; Romanovskiy, M Yu; Trofimov, V A; Shiryaev, O B

    2014-05-30

    It is shown that in the interference of multiple laser pulses with a relativistic intensity, phase and amplitude fronts of which are tilted at an angle with respect to their wave vector, effective traps of charged particles, which are moving at the velocity of light, are formed. Such traps are capable of capturing and accelerating the electrons produced in the ionisation of low-density gas by means of laser radiation. The accelerated electrons in the traps form a bunch, whose dimensions in all directions are much smaller than the laser radiation wavelength. Calculations show that the energy of accelerated electrons may amount to several hundred GeV at experimentally accessible relativistic laser intensities. As a result of the inverse Compton scattering, gamma-quanta with a high energy and narrow radiation pattern are emitted when these electrons interact with a laser pulse propagating from the opposite direction. The duration of emitted gamma-ray pulses constitutes a few attoseconds. The simulation is performed by solving the relativistic equation of motion for an electron with a relevant Lorentz force. (interaction of radiation with matter)

  3. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    SciTech Connect (OSTI)

    Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.

  4. Magnetic rotation (MR) band crossing in N=78 odd-Z nuclei: Tilted axis cranking (TAC) calculations to explore the role of nucleons

    SciTech Connect (OSTI)

    Kumar, Suresh

    2014-08-14

    Magnetic Rotation (MR) band crossing is studied systematically in N=78 isotones (La, Pr, Pm and Eu) using Tilted Axis Cranking (TAC) model. The observables such as I(h) vs h?, excitation energy E(MeV) vs spin I(h), and the B(M1)/B(E2) vs I(h) were considered to pinpoint MR crossing in these nuclei. The results of tilted axis cranking were compared with these experimental observables. The B(M1) and B(E2) values were also reported and used to understand the crossing behaviour of these MR bands. The systematic evolution of this phenomenon in N=78 odd-Z istotones leads to understand the role of nucleons in MR band crossing.

  5. Reconciliation of local and long-range tilt correlations in underdoped La 2 x Ba x CuO 4 ( 0 ? x ? 0.155 )

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long-standing puzzle regarding the disparity of local and long-range CuO? octahedral tilt correlations in the underdoped regime of La2xBaxCuO? is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. This system is of interest because of the strong depression of the bulk superconducting transition at x=1/8 in association with charge and spin stripe order. The latter unidirectional order is tied to Cu-O bond-length anisotropy present in the so-called low-temperature tetragonal (LTT) phase. On warming, the lattice exhibits two sequential structural transitions, involving changes in the CuO? tilt pattern, first to the low-temperature orthorhombic (LTO) andmorethen the high-temperature tetragonal (HTT) phase. Despite the changes in static order, inspection of the instantaneous local atomic structure suggests that the LTT-type tilts persist through the transitions. Analysis of the INS spectra for the x=1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO and HTT phases. Within the low-temperature phase, the Cu-O bond-length splitting inferred from lattice symmetry and fitted atomic position parameters reaches a maximum of 0.3% at x=1/8, suggesting that electron-phonon coupling may contribute to optimizing the structure to stabilize stripe order. This splitting is much too small to be resolved in the pair distribution function, and in fact we do not resolve any enhancement of the instantaneous bond-length distribution in association with stripe order. This study exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.less

  6. Reconciliation of local and long-range tilt correlations in underdoped La2-xBaxCuO4(0 ? x ? 0.155)

    SciTech Connect (OSTI)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO? octahedral tilt correlations in the underdoped regime of La??xBaxCuO? is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO? tilt order with orthogonally inequivalent Cu-O bonds in the CuO? planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTO crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.

  7. LANGEVIN DYNAMICS OF THE TWO STAGE MELTING TRANSITION OF VORTEX MATTER IN Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} IN THE PRESENCE OF STRAIGHT AND OF TILTED COLUMNAR DEFECTS

    SciTech Connect (OSTI)

    GOLDSCHMIDT, YADIN Y.; LIU, Jin-Tao

    2007-08-07

    In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}#14; in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by 45{degree} with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.

  8. Regional characteristics, tilt domains, and extensional history...

    Open Energy Info (EERE)

    and Transfer Zones and the Regional Segmentation of the Basin and Range Province Author J.H. Stewart Editors Faulds, J.E., and Stewart and J.H. Published Geological Society of...

  9. Research Update: Interface-engineered oxygen octahedral tilts...

    Office of Scientific and Technical Information (OSTI)

    Our state-of-the-art annular bright-field imaging in aberration-corrected scanning transmission electron microscopy revealed that the RuOsub 6 octahedral distortions in the ...

  10. File:NREL-asia-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    Countries Bhutan, China, Nepal, Mongolia, India, North Korea, South Korea, Vietnam, Laos, Thailand, Cambodia, Philippines, Bangladesh UN Region Southern Asia, Eastern Asia,...

  11. Vacuum compatible, high-speed, 2-D mirror tilt stage

    DOE Patents [OSTI]

    Denham; Paul E. (Crockett, CA)

    2007-09-25

    A compact and vacuum compatible magnetic-coil driven tiltable stage that is equipped with a high efficiency reflective coating can be employed as a scanner in EUV applications. The drive electronics for the scanner is fully in situ programmable and rapidly switchable.

  12. Interplay of octahedral tilts and polar order in BiFeO3 films...

    Office of Scientific and Technical Information (OSTI)

    Lawrence Berkeley National Laboratory (LBNL) National Academy of Science of Ukraine, Kiev, Ukraine Drexel University Publication Date: 2013-01-01 OSTI Identifier: 1073683 DOE...

  13. MHK ISDB/Instruments/CDL MiniTilt | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  14. Reconciliation of local and long-range tilt correlations in underdoped...

    Office of Scientific and Technical Information (OSTI)

    electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to more be...

  15. Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures

    SciTech Connect (OSTI)

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2015-06-01

    Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive investigations of oxygen octahedral distortions at the heterointerface between perovskite oxides SrRuO{sub 3} and BaTiO{sub 3} on GdScO{sub 3} substrates and of the influences of the interfacially engineered distortions on the magneto-transport properties of the SrRuO{sub 3} layer. Our state-of-the-art annular bright-field imaging in aberration-corrected scanning transmission electron microscopy revealed that the RuO{sub 6} octahedral distortions in the SrRuO{sub 3} layer have strong dependence on the stacking order of the SrRuO{sub 3} and BaTiO{sub 3} layers on the substrate. This can be attributed to the difference in the interfacial octahedral connections. We also found that the stacking order of the oxide layers has a strong impact on the magneto-transport properties, allowing for control of the magnetic anisotropy of the SrRuO{sub 3} layer through interface engineering. Our results demonstrate the significance of the interface engineering of the octahedral distortions on the structural and physical properties of perovskite oxides.

  16. Magnetization stability analysis of the Stoner-Wohlfarth model under a spin-polarized current with a tilted polarization

    SciTech Connect (OSTI)

    Wang, Zhiyuan; Sun, Z. Z.

    2014-02-14

    The stationary-state solutions of magnetization dynamics under a spin-polarized current that was polarized in an arbitrary direction were investigated by solving the Landau-Lifshitz-Gilbert-Slonczewski equation for a single-domain magnet. Taking into consideration the uniaxial magnetic anisotropy, the equilibrium directions of the magnetization vectors were analytically obtained by solving an algebraic cubic equation. It was found that one to three pairs of magnetization equilibrium states existed, depending on the current intensity and the direction of the spin polarization. By numerically analyzing the stabilities of these equilibrium states, the threshold switching current for the reversing the magnetic vector was obtained under different current polarization configurations, which may be useful for use in future spintronics devices.

  17. More data needed to support or disprove global warming theory

    SciTech Connect (OSTI)

    1997-05-26

    Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

  18. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This activity allows students the opportunity to explore materials used in architectural engineering and gain an understanding of their insolating properties. Students will...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Data Correction Algorithm for Improved Measurement of Surface Insolation, by Bush, Valero, Simpson, and Bignone, J. Atmos. Res. and Ocean. Tech., Vol. 17, No. 2, pp....

  1. Single-Column Modeling R. D. Cess Marine Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by dry-plains agricultural land typical of the adjoining several hundred square kilometers ranging to the east (Cessetal. 1991). These insolation measurements are provided as...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activity allows students the opportunity to explore materials used in architectural engineering and gain an understanding of their insolating properties. Students will research,...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and gain an understanding of their insolating properties. Students will research, design, build, test and improve a structure as to achieve the highest energy efficiency...

  4. NREL: Transmission Grid Integration Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    insolation. This variability affects how transmission systems with high penetrations of renewable energy sources operate. NREL researchers are identifying these effects and...

  5. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  6. DOE/SC-ARM-14-011 Ganges Valley Aerosol Experiment (GVAX) Final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. ...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering and gain an understanding of their insolating properties. Students will research, design, build, test and improve a structure as to achieve the highest energy...

  8. Coastal-inland solar radiation difference study. Final report

    SciTech Connect (OSTI)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  9. On the Features of Radiative and Convective Regimes Under the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    very fast and almost synchronous temperature variations at all the heights. For instance, speed fall of insolation started near 13.00 induced the drop in temperature at lower...

  10. BPA-2013-01309-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    records request FOIA request from Ted Sickinger. Doug Johnson Bonneville Power Administration 503-230-5840 Rt'(..'EIVEA) BY BPA FO 1A OFFICE TiltS I DUE DATE: LOG From:...

  11. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the third of five exposures of the same sample at different tilts. This one is at +30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  12. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 5)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the second of five exposures of the same sample at different tilts. This one is at +15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  13. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 8)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the fifth of five exposures of the same sample at different tilts. This one is at -30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  14. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the first of five exposures of the same sample at different tilts. This one is at +0 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  15. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 7)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the fourth of five exposures of the same sample at different tilts. This one is at -15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  16. Aurora Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  17. Cove Fort Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  18. Thermo Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  19. Ulupalakua Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  20. Kelsey South Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  1. Criterion | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  2. Tuscarora I Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  3. Pilot Peak Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  4. Gerlach Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  5. Silver Peak Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  6. Hot Pot Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  7. Airforce Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  8. Pumpernickel Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  9. Linden Ranch | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  10. Dynapower | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  11. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  12. Drum Mountain Geothermal Project (2) | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  13. DeArmand Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  14. High Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  15. Mahogany Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  16. Newberry I Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  17. Orita I Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  18. GV1 Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  19. Akutan Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  20. Olene Gap Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  1. Lovelock Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  2. Alum Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  3. Truckee Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  4. Trail Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  5. BPA-2012-00676-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    *** FO1.A OFFICE TILTS DATE: DUE DATE: Name: Francisco Carvalho Organization: University Professor Address: Phone: FAX: Email: Description of...

  6. Compound floating pivot micromechanisms

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM)

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  7. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In-Situ Specifications Specifications Accel. voltage: 300 kV Point-to-point resolution, wide gap 2.1 Å Point-to-point resolution, narrow gap 1.7 Å Specimen Stages Single-tilt heating to 1300° C ±40° Double-tilt heating to 1000°C ±40°/±40° Single-tilt electrical biasing ±40° Mechanical testing ±40° LN cold stage ±40°

  9. Hosing Instability of the Drive Electron Beam in the E157 Plasma...

    Office of Scientific and Technical Information (OSTI)

    If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose ...

  10. Valuation of Solar Photovoltaic Systems Using a Discounted Cash...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandra K. Adomatis, SRA Solar energy systems include ... is primarily due to the current incentives, with more ... and tilt towards the south to maximize energy production. ...

  11. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  12. Assumption to the Annual Energy Outlook 2014 - Electricity Market...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - Hydraulic Turbine Reversible Geothermal Municipal Solid Waste Biomass - Fluidized Bed Solar Thermal - Central Tower Solar Photovoltaic - Fixed Tilt Wind Wind Offshore 1 The EMM...

  13. Validating Solar Innovation to Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    investor confidence in novel technical approaches. The RTCs can accommodate multiple solar technologies, including crystalline and thin-film modules: fixed-tilt and tracker...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    orientation, tilt and... Eligibility: Commercial, Industrial, Nonprofit Savings Category: Solar Photovoltaics Austin Energy- Net Metering Austin Energy, the municipal utility of...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale ...

  16. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality...

    Office of Scientific and Technical Information (OSTI)

    By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale ...

  17. DE-FC26-06NT42877 - DE-FC26-02NT41628 - DE-FC26-00NT40920 | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... temperature, tilt meters to sense currents, and compasses to indicate their directions. ... Researchers using ocean bottom seismometers supplied by Woods Hole (USGS) successfully ...

  18. Follow those Nanoparticles! | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unprecedented angular resolution. The new technique can accurately track anisotropic gold particles that are tilted out of the horizontal plane and has the advantage of not...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Interestingly, the bipyridine ligand is tilted. The angle between the plane defined by ... ; Maron, Laurent ; Eisenstein, Odile ; Head-Gordon, Martin ; et al ...

  20. ARM - Datastreams - rphtilt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    basetime North latitude degreeN lat East longitude degreeE lon Surface condition Pitch angle reported by tilt table degrees pitch ( time ) Surface condition Roll angle...

  1. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

  2. Self adjusting inclinometer

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    An inclinometer utilizing synchronous demodulation for high resolution and electronic offset adjustment provides a wide dynamic range without any moving components. A device encompassing a tiltmeter and accompanying electronic circuitry provides quasi-leveled tilt sensors that detect highly resolved tilt change without signal saturation.

  3. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOE Patents [OSTI]

    Fleming, James G.

    2007-01-09

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, and also has applications for thermal management within satellites.

  4. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

    SciTech Connect (OSTI)

    Hasan, A.; Norton, B.; McCormack, S.J.; Huang, M.J.

    2010-09-15

    Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Atmospheric Clear-sky Shortwave Radiation Models to Collocated Satellite and Surface Measurements in Canada Jing, X., and Cess, R.D., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements of the top of the atmosphere (TOA) reflected shortwave radiation from the Earth Radiation Budget Satellite (ERBS) have been collocated with surface insolation measurements made at 24 Canadian stations located below 57 degrees

  6. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MapSearch Searching for maps has never been easier. A screen capture of the MapSearch Map view option Solar Maps Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. This is typical practice for PV system installation, although other orientations are

  7. DOE/NV/11718-594

    National Nuclear Security Administration (NNSA)

    sp., and Penicillium oxalicum. Certain of the species which produced black spores tended to predominate in cultures. Five of these species were also among the 14 isolated from Death Valley soils. The predominance of black-spored species in soils from the Nevada Test Site as well as from Death Valley suggests that in strongly insolated regions the melanin pigment affords a degree of protection. To determine relative resistance of fungal spores to uv light, cultures of a number of species were

  8. Micromechanisms with floating pivot

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM)

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  9. File:SWERA-203.pdf | Open Energy Information

    Open Energy Info (EERE)

    search File File history File usage Solar: monthly and annual average latitude tilt GIS data at 40km for Sri Lanka from NREL Size of this preview: 776 600 pixels. Full...

  10. Beamline 29-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eV Energy resolution: 1.8 meV, Angular resolution: 0.01 6-axis cryomanipulator Polar Rotation: 180 Tilt Rotation:-10 to 35 Azimutal Rotation: 45 Temperature: 800-10K...

  11. File:SWERA-254.pdf | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search File File history File usage Solar: monthly and annual latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Size of this preview: 776 ...

  12. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and smaller and neighboring spins would inevitably align antiparallel, they tend to tilt out of the plane, pointing either up or down. So each disk has four bits instead of...

  13. Sun Harvest Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Sun Harvest Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount Owner EnXco Developer EnXco Energy Purchaser Fresno Adventist Academy...

  14. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  15. File:SWERA-248.pdf | Open Energy Information

    Open Energy Info (EERE)

    8.pdf Jump to: navigation, search File File history File usage Solar: monthly latitude tilt GIS data at 40km resolution for Bangladesh from NREL Size of this preview: 776 600...

  16. Geophysical Study of Basin-Range Structure Dixie Valley Region...

    Open Energy Info (EERE)

    net tilting. Authors George A. Thompson, Laurent J. Meister, Alan T. Herring, Thomas E. Smith, Dennis B. Burke, Robert L. Kovach, Robert O. Burford, Iraj A. Salehi and M. Darroll...

  17. Section 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to parameterize the tilting structure of MCSs in GCMs. Figure 1, where the bulk Richardson number is chosen The objective of this work is to parameterize the large-scale and...

  18. Belle Mead Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Belle Mead Solar Project Facility Belle Mead Solar Project Sector Solar Facility Type Ground-mount fixed tilt solar array Owner EnXco Developer...

  19. SMUD- Non-Residential PV Incentive Program

    Broader source: Energy.gov [DOE]

    As of August 2013, the current EPBI is $0.20/W CSI-AC; adjusted based on the expected performance of the system, which is affected by factors such as inverter efficiency, orientation, tilt and...

  20. High-resolution ab initio three-dimensional X-ray diffraction microscopy (CXIDB ID 15)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, Henry N.

    2011-11-15

    The file contains 125 images corresponding to different tilts of the sample around the y axis at 1 degree intervals. Each image is the result of 4 exposures merged together. For more details see the citation.

  1. Raaometry C. D. Whiteman, J. M. Alzheimer, G. A. Anderson, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leveling is encountered during clear daytime conditions. In these conditions, the mean tilt of the radiometer must be less than 1 0 with oscillations less than about 20 in...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the...

  3. SWERA_Final_Report

    Open Energy Info (EERE)

    throughout the day such as trough collectors or dishes. The estimation for radiation on 3 Solar Energy Resources, Technical Report 3, CESEN 1986 2-2 tilted surface analysis used...

  4. Renewable Energy, Right in Your Back Yard | OpenEI Community

    Open Energy Info (EERE)

    select from "solar" or "wind" energy. Under solar, the application lets you draw your own solar panel square on the roof, input a few values (size, derating, tilt angle, Azimuth...

  5. Oil & Natural Gas Technology DOE Award No.: DE-NT0005227 Final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Type of photovoltaic cell. Angle of tilt refers to the angle of the installed solar panel in relation to the horizontal plane. This angle is important because it will...

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for general use - 30 Gatan 652-Ta double tilt heating holder 23C-1000C 3030 Gatan 636-DH low background liquid nitrogen cooling holder -170C 23C 3030...

  7. berkley

    National Nuclear Security Administration (NNSA)

    region.

    Juwi will design, engineer, install, and finance a 3 MW fixed-tilt solar photovoltaic array at the Laboratory's Livermore site. The array will be located on...

  8. Advanced Technology & Discovery at Shanghai | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calibration, digital tilt and integrated CT console design to provide the rural market with a cost-efficient, highly reliable, high-quality image system. It was developed in...

  9. File:SWERA-155.pdf | Open Energy Information

    Open Energy Info (EERE)

    File history File usage Solar: monthly average latitude tilt map at 40km resolution for Cuba from NREL Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  10. Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM); Sleefe, Gerard E. (Cedar Crest, NM)

    2006-12-12

    A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.

  11. Beamline 6.1.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    along the sample plane; tilted sample holder for in-plane magnetized samples; He at atmospheric pressure, wet or dry Special notes Mutual indexing system with visible-light...

  12. R. P. Golingo, U. Shumlak, and ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 581.2 nm line. Optical distortions caused by the spectrome- ter are corrected by processing the images. The wavelength curvature and tilt in the image are removed by mapping...

  13. BPA-2013-00017-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kFCiVEI) BV BPA FOLk OFFICE TILTS DATE: DUE DATE: LOG Description of Request: Corona and Field Effects Version 3.0 software program Preferred format: electronic via email...

  14. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A velocity tilt of about 10% is imposed in the final several acceleration cells, and the beam compresses as it drifts through a neutralizing plasma, reaching a longitudinal waist ...

  15. OTilt | Open Energy Information

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.otilt.com Web Application Link: www.otilt.com Cost: Free References: DEVELOPMENT OF SIMULATION TOOL FOR FINDING OPTIMUM TILT ANGLES FOR SOLAR...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tilted away from the vertical laser beam axis (without losing from the image the impact point of the beam on cloud base). Standard atmospheric lidar observations are predicated on...

  17. NREL: Technology Deployment - FEMA Engages NREL in Hurricane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inclusion of renewable energy and energy efficiency into the planning process. Photo of a beach home ripped from its foundation. The home is tilted back and sand covers the...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics, accepted Sept. 2007. Effective offset to measured optical depths due to tilt of 1-degree in different directions. Offset observed in C1 MFRSR AOD relative to Cimel and representative offset due to tilt. Appearance of shading failure and effect on

  19. © Copyright 2013, First Solar, Inc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-15017PE 2 © Copyright 2013, First Solar, Inc. Summary * Estimations of POA irradiance are evaluated for tilt angles/orientations that are relevant to fixed tilt PV systems covering different climates in North America.

  20. Microsoft PowerPoint - Agapov_2015_CNMS Staff Science Highlight_Nanoscale.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays of tilted pillars with heights ranging from hundreds of nanometers to tens of micrometers were fabricated and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct

  1. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect (OSTI)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  2. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    DOE R&D Accomplishments [OSTI]

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more technically feasible than originally anticipated.

  3. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect (OSTI)

    Harder, J.E.

    1981-04-01

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  4. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  5. The effect of component efficiency and operating conditions on the 50-kW dish Stirling system in Riyadh, Saudia Arabia

    SciTech Connect (OSTI)

    Noyes, G.W. )

    1990-11-01

    This paper deals with the development of a weather data base and the performance prediction of a 50-kW dish Stirling system. An analysis of direct solar insolation data for 1985 from the site in Riyadh, Saudi Arabia was made to determine the available solar energy. A parameter study was done of the effects of component efficiencies and operating conditions on instantaneous and yearly average system efficiency using the prepared weather data. The system performance was found to be most affected by wind, mirror reflectivity, and exact placement of the receiver in the focal point of the mirror.

  6. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  7. The BEAM Project: Building Efficient Architectural Models

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity allows students the opportunity to explore materials used in architectural engineering and gain an understanding of their insolating properties. Students will research, design, build, test and improve a structure as to achieve the highest energy efficiency possible. Structures will be tested outside on a sunny day for eight hours with temperature changes being recorded each hour. Students will gain an understanding of how the combination of building location and orientation along with building design and materials can greatly affect the energy efficiency of a building.

  8. International Data Base for the U.S. Renewable Energy Industry

    SciTech Connect (OSTI)

    1986-05-01

    The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.

  9. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  10. Tribal Renewable Energy To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review May 4-7, 2015 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  11. Tribal Renewable Energy: To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review March 24-27, 2014 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  12. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  13. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  14. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  15. Tiltmeter leveling mechanism

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Farris, Alvis (late of Byron, CA)

    2002-01-01

    A tiltmeter device having a pair of orthogonally disposed tilt sensors that are levelable within an inner housing containing the sensors. An outer housing can be rotated to level at least one of the sensor pair while the inner housing can be rotated to level the other sensor of the pair. The sensors are typically rotated up to about plus or minus 100 degrees. The device is effective for measuring tilts in a wide range of angles of inclination of wells and can be employed to level a platform containing a third sensor.

  16. Chassis stabilization system

    DOE Patents [OSTI]

    Claxton, Gerald L. (Fresno, CA)

    1999-01-01

    A stabilizing suspension system is provided for vehicles carrying telescopic booms or aerial work platforms having a fixed axle and a oscillating axle. Hydraulic cylinders are connected to each end of the oscillating axle, each cylinder being capable of extending and retracting. An off level sensor senses the angle of tilt of the chassis in both left and right directions and, when a predetermined threshold of tilt has been detected, the hydraulic cylinder on the downhill side of the chassis is locked against retracting, but is free to move in the downhill direction to allow the downhill wheel to remain in contact with the ground.

  17. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  18. KSpaceNavigator

    Energy Science and Technology Software Center (OSTI)

    2009-08-03

    Intuitive GUI for manipulating microscope stages, allowing to align crystallographic data with stage coordinates and microscope images. Simulates kinematic diffraction patterns and Kikuchi line patterns. Simulated patterns can be displayed as overlay to actually measured data, allowing manual fingerprinting and angular alignment. Crystallographic data is fed to the program in form of CIF (crystallographic information file) files, which are available from many databases and cover virtually all crystal structure ever reported in any journal. Actualmore » goniometer scales can be linearized by lookup tables, program can be used with any microscope goniometer, double tilt and tilt-rotation type.« less

  19. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect (OSTI)

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  20. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  1. Mirror mount

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA); Bender, Donald A. (Dublin, CA)

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  2. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect (OSTI)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  3. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOE Patents [OSTI]

    Stallard, B.W.; Makowski, M.A.; Byers, J.A.

    1992-05-19

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam is described. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k[sub [phi

  4. Kinetic simulations of the formation and stability of the field-reversed configuration

    SciTech Connect (OSTI)

    Omelchenko, Yu. A.

    2000-05-01

    The Field-Reversed Configuration (FRC) is a high-beta compact toroidal plasma confined primarily by poloidal fields. In the FRC the external field is reversed on axis by the diamagnetic current carried by thermal plasma particles. A three-dimensional, hybrid, particle-in-cell (zero-inertia fluid electrons, and kinetic ions), code FLAME, previously used to study ion rings [Yu. A. Omelchenko and R. N. Sudan, J. Comp. Phys. 133, 146 (1997)], is applied to investigate FRC formation and tilt instability. Axisymmetric FRC equilibria are obtained by simulating the standard experimental reversed theta-pinch technique. These are used to study the nonlinear tilt mode in the ''kinetic'' and ''fluid-like'' cases characterized by ''small'' ({approx}3) and ''large'' ({approx}12) ratios of the characteristic radial plasma size to the mean ion gyro-radius, respectively. The formation simulations have revealed the presence of a substantial toroidal (azimuthal) magnetic field inside the separatrix, generated due to the stretching of the poloidal field by a sheared toroidal electron flow. This is shown to be an important tilt-stabilizing effect in both cases. On the other hand, the tilt mode stabilization by finite Larmor radius effects has been found relatively insignificant for the chosen equilibria. (c) 2000 American Institute of Physics.

  5. Achromatic self-referencing interferometer

    DOE Patents [OSTI]

    Feldman, Mark (Pleasanton, CA)

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  6. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  7. Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction

    SciTech Connect (OSTI)

    Salmeron, Miquel

    2000-06-15

    The structural, mechanical (friction) and spectroscopic properties of model lubricant films made of self-assembled and Langmuir-Blodgett monolayers on quartz, mica and gold have been investigated with atomic force microscopy, surface forces apparatus and sum frequency generation. In these films, the molecules tend to form densely packed structures, with the alkane chains mostly vertical and parallel to each other. The SFG results suggest that under moderate pressures of a few tens of MPa, the methyl end group of the alkane chains is rotated to accommodate a terminal gauche distortion. The molecule,however, retains its upright close packed structure with a lattice periodicity when ordered, which can be resolved by AFM. At pressures above 0.1 GPa, changes in the form of collective molecular tilts take place that lower the height of the monolayer. Only certain angles of tilt are allowed that are explained by the interlocking of methylene units in neighboring chains. The discrete angular tilts are accompanied by increases in friction. A model based on the van derWaals attractive energy between chains is used to explain the stability of the films and to estimate the cohesive energy changes during tilt and, from that, the increases in friction force.

  8. Determination of linear optics functions from TBT data

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab

    2006-05-01

    A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.

  9. Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet

    SciTech Connect (OSTI)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, Pat; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the length scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.

  10. Achromatic self-referencing interferometer

    DOE Patents [OSTI]

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  11. Magnetic and antimagnetic rotation in covariant density functional theory

    SciTech Connect (OSTI)

    Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J.

    2012-10-20

    Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.

  12. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect (OSTI)

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation. The interleaf leakage was up to 0.21%, whereas the intraleaf leakage was <0.12%. T and G decreased the doses by 10.7%, on average. Conclusions: This study demonstrated that MHI-TM2000 has the capability for high leaf position accuracy and low leakage, leading to highly accurate intensity-modulated radiotherapy delivery. Furthermore, substantial changes in the dosimetric data on field characteristics and leaf position accuracy were not observed even at the maximum pan or tilt rotation.

  13. Distributed Energy Resources for Carbon Emissions Mitigation

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

  14. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  15. Status of the Boeing Dish Engine Critical Component Project

    SciTech Connect (OSTI)

    Brau, H.W.; Diver, R.B.; Nelving, H.; Stone, K.W.

    1999-01-08

    The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based upon the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.

  16. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect (OSTI)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  17. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBtu) gross and 26 GJ (25 MBtu) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 Btu/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollowcore floor which serves as the main storage mass and for the comfort range in the house.

  18. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

  19. Stratospheric aerosol geoengineering

    SciTech Connect (OSTI)

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 510 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  20. Automated Fresnel lens tester system

    SciTech Connect (OSTI)

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  1. Efficiency of a solar collector with internal boiling

    SciTech Connect (OSTI)

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  2. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  3. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    SciTech Connect (OSTI)

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71.

  4. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur; Epstein, Michael

    2010-10-15

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  5. Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast

    SciTech Connect (OSTI)

    Warwick, William M.

    2012-06-30

    Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although it is possible to transmit power from a solar project at Hanford to California facilities, the costs of doing so add additional costs. Consequently, development of a large- scale solar project at Hanford to meet the renewable goals of Office of Science facilities on the west coast is currently uneconomic. This may change as solar costs decrease and California-based facilities face increasing costs for conventional and renewable energy produced in the state. PNNL should monitor those cost trends.

  6. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  9. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  12. Compact, flexible, frequency agile parametric wavelength converter

    DOE Patents [OSTI]

    Velsko, Stephan P. (Livermore, CA); Yang, Steven T. (Danville, CA)

    2002-01-01

    This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.

  13. Optimization of the AGS superconducting helical partial snake strength.

    SciTech Connect (OSTI)

    Lin,F.; Huang, H.; Luccio, A.U.; Roser, T.

    2008-06-23

    Two helical partial snakes, one super-conducting (a.k.a cold snake) and one normal conducting (a.k.a warm snake), have preserved the polarization of proton beam up to 65% in the Brookhaven Alternating Gradient Synchrotron (AGS) at the extraction energy from 85% at injection. In order to overcome spin resonances, stronger partial snakes would be required. However, the stronger the partial snake, the more the stable spin direction tilted producing a stronger horizontal intrinsic resonance. The balance between increasing the spin tune gap generated by the snakes and reducing the tilted stable spin direction has to be considered to maintain the polarization. Because the magnetic field of the warm snake has to be a constant, only the cold snake with a maximum 3T magnetic field can be varied to find out the optimum snake strength. This paper presents simulation results by spin tracking with different cold snake magnetic fields. Some experimental data are also analyzed.

  14. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  15. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  16. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  18. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  19. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d,more » electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.« less

  20. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  1. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  2. Note: O-ring stack system for electron gun alignment

    SciTech Connect (OSTI)

    Park, In-Yong; Cho, Boklae; Han, Cheolsu; Shin, Seungmin; Lee, Dongjun; Ahn, Sang Jung

    2015-01-15

    We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions. We show that the tilting angle and linear shift along the x and y axes as obtained from ten stacked O-rings are ±2.55° and ±2 mm, respectively. This study can easily be adapted to charged particle gun alignment and adjustments of the flange position in a vacuum, ensuring that its results can be useful with regard to electrical insulation between flanges with slight modifications.

  3. Inflation and alternatives with blue tensor spectra

    SciTech Connect (OSTI)

    Wang, Yi; Xue, Wei E-mail: wei.xue@sissa.it

    2014-10-01

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.

  4. Impact of the modulation doping layer on the ? = 5/2 anisotropy

    SciTech Connect (OSTI)

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ? = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [110] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d, electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ? = 5/2 anisotropy.

  5. Steerable vertical to horizontal energy transducer for mobile robots

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  6. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  7. Receiver for solar energy collector having improved aperture aspect

    DOE Patents [OSTI]

    McIntire, William R.

    1984-01-01

    A secondary concentrator for use in receiver systems for linear focusing primary concentrators is provided with reflector wings at each end. The wings increase the capture of light rays reflected from areas adjacent the rim of a primary concentrator, increasing the apparent aperture size of the absorber as viewed from the rim of the primary concentrator. The length, tilt, and curvature of the wing reflectors can be adjusted to provide an absorber having a desired aperture aspect.

  8. Mirror mount

    DOE Patents [OSTI]

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  9. Nd:YAG pulsed laser output at 1. 064, 1. 073, 1. 061 and 1. 052 micrometers singlet spectral lines

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Single spectral lines at 1.064, 1.073, 1.061, and 1.052 micron were obtained respectively by inserting into the cavity the uncoated (or coated) solid etalons of 0.1 mm or both 0.1 mm and 0.14 mm thickness and appropriately controlling the gain of Nd:YAG laser and tilted angles of the etalons. An output cavity mirror which has different reflectivities for different wavelengths was also developed.

  10. Self-registering spread-spectrum barcode method

    DOE Patents [OSTI]

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  11. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Citation Details In-Document Search Title: Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with

  12. Two-lens, anamorphic, Brewster-angle, Fourier-transform relay

    SciTech Connect (OSTI)

    Berggren, R.R.

    1987-01-01

    A two-lens system provides a simple and versatile means to relay a laser beam. The pair of lenses can provide true volume imaging, reproducing both amplitude and phase of the input beam. By using cylindrical lenses it is possible to change the aspect ratio of the beam. By adjusting the cylindrical curvatures, it is possible to minimize reflections by tilting the lenses at the Brewster angle.

  13. Monitoring the subsurface with quasi-static deformation

    SciTech Connect (OSTI)

    Sneider, Roel; Spetzler, Hartmut

    2013-09-06

    This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.

  14. Crystal nucleation and near-epitaxial growth in nacre

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal nucleation and near-epitaxial growth in nacre Crystal nucleation and near-epitaxial growth in nacre Print Thursday, 12 December 2013 13:56 Nacre--the iridescent inner lining of many mollusk shells-- has a unique strcuture that is remarkably resistant to fracture. The nacre featured on this cover is from Haliotis laevigata with average layer thickness 470-nm. The colors represent crystal orientationthe crystal lattice tilts across tablets.left stack all tablets are yellow, hence all

  15. Microsoft PowerPoint - C_pol_lightning_summary.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pol and Lightning Data Peter May and Hartmut Hoeller BMRC DLR Polarimetric radar Type of weather radar Change polarisation between pulses: Measures: Reflectivity Differential Reflectivity - oblateness Correlation between signals - mixed phase Differential phase on propagation - attenuation rain rates Applications - QPE, Hydrology, Storm microphysics Scan Strategy every 10 minutes 1) Long range low elevation scan 2) 17 tilt Volume scan up to 45 o , range 150 km 3) RHI Scan over ARCS, Profiler

  16. Structural Monitoring System (SMS) and Visual System (VS) | Department of

    Energy Savers [EERE]

    Energy Structural Monitoring System (SMS) and Visual System (VS) Structural Monitoring System (SMS) and Visual System (VS) Axis Communications, Inc. has developed network ready, environmentally tolerant, low-light level camera-visual systems (VS) with built-in pan and tilt mechanisms that permit remote monitoring of facilities that are in standby mode. PDF icon Structural Monitoring System (SMS) and Visual System (VS) More Documents & Publications GammaCam Technology Demonstration at

  17. A Simplified Thermohydrodynamic Model for Fluid Film Bearings

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    CADJOB was constructed with the industrial designer in mind. The objective of the program is to assist the mechanical designer in selecting a journal bearing (single or multi-pad, tilting or fixed-pad, single or multi-slot inlet, isothermal or THD operation) that will satisfy, specific working conditions. CADJOB may also be used for instructional purposes, to provide the student with insight into the relative importance of the various bearing parameters.

  18. Pattern of extensional faulting in pelagic carbonates of the Unbria-Marche Apennines of central Italy

    SciTech Connect (OSTI)

    Alvarez, W. )

    1990-05-01

    The Umbria-Marche Apennines provide a new region in which the nature passive-margin extensional faulting can be studied in outcrop. In these dominantly pelagic carbonate rocks of Jurassic and Cretaceous age, horsts acted as shallow, nonvolcani seamounts, while tilted half grabens formed deeper basins. One well-exposed seamount-basin transition agrees in general with the model of listric normal faulting and tilted half grabens, but shows interesting and significant divergences when studied in detail. A small sedimentary wedge at the faulted margin of a horst-block seamount thickens unexpectedly toward the adjacent basin. This wedge developed because of local convex-upward curvature of the shallowest part of a fault which at depth must have concave-up, listric geometry. The local sedimentary wedge resulted from deposition on the hanging wall as it tilted, followed by differential compaction of younger limestones that lapped onto the gentle slope leading from the horst-block seamount toward the basin. The map pattern of listric normal faulting in the Umbria-Marche Apennines suggests that both principal strain axes were extensional, in contrast to the usual pattern of listric faults crossed by transfer faults.

  19. The Origin and Coupling Mechanism of the Magnetoelectric Effect in TM Cl 2 -4SC(NH 2 ) 2 ( TM = Ni and Co)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mun, Eundeok; Wilcox, Jason; Manson, Jamie L.; Scott, Brian; Tobash, Paul; Zapf, Vivien S.

    2014-01-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl 2 -4SC(NH 2 ) 2 (DTN) and CoCl 2 -4SC(NH 2 ) 2 (DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH 2 ) 2 ]. By tracking the magnetic and electric properties of these compounds as a function ofmore » magnetic field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along the c -axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect to c -axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.« less

  20. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    SciTech Connect (OSTI)

    Fludra, A.

    2015-01-20

    We analyze a unique 15yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin etal. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30 in mid-2008 to 5 in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  1. Three-dimensional magnetohydrodynamics simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment

    SciTech Connect (OSTI)

    Myers, C. E.; Belova, E. V.; Brown, M. R.; Gray, T.; Cothran, C. D.; Schaffer, M. J.

    2011-11-15

    Recent counter-helicity spheromak merging experiments in the Swarthmore Spheromak Experiment (SSX) have produced a novel compact torus (CT) with unusual features. These include a persistent antisymmetric toroidal magnetic field profile and a slow, nonlinear emergence of the n = 1 tilt mode. Experimental measurements are inconclusive as to whether this unique CT is a fully merged field-reversed configuration (FRC) with strong toroidal field or a partially merged ''doublet CT'' configuration with both spheromak- and FRC-like characteristics. In this paper, the SSX merging process is studied in detail using three-dimensional resistive MHD simulations from the Hybrid Magnetohydrodynamics (HYM) code. These simulations show that merging plasmas in the SSX parameter regime only partially reconnect, leaving behind a doublet CT rather than an FRC. Through direct comparisons, we show that the magnetic structure in the simulations is highly consistent with the SSX experimental observations. We also find that the n = 1 tilt mode begins as a fast growing linear mode that evolves into a slower-growing nonlinear mode before being detected experimentally. A simulation parameter scan over resistivity, viscosity, and line-tying shows that these parameters can strongly affect the behavior of both the merging process and the tilt mode. In fact, merging in certain parameter regimes is found to produce a toroidal-field-free FRC rather than a doublet CT.

  2. Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

    SciTech Connect (OSTI)

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer

    2004-11-12

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.

  3. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    SciTech Connect (OSTI)

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer

    2005-06-06

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.

  4. Kinetic Effects on the Stability Properties of Field-reversed Configurations: II. Nonlinear Evolution

    SciTech Connect (OSTI)

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-11-25

    Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs. A wide range of ''bar s'' values is considered, where the ''bar s'' is the FRC kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and nonlinear stability of MHD modes with toroidal mode numbers n greater than or equal to 1 is investigated, including the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-''bar s'' simulations show nonlinear saturation of the n = 1 tilt mode. The n greater than or equal to 2 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction. Large-''bar s'' simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the importance of nonlinear effects, which are responsible for the saturation of instabilities in low-''bar s'' configurations, and also for the increase in FRC life-time compared to MHD models in high-''bar s'' configurations.

  5. Aspect Ratio Effects in the Driven, Flux-Core Spheromak

    SciTech Connect (OSTI)

    Hooper, E B; Romero-Talam?s, C A; LoDestro, L L; Wood, R D; McLean, H S

    2009-03-02

    Resistive magneto-hydrodynamic simulations are used to evaluate the effects of the aspect ratio, A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood, et al., Nucl. Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias ('gun') poloidal flux is fit well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations the n = 1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly-driven helicity injection at A {le} 1.4 in simulations generates reconnection events which open the magnetic field lines; this state is characteristic of SSPX. Near the spheromak tilt-mode limit, A {approx} 1.67 for a cylindrical flux conserver, the tilt approaches 90{sup o}; reconnection events are not generated up to the strongest drives simulated. The time-sequence of these events suggests that they are representative of a chaotic process. Implications for spheromak experiments are discussed.

  6. Alignment fixture

    DOE Patents [OSTI]

    Bell, Grover C. (Norris, TN); Gibson, O. Theodore (Lenoir City, TN)

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  7. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  9. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  12. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  13. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  14. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    SciTech Connect (OSTI)

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-15

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  15. THE GLOBAL SOLAR MAGNETIC FIELD-IDENTIFICATION OF TRAVELING, LONG-LIVED RIPPLES

    SciTech Connect (OSTI)

    Ulrich, R. K.; Tran, Tham

    2013-05-10

    We have examined the global structure of the solar magnetic field using data from the Fe I spectral line at 5250.2 A obtained at the 150 foot tower telescope at the Mt. Wilson Observatory. For each point on the solar surface, we find the value of the magnetic field in the meridional plane, B{sub m} , by averaging over all available observations using a cosine weighting method. We have revised our cosine weighting method by now taking into account more fully the highest latitude geometry. We use the annual variation in the latitude of the disk center, b{sub 0}, to deduce the tilt angle of the field relative to the local vertical so that we can find the radial component of the field, B{sub r} , from B{sub m} . We find this tilt angle to be small except for a near-polar zone where a tilt-angle model can reduce the annual variation. The reduced annual variation in the deduced B{sub r} allows us to study dB{sub r} /dt and associated deviations in B{sub r} from a smoothed B{sub r} with a smoothing width of 2.5 yr. These functions make evident the presence of small amplitude (3-5 G) but spatially coherent ripples with a semi-regular periodicity of one to three years. At any given time, the half-wavelength (peak to trough) is between 15 Degree-Sign and 30 Degree-Sign of latitude. These patterns are ubiquitous and in many cases drift from near the equator to the poles over a time period of roughly two years. The drift rate pattern is not compatible with simple advection.

  16. Constraining primordial vector mode from B-mode polarization

    SciTech Connect (OSTI)

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke E-mail: maresuke.shiraishi@pd.infn.it

    2014-10-01

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum, from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ?CDM model including the vector mode fits the data better than the model including the tensor mode. The difference in ?{sup 2} between the vector and tensor models is ??{sup 2}=3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.

  17. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  18. Crab Crossing Schemes and Studies for Electron Ion Collider

    SciTech Connect (OSTI)

    S. Ahmed, Y. Derbenev, V. Morozov, A. Castilla, G.A. Krafft, B. Yunn, Y. Zhang, J.R. Delayen

    2011-09-01

    This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon.

  19. Cosmology with Mimetic Matter

    SciTech Connect (OSTI)

    Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de

    2014-06-01

    We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

  20. Inflation in the generalized inverse power law scenario

    SciTech Connect (OSTI)

    Lu, Zhun

    2013-11-01

    We propose a single field inflationary model by generalizing the inverse power law potential from the intermediate model. We study the implication of our model on the primordial anisotropy of cosmological microwave background radiation. Specifically, we apply the slow-roll approximation to calculate the scalar spectral tilt n{sub s} and the tensor-to-scalar ratio r. The results are compared with the recent data measured by the Planck satellite. We find that by choosing proper values for the parameters, our model can well describe the Planck data.

  1. Ionization chamber dosimeter

    DOE Patents [OSTI]

    Renner, Tim R. (Berkeley, CA); Nyman, Mark A. (Berkeley, CA); Stradtner, Ronald (Kensington, CA)

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  2. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  3. Laser-driven deflection arrangements and methods involving charged particle beams

    DOE Patents [OSTI]

    Plettner, Tomas (San Ramon, CA); Byer, Robert L. (Stanford, CA)

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  4. Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM)

    2006-05-16

    A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.

  5. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOE Patents [OSTI]

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  6. Detection of free liquid in containers of solidified radioactive waste

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  7. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIBRA Specifications Resolution Point-to-Point 0.29 nm Information limit 0.19 nm Energy resolution 0.7 eV without monochromator 0.15 eV with monochromator STEM Spatial Resolution BF/DF 0.45 nm HAADF (attainable) 0.45 nm Electron emitter ZrO/W-field emitter system (Schottky) Illumination System Parallel wide field TEM mode 0.1 urad to 20 mrad illumination aperture Objective lens: HT objective Cs (Spherical aberration) 2.2 mm Cc (Chromatic aberration) 2.2 mm Specimen Stage Double tilt holder angle

  9. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOE Patents [OSTI]

    Stallard, Barry W. (Livermore, CA); Makowski, Michael A. (Livermore, CA); Byers, Jack A. (Danville, CA)

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  10. (2,2-Bipyridyl)bis(eta5-1,2,3,4,5-pentamethylcyclopentadienyl)Strontium(II)

    SciTech Connect (OSTI)

    Kazhdan, Daniel; Kazhdan, Daniel; Hu, Yung-Jin; Kokai, Akos; Levi, Zerubba; Rozenel, Sergio

    2008-07-03

    In the title compound, the Sr-N distances are 2.624 (3) and 2.676 (3) Angstroms. The Sr-centroid distances are 2.571 and 2.561 Angstroms. The N-C-C-N torsion angle in the bipyridine ligand is 2.2 (4){sup o}. Interestingly, the bipyridine ligand is tilted. The angle between the plane defined by Sr1, N1 and N2 and the plane defined by the 12 atoms of the bipyridine ligand is 10.7{sup o}.

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2 Photovoltaic Solar Resources U.S. Energy Information Administration / Annual Energy Review 2011 109 Notes: * Annual average solar resource data are shown for a tilt=latitude collector. * kWh/m 2 /Day = kilowatthours per square meter per day. Web Page: For related information, see http://www.nrel.gov/gis/maps.html. Sources: This map was created by the National Renewable Energy Laboratory for the Depart- ment of Energy (October 20, 2008). The data for Hawaii and the 48 contiguous States are a

  12. Circular dichroism in the electron microscope: Progress and applications (invited)

    SciTech Connect (OSTI)

    Schattschneider, P.; Loeffler, S.; Ennen, I.; Stoeger-Pollach, M.; Verbeeck, J.

    2010-05-15

    According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.

  13. Enhanced Confinement and Stability of a Field-Reversed Configuration with Rotating Magnetic Field Current Drive

    SciTech Connect (OSTI)

    Slough, J. T.; Miller, K. E.

    2000-08-14

    A new experiment has been constructed to study the sustainment of a field-reversed configuration (FRC) with a rotating magnetic field (RMF). FRCs were formed with cold, unmagnetized ions and thus without a kinetic ion component that was believed to provide stability to internal tilt modes. No destructive instabilities were observed for the RMF FRC. Only peripheral radial penetration of the RMF was observed. The radially inward flow arising from axial screening currents at the FRC edge reduced convective and conductive losses to the measurement limit of the diagnostics. (c) 2000 The American Physical Society.

  14. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  15. Extended-range tiltable micromirror

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM); Wiens, Gloria J. (Newberry, FL); Bronson, Jessica R. (Gainesville, FL)

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  16. Blue running of the primordial tensor spectrum

    SciTech Connect (OSTI)

    Gong, Jinn-Ouk

    2014-07-01

    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  17. Direct and alignment-insensitive measurement of cantilever curvature

    SciTech Connect (OSTI)

    Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.

    2013-07-15

    We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.

  18. Aluminum Tailor-Welded Blanks for High Volume Automotive Applications

    SciTech Connect (OSTI)

    Hovanski, Yuri; Upadhyay, Piyush; Pilli, Siva Prasad; Carlson, Blair; Carsley, John; Hartfield-Wunsch, Susan; Eisenmenger, Mark

    2014-02-04

    A Design of Experiment based approach is used to systematically investigate relationships between 8 different welding factors (4 related to tool geometry, 4 related to weld process control) and resulting weld properties including strength, elongation and formability in 1.2mm-2mm thick friction stir welding of AA5182-O for TWB application. The factors that result in most significant effects are elucidated. The interactions between several key factors like plunge depth, tool tilt, pin feature and pin length on the overall weld quality is discussed. Appropriate levels of factors that lead to excellent weld properties are also identified.

  19. Photo Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics <h3>Putting FODI Through Its Paces</h3>Diagnostics technician Rod Rinnert puts the primary lenses of the NIF Final Optics Damage Inspection System (FODI) through the system's tilt, roll and yaw paces after installation of new cabling; these movements aim the ultra-high-resolution camera at the individual integrated optics modules in the NIF beamline's final optics assemblies. The FODI is a precision robotic camera used inside the Target Chamber to inspect the final optics

  20. Photo Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Featured Photos <h3>Putting FODI Through Its Paces</h3>Diagnostics technician Rod Rinnert puts the primary lenses of the NIF Final Optics Damage Inspection System (FODI) through the system's tilt, roll and yaw paces after installation of new cabling; these movements aim the ultra-high-resolution camera at the individual integrated optics modules in the NIF beamline's final optics assemblies. The FODI is a precision robotic camera used inside the Target Chamber to inspect the final

  1. First Solar Corporate Template 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 © Copyright 2013, First Solar, Inc. Why Are We Backtracking? 3 © Copyright 2013, First Solar, Inc. Shading Response * First Solar modules are laid-out in landscape configuration * Shadow always perpendicular to the short edge of cells * Ignoring edge effects, shading has a similar diurnal profile on a fixed-tilt and a north-south axis horizontal tracker arrays I(V) Characteristic, Partially Shaded FS Series 2 PV Module, with Entire Cells Shaded 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100

  2. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. When carrying a load, always: a. tilt the load forward. b. center the load c. carry the load as high as possible d. none of the above 2.

  3. Dynamic octahedral fluctuations and the effects on orbital ordering in YTiO3

    SciTech Connect (OSTI)

    Li, Bing [University of Virginia] [University of Virginia; Louca, Despina [University of Virginia] [University of Virginia; Hu, Biao [University of Texas at Austin] [University of Texas at Austin; Niedziela, Jennifer L [ORNL] [ORNL; Zhou, Jianshi [University of Texas at Austin] [University of Texas at Austin; Goodenough, J. B. [University of Texas at Austin] [University of Texas at Austin

    2014-01-01

    YTiO3 is revisited to investigate the influence of local lattice dynamics on orbital ordering using inelastic neutron scattering. Orbital order survives well above the ferromagnetic transition, into the paramagnetic state, but what eventually leads to disorder is not well understood. By probing the local lattice dynamics via the dynamic pair density function analysis, it is found that local fluctuations associated with octahedral tilting and rotational modes and Y displacements persist up to 60 meV. The local fluctuations exhibit a temperature dependence that may lead to the suppression of the Ti orbital overlap leading to a temperature dependent orbital disorder.

  4. Formation, spin-up, and stability of field-reversed configurations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  5. Formation Flying and Deformable Instruments

    SciTech Connect (OSTI)

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  6. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory This movie shows our molecular dynamics simulation of a collision cascade near an asymmetric Σ11 tilt grain boundary in copper over a time of 380 ps. The grain boundary is at the center of the system. The top and bottom layers are fixed. The atoms are colored by their energies, and only defects are shown, including those atoms in the grain boundary and fixed surface. A primary knock-on atom (PKA) with 4-keV kinetic energy is initiated 15 angstroms below the grain

  7. NREL: Dynamic Maps, GIS Data, and Analysis Tools - International Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Maps Below are some examples of how geographic information system (GIS) modeling is used in international resource analyses. The JPG images are samples of the maps available. Refer to the Geospatial Toolkits for further information. Map of the Republic of the Philippines Wind Speed at 100m Map of Republic of the Philippines Wind Power Density at 80m Map of Flat Plate Tilted at Latitude Resource of China Map of Republic of the Philippines Wind Speed at 100m JPG 6,336 KB Map of

  8. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1985-10-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.

  9. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.

  10. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect (OSTI)

    Tyutyunnikov, Dmitry; zdl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  11. Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titan S Aberration-corrected TEM-STEM Techniques/Capabilities: * extreme Schottky-field emission gun (X-FEG) * CEOS dodecapole probe (STEM) aberration corrector * GIF Quantum with dual EELS and fast spectrum imaging capabilities * Operating voltages: 60kV, 120kV, and 300kV * HAADF/ADF/BF STEM detectors * advanced version 2k X 2k UltraScan CCD * CompuStage SuperTwin lens (±30° tilt) Contact: Miaofang Chi, chim@ornl.gov, (865) 241-4284 Ge (112) Current available dedicated holders: * FEI

  12. Laser goniometer

    DOE Patents [OSTI]

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  13. Microsoft PowerPoint - schumacher-frederick.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ti P fil D i d F C Heating Profiles Derived From Cm- wavelength Radar During TWP-ICE Courtney Schumacher and Kaycee Frederick Texas A&M University Tropical cloud population Stratiform Houze et al (1980) Houze et al. (1980) TWP-ICE BMRC's C-POL - C-band (5 cm) radar - 1.0° beamwidth - Minimum reflectivity used for this study is 0 dBZ Polarimetric variables used for - Polarimetric variables used for attenuation correction Volume scans: (km) Volume scans: * every 10 min * 17 tilts Height Slant

  14. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect (OSTI)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  15. Strain relaxation in epitaxial SrRuO{sub 3} thin films on LaAlO{sub 3} substrates

    SciTech Connect (OSTI)

    Gao, M.; Du, H.; Dai, C.; Lin, Y.; Ma, C. R.; Liu, M.; Collins, G.; Zhang, Y. M.; Chen, C. L.

    2013-09-30

    Strain relaxation behavior of epitaxial SrRuO{sub 3} thin films on (001) LaAlO{sub 3} substrates was investigated using high resolution X-ray diffraction. Lattice distortion and dislocation densities were systematically studied with samples under different growth conditions. Reciprocal space maps reveal different strain relaxation behavior in SrRuO{sub 3} thin films grown at different temperatures. Two kinds of strain relaxation mechanisms were proposed to understand the growth dynamics, including the evolution of threading dislocations and the tilt of crystalline planes.

  16. So You Want to Go Solar? 3 Things to Consider When Installing Solar Power

    Energy Savers [EERE]

    at Home | Department of Energy So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home October 3, 2014 - 12:37pm Q&A What do you want to know about solar energy at home? Tell Us Addthis Installing solar panels requires the proper orientation and tilt, and it is best to use a professional contractor. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory

  17. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's

  18. Top 6 Things You Didn't Know About Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Top 6 Things You Didn't Know About Solar Energy June 22, 2012 - 4:55pm Addthis Installing a concentrating solar power system in Gila Bend, Arizona. The curved mirrors are tilted toward the sun, focusing sunlight on tubes that run the length of the mirrors. The reflected sunlight heats a fluid flowing through the tubes. The hot fluid then is used to boil water in a conventional steam-turbine generator to produce electricity. | Photo by Dennis Schroeder. Installing a concentrating

  19. Alarm toe switch

    DOE Patents [OSTI]

    Ganyard, Floyd P. (Albuquerque, NM)

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  20. Experimental study of a fiber absorber-suppressor modified Trombe wall

    SciTech Connect (OSTI)

    Choudhury, D; Birkebak, R C

    1982-12-01

    An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

  1. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  2. Alarm toe switch. [Patent application

    DOE Patents [OSTI]

    Ganyard, F.P.

    1980-11-18

    An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.

  3. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect (OSTI)

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  4. Experimental study of slab solar collection on the hydronic system of road

    SciTech Connect (OSTI)

    Gao, Qing; Huang, Yong; Li, Ming; Liu, Yan [Jilin University, Changchun (China); Yan, Y.Y. [University of Nottingham (United Kingdom)

    2010-12-15

    This paper studied the slab solar collection (SSC) process, which is one of the essential compositions of road hydronic ice-snow melting (HISM) system that stores solar energy in summer to melt ice and snow on the road in winter. Its aim is to find out the heat transfer characteristic of the SSC and heat collecting efficiency and the influence of pipe spacing and flow rate by experiment. As shown in experimental results, the average heat collecting capacity is about 150-250 W/m{sup 2} in natural summer condition, while the solar radiation intensity is about 300-1000 W/m{sup 2}. It is shown that the increment of fluid flow results in the increment of heat collection efficiency, while the increment of pipe spacing results in the decrement of the efficiency in experiment modes. The results show that the road slab can obtain about 30% solar heat in summertime, and the solar collection can lower the pavement temperature and reduce the insolation weathering. (author)

  5. Discovery of a transiting planet near the snow-line

    SciTech Connect (OSTI)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Henze, C.; Bryson, S. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Isaacson, H.; Kolbl, R.; Marcy, G. W. [University of California, Berkeley, CA 94720 (United States); Stassun, K. [Department of Physics and Astronomy, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Bastien, F., E-mail: dkipping@cfa.harvard.edu [Physics Department, Fisk University, 1000 17th Ave. N, Nashville, TN 37208 (United States)

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4? confidence. Kepler-421b receives the same insolation as a body at ?2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ?180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ?3 Myr, indicating that Kepler-421b may have formed at its observed location.

  6. Impacts of Array Configuration on Land-Use Requirements for Large-Scale Photovoltaic Deployment in the United States: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R. M.

    2008-05-01

    Land use is often cited as an important issue for renewable energy technologies. In this paper we examine the relationship between land-use requirements for large-scale photovoltaic (PV) deployment in the U.S. and PV-array configuration. We estimate the per capita land requirements for solar PV and find that array configuration is a stronger driver of energy density than regional variations in solar insolation. When deployed horizontally, the PV land area needed to meet 100% of an average U.S. citizen's electricity demand is about 100 m2. This requirement roughly doubles to about 200 m2 when using 1-axis tracking arrays. By comparing these total land-use requirements with other current per capita land uses, we find that land-use requirements of solar photovoltaics are modest, especially when considering the availability of zero impact 'land' on rooftops. Additional work is need to examine the tradeoffs between array spacing, self-shading losses, and land use, along with possible techniques to mitigate land-use impacts of large-scale PV deployment.

  7. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect (OSTI)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  8. Results of the Boeing/DOE DECC Phase 1 stirling engine project

    SciTech Connect (OSTI)

    STONE,KENNETH W.; CLARK,TERRY; NELVING,HANS; DIVER JR.,RICHARD B.

    2000-03-02

    Phase I of Boeing Company/DOE Dish Engine Critical Component (DECC) Project started in April of 1998 and was completed in 1999. The Phase I objectives, schedule, and test results are presented in this paper. These data shows the power, energy, and mirror performance are comparable to that when the hardware was first manufactured 15 years ago. During the Phase I and initial Phase II test period the on-sun system accumulated over 3,800 hours of solar-powered operating time, accumulated over 4,500 hours of concentrator solar tracking time, and generated over 50,000 kWh of grid-compatible electrical energy. The data also shows that the system was available 95 {percent} of the time when the sun's insolation level was above approximately 300 w/m{sup 2}, and achieved a daily energy efficiency between 20{percent} and 26{percent}. A second concentrator was refurbished during Phase I and accumulated over 2,200 hours of solar track time. A second Stirling engine operated 24 hours a day in a test cell in Sweden and accumulated over 6,000 test hours. Discussion of daily operation shows no major problems encountered during the testing that would prevent commercialization of the technology. Further analysis of the test data shows that system servicing with hydrogen, coolant and lubricating oil should not be a major O and M cost.

  9. A two-dimensional model for the heat transfer on the external circuit of a Stirling engine for a dish/Stirling system

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    In this paper the {kappa}-{var{underscore}epsilon} turbulent model for the incompressible fluid flow has been used to describe the heat transfer and gas dynamical processes on the external circuit of a Stirling Engine as used on a Solar Dish/Stirling System. The problem considered, in this work for a cavity-type heat receiver of the Stirling Engine, is that of the heat transfer in the body of the shell of the heat exchangers of the engine due to the thermal conductivity, the convective heat transfer between the working fluid and the walls of the engine internal gas circuit and the heat transfer due to the forced convection of the air in the cavity and in the attached air domain. The boundary conditions employed on the engines internal circuit were obtained using the developed one-dimensional second level mathematical model of the engine working cycle. Physical models for the distribution of the solar insolation on the bottom and side walls of the heat receiver have been taken into account and the temperature fields for the heat receiver and the air velocity have been obtained for the case when the heat receiver is affected by wind. The numerical results show that it is in the region of the boundary of the input window of the heat receiver where there is the largest reduction in the temperature in the shell of the heat exchangers and this is due to the convection of the air.

  10. Semiannual technical progress report: Advanced development of PV encapsulants. Annual subcontract report, 1 January 1993--30 June 1993

    SciTech Connect (OSTI)

    Holley, W.H.

    1993-12-01

    This report describes the results of the literature search, interviews, and site visits conducted during the first six months of this subcontract. This survey was conducted to establish a baseline of information about thermal and photothermal degradation of EVA and case history surveys on discoloration (yellowing/browning) of EVA-based encapsulants in fielded flat-plate PV modules. The literature search revealed that EVA will undergo thermolysis of the acetate groups at temperatures of 130{degrees}C to 150{degrees}C and above, leading to formation of double bonds in the backbone of the copolymer. The survey of case histories of EVA-based encapsulant discoloration in fielded modules in the United States revealed that the problem is limited to those areas of the west and southwest that have comparatively high solar insolation and ambient temperature. It is clear that the discoloration problem is not limited to the modules of any one manufacturer. Discoloration in the EVA encapsulant was experienced in fielded modules from all major US module producers.

  11. Instrumented performance study of a passive solar heated earth sheltered residence

    SciTech Connect (OSTI)

    Yarnell, R.C.; Yarnell, B.K.

    1983-01-01

    This paper reports the results of a one year effort to gather performance data on an earth sheltered, passive solar house located in Carson City, Nevada. Automatic equipment logged insolation and temperature data for a one (1) year period commencing shortly after completion of construction of the structure and its occupancy by the owners. The use of a recording micrologger reflects an effort to obtain unbiased, factual data on the performance of the house and to reduce the impact of subjective perceptions of the occupants' comfort on the report. Raw data was gathered continuously. A pyranometer measured the amount of whole sky solar radiation. Results were recorded as Btu's per square foot. Thermistors measured temperatures of: (a) outdoor ambient air, (b) indoor living room ambient air, (c) indoor greenhouse ambient air, (d) dining room mass wall, (e) greenhouse mass wall, (f) perimeter earth-sheltered wall, and (g) solar heated DHW storage tank. An event counter recorded user operated insulating adjustments (raising and lowering of insulating of curtains) and auxiliary heating (building or stoking a fire in the wood burning stove).

  12. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  13. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    SciTech Connect (OSTI)

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  14. Thermal control system and method for a passive solar storage wall

    DOE Patents [OSTI]

    Ortega, Joseph K. E. (Westminister, CO)

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  15. Options for improving the load matching capability of distributed photovoltaics: Methodology and application to high-latitude data

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Lund, Peter D.

    2009-11-15

    At high latitudes, domestic electricity demand and insolation are negatively correlated on both an annual and a diurnal basis. With increasing integration of distributed photovoltaics (PV) in low-voltage distribution grids of residential areas, limits to the penetration level are set by voltage rise due to unmatched production and load. In this paper a methodology for determining the impacts of three options for increased load matching is presented and applied to high-latitude data. The studied options are PV array orientation, demand side management (DSM) and electricity storage. Detailed models for domestic electricity demand and PV output are used. An optimisation approach is applied to find an optimal distribution of PV systems on different array orientations and a best-case evaluation of DSM and a storage model are implemented. At high penetration levels, storage is the most efficient option for maximising the solar fraction, but at lower overproduction levels, the impact of DSM is equal or slightly better. An east-west orientation of PV arrays is suggested for high penetration levels, but the effect of the optimised orientation is small. Without an optimised storage operation, the overproduced power is more efficiently reduced by DSM than storage, although this is highly dependent on the applied DSM algorithm. Further research should be focused on the DSM potential and optimal operation of storage. (author)

  16. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    SciTech Connect (OSTI)

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  17. Final report on "Modeling Diurnal Variations of California Land Biosphere CO2 Fluxes"

    SciTech Connect (OSTI)

    Fung, Inez

    2014-07-28

    In Mediterranean climates, the season of water availability (winter) is out of phase with the season of light availability and atmospheric demand for moisture (summer). Multi-year half-hourly observations of sap flow velocities in 26 evergreen trees in a small watershed in Northern California show that different species of evergreen trees have different seasonalities of transpiration: Douglas-firs respond immediately to the first winter rain, while Pacific madrones have peak transpiration in the dry summer. Using these observations, we have derived species-specific parameterization of normalized sap flow velocities in terms of insolation, vapor pressure deficit and near-surface soil moisture. A simple 1-D boundary layer model showed that afternoon temperatures may be higher by 1 degree Celsius in an area with Douglas-firs than with Pacific madrones. The results point to the need to develop a new representation of subsurface moisture, in particular pools beneath the organic soil mantle and the vadose zone. Our ongoing and future work includes coupling our new parameterization of transpiration with new representation of sub-surface moisture in saprolite and weathered bedrock. The results will be implemented in a regional climate model to explore vegetation-climate feedbacks, especially in the dry season.

  18. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  19. Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint

    SciTech Connect (OSTI)

    Al-Karaghouli, A.; Kazmerski, L. L.

    2010-10-01

    The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

  20. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  1. Solar absorption cooling plant in Seville

    SciTech Connect (OSTI)

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  2. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  3. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  4. Climate Model Response from the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Caldeira, Ken; Boucher, Olivier; Robock, Alan; Rasch, Philip J.; Alterskjaer, Kari; Bou Karam, Diana; Cole, Jason N.; Curry, Charles L.; Haywood, J.; Irvine, Peter; Ji, Duoying; Jones, A.; Kristjansson, J. E.; Lunt, Daniel; Moore, John; Niemeier, Ulrike; Schmidt, Hauke; Schulz, M.; Singh, Balwinder; Tilmes, S.; Watanabe, Shingo; Yang, Shuting; Yoon, Jin-Ho

    2013-08-09

    Solar geoengineeringdeliberate reduction in the amount of solar radiation retained by the Earthhas been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.

  5. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    SciTech Connect (OSTI)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  6. Effects of sulfate aerosol on the central Pennsylvania surface shortwave radiation budget. Master's thesis

    SciTech Connect (OSTI)

    Guimond, P.W.

    1994-12-01

    Surface radiation measurements are taken simultaneously with measurements of meteorological variables including temperature, pressure, relative humidity, and visibility to evaluate the impact of sulfate haze on the surface radiation budget. A relationship is sought between flux losses due only to aerosol and relative humidity, visibility or both, with the goal of facilitating parameterization of sulfate hazes by climate modelers. At the same time, a rotating shadowband radiometer (RSR) is compared with a more costly sun photometer to determine the feasibility of substituting the former for the latter in future research. It is found that depletion of surface radiation due to aerosol is typically ten to twenty percent of initial insolation, and that the losses can be correlated with zenith angle, relative humidity and optical depth. In the case of flux loss as a function of optical depth, the two are related in a nearly linear fashion. It is also discovered that the RSR has a predictable error owing to a wider field of view than the sun photometer, and can be used as a replacement for the former by correcting for the error.

  7. Photonic-Doppler-Velocimetry, Paraxial-Scalar Diffraction Theory and Simulation

    SciTech Connect (OSTI)

    Ambrose, W. P.

    2015-07-20

    In this report I describe current progress on a paraxial, scalar-field theory suitable for simulating what is measured in Photonic Doppler Velocimetry (PDV) experiments in three dimensions. I have introduced a number of approximations in this work in order to bring the total computation time for one experiment down to around 20 hours. My goals were: to develop an approximate method of calculating the peak frequency in a spectral sideband at an instant of time based on an optical diffraction theory for a moving target, to compare the ‘measured’ velocity to the ‘input’ velocity to gain insights into how and to what precision PDV measures the component of the mass velocity along the optical axis, and to investigate the effects of small amounts of roughness on the measured velocity. This report illustrates the progress I have made in describing how to perform such calculations with a full three dimensional picture including tilted target, tilted mass velocity (not necessarily in the same direction), and small amounts of surface roughness. With the method established for a calculation at one instant of time, measured velocities can be simulated for a sequence of times, similar to the process of sampling velocities in experiments. Improvements in these methods are certainly possible at hugely increased computational cost. I am hopeful that readers appreciate the insights possible at the current level of approximation.

  8. Structural and magnetic phase transitions inEuTi1-xNbxO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ling; Morris, James R.; Koehler, Michael R.; Dun, Zhiling; Zhou, Haidong; Yan, Jiaqiang; Mandrus, David; Keppens, Veerle

    2015-07-30

    We have investigated the structural and magnetic phase transitions in EuTi1-xNbxO3 (0 ≤ x ≤ 0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pm3¯m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x ≥ 0.1. The structural transition in pure and doped compounds is marked by a dramatic steplike softening of themore »elastic moduli near TS , which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.« less

  9. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect (OSTI)

    Jones, L.S.; Blakey, R.C. (Univ. of Northern Arizona, Flagstaff, AZ (United States). Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  10. Phase transition in the Ruddlesden-Popper layered perovskite Li{sub 2}SrTa{sub 2}O{sub 7}

    SciTech Connect (OSTI)

    Pagnier, T.; Rosman, N.; Galven, C.; Suard, E.; Fourquet, J.L.; Le Berre, F.; Crosnier-Lopez, M.P.

    2009-02-15

    The crystal structure of the Ruddlesden-Popper layered perovskite Li{sub 2}SrTa{sub 2}O{sub 7} has been characterized at various temperatures between -185 and 300 deg. C by several techniques: X-ray and neutron powder diffraction, single crystal diffraction, transmission electron microscopy and Raman spectroscopy. The low temperature structure has been confirmed to be orthorhombic Cmcm with a small octahedra antiphase tilting ({phi}{phi}0) ({phi}{phi}0) inside the perovskite blocks. With temperature, the tilting progressively vanishes leading around 230 deg. C to a tetragonal symmetry (S.G. I4/mmm). This reversible phase transition, followed by X-ray and neutron thermodiffraction and thermal Raman measurements, is considered as of second order. An attribution of the Raman bands based on normal mode analysis is proposed. - Graphical abstract: Thermal evolution of Li{sub 2}SrTa{sub 2}O{sub 7} X-ray powder diffraction patterns showing the structural transformation from orthorhombic to tetragonal cell.

  11. Towards 3D mapping of BO₆ octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; Qiao, Liang; Moon, Eun Ju; Ovchinnikov, Oleg S.; May, Steven J.; Biegalski, Michael D.; Borisevich, Albina Y.

    2015-07-15

    The rich functionalities in the ABO₃ perovskite oxides originate at least partly from the ability of the corner-connected BO₆ octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO₆ rotation patterns in complex oxides ABO₃ with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO₃ heterointerfacesmore » taken in specific orientations. The rotating phase of BO₆ octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO₃/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.« less

  12. Prototype secondary mirror assembly design for the space infrared telescope facility

    SciTech Connect (OSTI)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1989-02-01

    The authors describe their design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under development for the NASA Space Infrared Telescope Facility (SIRTF) program. The SIRTF secondary mirror assembly must operate below 4 K and provide the functions of highly precise 2-axis dynamic tilting (chopping) in addition to the conventional functions needed by the SIRTF observatory. Their PSMA design employs a fused quartz mirror kinematically attached at its center to an aluminium cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexure-pivoted mass enhancing servo system stability and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose dimensional characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a six degree of freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  13. The insensitivity of reflected sh waves to anisotropy in an underlaying layered medium

    SciTech Connect (OSTI)

    Schoenberg, M.; Costa, J. )

    1991-11-01

    This paper reports on propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane which is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a halfspace of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium I as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence.

  14. Refining the phase diagram of Pb{sub 1?x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1?x/4}O{sub 3} ceramics by structural, dielectric, and anelastic spectroscopy investigations

    SciTech Connect (OSTI)

    Craciun, F. Cordero, F.; Ciuchi, I. V.; Mitoseriu, L.; Galassi, C.

    2015-05-14

    We present the results of dielectric and anelastic spectroscopy measurements, together with X-ray diffraction investigations, which allow us to establish more precisely the phase diagram of Pb{sub 1?x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1?x/4}O{sub 3} (PLZT x/90/10) in the compositional range around the AFE/FE phase boundary (0??0.032 are antiferroelectric with orthorhombic Pbam structure. In-between, for compositions with 0.025???x???0.032, a coexistence of the AFE/FE phases is evidenced. The use of complementary dielectric and anelastic techniques allows to follow the phase transitions shifts throughout all the interesting composition range and to construct the temperature-composition phase diagram. The tilt instability line, separating the R3c and R3m low and high temperature phases, has been evidenced. Moreover, the new transition, associated with the onset of disordered tilting preceding the long range order of the R3c phase, previously found in Zr-rich Pb(Zr,Ti)O{sub 3}, is confirmed in rhombohedral PLZT x/90/10 compositions.

  15. Nonlinear and Non-ideal Effects on FRC Stability

    SciTech Connect (OSTI)

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada

    2002-10-21

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs in strongly kinetic and small-gyroradius, MHD-like regimes. The n = 1 tilt instability mechanism and stabilizing factors are investigated in detail including nonlinear and resonant particle effects, particle losses along the open field lines, and Hall stabilization. It is shown that the Hall effect determines the mode rotation and change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to the finite Larmor radius effects. Resonant particle effects are important in the large gyroradius regime regardless of the separatrix shape, and even in cases when a large fraction of the particle orbits are stochastic. Particle loss along the open field lines has a destabilizing effect on the tilt mode and contributes to the ion spin up in toroidal direction. The nonlinear evolution of unstable modes in both kinetic and small-gyroradius FRCs is shown to be considerably slower than that in MHD simulations. Our simulation results demonstrate that a combination of kinetic and nonlinear effects is a key for understanding the experimentally observed FRC stability properties.

  16. Nonlinear stability of field-reversed configurations with self-generated toroidal field

    SciTech Connect (OSTI)

    Omelchenko, Y. A.; Schaffer, M. J.; Parks, P. B.

    2001-10-01

    The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs.

  17. Advances in the numerical modeling of field-reversed configurations

    SciTech Connect (OSTI)

    Belova, Elena V.; Davidson, Ronald C.; Ji, Hantao; Yamada, Masaaki

    2006-05-15

    The field-reversed configuration (FRC) is a compact torus with little or no toroidal magnetic field. A theoretical understanding of the observed FRC equilibrium and stability properties presents significant challenges due to the high plasma beta, plasma flows, large ion gyroradius, and the stochasticity of the particle orbits. Advanced numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmas. Results of such simulations are presented in this paper. It is shown that 3D nonlinear hybrid simulations using the HYM code [E. V. Belova et al., Phys. Plasmas 7, 4996 (2000)] reproduce all major experimentally observed stability properties of elongated (theta-pinch-formed) FRCs. Namely, the scaling of the growth rate of the n=1 tilt mode with the S*/E parameter (S* is the FRC kinetic parameter, E is elongation, and n is toroidal mode number), the nonlinear saturation of the tilt mode, ion toroidal spin-up, and the growth of the n=2 rotational mode have been demonstrated and studied in detail. The HYM code has also been used to study stability properties of FRCs formed by the counterhelicity spheromak merging method. A new stability regime has been found for FRCs with elongation E{approx}1, which requires a close-fitting conducting shell and energetic beam ion stabilization.

  18. On the interaction of solutes with grain boundaries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dingreville, Remi Philippe Michel; Berbenni, Stephane

    2015-11-01

    Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi–Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e.more » type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank–Bilby formalism. Moreover, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.« less

  19. Misaligned Disks as Obscurers in Active Galaxies

    SciTech Connect (OSTI)

    Lawrence, A.; Elvis, M.

    2010-06-02

    We review critically the evidence concerning the fraction of Active Galactic Nuclei (AGN) which appear as Type 2 AGN, carefully distinguishing strict Type 2 AGN from both more lightly reddened Type 1 AGN, and from low excitation narrow line AGN, which may represent a different mode of activity. Low excitation AGN occur predominantly at low luminosities; after removing these, true Type 2 AGN represent 58{-+}5% of all AGN, and lightly reddened Type 1 AGN a further {approx}15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGN of exactly 50%. This 'tilted disc' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well resolved objects show that such misalignments are indeed present.

  20. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect (OSTI)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  1. Electron holography of devices with epitaxial layers

    SciTech Connect (OSTI)

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0}?=?12.75?V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge}?=?18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L?=?30?nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  3. Apparatus for depositing a low work function material

    DOE Patents [OSTI]

    Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.

    2006-10-10

    Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.

  4. Low work function surface layers produced by laser ablation using short-wavelength photons

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Dinh, Long N. (Concord, CA); Siekhaus, Wigbert J. (Berkeley, CA)

    2000-01-01

    Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.

  5. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  6. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  7. Towards 3D mapping of BO? octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    SciTech Connect (OSTI)

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; Qiao, Liang; Moon, Eun Ju; Ovchinnikov, Oleg S.; May, Steven J.; Biegalski, Michael D.; Borisevich, Albina Y.

    2015-07-15

    The rich functionalities in the ABO? perovskite oxides originate at least partly from the ability of the corner-connected BO? octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO? rotation patterns in complex oxides ABO? with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO? heterointerfaces taken in specific orientations. The rotating phase of BO? octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO?/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.

  8. Increasing the solar photovoltaic energy capture on sunny and cloudy days

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2011-01-15

    This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days. (author)

  9. First Principles Simulation of the Bonding, Vibrational, and Electronic Properties of the Hydration Shells of the High-Spin Fe3+ Ion in Aqueous Solutions

    SciTech Connect (OSTI)

    Bogatko, Stuart A.; Bylaska, Eric J.; Weare, John H.

    2010-02-11

    Results of parameter-free first principles simulations of a spin up 3d5 Fe3+ ion hydrated in an aqueous solution (64 waters, 30 ps, 300 K) are reported. The first hydration shell associated with the first maximum of the radial distribution function, gFeO(r), at d(Fe?OI) = 2.11?2.15 , contains 6 waters with average d(OH) = 0.99 , in good agreement with observations. A second shell with average coordination number 13.3 can be identified with average shell radius of d(Fe?OII) = 4.21?4.32 . The waters in this hydration shell are coordinated to the first shell via a trigonal H-bond network with d(OI?OII) = 2.7?2.9 , also in agreement with experimental measurements. The first shell tilt angle average is 33.4 as compared to the reported value of 41. Wannier?Boys orbitals (WBO) show an interaction between the unoccupied 3d orbitals of the Fe3+ valence (spin up, 3d5) and the occupied spin down lone pair orbitals of first shell waters. The effect of the spin ordering of the Fe3+ ion on the WBO is not observed beyond the first shell. From this local bond analysis and consistent with other observations, the electronic structure of waters in the second shell is similar to that of a bulk water even in this strongly interacting system. H-bond decomposition shows significant bulk-like structure within the second shell for Fe3+. The vibrational density of states shows a first shell red shift of 230 cm?1 for the v1,2v2,v3 overtone, in reasonable agreement with experimental estimates for trivalent cations (300 cm?1). No exchanges between first and second shell were observed. Waters in the second shell exchanged with bulk waters via dissociative and associative mechanisms. Results are compared with an AIMD study of Al3+ and 64 waters. For Fe3+ the average first shell tilt angle is larger and the tilt angle distribution wider. H-bond decomposition shows that second shell to second shell H-bonding is enhanced in Fe3+ suggesting an earlier onset of bulk-like water structure.

  10. BIPOLAR MAGNETIC REGIONS ON THE SUN: GLOBAL ANALYSIS OF THE SOHO/MDI DATA SET

    SciTech Connect (OSTI)

    Stenflo, J. O.; Kosovichev, A. G. E-mail: AKosovichev@solar.stanford.edu

    2012-02-01

    The magnetic flux that is generated by dynamo processes inside the Sun emerges in the form of bipolar magnetic regions. The properties of these directly observable signatures of the dynamo can be extracted from full-disk solar magnetograms. The most homogeneous, high-quality synoptic data set of solar magnetograms has been obtained with the Michelson Doppler Imager (MDI) instrument on the Solar and Heliospheric Observatory spacecraft during 1995-2011. We have developed an IDL program that has, when applied to the 73,838 magnetograms of the MDI data set, automatically identified 160,079 bipolar magnetic regions that span a range of scale sizes across nearly four orders of magnitude. The properties of each region have been extracted and statistically analyzed, in particular with respect to the polarity orientations of the bipolar regions, including their tilt-angle distributions and their violations of Hale's polarity law. The latitude variation of the average tilt angles (with respect to the E-W direction), which is known as Joy's law, is found to closely follow the relation 32.{sup 0}1 Multiplication-Sign sin (latitude). There is no indication of a dependence on region size that one may expect if the tilts were produced by the Coriolis force during the buoyant rise of flux loops from the tachocline region. A few percent of all regions have orientations that violate Hale's polarity law. We show explicit examples, from different phases of the solar cycle, where well-defined medium-size bipolar regions with opposite polarity orientations occur side by side in the same latitude zone in the same magnetogram. Such oppositely oriented large bipolar regions cannot be part of the same toroidal flux system, but different flux systems must coexist at any given time in the same latitude zones. These examples are incompatible with the paradigm of coherent, subsurface toroidal flux ropes as the source of sunspots, and instead show that fluctuations must play a major role at all scales for the turbulent dynamo. To confirm the profound role of fluctuations at large scales, we show explicit examples in which large bipolar regions differ from the average Joy's law orientation by an amount between 90 Degree-Sign and 100 Degree-Sign . We see no observational support for a separation of scales or a division between a global and a local dynamo, since also the smallest scales in our sample retain a non-random component that significantly contributes to the accumulated emergence of a north-south dipole moment that will lead to the replacement of the old global poloidal field with a new one that has the opposite orientation.

  11. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    SciTech Connect (OSTI)

    Zhao, L.; Landi, E.; Gibson, S. E.

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the south, associated with the early reversal of the polar magnetic field in the north relative to the south.

  12. Quadruple-layered perovskite (CuCl)Ca{sub 2}NaNb{sub 4}O{sub 13}

    SciTech Connect (OSTI)

    Kitada, A.; Tsujimoto, Y.; Yamamoto, T. [Department of Energy and Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kobayashi, Y. [Department of Energy and Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); Narumi, Y. [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Kindo, K. [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Aczel, A.A.; Luke, G.M. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Uemura, Y.J. [Department of Physics, Columbia University, New York, NY 10027 (United States); Kiuchi, Y.; Ueda, Y. [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Yoshimura, K. [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Ajiro, Y. [Department of Energy and Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); Kageyama, H., E-mail: kage@scl.kyoto-u.ac.jp [Department of Energy and Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2012-01-15

    We will present the synthesis, structure and magnetic properties of a new quadruple-layered perovskite (CuCl)Ca{sub 2}NaNb{sub 4}O{sub 13}. Through a topotactic ion-exchange reaction with CuCl{sub 2}, the precursor RbCa{sub 2}NaNb{sub 4}O{sub 13} presumably having an incoherent octahederal tliting changes into (CuCl)Ca{sub 2}NaNb{sub 4}O{sub 13} with a 2a{sub p} Multiplication-Sign 2a{sub p} Multiplication-Sign 2c{sub p} superstructure (tetragonal; a=7.73232(5) A, c=39.2156(4) A). The well-defined superstructure for the ion-exchanged product should be stabilized by the inserted CuCl{sub 4}O{sub 2} octahedral layers that firmly connect with neighboring perovskite layers. Magnetic studies show the absence of long-range magnetic ordering down to 2 K despite strong in-plane interactions. Aleksandrov Prime s group theory and Rietveld refinement of synchrotron X-ray diffraction data suggest the structure to be of I4/mmm space group with in-phase tilting along the a and b axes, a two-tilt system (++0). - Graphical Abstract: We present a quadruple-layered copper oxyhalide (CuCl)Ca{sub 2}NaNb{sub 4}O{sub 13} synthesized through a topotactic ion-exchange reaction of RbCa{sub 2}NaNb{sub 4}O{sub 13} with CuCl{sub 2}. The compound has a well-defined superstructure. Magnetic studies suggest the absence of magnetic order even at 2 K. Highlights: Black-Right-Pointing-Pointer (CuCl)Ca{sub 2}NaNb{sub 4}O{sub 13} was prepared by ion-exchange reaction of RbCa{sub 2}NaNb{sub 4}O{sub 13} with CuCl{sub 2}. Black-Right-Pointing-Pointer Compound has a 2a{sub p} Multiplication-Sign 2a{sub p} Multiplication-Sign 2c{sub p} superstructure (tetragonal; a=7.73 A, c=39.21 A). Black-Right-Pointing-Pointer Such a well-defined superstructure was not observed in the precursor compound. Black-Right-Pointing-Pointer Aleksandrov Prime s theory and Rietveld study suggest a (++0) octahedral tilting (I4/mmm). Black-Right-Pointing-Pointer Magnetic studies revealed the absence of magnetic order down to 2 K.

  13. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

    2010-05-14

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

  14. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  17. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  18. Weather-Corrected Performance Ratio

    SciTech Connect (OSTI)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  19. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  20. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin; Gupta, Smita

    2009-12-15

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (author)

  1. Experimentally validated long-term energy production prediction model for solar dish/Stirling electric generating systems

    SciTech Connect (OSTI)

    Stine, W.B.

    1995-12-31

    Dish/Stirling solar electric systems are currently being tested for performance and longevity in order to bring them to the electric power generation market. Studies both in Germany and the United States indicate that a significant market exists for these systems if they perform in actual installations according to tested conditions, and if, when produced in large numbers their cost will drop to goals currently being projected. In the 1980`s, considerable experience was gained operating eight dish/Stirling systems of three different designs. One of these recorded the world`s record for converting solar energy into electricity of 29.4%. The approach to system performance prediction taken in this presentation results from lessons learned in testing these early systems, and those currently being tested. Recently the IEA through the SolarPACES working group, has embarked on a program to develop uniform guidelines for measuring and presenting performance data. These guidelines are to help potential buyers who want to evaluate a specific system relative to other dish/Stirling systems, or relative to other technologies such as photovoltaic, parabolic trough or central receiver systems. In this paper, a procedure is described that permits modeling of long-term energy production using only a few experimentally determined parameters. The benefit of using this technique is that relatively simple tests performed over a period of a few months can provide performance parameters that can be used in a computer model requiring only the input of insolation and ambient temperature data to determine long-term energy production information. A portion of this analytical procedure has been tested on the three 9-kW(e) systems in operation in Almeria, Spain. Further evaluation of these concepts is planned on a 7.5-kW(e) system currently undergoing testing at Cal Poly University in Pomona, California and later on the 25 kW(e) USJVP systems currently under development.

  2. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect (OSTI)

    Goodman, Jr, F R

    1980-03-01

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  3. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  4. Reconstructing Past Ocean Salinity ((delta)18Owater)

    SciTech Connect (OSTI)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local' changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.

  5. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect (OSTI)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-01-01

    Mineral dust cycle responds to insolation-induced climate change and plays an important role in the climate system by affecting the radiative balance of the atmosphere. Polar ice cores provide unique information about deposition of aeolian dust particles in the past which indicates climate variability. In the current study the dust cycle in different climate conditions simulated by ECHAM5-HAM is analyzed. The study is focused on the Southern Hemisphere with emphasis on the Antarctic region. The investigated periods include four interglacial time-slices: the pre-industrial control (CTRL), mid-Holocene (6,000 years BP), Eemian (126,000 years BP), last glacial inception (115,000 years BP) and one glacial time interval: Last Glacial Maximum (LGM) (21,000 years BP). This study is a first attempt to simulate past interglacial dust cycles and to understand the quantitative contribution of different processes, such as emission, atmospheric transport and precipitation to the total dust deposition in Antarctica. Results suggest increased deposition of mineral dust globally and in Antarctica in the past interglacial periods relative to the preindustrial CTRL simulation. Maximum dust deposition in Antarctica was simulated for the glacial period. One of the major factors responsible for the increase of dust deposition in the mid-Holocene and Eemian is enhanced Southern Hemisphere dust emissions. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. In the LGM simulation, dust deposition over Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climate. However more records are needed to validate simulated dust deposition for the past interglacial time-slices.

  6. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect (OSTI)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup 1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at Massachusetts Military Reservation. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stafford, B.; Robichaud, R.; Mosey, G.

    2011-07-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying photovoltaics (PV) systems on a superfund site located within the Massachusetts Military Reservation (MMR). The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.17/kWh and incentives offered in the State of Massachusetts, such as the solar renewable energy credits. According to calculations, MMR can place 8 MW of ballast-weighted, ground-mounted PV systems on the crowns of the three landfill caps and the borrow pit with the PV modules tilted at 30 degrees.

  8. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis; Nerikar, Pankaj; Vyas, Shyam; Uberuaga, Blas P.; Stanek, Christopher R.

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 ( ?5 tilt, ?5 twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.

  9. Explosive bulk charge

    DOE Patents [OSTI]

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  10. Ball mounting fixture for a roundness gage

    DOE Patents [OSTI]

    Gauler, A.L.; Pasieka, D.F.

    1983-11-15

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball. 6 figs.

  11. Analysis of Aurora's Performance Simulation Engine for Three Systems

    SciTech Connect (OSTI)

    Freeman, Janine; Simon, Joseph

    2015-07-07

    Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systems in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.

  12. Improving Translation Models for Predicting the Energy Yield of Photovoltaic Power Systems. Cooperative Research and Development Final Report, CRADA Number CRD-13-526

    SciTech Connect (OSTI)

    Emery, Keith

    2015-08-04

    The project under this CRADA will analyze field data of various flat-plate and concentrator module technologies and cell measurements at the laboratory level. The field data will consist of current versus voltage data collected over many years on a latitude tilt test bed for Si, CdTe, amorphous silicon, and CIGS technologies. The concentrator data will be for mirror- and lens-based module designs using multijunction cells. The laboratory data will come from new measurements of cell performance with systematic variation of irradiance, temperature and spectral composition. These measurements will be labor-intensive and the aim will be to cover the widest possible parameter space for as many different PV samples as possible. The data analysis will require software tools to be developed. These tools will be customized for use with the specific NREL datasets and will be unsuitable for commercial release. The tools will be used to evaluate different translation equations against NREL outdoor datasets.

  13. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    SciTech Connect (OSTI)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-12-15

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.

  14. Method of forming structural heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1984-06-26

    In forming a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement characterized by a method of forming the mirror module in which the mirror is laid upon a solid rigid supporting bed in one or more sections, with or without focusing; a mirror backing sheet is applied by first applying respective thin layers of silicone grease and, thereafter, progressively rolling application to eliminate air bubbles; followed by affixing of a substrate assembly to the mirror backing sheet to form a mirror module that does not curve because of thermally induced stresses and differential thermal expansion or contraction effects. The silicone grease also serves to dampen fluttering of the mirror and protect the mirror backside against adverse effects of the weather. Also disclosed are specific details of preferred embodiments.

  15. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    SciTech Connect (OSTI)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.

  16. Domain wall conduction in multiaxial ferroelectrics

    SciTech Connect (OSTI)

    Eliseev, E. A.; Morozovska, A. N.; Svechnikov, S. V.; Maksymovych, Petro; Kalinin, Sergei V

    2012-01-01

    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5-10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.

  17. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto fields

    SciTech Connect (OSTI)

    Morozovska, A. N.; Eliseev, E. A.; Kalinin, Sergei V; Chen, L. Q.; Gopalana, V.

    2012-01-01

    Theoretical analysis based on the Landau-Ginzburg-Devonshire theory is used to show that the joint action of flexoelectric effect and rotostriction leads to a large spontaneous in-plane polarization (1-5 lC/cm2) and pyroelectric coefficient (103 C/m2K) in the vicinity of surfaces of otherwise non-ferroelectric ferroelastics, such as SrTiO3, with static octahedral rotations. The origin of the improper polarization and pyroelectricity is an electric field we name flexo-roto field whose strength is proportional to the convolution of the flexoelectric and rotostriction tensors with octahedral tilts and their gradients. Flexo-roto field should exist at surfaces and interfaces in all structures with static octahedral rotations, and thus, it can induce surface polar states and pyroelectricity in a large class of otherwise nonpolar materials. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701152

  18. Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials

    SciTech Connect (OSTI)

    Nefedov, Igor S.; Melnikov, Leonid A.

    2014-10-20

    We demonstrate the production of strong directive thermal emissions in the far-field zone of asymmetric hyperbolic metamaterials (AHMs), exceeding that predicted by Planck's limit. Asymmetry is inherent to the uniaxial medium, where the optical axis is tilted with respect to medium interfaces. The use of AHMs is shown to enhance the free-space coupling efficiency of thermally radiated waves, resulting in Super-Planckian far-field thermal emission in certain directions. This effect is impossible in usual hyperbolic materials because emission of high density of states (DOS) photons into vacuum with smaller DOS is preserved by the total internal reflection. Different plasmonic metamaterials are proposed for realizing AHM media; the thermal emission from a AHM, based on a grapheme multilayer structure, is presented, as an example.

  19. System and method for generating current by selective electron heating

    DOE Patents [OSTI]

    Fisch, Nathaniel J. (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  20. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

    SciTech Connect (OSTI)

    Abramovich, Igor A.

    2013-06-20

    Implementation of the proposed seismometers turned out to be much more challenging than anticipated. The noise levels achieved are indeed well below those ever featured by any electrochemical sensor and just very nearly miss reaching the original objectives. However, while noise-wise the instruments could still prove their usefulness, especially considering their robustness and no-maintenance operation, the implementation of the proposed noise-reduction concept resulted in much larger and heavier devices than originally expected. Moreover, these large dimensions relate only to single-component vertical sensors. While building similar horizontal component is possible, the resulting three-component instrument would be way too large and heavy to be of any practical use. The prototype instruments developed and built retained the inherent advantages of the electrochemical seismometers: no maintenance operation; ability to perform with large installation tilts; and, unfortunately, to a much lesser extent in terms of robustness.

  1. Concerning the Spatial Heterodyne Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  2. Position and orientation tracking system

    DOE Patents [OSTI]

    Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

    1998-05-05

    A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

  3. XBox Input -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position,more » and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  4. Position and orientation tracking system

    DOE Patents [OSTI]

    Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.

    1998-01-01

    A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

  5. Stirling engine control mechanism and method

    DOE Patents [OSTI]

    Dineen, John J. (Durham, NH)

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  6. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J. (Tracey, CA); Herron, Donald Joe (Manteca, CA)

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  7. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  8. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect (OSTI)

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  9. Multiplex coherent raman spectroscopy detector and method

    DOE Patents [OSTI]

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  10. Tracking multiple generation and suppression of secondary electrons on periodic triangular surface

    SciTech Connect (OSTI)

    Li, S.; Wang, J. G.; Zhu, M.; Peng, J. C.; Xie, J. L.; Wu, X. L.; Guo, L. T.; Chang, C.; Xiong, Z. F.; Department of Engineering Physics, Tsinghua University, Beijing 10084

    2013-12-15

    To research the dynamic course of multipactor suppression on the periodically patterned surface, tens of electron collision processes are tracked by numerical calculation. The influences of microwave frequency, amplitude of RF electric field, slope angle, the local field enhancement, and the tilted incident electric field on the multipactor suppression are studied by tracking multi-generation electrons' trajectories, hopping and flight time, collision energy, and secondary emission yield. Meanwhile, the dynamic processes of secondary electrons on the periodic surface are analyzed by particle-in-cell (PIC) simulation. The PIC results are consistent with the analytical results in which the electrons fly reciprocatingly between the slopes and impact on the slopes; the methods of increasing the slope angle, enlarging the RF field, and lowering the frequency in a certain range are helpful to enhance the multipactor suppression steadily and persistently.

  11. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  12. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  13. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    SciTech Connect (OSTI)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  14. Flipped GUT inflation

    SciTech Connect (OSTI)

    Ellis, John; Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  15. Cosmological observables in multi-field inflation with a non-flat field space

    SciTech Connect (OSTI)

    Gao, Xin; Li, Tianjun; Shukla, Pramod E-mail: tli@itp.ac.cn

    2014-10-01

    Using δN formalism, in the context of a generic multi-field inflation driven on a non-flat field space background, we revisit the analytic expressions of the various cosmological observables such as scalar/tensor power spectra, scalar/tensor spectral tilts, non-Gaussianity parameters, tensor-to-scalar ratio, and the various runnings of these observables. In our backward formalism approach, the subsequent expressions of observables automatically include the terms beyond the leading order slow-roll expansion correcting many of the expression at subleading order. To connect our analysis properly with the earlier results, we rederive the (well) known (single field) expressions in the limiting cases of our generic formulae. Further, in the light of PLANCK results, we examine for the compatibility of the consistency relations within the slow-roll regime of a two-field roulette poly-instanton inflation realized in the context of large volume scenarios.

  16. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  17. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA)

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  18. Turbine blade and non-integral platform with pin attachment

    DOE Patents [OSTI]

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  19. Station for X-ray structural analysis of materials and single crystals (including nanocrystals) on a synchrotron radiation beam from the wiggler at the Siberia-2 storage ring

    SciTech Connect (OSTI)

    Kheiker, D. M. Kovalchuk, M. V.; Korchuganov, V. N.; Shilin, Yu. N.; Shishkov, V. A.; Sulyanov, S. N.; Dorovatovskii, P. V.; Rubinsky, S. V.; Rusakov, A. A.

    2007-11-15

    The design of the station for structural analysis of polycrystalline materials and single crystals (including nanoobjects and macromolecular crystals) on a synchrotron radiation beam from the superconducting wiggler of the Siberia-2 storage ring is described. The wiggler is constructed at the Budker Institute of Nuclear Physics of the Siberian Division of the Russian Academy of Sciences. The X-ray optical scheme of the station involves a (1, -1) double-crystal monochromator with a fixed position of the monochromatic beam and a sagittal bending of the second crystal, segmented mirrors bent by piezoelectric motors, and a (2{theta}, {omega}, {phi}) three-circle goniometer with a fixed tilt angle. Almost all devices of the station are designed and fabricated at the Shubnikov Institute of Crystallography of the Russian Academy of Sciences. The Bruker APEX11 two-dimensional CCD detector will serve as a detector in the station.

  20. Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr

    SciTech Connect (OSTI)

    Mangolini, F.; Wabiszewski, G. E.; Egberts, P.; Ahlund, J.; Backlund, K.; Karlsson, P. G.; Adiga, V. P.; Streller, F.; Wannberg, B.; Carpick, R. W.

    2012-09-15

    The paper presents the development and demonstrates the capabilities of a new laboratory-based environmental X-ray photoelectron spectroscopy system incorporating an electrostatic lens and able to acquire spectra up to 0.4 Torr. The incorporation of a two-dimensional detector provides imaging capabilities and allows the acquisition of angle-resolved data in parallel mode over an angular range of 14 Degree-Sign without tilting the sample. The sensitivity and energy resolution of the spectrometer have been investigated by analyzing a standard Ag foil both under high vacuum (10{sup -8} Torr) conditions and at elevated pressures of N{sub 2} (0.4 Torr). The possibility of acquiring angle-resolved data at different pressures has been demonstrated by analyzing a silicon/silicon dioxide (Si/SiO{sub 2}) sample. The collected angle-resolved spectra could be effectively used for the determination of the thickness of the native silicon oxide layer.

  1. Barcode V1.0

    Energy Science and Technology Software Center (OSTI)

    2003-03-03

    This software produces barcode images for printing and reads barcodes from digital images according to the mathematical and algorithmic description from a Sandia patent application titled "A Self-Registering Sread-Spectrum Barcode". A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along withmore »the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature and perspective.« less

  2. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    SciTech Connect (OSTI)

    Zhao, Hong-Kang Zou, Wei-Ke; Chen, Qiao

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  3. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    SciTech Connect (OSTI)

    Guo, Jiuling; Shen, Chao; Liu, Zhenxing

    2014-07-15

    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  4. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, B.; McGeehan, B.; Inomoto, M.

    2008-06-12

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

  5. Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.

    2008-03-15

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

  6. Effect of toroidal magnetic field on n = 1 mode stability in rotamak plasmas

    SciTech Connect (OSTI)

    Yang, X.; Goss, J.; Kalaria, D.; Huang, T. S.

    2011-08-15

    To study the effect of toroidal magnetic field on n = 1 mode stability, a series of experiments with linearly ramping the axial current I{sub z}, which makes field-reversed configuration (FRC) to spherical tokamak (ST) transition, have been conducted in rotamak. Results clearly demonstrate that the tilt mode can be completely suppressed by small I{sub z} around 0.4 kA (in comparison with 2.0 kA plasma current). An unknown new mode with larger magnetic perturbations is triggered when I{sub z} reaches 0.5 kA. This instability mode keeps saturation while plasma current is boosted when I{sub z} is in the range of 0.6-1.4 kA. When I{sub z} exceeds 1.6 kA, the new mode suddenly disappears and discharge is free from instability modes.

  7. A HIGH STELLAR OBLIQUITY IN THE WASP-7 EXOPLANETARY SYSTEM

    SciTech Connect (OSTI)

    Albrecht, Simon; Winn, Joshua N.; Hirano, Teruyuki; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Wittenmyer, Robert A.

    2012-01-10

    We measure a tilt of 86 Degree-Sign {+-} 6 Degree-Sign between the sky projections of the rotation axis of the WASP-7 star and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planet's trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however, with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise ({sup s}tellar jitter{sup )} with an amplitude of Almost-Equal-To 30 m s{sup -1} over a timescale of days.

  8. Oxidizer gels for detoxification of chemical and biological agents

    DOE Patents [OSTI]

    Hoffman, Dennis M.; McGuire, Raymond R.

    2002-01-01

    A gel composition containing oxidizing agents and thickening or gelling agents is used to detoxify chemical and biological agents by application directly to a contaminated area. The gelling agent is a colloidal material, such as silica, alumina, or alumino-silicate clays, which forms a viscous gel that does not flow when applied to tilted or contoured surfaces. Aqueous or organic solutions of oxidizing agents can be readily gelled with less than about 30% colloidal material. Gel preparation is simple and suitable for field implementation, as the gels can be prepared at the site of decontamination and applied quickly and uniformly over an area by a sprayer. After decontamination, the residue can be washed away or vacuumed up for disposal.

  9. IG SAR 5-09.qxd

    Energy Savers [EERE]

    11585 A p r i l 3 0 , 2009 'I'ile j-j.i?jlorable Dr. S teverr C'~ILI Secretary of X!nergy Washingtont r 9 1 . 1 20585 1 aul pleased to s ~ & j ~ > i ; tilt: C)ffice of Inspector (;eilc.:-al's (OIC:;) Sl:ni,;i:ifi~?.~csI Kc,nar.l lo <;'o.ilg,~~,~..o. T):is report saln3nl;xr:ixes sjgllifi.carlt (>IG acfivi%i;:s and ~~~~~~~~~~~~~~~~L"~II.s during the .c;i>; non nth peri.od er~tjing Mardl 3 1 , 2009. This repn1-t reflc6;ts our con%in.liirrg cornmiirnerlt t.0 f i 3 ~ 1 . i ~

  10. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  11. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    SciTech Connect (OSTI)

    Berenc, T. )

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  12. Role of {Sigma}5, (210), [001] CSL boundary on displacement cascade in bcc Fe

    SciTech Connect (OSTI)

    Nandi, Prithwish K.; Dholakia, Manan; Valsakumar, M. C.

    2012-06-05

    Molecular dynamics simulations were carried out to understand the role of grain boundaries (GB) on radiation damage in bcc Fe bicrystal. The calculations were performed for a {Sigma}5, (210), [001] symmetric tilt grain boundary for different cases where the primary knock-on atom (PKA) is placed at distances of a{sub csl}, to 15a{sub csl}, from the grain boundary plane. Here, a{sub csl}, is lattice parameter of the coincidence site lattice. Present study shows that the influence of GB on the numbers of surviving defects within a grain is confined within a distance, d{sub opt} < 9a{sub csl}. Our studies also indicate that the grain boundary acts as a reservoir for defects.

  13. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics in the Commonwealth of Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-03-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on brownfield sites in the Commonwealth of Puerto Rico. All of the assessed sites are landfills. The sites were assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.119/kWh and incentives offered by Puerto Rico and by the serving utility, PREPA. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  17. Strain and lattice orientation distribution in SiN/Ge complementary metaloxidesemiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    SciTech Connect (OSTI)

    Chahine, G. A.; Schlli, T. U.; Zoellner, M. H.; Guha, S.; Reich, C.; Zaumseil, P.; Capellini, G.; Richard, M.-I.; Schroeder, T.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup ?5} (?a/a) with a spatial resolution of ?0.5??m. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive ?-Raman and ?-photoluminescence measurements. The experimental data are interpreted with the help of finite element modeling of the strain relaxation dynamics in the investigated structures.

  18. Apparatus and method for routing a transmission line through a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael; Reynolds, Jay

    2006-07-04

    A method for routing a transmission line through a tool joint having a primary and secondary shoulder, a central bore, and a longitudinal axis, includes drilling a straight channel, at a positive, nominal angle with respect to the longitudinal axis, through the tool joint from the secondary shoulder to a point proximate the inside wall of the centtral bore. The method further includes milling back, from within the central bore, a second channel to merge with the straight channel, thereby forming a continuous channel from the secondary shoulder to the central bore. In selected embodiments, drilling is accomplished by gun-drilling the straight channel. In other embodiments, the method includes tilting the tool joint before drilling to produce the positive, nominal angle. In selected embodiments, the positive, nominal angle is less than or equal to 15 degrees.

  19. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect (OSTI)

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  20. Fabrication of wedged multilayer Laue lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  1. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, Peter M. (611 Montclair, College Station, TX 77840)

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  2. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  3. Dipole bands in high spin states of {sub 57}{sup 135}La{sub 78}

    SciTech Connect (OSTI)

    Garg, Ritika; Kumar, S.; Saxena, Mansi; Goyal, Savi; Siwal, Davinder; Verma, S.; Mandal, S.; Palit, R.; Saha, Sudipta; Sethi, J.; Sharma, Sushil K.; Trivedi, T.; Jadav, S. K.; Donthi, R.; Naidu, B. S.

    2014-08-14

    High spin states of {sup 135}La have been investigated using the reaction {sup 128}Te({sup 11}B,4n){sup 135}La at a beam energy of 50.5 MeV. Two negative parity dipole bands (?I = 1) have been established. Crossover E2 transitions have been observed for the first time in one of the dipole bands. For the Tilted Axis Cranking (TAC) calculations, a three-quasiparticle (3qp) configuration ?(h{sub 11/2}){sup 1}??(h{sub 11/2}){sup ?2} and a five-quasiparticle (5qp) configuration ?(h{sub 11/2}){sup 1}(g{sub 7/2}/d{sub 5/2}){sup 2}??(h{sub 11/2}){sup ?2} have been taken for the two negative parity dipole bands. The comparison of experimental observables with TAC calculations supports the configuration assignments for both the dipole bands.

  4. Fabrication of wedged multilayer Laue lenses

    SciTech Connect (OSTI)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Braggs law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  5. Advanced Waste Retrieval System. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    2001-09-01

    At West Valley, following the baseline removal operations, bulk waste retrieval methods may be augmented if required, with the deployment of the Advanced Waste Retrieval System (AWRS). The AWRS is a hydraulic boom mounted on a trolley on the Mast-Mounted Tool Delivery System. The boom is about 15 ft long with a pan and tilt mechanism at the end. On the end is a steam jet with a suction tool that can reach down around the tank internal structure and vacuum up zeolite or sludge off the bottom of the tank from a thirty-foot diameter reach. A grinder is included topside in the discharge path to pulverize the zeolite so it can be readily retrieved from the destination tank.

  6. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping andmore » possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  7. Stellarmak a hybrid stellarator: Spheromak

    SciTech Connect (OSTI)

    Hartman, C.W.

    1980-01-04

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting ..beta.., and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams.

  8. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, Jianliang (Naperville, IL); Rote, Donald M. (Lagrange, IL)

    1996-01-01

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

  9. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect (OSTI)

    Yang, Yang; OBrien, Paul G.; Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 ; Ozin, Geoffrey A. E-mail: kherani@ecf.utoronto.ca; Kherani, Nazir P. E-mail: kherani@ecf.utoronto.ca

    2013-11-25

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  10. Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field

    SciTech Connect (OSTI)

    Di, K.; Lim, H. S. Zhang, V. L.; Ng, S. C.; Kuok, M. H.; Nguyen, H. T.; Cottam, M. G.

    2014-02-07

    Theoretical studies, based on three independent techniques, of the band structure of a one-dimensional width-modulated magnonic crystal under a transverse magnetic field are reported. The band diagram is found to display distinct behaviors when the transverse field is either larger or smaller than a critical value. The widths and center positions of bandgaps exhibit unusual non-monotonic and large field-tunability through tilting the direction of magnetization. Some bandgaps can be dynamically switched on and off by simply tuning the strength of such a static field. Finally, the impact of the lowered symmetry of the magnetic ground state on the spin-wave excitation efficiency of an oscillating magnetic field is discussed. Our finding reveals that the magnetization direction plays an important role in tailoring magnonic band structures and hence in the design of dynamic spin-wave switches.

  11. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect (OSTI)

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  12. Dipole Well Location

    Energy Science and Technology Software Center (OSTI)

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  13. The Australian Geographic Team Marsupial solar-powered car

    SciTech Connect (OSTI)

    Allen, G.R.; Storey, J.W.V.

    1988-01-01

    As in all vehicles of this type, low weight and aerodynamic drag must be achieved without compromising safety, and in an extremely rugged structure. This has been done by using a chrome-molybdenum steel space-frame, surrounded by a Kevlar/foam sandwich body shell. The solar panel wing, which uses a laminar flow section to obtain low drag, does not tilt except when the vehicle is stationary. A high degree of redundancy is built into the vehicle; for example there are two motors and transmissions, the solar array is divided into seven parallel sub-arrays, and the power electronics is multiply redundant. Built entirely in the garage of a suburban house, the Australian Geographic Team Marsupial car cost less than US$50,000 to construct.

  14. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, J.; Rote, D.M.

    1996-05-21

    A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

  15. Matching field effects at tesla-level magnetic fields in critical current density in high-Tc superconductors containing self-assembled columnar defects

    SciTech Connect (OSTI)

    Sinclair, J. [University of Tennessee, Knoxville (UTK); Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Wee, Sung Hun [ORNL; Varanasi, C. V. [University of Dayton Research Institute; Thompson, James R [ORNL; Christen, David K [ORNL

    2012-01-01

    We have investigated the superconductive transport properties of YBa2Cu3O7 films containing self-assembled columnar arrays of second phase SrZrO3 or BaSnO3 precipitates. A matching condition between columnar pinning sites (aligned at or near the c axis) and external magnetic flux, tilted with respect to them, is identified in the critical current JC.H/ data. The results for the material containing SrZrO3-based pins are analyzed within a simple intuitive model. At matching, the critical current is enhanced above the model prediction. In complementary contact-free investigations of BaSnO3-doped material, matching effects are observed over a wide range of temperatures in the field dependence of JC.H/. The deduced matching fields agree reasonably well with the densities of columnar pins directly observed by scanning electron microscopy.

  16. Multi-dimensional position sensor using range detectors

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  17. Ball mounting fixture for a roundness gage

    DOE Patents [OSTI]

    Gauler, Allen L. (Los Alamos, NM); Pasieka, Donald F. (Los Alamos, NM)

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  18. An adaptive optics package designed for astronomical use with a laser guide star tuned to an absorption line of atomic sodium

    SciTech Connect (OSTI)

    Salmon, J.T.; Avicola, K.; Brase, J.M.

    1994-04-11

    We present the design and implementation of a very compact adaptive optic system that senses the return light from a sodium guide-star and controls a deformable mirror and a pointing mirror to compensate atmospheric perturbations in the wavefront. The deformable mirror has 19 electrostrictive actuators and triangular subapertures. The wavefront sensor is a Hartmann sensor with lenslets on triangular centers. The high-bandwidth steering mirror assembly incorporates an analog controller that samples the tilt with an avalanche photodiode quad cell. An {line_integral}/25 imaging leg focuses the light into a science camera that can either obtain long-exposure images or speckle data. In laboratory tests overall Strehl ratios were improved by a factor of 3 when a mylar sheet was used as an aberrator. The crossover frequency at unity gain is 30 Hz.

  19. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  20. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  1. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  2. Guiding of low-energy electrons by highly ordered Al{sub 2}O{sub 3} nanocapillaries

    SciTech Connect (OSTI)

    Milosavljevic, A. R.; Vikor, Gy.; Pesic, Z. D.; Kolarz, P.; Sevic, D.; Marinkovic, B. P.; Matefi-Tempfli, S.; Matefi-Tempfli, M.; Piraux, L.

    2007-03-15

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al{sub 2}O{sub 3} nanocapillaries with large aspect ratio (140 nm diameter and 15 {mu}m length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12 degree sign . As seen for highly charged ions, the guiding efficiency increases with decreasing electron incident energy. The transmission efficiency appeared to be significantly lower than observed for highly charged ions and, moreover, the intensity of transmitted electrons significantly decreases with decreasing impact energy.

  3. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, Lothar F. X. (Albuquerque, NM)

    1999-01-01

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD.

  4. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, L.F.X.

    1999-05-11

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD. 9 figs.

  5. 244E is king pin on Arizona waste-processing operation

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    A 244E 4-wheel-drive loader, assorted garbage, and a touch of sewage sludge may not sound like a state-of-the-art formula...but it is. The Pinetop-Lakeside Sanitation District has pioneered a way to turn a caldron of municipal waste products into something usable, with the help of a 244E loader equipped with a quick coupler and attachments. The district bring in about 45 cu. yd. (34.4 m[sup 3]) of household garbage daily and converts it into compost at their plant. The 244E runs the entire operation. Two truckloads of garbage a day are dumped onto a tilt floor and loaded by the 244E into a 45-ft.-long (13.7 m) rotating drum. Sewage sludge is pumped from the treatment plant into the slowly rotating drum. Seven days later, the mixture comes out as a soil compost.

  6. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  7. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect (OSTI)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  8. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    SciTech Connect (OSTI)

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-03-19

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ 0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ 0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ 0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.

  9. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    SciTech Connect (OSTI)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapid intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.

  10. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  11. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T.; Magorian, T.R.; Ahmad, S.

    1994-11-01

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  12. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    SciTech Connect (OSTI)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)] [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  13. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  14. Reorientation of the free OH group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect (OSTI)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called free O-H group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the free O-H group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the free O-H changes from about 35.3 degrees 0.5 degrees to 43.4 degrees 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  15. Structural framework, stratigraphy, and evolution of Brazilian marginal basins

    SciTech Connect (OSTI)

    Ojeda, H.A.O.

    1982-06-01

    The structural framework of the Brazilian continental margin is basically composed of eight structural types: antithetic tilted step-fault blocks, synthetic untilted step-fault blocks, structural inversion axes, hinges with compensation grabens, homoclinal structures, growth faults with rollovers, diapirs, and igneous structures. The antithetic tilted and synthetic untilted step-fault blocks are considered as synchronous, complementary structural systems, separated by an inversion axis. Two evaporitic cycles (Paripueira and Ibura) were differentiated in the Sergipe-Alagoas type basin and tentatively correlated to the evaporitic section of other Brazilian marginal basis. Four phases are considered in the evolution of the Brazilian marginal basins: pre-rift, rift, transitional, and drift. During the pre-rift phase (Late Jurassic-Early Cretaceous), continental sediments were deposited in peripheral intracratonic basins. In the rift phase (Early Cretaceous), the breakup of the continental crust of the Gondwana continent gave rise to a central graben and rift valleys where lacustrine sediments were deposited. The transitional phase (Aptian) developed under relative tectonic stability, when evaporitic and clastic lacustrine sequences were being deposited. In the drift phase (Albian to Holocene), a regionl homoclinal structure developed, consisting of two distinct sedimentary sequences, a lower clastic-carbonate and an upper clastic. From the Albian to the Holocene Epoch, structures associated to plastic displacement of salt or shale developed in many Brazilian marginal basins. Two phases of major igneous activity occurred: one in the Early Cretaceous associated with the rift phase of the Gondwana continent, and the other in the Tertiary during the migration phase of the South American and African plates.

  16. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    SciTech Connect (OSTI)

    Omelchenko, Yuri A; Karimabadi, Homa

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  17. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-03-19

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of themore » polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ 0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ 0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ 0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.« less

  18. SU-E-T-68: Clinical Implementation of Total Skin Electron Beam Therapy: A New- York Presbyterian Hospital Experience

    SciTech Connect (OSTI)

    Afghan, M; Shih, R; Chen, H

    2014-06-01

    Purpose: Total skin electron beam therapy (TSET) is used in the treatment of rare skin diseases such as mycosis fungoides, the most common type of cutaneous T-cell lymphoma. We report our experience with clinical implementation of TSET. Methods: A modified six-dual-field irradiation technique was chosen to deliver TSET. A Varian Trilogy linear accelerator with a nominal 6 MeV beam using high dose rate total skin electron mode (HDTSe) was employed. The recommendations of AAPM task group report 23 were followed for the commissioning. An acrylic plate (energy degrader) of 3.2 mm depth was mounted on the HDTSe applicator. The nominal source to skin distance was set at 450 cm. The optimum tilt angle of the gantry was determined using NACP-02 ionization chamber embedded in certified therapy grade solid water. Percent depth dose measurements were performed using ionization chamber and radiochromic films embedded in solid water and anthropomorphic phantom. For absolute dose measurements, TG-51 formalism was employed. The dose distribution on the entire skin was measured by irradiating the anthropomorphic phantom, with TLDs attached, mimicking the real treatment. Results: The 3.2 mm acrylic plate mounted on the HDTSe applicator degraded the energy of the electron beam to 4.1 MeV in the treatment plane, located at an SSD of 450 cm. The optimum tilt angle was found to be 20. A single-dual field had a longitudinal uniformity, measured at a depth of dose maximum, of 7% over a length of about 200 cm. For the entire treatment the multiplication factor was found to be 2.86. On the surface of the phantom, the dose varied from 108% to 93% of the prescription dose. Conclusion: We have successfully commissioned TSET meeting the guidelines of the TG report 23, and treated our first patient on February 25, 2014.

  19. Doping-induced strain and relaxation of Al-doped 4H-SiC homoepitaxial layers

    SciTech Connect (OSTI)

    Huh, S.W.; Chung, H.J.; Benamara, M.; Skowronski, M.; Sumakeris, J.J.; Paisley, M.J.

    2004-10-15

    Aluminum-doped 4H-SiC epilayers with Al concentrations in the 7.4x10{sup 18}-3.8x10{sup 20} cm{sup -3} range were deposited on off-orientation (0001) wafers by chemical vapor deposition method and analyzed using high-resolution x-ray diffraction, transmission electron microscopy, and KOH etching. Reciprocal space maps of (0008) reflection revealed two distinct peaks originating from the substrate and doped epilayer. For Al concentration below 3.3x10{sup 20} cm{sup -3}, 10 {mu}m thick layers were fully strained with the a-lattice parameter of the layer matching that of the substrate. The equilibrium c-lattice parameter change versus doping was determined to be 1.3{+-}0.3x10{sup -24} cm{sup 3}. The basal planes of the epilayers were tilted in respect to the substrate in the direction of the offcut with the tilt magnitude proportional to the doping concentration. The 10 {mu}m thick layers with Al concentration above 3.3x10{sup 20} cm{sup -3} underwent partial relaxation. The a-lattice parameter of the epilayer was higher than that of the substrate, the width of {omega} and 2{theta} scans of (0008) x-ray peaks broadened by a factor of 2 compared to strained layers, and the threading dislocation density increased by several orders of magnitude. Since no inclusions have been found in the relaxed epilayer, we interpret the above changes as due to strain relaxation by nucleation of dislocations.

  20. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    SciTech Connect (OSTI)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron; Lopez, Anthony; Molling, Christine

    2015-09-15

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite and creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and PWV, temperature, and pressure data are also combined with the MMAC model to simulate solar radiation under clear-sky conditions. The current NSRDB update is based on a 4-km x 4-km resolution at a 30-minute time interval, which has a higher temporal and spatial resolution. This paper demonstrates the evaluation of the data set using ground-measured data and detailed evaluation statistics. The result of the comparison shows a good correlation to the NSRDB data set. Further, an outline of the new version of the NSRDB and future plans for enhancement and improvement are provided.

  1. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

  2. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

  3. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2010-08-23

    Worldwide interest in the deployment of photovoltaic generation (PV) is rapidly increasing. Operating experience with large PV plants, however, demonstrates that large, rapid changes in the output of PV plants are possible. Early studies of PV grid impacts suggested that short-term variability could be a potential limiting factor in deploying PV. Many of these early studies, however, lacked high-quality data from multiple sites to assess the costs and impacts of increasing PV penetration. As is well known for wind, accounting for the potential for geographic diversity can significantly reduce the magnitude of extreme changes in aggregated PV output, the resources required to accommodate that variability, and the potential costs of managing variability. We use measured 1-min solar insolation for 23 time-synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Measurement program and wind speed data from 10 sites in the same network to characterize the variability of PV with different degrees of geographic diversity and to compare the variability of PV to the variability of similarly sited wind. The relative aggregate variability of PV plants sited in a dense 10 x 10 array with 20 km spacing is six times less than the variability of a single site for variability on time scales less than 15-min. We find in our analysis of wind and PV plants similarly sited in a 5 x 5 grid with 50 km spacing that the variability of PV is only slightly more than the variability of wind on time scales of 5-15 min. Over shorter and longer time scales the level of variability is nearly identical. Finally, we use a simple approximation method to estimate the cost of carrying additional reserves to manage sub-hourly variability. We conclude that the costs of managing the short-term variability of PV are dramatically reduced by geographic diversity and are not substantially different from the costs for managing the short-term variability of similarly sited wind in this region.

  4. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect (OSTI)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

  5. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  6. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  7. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect (OSTI)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

  8. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  9. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    SciTech Connect (OSTI)

    Saravanan, P.; Hsu, Jen-Hwa Tsai, C. L.; Tsai, C. Y.; Lin, Y. H.; Kuo, C. Y.; Wu, J.-C.; Lee, C.-M.

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

  10. Review of the WECC EDT phase 2 EIM benefits analysis and results report.

    SciTech Connect (OSTI)

    Veselka, T.D.; Poch, L.A.; Botterud, A.

    2012-04-05

    A region-wide Energy Imbalance Market (EIM) was recently proposed by the Western Electricity Coordinating Council (WECC). In order for the Western Area Power Administration (Western) to make more informed decisions regarding its involvement in the EIM, Western asked Argonne National Laboratory (Argonne) to review the EIM benefits study (the October 2011 revision) performed by Energy and Environmental Economics, Inc. (E3). Key components of the E3 analysis made use of results from a study conducted by the National Renewable Energy Laboratory (NREL); therefore, we also reviewed the NREL work. This report examines E3 and NREL methods and models used in the EIM study. Estimating EIM benefits is very challenging because of the complex nature of the Western Interconnection (WI), the variability and uncertainty of renewable energy resources, and the complex decisions and potentially strategic bidding of market participants. Furthermore, methodologies used for some of the more challenging aspects of the EIM have not yet matured. This review is complimentary of several components of the EIM study. Analysts and modelers clearly took great care when conducting detailed simulations of the WI using well-established industry tools under stringent time and budget constraints. However, it is our opinion that the following aspects of the study and the interpretation of model results could be improved upon in future analyses. The hurdle rate methodology used to estimate current market inefficiencies does not directly model the underlying causes of sub-optimal dispatch and power flows. It assumes that differences between historical flows and modeled flows can be attributed solely to market inefficiencies. However, flow differences between model results and historical data can be attributed to numerous simplifying assumptions used in the model and in the input data. We suggest that alternative approaches be explored in order to better estimate the benefits of introducing market structures like the EIM. In addition to more efficient energy transactions in the WI, the EIM would reduce the amount of flexibility reserves needed to accommodate forecast errors associated with variable production from wind and solar energy resources. The modeling approach takes full advantage of variable resource diversity over the entire market footprint, but the projected reduction in flexibility reserves may be overly optimistic. While some reduction would undoubtedly occur, the EIM is only an energy market and would therefore not realize the same reduction in reserves as an ancillary services market. In our opinion the methodology does not adequately capture the impact of transmission constraints on the deployment of flexibility reserves. Estimates of flexibility reserves assume that forecast errors follow a normal distribution. Improved estimates could be obtained by using other probability distributions to estimate up and down reserves to capture the underlying uncertainty of these resources under specific operating conditions. Also, the use of a persistence forecast method for solar is questionable, because solar insolation follows a deterministic pattern dictated by the sun's path through the sky. We suggest a more rigorous method for forecasting solar insolation using the sun's relatively predictable daily pattern at specific locations. The EIM study considered only one scenario for hydropower resources. While this scenario is within the normal range over the WI footprint, it represents a severe drought condition in the Colorado River Basin from which Western schedules power. Given hydropower's prominent role in the WI, we recommend simulating a range of hydropower conditions since the relationship between water availability and WI dispatch costs is nonlinear. Also, the representation of specific operational constraints faced by hydropower operators in the WI needs improvements. The model used in the study cannot fully capture all of the EIM impacts and complexities of power system operations. In particular, a primary benefit of the EIM is a shorter dispatch interval; namely, 5 minutes. However, the model simulates the dispatch hourly. Therefore it cannot adequately measure the benefits of a more frequent dispatch. A tool with a finer time resolution would significantly improve simulation accuracy. When the study was conducted, the rules for the EIM were not clearly defined and it was appropriate to estimate societal benefits of the EIM assuming a perfect market without a detailed specification of the market design. However, incorporating a more complete description of market rules will allow for better estimates of EIM benefits. Furthermore, performing analyses using specific market rules can identify potential design flaws that may be difficult and expensive to correct after the market is established. Estimated cost savings from a more efficient dispatch are less than one percent of the total cost of electricity production.

  11. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    SciTech Connect (OSTI)

    Wyrzykowski, ?ukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Koz?owski, Szymon; Udalski, Andrzej; Szyma?ski, Micha? K.; Kubiak, Marcin; Soszy?ski, Igor; Pietrzy?ski, Grzegorz; Poleski, Rados?aw; Pietrukowicz, Pawe?; Pawlak, Micha?

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31deg{sup 2} toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy.

  12. Modification of modulated plasma plumes for the quasi-phase-matching of high-order harmonics in different spectral ranges

    SciTech Connect (OSTI)

    Ganeev, R. A.; Boltaev, G. S.; Sobirov, B.; Reyimbaev, S.; Sherniyozov, H.; Usmanov, T.; Suzuki, M.; Yoneya, S.; Kuroda, H.

    2015-01-15

    We demonstrate the technique allowing the fine tuning of the distance between the laser-produced plasma plumes on the surfaces of different materials, as well as the variation of the sizes of these plumes. The modification of plasma formations is based on the tilting of the multi-slit mask placed between the heating laser beam and target surface, as well as the positioning of this mask in the telescope placed on the path of heating radiation. The modulated plasma plumes with the sizes of single plume ranging between 0.1 and 1 mm were produced on the manganese and silver targets. Modification of the geometrical parameters of plasma plumes proved to be useful for the fine tuning of the quasi-phase-matched high-order harmonics generated in such structures during propagation of the ultrashort laser pulses. We show the enhancement of some groups of harmonics along the plateau range and the tuning of maximally enhanced harmonic by variable modulation of the plasma.

  13. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  14. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  15. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    SciTech Connect (OSTI)

    Smith, W.R.; Julian, F.E. . Dept. of Geosciences)

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used to describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.

  16. Design process for NIF laser alignment and beam diagnostics

    SciTech Connect (OSTI)

    Grey, A., LLNL

    1998-06-09

    In a controller for an adaptive optic system designed to correct phase aberrations in a high power laser, the wavefront sensor is a discrete Hartmann-Shack design. It uses an army of lenslets (like a fly` s eye) to focus the laser into 77 spots on a CCD camera. Average local tilt of the wavefront across each lenslet changes the position of its focal spot. The system requires 0.1 pixel accuracy in determining the focal spot location. We determine a small area around each spot` s previous location. Within this area, we calculate the centroid of the light intensity in x and y. This calculation fails if the spot regions overlap. Especially during initial acquisition of a highly distorted beam, distinguishing overlapping spots is difficult. However, low resolution analysis of the overlapping spots allows the system to estimate their positions. With this estimate, it can use the deformable mirror to correct the beam enough so we can detect the spots using conventional image processing.

  17. Thin seam mining machine

    SciTech Connect (OSTI)

    Nelson, R.L.

    1984-05-22

    A low profile thin seam miner includes a main frame mounting a lower transverse axis rotary cutter and a parallel axis conveyor rearwardly of the lower cutter. The main frame also mounts a forward transverse axis rotary cutter somewhat above the lower cutter, the forward upper cutter being supported on a longitudinal boom pivoted to the main frame and being vertically swingable under influence of a single cylinder. The main frame and all of its parts is incrementally advanced into the seam by the alternating action of two horizontal longitudinal parallel axis cylinders connected between the main frame and a pair of floor-engaging plates. Two vertical axis jacks are connected between the two floor-engaging plates and two cooperating overhead roof plates, connected with the floor-engaging plates by separate toggle linkages. Two more generally upright cylinders connected between the floor plates and the rear of the main frame can tilt the main frame on a transverse pivot axis to vary the depth of cut of the lower rear cutter responsive to the control of a sensing tooth on such cutter. The single cylinder connected with the boom of the forward upper cutter can swing the boom on its transverse pivot axis to vary the depth of cut of the forward upper cutter, responsive to the control of a sensing tooth on such cutter.

  18. Apparatus for precision micromachining with lasers

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Dragon, Ernest P. (Danville, CA); Warner, Bruce E. (Pleasanton, CA)

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  19. Apparatus for precision micromachining with lasers

    DOE Patents [OSTI]

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  20. The Structure and Phase Diagram of Chiral Alkyl-Serine Monolayers on Mercury

    SciTech Connect (OSTI)

    L Tamam; D Medina; T Menahem; Y Mastai; E Sloutskin; S Yefet; M Deutsch

    2011-12-31

    The structure of liquid-mercury-supported Langmuir films (LFs) of chiral serine-modified fatty acid molecules was studied as a function of length, n = 8-22 carbons, temperature, T = 5-25 C, and surface coverage, A {approx} 40-200 {angstrom}{sup 2} per molecule, for both homochiral and heterochiral compounds. Using surface pressure {pi}-area A isotherms and surface-specific synchrotron X-ray diffraction methods the phase diagram was determined in detail. No lateral order was found for phases comprising surface-parallel molecules, in contrast with unmodified fatty acid LFs on mercury. For phases comprising standing-up molecules, long range lateral order was found for n {>=} 12, but no order for n = 8. The molecules in the ordered phases are extended, and tilt rigidly by {approx}40{sup o} from the surface normal. The homochiral LFs pack in an oblique, single-molecule, unit cell. The heterochiral LFs pack in a body-centered rectangular unit cell, containing two molecules. Unlike unmodified fatty acid LFs, the structure of the standing-up phase does not vary with n, T or A. The interactions underlying these characteristics, and the role of chirality, are discussed.