National Library of Energy BETA

Sample records for input supplemental fuels

  1. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  2. ,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  3. ,"Washington Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","09...

  4. ,"Texas Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  5. Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  6. Connecticut Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. North Carolina Natural Gas Input Supplemental Fuels (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Input Supplemental Fuels (Million Cubic Feet) North Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. New York Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New York Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. ,"New Mexico Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  10. Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 249 435 553 560 517 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Total Supplemental Supply of Natural Gas Louisiana Supplemental Supplies of

  11. Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Total Supplemental Supply of Natural Gas Alaska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual

  12. Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 22 66 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  14. South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Virginia Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Virginia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 127 443 454 375 209 414 75 141 643 428 1990's 59 240 245 538 1,195 445 716 350 148 179 2000's 493 239 124 368 145 192 39 89 89 247 2010's 159 89 48 130 301 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 642 635 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  17. Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 107 809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 50 23 91 9 54 14 3 2 17 16 1990's 320 332 171 410 69 0 18 21 2 4 2000's 0 0 0 22 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  19. Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 0 0 0 91 101 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 8 6 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 3 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3 3,038 2,473 2,956 2,773 2,789 2,754 2,483 2,402 2,402 1990's 19,106 15,016 14,694 12,795 13,688 21,378 21,848 22,238 21,967 20,896 2000's 12,423 4,054 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  3. Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 2 376 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 4 0 2 2 2 4 11 11 32 37 1990's 125 0 30 38 9 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  6. New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,574 11,504 9,786 9,896 8,616 13,421 12,099 13,774 14,846 14,539 1990's 9,962 14,789 14,362 14,950 7,737 7,291 6,778 6,464 9,082 5,761 2000's 8,296 12,330 3,526 473 530 435 175 379 489 454 2010's 457 392 139 255 530 - = No Data Reported; -- = Not Applicable;

  7. New Mexico Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Mexico Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1 3 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  8. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 45,736 48,394 - = No

  9. Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 416 641 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 3 6 6 10 10 6 3 1990's 3 4 2 3 2 2 2 2 2 3 2000's 2 2 5 5 2 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 3 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  14. Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  15. Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 1990's 0 6 3 4 9 4 5 6 0 1 2000's 7 104 2 10 12 9 2 2 1 2 2010's 1 2 3 3 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  16. Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  18. District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  19. Florida Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Florida Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1 3 1 0 3 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 2,658 2,743 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 36,713 29,509 19,005 19,734 17,308 19,805 22,980 12,514 9,803 9,477 1990's 8,140 6,869 8,042 9,760 7,871 6,256 3,912 4,165 2,736 2,527 2000's 1,955 763 456 52 14 15 13 11 15 20 2010's 17 1 1 63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1,602 5,056 3,496 4,142 4,027 2,711 2,351 3,890 4,243 3,512 1990's 3,015 3,077 3,507 3,232 2,457 3,199 3,194 3,580 3,149 5,442 2000's 5,583 5,219 1,748 2,376 2,164 1,988 1,642 635 30 1 2010's 1 5 1 6 69 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 42 2 131 259 94 4 1 0 6 44 1990's 2 2 5 16 50 6 45 24 2 3 2000's 10 2 1 98 0 15 3 124 15 18 2010's 5 8 1 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  5. Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 157 94 71 12 0 0 0 0 0 0 1990's 0 0 0 0 0 96 61 31 24 43 2000's 6 0 5 6 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  6. Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 4 13 2 6 14 1 1 2 5 1990's 1 1 1 3 5 2 21 5 21 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  7. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 124 222 518 373 271 316 339 303 291 167 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  8. Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,868 9,133 8,877 7,927 9,137 8,934 8,095 8,612 10,322 9,190 1990's 15,379 6,778 7,158 8,456 8,168 7,170 6,787 6,314 5,292 4,526 2000's 4,772 5,625 5,771 5,409 5,308 5,285 6,149 6,869 6,258 7,527 2010's 5,148 4,268 4,412 4,077 4,120 - = No Data Reported; -- = Not

  9. U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 154,590 175,702 144,811 131,894 109,977 126,363 113,189 101,382 101,134 106,745 1990's 122,806 112,606 117,919 118,999 110,826 110,290 109,455 103,153 102,189 98,249 2000's 90,000 86,312 67,980 67,706 60,365 63,691 66,058 63,132 60,889 65,259 2010's 64,575 60,088 61,366 54,650 59,528 59,693 - = No Data

  10. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect (OSTI)

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  11. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  12. SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL

    Energy Savers [EERE]

    SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL TO DOE NATIONAL LABORATORIES FOR RESEARCH AND DEVELOPMENT PURPOSES Office of Nuclear Energy U.S. DEPARTMENT OF ENERGY DECEMBER 2015 DOE/EIS-0203-SA-07 DOE/EIS-0250F-S-1-SA-02 Commercial Fuel Shipment SA DOE/EIS-0203-SA-07 December 2015 CONVERSION FACTORS Metric to English English to Metric Multiply by To get Multiply by To get Area Square kilometers 247.1 Acres Square kilometers 0.3861 Square miles Square meters 10.764 Square

  13. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 17, 2015 - 9:48am Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  14. Hydrogen as a Supplemental Fuel in Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_bika.pdf More Documents & Publications Fuels of the Future for Cars and Trucks Renewable Diesel Vehicle Technologies Office: 2008-2009

  15. Supplement Analysis Â… Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S. Department of Energy Washington, DC November 2015 DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation 1.0 INTRODUCTION The Department of Energy (DOE) has a continuing responsibility for safeguarding

  16. DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2.

  17. U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1980 17,000 16,000 16,000 12,000 11,000 10,000 10,000 10,000 10,000 12,000 14,000 16,000 1981 20,000 17,000 17,000 14,000 13,000 12,000 12,000 12,000 12,000 14,000 15,000 19,000 1982 19,000 16,000 15,000 12,000 9,000 9,000 9,000 9,000 9,000 11,000 13,000 14,000 1983 15,587 11,990 11,990 9,592 8,393 8,393 8,393 9,592 9,592 9,592 13,189 15,587 1984 12,997 9,998 9,998 7,998 6,999 6,999 6,999 7,998 7,998 7,998 10,998 12,997 1985 12,734 8,816 7,836

  18. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  19. Generation IV benchmarking of TRISO fuel performance models under accident conditions. Modeling input data

    SciTech Connect (OSTI)

    Blaise Collin

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary.

  20. Supplement

    Energy Savers [EERE]

    SUPPLEMENT NOVEMBER 2015 DOE/EIS-0463-S1 U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY WASHINGTON, DC DRAFT NORTHERN PASS TRANSMISSION LINE PROJECT ENVIRONMENTAL IMPACT STATEMENT DOE/EIS-0463-S1 Supplement U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY COOPERATING AGENCIES United States Forest Service - White Mountain National Forest United States Environmental Protection Agency- Region 1 United States Army Corps of Engineers -

  1. Systems simulation of cotton gin waste as a supplemental fuel in a coal powered generating plant

    SciTech Connect (OSTI)

    Parnell, C.B.; Grubaugh, E.K.; Johnston, M.T.; Ladd, K.L.

    1981-01-01

    A systems simulation model of gin trash use at a Lamb County, Texas, power plant was developed. The model is being used to study gin trash supply, both quantity and transportation, fixed and variable cost, and economic benefit/costs of gin trash utilization. Preliminary results indicate the positive feasibility of using gin trash as a supplemental fuel in a coal fired power plant. (MHR)

  2. EERE Seeks Stakeholder Input on the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development of new fuels and engine architectures that are co-optimized-designed in tandem to maximize performance and carbon efficiency. This RFI provides stakeholders with an...

  3. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development of new fuels and engine architectures that are co-optimized-designed in tandem to maximize performance and carbon efficiency. This RFI provides stakeholders with an...

  4. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    SciTech Connect (OSTI)

    Michael A. Pope

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.

  5. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  6. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  7. DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL

    Office of Environmental Management (EM)

    ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 U.S. Department of Energy Idaho Operations Office Idaho Falls, Idaho DOE/ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 Department of Energy Idaho Operations Office Idaho Falls, Idaho SNF Supplement Analysis ii March 1999 CONTENTS Acronyms and Abbreviations

  8. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  9. Assessment of the percent status of burning refuse-derived fuel as a fuel supplement in the cement kiln industry

    SciTech Connect (OSTI)

    1981-09-01

    The purpose of the project was to solicit information on the use of refuse-derived fuel (RDF) in cement kilns by survey, follow up the mailed survey with telephone calls to the recipients, and assemble collected information into a report. A list of companies that had some experience with RFD was compiled and is presented in Appendix A. The procedure for conducting the survey is explained. A copy of the questionnaire is presented in Appendix B. The letters of response are reproduced in Appendix C. Two completed forms were received and clear conclusions are summarized. The effort was terminated and no final report was assembled.

  10. Supplement analysis for a container system for the management of DOE spent nuclear fuel located at the INEEL

    SciTech Connect (OSTI)

    1999-03-12

    The Council on Environmental Quality (CEQ) regulations for implementing the NEPA, 40 CFR 1502.9 (c), directs federal agencies to prepare a supplement to an environmental impact statement when an agency makes substantial changes in the Proposed Action that are relevant to environmental concerns, or there are significant new circumstances or information relevant to environmental concerns and bearing on the Proposed Action or impacts. When it is unclear whether a supplemental environmental impact statement is required, DOE regulations (10 CFR 1021.314) direct the preparation of a supplement analysis to assist in making that determination. This supplement analysis evaluates the impacts of employing dual-purpose canisters (DPCs) to prepare DOE SNF located at the INEEL for interim onsite storage and transport outside the State of Idaho. Impacts associated with DPC manufacturing, loading and storage of DOE-ID SNF into DPCs, transport of loaded DPCs outside Idaho, and the cumulative impacts are compared with the impacts previously analyzed in the SNF and INEL EIS and the Navy Container System EIS. This SA provides information to determine whether: (1) an existing EIS should be supplemented; (2) a new EIS should be prepared; or (3) no further NEPA documentation is required.

  11. EIS-0218-SA-02: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Supplement Analysis EIS-0218-SA-02: Supplement Analysis Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program The objective of this analysis was to...

  12. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  13. Refiner Crude Oil Inputs

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net Inputs (Refiner and ...

  14. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

  15. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  18. SUPPLEMENT ANALYSIS

    Energy Savers [EERE]

    812 Supplement Analysis 1 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration Rocky Mountain Customer Service Region OCTOBER 2013 DOE/EA-1812/SA-1 DOE/EA-1812 Supplement Analysis 2 October 2013 SUPPLEMENT ANALYSIS for the FINAL

  19. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished

  20. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  1. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  2. Refinery Net Input of Renewable Diesel Fuel

    Gasoline and Diesel Fuel Update (EIA)

    662 633 670 564 582 488 2009-2015 PADD 1 23 20 23 15 89 9 2010-2015 East Coast 80 2014-2015 Appalachian No. 1 23 20 23 15 9 9 2010-2015 PADD 2 143 139 139 114 94 109 2009-2015 Ind., Ill. and Ky. 87 86 92 75 72 88 2011-2015 Minn., Wis., N. Dak., S. Dak. 40 41 35 24 17 13 2009-2015 Okla., Kans., Mo. 16 12 12 15 5 8 2011-2015 PADD 3 297 256 290 253 224 170 2011-2015 Texas Inland 68 67 68 61 57 28 2011-2015 Texas Gulf Coast 9 13 11 14 12 12 2012-2015 La. Gulf Coast 182 140 151 134 121 111 2012-2015

  3. Review of inputs provided to Jason Associates Corporation in support of RWEV-REP-001, the Analysis of Postclosure Groundwater Impacts report.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Weck, Philippe F.; Vaughn, Palmer; Arnold, Bill Walter

    2014-04-01

    Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation in Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.

  4. Supplement Analysis

    Energy Savers [EERE]

    Supplement Analysis to the LCLS-ll Environmental Assessment, July. 2014 U.S. DEPARTMENT OF Office of *ENERGY 1 Science SLAG Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: September 15, 2015 MEMORANDUM FOR: Paul Golan, Site Manager, SLAC Site Office THROUGH: James Elmore, ISC-OR NEPA Compliance Officer, Oak Ridge Office FROM: Mitzi Heard, NEPA Coornator, SLAC Site Office SUBJECT: Supplement Analysis to SLAC LCLS-I1 Environmental Assessment.

  5. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Components (Text Version) Fuel Cell Animation - Fuel Cell Components (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on top, oxygen input in front, water and heat outputs out the back, with an electrical circuit going around the top. Polymer Electrolyte Membrane (PEM) in center, cathode/catalyst to the right

  6. Final Supplemental Environmental Impact Statement for a Geologic...

    Office of Environmental Management (EM)

    Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,...

  7. decreasing water input and waste generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  8. Medicare Supplemental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Customer Service 877-878-LANL (5265) NM81157_01/01/16 National Medicare Supplement Medicare (Part A) Hospital Services - Per Benefit Period* SERVICES MEDICARE PAYS THIS PLAN PAYS YOU PAY** Hospitalization* Semiprivate room and board, general nursing, and miscellaneous services and supplies First 60 days All but $1,288 $1,288 (Part A deductible) $0 61st through 90th day All but $322 a day $322 a day $0 91st day and after: * While using 60 lifetime reserve days All but $644 a day $644 a day $0 *

  9. EIS-0251-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -SA-01: Supplement Analysis EIS-0251-SA-01: Supplement Analysis Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL The Proposed Action evaluated in this Supplement Analysis considers the use of a dual-purpose canister system, or comparable multi-purpose canister system, for the storage and ultimate shipment of DOE-ID spent nuclear fuel out of the State of Idaho. PDF icon EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear

  10. Microsoft Word - STEO Supplement.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 1 May 2009 Short-Term Energy Outlook Supplement: The Implications of Lower Natural Gas Prices for the Electric Generation Mix in the Southeast 1 Highlights * This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows. * Over the last year the price of natural gas

  11. EIS-0250-S3: Notice of Intent to Prepare a Supplement to the...

    Broader source: Energy.gov (indexed) [DOE]

    to prepare a Supplement to the "Environmental Impact Statements for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca...

  12. EIS-0250-S1: Final Supplemental Environmental Impact Statement | Department

    Office of Environmental Management (EM)

    of Energy Final Supplemental Environmental Impact Statement EIS-0250-S1: Final Supplemental Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada DOE's Proposed Action is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. PDF icon EIS-0250-S1-FEIS-Summary-2008.pdf PDF icon

  13. EIS-0218F-SA-05: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Transfer and Return of Low-Enriched Uranium Fuel Elements from Idaho National Laboratory to the Research Reactor in Vienna, Austria This Supplement Analysis evaluates the environmental impacts of a proposal to exchange, with the Republic of Austria, highly-enriched uranium (HEU) and some low-enriched (LEU) nuclear fuel for LEU fuel currently stored at the Idaho National Laboratory and to take back the LEU fuel sometime around 2025, warrants supplemental review of the EISs. PDF icon

  14. EIS-0279-SA-01: Supplement Analysis | Department of Energy

    Energy Savers [EERE]

    -SA-01: Supplement Analysis EIS-0279-SA-01: Supplement Analysis Savannah River Site Spent Nuclear Fuel Management (DOE/EIS-0279-SA-01 and DOE/EIS-0218-SA-06) This Supplement Analysis evaluates DOE's proposal to change the management method for approximately 3.3 metric tons of heavy metal (MTHM) of aluminum-clad spent nuclear fuel (SNF) from melt and dilute to conventional processing in H-Canyon at the Savannah River Site (SRS) and to down-blend the resultant highly-enriched uranium (HEU) to low

  15. EIS-0218-SA-03: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    8-SA-03: Supplement Analysis EIS-0218-SA-03: Supplement Analysis Foreign Research Reactor Spent Nuclear Fuel Acceptance Program The objective of this analysis is to determine whether a supplement to the FRR SNF EIS is needed. Under the initial Record of Decision (ROD) signed May 13, 1996 and published in the Federal Register on May 17, 1996 (61 FR 25092), only spent fuel of U.S. origin that is irradiated and discharged from foreign research reactors in the eligible nations before May 13, 2006,

  16. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  17. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. PDF icon 7_binder_roundtable.pdf More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  18. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Simply Powerful Fuel Cells in Telecommunications J. Blanchard December 2011 - ~ ReliOn Overview Markets Backup, grid supplement, and off grid power systems for critical communications infrastructure spanning telecom, transportation, government, utility, and OEM customers throughout the world. Products Purpose designed product portfolio of 175W to 2.5kW building blocks providing solutions up to 30kW for target markets. Broad range of hydrogen storage solutions supported by major

  19. Generation Inputs Workshop June 25, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inputs Workshop 25 June 2014 BPA's Centralized Wind Power Forecasting Initiative Scott Winner June 25, 2014 Generation Inputs Workshop Predecisional. For Discussion Purposes Only....

  20. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  1. EIS-0250-S1: Final Supplemental Environmental Impact Statement for a

    Office of Environmental Management (EM)

    Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada | Department of Energy 50-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level

  2. Microsoft Word - Gasoline_2008 Supplement.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has

  3. Summary of Input to DOE Request for Information DE-FOA-0000225 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FOA-0000225 Summary of Input to DOE Request for Information DE-FOA-0000225 Presentation on Sumary of Input to DOE Request for Information DE-FOA-0000225 - U.S. DOE Fuel Cells Technology Program PDF icon fuelcell_pre-solicitation_wkshop_mar10_kleen.pdf More Documents & Publications Long Term Innovative Technologies Summary of Input to DOE Request for Information DE-PS36-08GO38002 (Presentation) Balance of Plant (BoP) Components Validation for Fuel Cells

  4. FRAP-T6: a computer code for the transient analysis of oxide fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1983-06-01

    FRAP-T6 is a computer code which is being developed to calculate the transient behavior of a light water reactor fuel rod. This report is an addendum to the FRAP-T6/MODO user's manual which provides the additional user information needed to use FRAP-T6/MOD1. This includes model changes, improvements, and additions, coding changes and improvements, change in input and control language, and example problem solutions to aid the user. This information is designed to supplement the FRAP-T6/MODO user's manual.

  5. EIS-0203-SA-07: Supplement Analysis | Department of Energy

    Energy Savers [EERE]

    3-SA-07: Supplement Analysis EIS-0203-SA-07: Supplement Analysis Proposed Shipment of Commercial Spent Nuclear Fuel to DOE National Laboratories for Research and Development Purposes (DOE/EIS-0203-SA-07 and DOE/EIS-0250F-S-1-SA-02) This document provides an analysis of the potential impacts of the proposed transportation of a small quantity of commercial power spent nuclear fuel (SNF) from the from the North Anna Nuclear Power Station to the Oak Ridge National Laboratory (ORNL) in Tennessee for

  6. EA-0203-SA-07: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    203-SA-07: Supplement Analysis EA-0203-SA-07: Supplement Analysis Proposed Shipment of Commercial Spent Nuclear Fuel to DOE National Laboratories for Research and Development Purposes (DOE/EIS-0203-SA-07 and DOE/EIS-0250F-S-1-SA-02) This document provides an analysis of the potential impacts of the proposed transportation of a small quantity of commercial power spent nuclear fuel (SNF) from the from the North Anna Nuclear Power Station to the Oak Ridge National Laboratory (ORNL) in Tennessee for

  7. Final Supplemental Environmental Impact Statement for a Geologic Repository

    Office of Environmental Management (EM)

    for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En | Department of Energy Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact

  8. Draft Supplement Analysis

    Broader source: Energy.gov [DOE]

    Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

  9. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1","ME..."MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum Products ...

  10. Recommendation 177: Facilitating Early Public Input

    Broader source: Energy.gov [DOE]

    DOE should initiate consultation meetings with stake holders immediately to allow early public input into the planning for IFDP

  11. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  12. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron,

  13. EIS-0250-S1: Notice of Intent to Prepare a Supplement to the Final

    Office of Environmental Management (EM)

    Environmental Impact Statement | Department of Energy Notice of Intent to Prepare a Supplement to the Final Environmental Impact Statement EIS-0250-S1: Notice of Intent to Prepare a Supplement to the Final Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Notice of Intent to prepare a Supplement to the Final Environmental Impact Statement for a Geologic Repository for the Disposal

  14. EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The Supplement evaluates the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS...

  15. EIS-0250-S1: Notice of Intent to Prepare a Supplement to the...

    Broader source: Energy.gov (indexed) [DOE]

    a Supplement to the Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive at Yucca Mountain, Nye County,...

  16. EIS-0250-S2 and EIS-0369: Draft Supplemental Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0250-S2 and EIS-0369: Draft Supplemental Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca...

  17. Fuel Cell Animation (Text Version) | Department of Energy

    Energy Savers [EERE]

    Information Resources » Multimedia » Fuel Cell Animation (Text Version) Fuel Cell Animation (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on left, oxygen input on right, water and heat outputs on the back, with an electrical circuit going around the top. A fuel cell is a device that uses hydrogen (or hydrogen-rich

  18. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  19. Fuel cell system and method

    DOE Patents [OSTI]

    Maru, Hansraj C. (Brookfield Center, CT); Farooque, Mohammad (Huntington, CT)

    1984-01-01

    A fuel cell system comprising a fuel cell including first and second electrolyte-communicative passage means, a third electrolyte-isolated passage means in thermal communication with a heat generating surface of the cell, independent first, second and third input manifolds for the first, second and third passage means, the first input manifold being adapted to be connected to a first supply for a first process gas and one of the second and third input manifold means being adapted to be connected to a second supply for a second process gas, and means for conveying a portion of the gas passing out of the passage means fed by the one input manifold means to the other of the second and third input manifold means.

  20. Input apparatus for dynamic signature verification systems

    DOE Patents [OSTI]

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  1. Microsoft Word - nonopec_supplement.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 1 January 2010 Short-Term Energy Outlook Supplement: Outlook for Non-OPEC Supply in 2010-2011 1 Summary Two large categories define the world's producing countries of crude oil and other liquid fuels 2 (hereafter "liquids"): those that are members of the Organization of the Petroleum Exporting Countries (OPEC) and those that are outside that group (non-OPEC). This article takes a closer look at the latter category. After growing by 630,000 barrels per day (bbl/d) in 2009, EIA

  2. Engine control techniques to account for fuel effects

    DOE Patents [OSTI]

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  3. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  4. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    7:11:07 PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1...US1","MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum ...

  5. EIS-0015: U.S. Spent Fuel Policy

    Broader source: Energy.gov [DOE]

    Subsumed DOE/EIS-0040 and DOE/EIS-0041. The Savannah River Laboratory prepared this EIS to analyze the impacts of implementing or not implementing the policy for interim storage of spent power reactor fuel. This Final EIS is a compilation of three Draft EISs and one Supplemental Draft EIS: DOE/EIS-0015-D, Storage of U.S. Spent Power Reactor Fuel; DOE/EIS-0015-DS, Storage of U.S. Spent Power Reactor Fuel - Supplement; DOE/EIS-0040-D, Storage of Foreign Spent Power Reactor Fuel; and DOE/EIS-0041-D, Charge for Spent Fuel Storage.

  6. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the...

  7. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  8. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  9. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities FUEL CELL TECHNOLOGIES PROGRAM HTAC Meeting Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 17, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Overview - EERE Priorities * FY12 Budget * Examples of Collaboration & Leveraging Activities - Office of Science, DOD, DOT, SBIRs, International - Conferences and Workshops * Analysis Update * Recent HTAC Input & Future Needs Agenda 3 | Fuel Cell

  10. Wireless, relative-motion computer input device

    DOE Patents [OSTI]

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  11. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  12. Opportunities for Public Input Into DOE Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities for Public Input Into DOE Projects There are currently several DOE-proposed activities that citizens can comment on in the near future. Here is a summary of each, as well as a description of how to provide your input into the project: Hanford Draft Closure and Waste Management Environmental Impact Statement Idahoans might be interested in this document because one of the proposed actions involves sending a small amount of radioactive waste (approximately 5 cubic meters of special

  13. U-139: IBM Tivoli Directory Server Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The Web Admin Tool does not properly filter HTML code from user-supplied input before displaying the input.

  14. U-147:Red Hat Enterprise MRG Grid Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The MRG Management Console (Cumin) does not properly filter HTML code from user-supplied input before displaying the input.

  15. EIS-0220: Supplemental record of decision and supplement analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel located in the Receiving Basin for Offsite Fuels (RBOF) at the SRS, using the F-Canyon and FB-Line facilities. The TRR spent nuclear fuel to be stabilized consists of the...

  16. Control assembly for controlling a fuel cell system during shutdown and restart

    DOE Patents [OSTI]

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  17. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  18. Nov 2007 STEO Supplement

    Gasoline and Diesel Fuel Update (EIA)

    07 1 November 2007 Short-Term Energy Outlook Supplement: Why Are Oil Prices So High? 1 Crude oil prices have increased dramatically in recent years. West Texas Intermediate (WTI) prices, which remained around $20 per barrel during the 1990's, rose, on average, from about $31 per barrel in 2003 to $57 per barrel in 2005, and to $66 per barrel in 2006. In 2007, WTI crude oil prices have climbed further, to average over $85 per barrel in October, topping $90 per barrel at the end of the month. The

  19. SUPPLEMENT III REGARDING APPLICATION SUBMISSION

    Energy Savers [EERE]

    III REGARDING APPLICATION SUBMISSION SCHEDULE FOR: ADVANCED NUCLEAR ENERGY PROJECTS U.S. Department of Energy Loan Programs Office (As of January 19, 2016) THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: January 19, 2016 The above-referenced Loan Guarantee Solicitation

  20. Mirrored serpentine flow channels for fuel cell

    DOE Patents [OSTI]

    Rock, Jeffrey Allan (Rochester, NY)

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  1. Federal Buildings Supplemental Survey -- Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the...

  2. EA 1647: Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.) Treutlen County, Georgia

  3. Supplement to the annual energy outlook 1995

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This section of the Supplement to the Annual Energy Outlook 1995 present the major assumptions of the modeling system used to generate the projections in the Annual Energy Outlook 1995 (AEO95). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in Appendix B. A synopsis of the National Energy Modeling System (NEMS), the model components, and the interrelationships of the modules is presented. The NEMS is developed and maintained by the office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projection of domestic energy-economy markets in the midterm time period and perform policy analyses requested by various government agencies and the private sector.

  4. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel ...

  5. Alcohol Fuels Program technical review, Spring 1984

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  6. 2010 Annual Site Environmental Report (ASER) Supplement | Department...

    Office of Environmental Management (EM)

    Supplement 2010 Annual Site Environmental Report (ASER) Supplement 2010 Annual Site Environmental Report (ASER) Supplement PDF icon 2010 ASER Supplement More Documents &...

  7. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  8. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  10. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  11. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Input 2,166,784 2,331,109 2,399,318 2,539,812 2,824,480 2,987,634 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  12. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total Input 262,502 262,483 248,620 258,292 242,060 252,467 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  13. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0285-SA-55: Supplement Analysis Transmission System Vegetation Management Program, Pierce County, Washington April 10, 2002 EIS-0285-SA-57: Supplement Analysis Transmission...

  14. Management and Program Analyst (Supplemental Labor)

    Broader source: Energy.gov [DOE]

    This position is located in the Supplemental Labor Management Office (NSP), Supply Chain Services (NS), Chief Administrative Office (N), Bonneville Power Administration (BPA). The Supplemental...

  15. EA-1975: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Supplement Analysis EA-1975: Supplement Analysis LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California This document provides an analysis...

  16. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis Transmission System Vegetation Management Program, Snohomish-Murray No. 1 Transmission Line January 27, 2003 EIS-0285-SA-118: Supplement Analysis...

  17. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  18. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest

  19. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  20. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  1. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  2. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  3. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  4. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  5. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  6. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  7. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  8. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  9. XBox Input -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position,more » and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  10. Tribal Leaders Provide White House with Input on Bolstering Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am ...

  11. T-693: Symantec Endpoint Protection Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site...

  12. T-701: Citrix Access Gateway Enterprise Edition Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input...

  13. V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated...

  14. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting...

  15. U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

  16. Addressing Uncertainties in Design Inputs: A Case Study of Probabilist...

    Office of Environmental Management (EM)

    Addressing Uncertainties in Design Inputs: A Case Study of Probabilistic Settlement Evaluations for Soft Zone Collapse at SWPF Addressing Uncertainties in Design Inputs: A Case...

  17. DOE Seeks Input On Addressing Contractor Pension and Medical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm...

  18. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  19. Table A13. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural

  20. Table A39. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use

  1. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    tank where heat produced from the combustion of fuels such as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while...

  2. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    cubic feet or 1,000 cubic feet; fuel oil--fuel-tank data; and district heating and cooling--the entire district or system. Respondents could Fax completed worksheets that...

  3. CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA

    Office of Legacy Management (LM)

    r r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has

  4. EA-1887: Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

  5. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  6. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  7. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  8. Prioritization Tool Measurement Input Form | Department of Energy

    Energy Savers [EERE]

    Prioritization Tool Measurement Input Form Prioritization Tool Measurement Input Form BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form. Download File Prioritization Tool Measurement Input Form More Documents & Publications Energy Savings Potential and RD&D Opportunities for Commercial Refrigration Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard

  9. FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED FOSSIL ENERGY PROJECTS Solicitation Number: DE-SOL-0006303 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: October __, 2015 The above-referenced Loan Guarantee Solicitation Announcement, as previously supplemented (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined

  10. FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Environmental Management (EM)

    FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED FOSSIL ENERGY PROJECTS Solicitation Number: DE-SOL-0006303 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: October __, 2015 The above-referenced Loan Guarantee Solicitation Announcement, as previously supplemented (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined

  11. PADD 3 Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    8,010 8,256 8,111 8,266 8,214 8,498 1992-2016 Gross Inputs 7,992 8,287 8,142 8,332 8,356 8,547 1990-2016 Operable Capacity (Calendar Day) 9,437 9,437 9,437 9,437 9,437 9,437 2010-2016 Percent Operable Utilization 84.7 87.8 86.3 88.3 88.6 90.6 2010-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components -1,974 -2,183 -2,099 -2,078 -1,837 -2,068 2004-2016 RBOB -73 -333 -278 -178 -192 -218 2010-2016 CBOB -1,786 -1,821 -1,763 -1,824 -1,574 -1,711 2004-2016 GTAB 0 0 0 0 0 0 2004-2016

  12. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  13. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  14. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  15. Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 59,693 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120 1967-2014 Connecticut 0 0 0 0 0 1967-2014 Delaware 1 0 * * 6 1967-2014 District of

  16. U.S. Supplemental Gaseous Fuels (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 17 16 16 12 11 10 10 10 10 12 14 16 1981 20 17 17 14 13 12 12 12 12 14 15 19 1982 19 16 15 12 9 9 9 9 9 11 13 14 1983 16 12 12 10 8 8 8 10 10 10 13 16 1984

  17. U.S. Supplemental Gaseous Fuels (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's NA NA NA NA NA NA NA 1980's 155 176 145 132 110 126 113 101 101 107 1990's 123 113 118 119 111 110 109 103 102 98 2000's 90 86 68 68 60 64 66 63 61 65 2010's 65 60 61 55 60 60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  19. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings | Department of Energy Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking. File fossilfuel.docx More Documents & Publications Fossil Fuel-Generated Energy Consumption

  20. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect (OSTI)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: • Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. • Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type. • Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  1. Alternative fuels: Promise or Problem

    SciTech Connect (OSTI)

    Moyad, A. )

    1989-11-01

    The Bush administration's proposals to revamp the Clean Air Act received mixed reviews. The alternative fuels proposal in the administration's bill, if passed, would mandate the sale of so-called clean-fueled vehicles (CFVs) in the nine worst ozone non-attainment areas in the country. In areas failing to plan for reductions of volatile organic compounds (VOCs) and toxic air chemicals equivalent to those outlined in the Bush proposal, a total of 500,000 CFVs would have to be sold in 1995, 750,000 in 1996, and 1,000,000 each year from 1997-2004. What is unclear, however, is who will manufacture, sell, or purchase these vehicles. The paper discusses the pros and cons of ethanol, methanol, and compressed natural gas (CNG), the major alternative fuels being considered as supplements or replacements for gasoline.

  2. EIS-0197: Supplement to Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement to Record of Decision EIS-0197: Supplement to Record of Decision Delivery of the Canadian Entitlement The United States Entity has decided to supplement an earlier...

  3. EIS-0385-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SA-01: Supplement Analysis EIS-0385-SA-01: Supplement Analysis Site Selection for the Expansion of the Strategic Petroleum Reserve Final Environmental Impact Statement Supplement...

  4. EIS-0265-SA-100: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Supplement Analysis EIS-0265-SA-100: Supplement Analysis Oregon Fish Screening Project, Screen Replacements PDF icon Supplement Analysis for the Watershed Management Program...

  5. EIS-0312-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -SA-01: Supplement Analysis EIS-0312-SA-01: Supplement Analysis Fish and Wildlife Implementation Plan Supplement Analysis for the Fish and Wildlife Implementation Plan EIS (DOE...

  6. EA-1429-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9-SA-01: Supplement Analysis EA-1429-SA-01: Supplement Analysis Security Perimeter Project This Supplement Analysis (SA) has been prepared to determine if previous Department of...

  7. 2011 Annual Site Environmental Report (ASER) Supplement | Department...

    Energy Savers [EERE]

    1 Annual Site Environmental Report (ASER) Supplement 2011 Annual Site Environmental Report (ASER) Supplement 2011 Annual Site Environmental Report (ASER) Supplement PDF icon 2011...

  8. EIS-0380-SA-02: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis EIS-0380-SA-02: Supplement Analysis Transport and Storage of High-Activity Sealed Sources From Uruguay and Other Locations This supplement analysis (SA) was...

  9. EIS-0444-SA-01: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    Supplement Analysis EIS-0444-SA-01: Supplement Analysis Texas Clean Energy Project (TCEP), Ector County, Texas The final supplement analysis evaluates the potential environmental...

  10. EIS-0290-SA-02: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis EIS-0290-SA-02: Supplement Analysis Naval Reactors Facility Sludge Pan Container Disposition Project DOEEIS-0290-SA-02: Supplement Analysis Naval Reactors...

  11. U-144:Juniper Secure Access Input Validation Flaw Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks April 10,...

  12. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks July 5, 2013 -...

  13. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  14. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  15. U-001:Symantec IM Manager Input Validation Flaws

    Broader source: Energy.gov [DOE]

    Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks.

  16. Advanced Nuclear Supplement_November 2015

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Supplement_November 2015 SECOND SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791

  17. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site, Richland, Washington August 15, 2011 EIS-0399-SA-01: Supplement Analysis Montana-Alberta Tie Ltd. 230-kV Transmission Line Project August 4, 2011 EIS-0348-SA-03: Supplement...

  18. Analysis of Stochastic Response of Neural Networks with Stochastic Input

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    Software permits the user to extend capability of his/her neural network to include probablistic characteristics of input parameter. User inputs topology and weights associated with neural network along with distributional characteristics of input parameters. Network response is provided via a cumulative density function of network response variable.

  19. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  20. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RENEWABLE ENERGY PROJECTS AND EFFICIENT ENERGY PROJECTS Solicitation Number: DE-SOL-0007154 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: October __, 2015 The above-referenced Loan Guarantee Solicitation Announcement, as previously supplemented (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined have the meanings ascribed thereto in the Solicitation). The second

  1. SECOND SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Energy Savers [EERE]

    SECOND SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: November 6, 2015 The above-referenced Loan Guarantee Solicitation Announcement, as previously supplemented (the "Solicitation"), identifies as Eligible Projects (1) nuclear power projects and the associated

  2. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Environmental Management (EM)

    RENEWABLE ENERGY PROJECTS AND EFFICIENT ENERGY PROJECTS Solicitation Number: DE-SOL-0007154 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: October __, 2015 The above-referenced Loan Guarantee Solicitation Announcement, as previously supplemented (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined have the meanings ascribed thereto in the Solicitation). The second

  3. FTCP Supplemental Competencies | Department of Energy

    Office of Environmental Management (EM)

    Supplemental Competencies FTCP Supplemental Competencies FTCP Supplemental Competencies Supplemental Competencies cover important skills and abilities that are less than an entire function or position, and for which an entire Functional Area Qualification Standard (FAQS) is not appropriate. They are developed for or by the FTCP, approved by the Panel, and posted on the FTCP web pages for use. They are optional competencies developed to standardize the qualification process for personnel in

  4. EIS-0310-SA-02: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Nuclear Infrastructure Programmatic Environmental Impact Statement Supplement Analysis Determination for Plutonium-238 Production for Radioisotope Power Systems

  5. PBS-30 Supplemental Information | Department of Energy

    Office of Environmental Management (EM)

    PBS-30 Supplemental Information PBS-30 Supplemental Information Topic: David Rhodes DOE, Provided Supplemental Information on Project Categories for LANL Clean-up Budget Year 2017. PDF icon PBS-30 Info - April 8, 2015 More Documents & Publications Fiscal Year 2015 Annual Work Plan Update NNMCAB Committee Minutes: April 2015 Pojoaque 2015-04 "Fiscal Year 2017 Project Prioritization"

  6. supplemental_lists.xls | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    lists.xls More Documents & Publications updated_supplemental_lists_1g-2g-3f_10-6-2011.xlsx updated_supplemental_lists_1n-2n-3m_07-06-2012.xlsx updated_supplemental_lists_1p_2p_3o_04302013

  7. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  8. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  9. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  10. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  12. EIS-0030-S: Final Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Proposed FY 1980 Program, Facility Location Supplement, Northwest Montana/North Idaho Support and Libby Integration, Supplemental

  13. Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization...

    Office of Environmental Management (EM)

    STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Presentation from...

  14. High-frequency matrix converter with square wave input

    DOE Patents [OSTI]

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  15. Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

  16. FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT | Department

    Office of Environmental Management (EM)

    of Energy FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT PDF icon Supplement fifth to Adv. Fossil Loan Guarantee Announcement 10.14.15.pdf More Documents & Publications FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT Supplement III regarding Application Submission Schedule DOE-LPO_ADV-NUCLEAR_Solicitation-Supplements_08_Jan-2016

  17. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT | Department

    Office of Environmental Management (EM)

    of Energy FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT PDF icon Supplement fourth to Loan Guarantee Announcement 10.14.15.pm_.pdf More Documents & Publications FIFTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT Supplement III regarding Application Submission Schedule Supplement second to REEE Loan Guarantee Announcement 062315

  18. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption and Expenditures for Sum of Major Fuels, Electricity, and Natural Gas in FBSS Buildings in Federal Region 3, 1993 Sum of Sum of Major Major Electricity Natural...

  19. DOE/EIS-0279-SA-01 DOE/EIS-0218-SA-06 Supplement Analysis Savannah River Site

    Office of Environmental Management (EM)

    79-SA-01 DOE/EIS-0218-SA-06 Supplement Analysis Savannah River Site Spent Nuclear Fuel Management U.S. Department of Energy Office of Environmental Management Savannah River Operations Office Aiken, South Carolina March 2013 DOE/EIS-0279-SA-O 1 and DOE/EIS-0218-SA-06 SUPPLEMENT ANALYSIS SAVANNAH RIVER SITE SPENT NUCLEAR FUEL MANAGEMENT March 2013 1. INTI~,ODUCTION The Dep*rtment of EneqfY (DOE) has a continuing responsibility for safeguarding and managing highly enriched uranium (HEU), including

  20. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect (OSTI)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  1. II. GENERAL COMPLIANCE SUPPLEMENT INTRODUCTION

    Office of Environmental Management (EM)

    II. GENERAL COMPLIANCE SUPPLEMENT INTRODUCTION The objectives of most compliance requirements for DOE programs are generic in nature. For example, most programs have eligibility requirements. While the criteria for determining eligibility vary by program, the objective of the compliance requirement that only eligible entities participate is consistent across all programs. Rather than repeat these compliance requirements, audit objectives, and suggested audit procedures for each program, they are

  2. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  3. Summary of Input to DOE Request for Information DE-PS36-08GO38002

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy PS36-08GO38002 (Presentation) Summary of Input to DOE Request for Information DE-PS36-08GO38002 (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. PDF icon fuelcell_pre-solicitation_wkshop_jan08_peterson.pdf More Documents & Publications Greenpower Trap Mufflerl System BILIWG: Consistent "Figures of Merit" (Presentation) Heating Ventilation and Air Conditioning Effic

  4. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOE Patents [OSTI]

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  5. California Fuel Cell Partnership: Alternative Fuels Research

    Broader source: Energy.gov [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

  6. NIDR (New Input Deck Reader) V2.0 2

    Energy Science and Technology Software Center (OSTI)

    2010-03-31

    NIDR (New Input Deck Reader) is a facility for processing block-structured input to large programs. NIDR was written to simplify maintenance of DAKOTA (a program for uncertainty quantification and optimization), to provide better error checking of input and to allow use of aliases in the input. While written to support DAKOTA input conventions, NIDR itself is independent of DAKOTA and can be used in many kinds of programs. The initial version of NIDR was copyrightedmore » in 2008. We have since extended NIDR to support a graphical user interface called Jaguar for DAKOTA. In the Review and Approval process for an updated paper on NIDR, the Classification Approver states that a new copyright assertion should be performed.processing input to programs. NIDR is not primarily for military applications.« less

  7. Generates 2D Input for DYNA NIKE & TOPAZ

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Environmental Management (EM)

    Energy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical,

  9. V-192: Symantec Security Information Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks V-192: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site...

  10. Abandoned Uranium Mines Report to Congress: LM Wants Your Input

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress.

  11. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  12. HUD Updated Supplemental Lists - February 18, 2016 | Department of Energy

    Office of Environmental Management (EM)

    Updated Supplemental Lists - February 18, 2016 HUD Updated Supplemental Lists - February 18, 2016 HUD Updated Supplemental Lists - February 18, 2016 File Updated_supplemental_lists_1Q_2Q_ 2-18-16.xlsx More Documents & Publications updated_supplemental_lists_1n-2n-3m_07-06-2012.xlsx updated_supplemental_lists_1m-2m-3l-04-05-2012.xlsx updated_supplemental_lists_1p_2p_3o_04302013.xlsx

  13. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov

    2007-07-01

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  14. EIS-0419: Supplement Analysis | Department of Energy

    Energy Savers [EERE]

    Supplement Analysis EIS-0419: Supplement Analysis Whistling Ridge Energy Project; Skamania County, Washington Bonneville Power Administration prepared a supplement analysis and determined that there have not been substantial changes to the proposal or significant new circumstances or information relevant to environmental concerns since the August 2011 issuance of the Final EIS for the Whistling Ridge Energy Project. For more information, see the project page: http://energy.gov/node/300313. PDF

  15. Enforcement Guidance Supplements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplements Enforcement Guidance Supplements To better support and describe implementation of the Department of Energy's nuclear safety enforcement program, over the years the Office of Enforcement has developed guidance (in the form of Enforcement Guidance Supplements (EGSs)) to address emerging situations or specific questions relating to enforcement of DOE's nuclear safety requirements. Where appropriate, information contained in the EGSs has been incorporated into the body of the Office of

  16. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED FOSSIL ENERGY PROJECTS Solicitation Number: DE-SOL-0006303 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: August 24, 2015 Background As used in this supplement the term "Distributed Energy Projects" means projects that are comprised of installations of facilities utilizing a single technology, or a defined suite of technologies (either is referred to herein as "Distributed Technology"), at multiple

  17. THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Energy Savers [EERE]

    ADVANCED FOSSIL ENERGY PROJECTS Solicitation Number: DE-SOL-0006303 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: June 23, 2015 The above-referenced Loan Guarantee Solicitation Announcement (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined have the meanings ascribed thereto in the Solicitation). The following is inserted as the first illustrative example in

  18. THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Energy Savers [EERE]

    RENEWABLE ENERY AND ENERGY EFFICIENCY PROJECTS Solicitation Number: DE-SOL-0007154 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: August 24, 2015 Background As used in this supplement the term "Distributed Energy Projects" means projects that are comprised of installations of facilities utilizing a single technology, or a defined suite of technologies (either is referred to herein as "Distributed Technology"), at

  19. THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RENEWABLE ENERY AND ENERGY EFFICIENCY PROJECTS Solicitation Number: DE-SOL-0007154 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: August 24, 2015 Background As used in this supplement the term "Distributed Energy Projects" means projects that are comprised of installations of facilities utilizing a single technology, or a defined suite of technologies (either is referred to herein as "Distributed Technology"), at

  20. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Environmental Management (EM)

    ADVANCED FOSSIL ENERGY PROJECTS Solicitation Number: DE-SOL-0006303 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: August 24, 2015 Background As used in this supplement the term "Distributed Energy Projects" means projects that are comprised of installations of facilities utilizing a single technology, or a defined suite of technologies (either is referred to herein as "Distributed Technology"), at multiple

  1. National Supplemental Screening Program | Department of Energy

    Office of Environmental Management (EM)

    Supplemental Screening Program National Supplemental Screening Program For more information regarding the National Supplemental Screening Program, please call toll-free at (866) 812-6703 or visit their website at http://www.orau.org/nssp. This program serves the following populations: Sites not covered by regional projects (please see Covered Sites/Populations for a complete list of regional construction worker and production workers projects); and Former workers from sites served by regional

  2. An oxy-hydrocarbon model of fossil fuels

    SciTech Connect (OSTI)

    Fred D. Lang; Tom Canning

    2007-09-15

    This paper asserts a new method of analyzing fossil fuels, useful for sorting coals into well-defined categories and for the identification of outlying ultimate analysis data. It describes a series of techniques starting with a new multivariant approach for describing the lower ranks of coal, progressing to a classical, but modified, single-variant approach for the volatile and high-energy ranks. In addition, for a few special cases, multiple low and high ranks are also well described by the multivariant approach. As useful as these techniques are for analyzing fuel chemistry in the laboratory arena, this work was initiated in support of Exergetic Systems' Input/Loss Method. At commercial coal-fired power plants, Input/Loss allows the determination of fuel chemistry based on combustion effluents. The methods presented allow equations to be developed independent of combustion stoichiometrics, which improve Input/Loss accuracy in determining fuel chemistry on-line and in real time.

  3. EIS-0169-SA-02: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Yakima Fisheries Project-Natural Spawning Channels, Increased On-site Housing, and Upgrades to the Prosser Hatchery. Cle Elum Supplementation and Research Facility, Cle Elum, Washington

  4. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0285-SA-22: Supplement Analysis Transmission System Vegetation Management Program, King and Snohomish Counties, WA, in the Snohomish Region August 14, 2001 EIS-0265-SA-59:...

  5. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerators September 2, 2002 EIS-0169-SA-05: Supplement Analysis YakimaKlickitat Fisheries Project, Cle Elum, Kittitas County, Washington September 2, 2002...

  6. National Nuclear Security Administration Supplemental Listing...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Supplemental Listing of Directives Affecting Nuclear Safety Requirements Last Updated 062014 U.S. DEPARTMENT OF ENERGY National Nuclear ...

  7. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » NEPA Documents » Supplement Analyses (SA) Supplement Analyses (SA) A document that DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.314(c)) to determine whether a supplemental or new EIS should be prepared pursuant to CEQ NEPA regulations (40 CFR 1502.9(c). If you have any trouble finding a specific document, please contact AskNEPA@hq.doe.gov for assistance. Documents Available for Download January 8, 2016 EA-0203-SA-07: Supplement Analysis Proposed Shipment of

  8. EIS-0285-SA-451: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS- 0285/SA-451 Carlton-Tillamook Transmission Line Corridor, PP&A-2068)

  9. Federal Buildings Supplemental Survey - Index Page

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings in...

  10. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Transmission System Vegetation Management Program March 19, 2003 EIS-0285-SA-132: Supplement Analysis Transmission System Vegetation Management Program March 12, 2003...

  11. THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Broader source: Energy.gov (indexed) [DOE]

    Loan Guarantee Solicitation Announcement (the "Solicitation") is supplemented as set forth below (capitalized terms used herein and not otherwise defined have the meanings...

  12. EIS-0377: Supplemental Draft Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement EIS-0377: Supplemental Draft Environmental Impact Statement Big Stone II Power Plant and Transmission Project In May 2006, Western Area Power...

  13. EIs-0285-0455: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS- 0285/SA-455 Bandon-Rogue No. 1) PP&A Project #2178

  14. SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL...

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY PROJECTS AND EFFICIENT ENERGY PROJECTS Solicitation Number: DE-SOL-0007154 OMB Control Number: 1910-5134; OMB Expiration Date 11302016 Announcement Type: Supplemental...

  15. EIS-1069-SA-07: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek Acclimation Site, Kittitas County, Washington

  16. EIS-0075-SA-03: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Operational and Engineering Modifications and Regulatory Review – Supplement Analysis of Site-Specific and Programmatic EISs, Strategic Petroleum Reserve, New Orleans, Louisiana

  17. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » NEPA Documents » Supplement Analyses (SA) Supplement Analyses (SA) A document that DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.314(c)) to determine whether a supplemental or new EIS should be prepared pursuant to CEQ NEPA regulations (40 CFR 1502.9(c). If you have any trouble finding a specific document, please contact AskNEPA@hq.doe.gov for assistance. Documents Available for Download December 2, 2015 EIS-0218-SA-07: Supplement Analysis Foreign Research

  18. EA-1212-SA-01: Final Supplement Analysis

    Broader source: Energy.gov [DOE]

    Final Supplement Analysis for the Environmental Assessment for the Lease of Land for the Development of a Research Park at Los Alamos National Laboratory

  19. EIS-0285-SA-452: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-452 Ross-St. Johns No. 1) PP&A Project

  20. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    SciTech Connect (OSTI)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  1. Developing a low input and sustainable switchgrass feedstock production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system utilizing beneficial bacterial endophytes | Department of Energy Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Dr. Chuansheng Mei gave this presentation at the Symbiosis Conference. PDF icon symbiosis_conference_mei.pdf More Documents & Publications Symbiosis Biofeedstock Conference:

  2. EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for...

  3. Appendix B: Hydrogen, Fuel Cells, and Infrastructure Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  4. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    Expenditures Sum of Major Fuels, Electricity, Natural Gas 3.43 3.44 3.45 3.43 3.44 3.45 Electricity Consumption and Expenditure Intensities 3.46 3.47. 3.48 3.46 3.47 3.48 Natural...

  5. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  7. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  8. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  10. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. National Supplemental Screening Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Supplemental Screening Program The National Supplemental Screening Program (NSSP) offers medical screenings at no charge for former U.S. Department of Energy (DOE) site workers who may have been exposed to hazardous substances at work. For more information, see the documents below. PDF icon Retiree_Benefits_NSSPbrochure.pdf PDF icon Retiree_Benefits_newtest.pdf PDF icon Retiree_Benefits_NSSPemployees

  15. EIS-0218-SA-07: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Foreign Research Reactor Spent Nuclear Fuel Acceptance Program: Highly Enriched Uranium Target Residue Material Transportation

  16. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  17. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  18. EIS-0378-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -SA-01: Supplement Analysis EIS-0378-SA-01: Supplement Analysis Port Angeles-Juan de Fuca Transmssion Project Supplement Analysis for the Port Angeles-Juan de Fuca Transmssion...

  19. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  20. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  1. V-139: Cisco Network Admission Control Input Validation Flaw...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands PLATFORM: Cisco NAC Manager versions prior to 4.8.3.1 and 4.9.2 ABSTRACT: A...

  2. EIS-0026-S: Final Supplemental Environmental Impact Statement | Department

    Office of Environmental Management (EM)

    of Energy S: Final Supplemental Environmental Impact Statement EIS-0026-S: Final Supplemental Environmental Impact Statement Final Supplemental Environmental Impact Statement, Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico PDF icon EIS-0026-S: Final Supplemental Environmental Impact Statement, Executive Summary PDF icon EIS-0026-S: Final Supplemental Environmental Impact Statement, Volume 1 PDF icon EIS-0026-S: Final Supplemental Environmental Impact Statement, Volume 2 PDF icon

  3. Proposed Process: NNMCAB Input on Campaigns | Department of Energy

    Office of Environmental Management (EM)

    Proposed Process: NNMCAB Input on Campaigns Proposed Process: NNMCAB Input on Campaigns Topic: Jeff Mousseau LANL, Provided Information on the New Proposed Campaign Process for Field Work. Field work at LANL to be Divided into 17 Campaigns in 5 Categories. PDF icon Campaign Process - April 9, 2014 More Documents & Publications Associate Directorate for Environmental Programs Update March 26, 2014 Chromium Groundwater Remediation Campaign Associate Directorate for Environmental Programs

  4. DOE Seeks Input On Addressing Contractor Pension and Medical Benefits

    Energy Savers [EERE]

    Liabilities | Department of Energy Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique

  5. Tribal Leaders Provide White House with Input on Bolstering Climate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resilience | Department of Energy Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am Addthis As members of the President's State, Local, and Tribal Leaders Task Force on Climate Preparedness, Mayor Reggie Joule, Northwest Arctic Borough (AK) and Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN), were tasked by the President with providing

  6. Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board |

    Office of Environmental Management (EM)

    Department of Energy Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board October 9, 2013 - 12:00pm Addthis As a youngster growing up in Hazlehurst, Ga., Jimmy Bell never imagined his future would take him across the globe to places he had only read about. However, through dedication and hard work, he was involved in important projects throughout the United States and around the world. Today, Jimmy is

  7. Summary of Stakeholder Input From May 2015 Request for Information |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Stakeholder Input From May 2015 Request for Information Summary of Stakeholder Input From May 2015 Request for Information The U.S. Department of Energy (DOE) sought FY15 feedback through issuance of a Request for Information from public and private sector stakeholders. This RFI received commentary across five areas of interest, including: Technology Commercialization Fund, Cross-Research and Development Linkages and Innovation Cycle Transitions, Central

  8. T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input before displaying the input.

  9. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Several scripts do not properly filter HTML code from user-supplied input before displaying the input via several parameters

  10. Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar Fuel Cell Buses Development held September 12, 2013.

  11. Lactobacillus rhamnosus GG-supplemented formula expands butyrate...

    Office of Scientific and Technical Information (OSTI)

    rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants Prev Next Title: Lactobacillus rhamnosus GG-supplemented formula...

  12. EIS-0005-FS: Final Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental

  13. DOE response to questions from AHAM on the supplemental proposed...

    Energy Savers [EERE]

    on the supplemental proposed test procedure for residential clothes washers DOE response to questions from AHAM on the supplemental proposed test procedure for residential ...

  14. EIS-0285-SA-75: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Supplement Analysis EIS-0285-SA-75: Supplement Analysis Transmission System Vegetation Management Program BPA proposes to remove danger trees as well as unwanted vegetation in...

  15. EIS-0312-SA-02: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Supplement Analysis EIS-0312-SA-02: Supplement Analysis Fish and Wildlife Implementation Plan Columbia Basin Riparian Conservation Easement Program. The action area for the...

  16. EIS-0265-SA-90: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis EIS-0265-SA-90: Supplement Analysis Watershed Management Program Naches River Water Treatment Plant Intake Screening Project (September 2002) PDF icon Supplement...

  17. EIS-0026-SA-09: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis for a Proposal to Temporarily Store Defense Transuranic Waste Prior to ... This Supplement Analysis (SA) examines a proposal to temporarily store a limited amount of ...

  18. EIS-0183-SA-05: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Supplement Analysis EIS-0183-SA-05: Supplement Analysis Boise River Diversion Dam Powerplant Rehabilitation Boise River Diversion Dam - Amendment to Capital Investment...

  19. EIS-0265-SA-83: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Supplement Analysis EIS-0265-SA-83: Supplement Analysis Watershed Management Program Proposed Action: Bear Creek Irrigation Siphon Project (0265-SA-83) (June 2002) PDF icon...

  20. EIS-0246-SA-24: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Supplement Analysis EIS-0246-SA-24: Supplement Analysis Wildlife Mitigation Program BPA proposes to purchase a conservation easement on approximately 221 acres of the Herbert...

  1. EIS-0005-FS: Draft Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental

  2. EIS-0317-S1: Draft Supplemental Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Supplemental Environmental Impact Statement EIS-0317-S1: Draft Supplemental Environmental Impact Statement Kangley-Echo Lake Transmission Line Project Bonneville Power...

  3. EIS-0317-S1: Final Supplemental Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Supplemental Environmental Impact Statement EIS-0317-S1: Final Supplemental Environmental Impact Statement Kangley-Echo Lake Transmission Line Project Bonneville Power...

  4. EIS-0082-S1: Final Supplemental Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S1: Final Supplemental Environmental Impact Statement EIS-0082-S1: Final Supplemental Environmental Impact Statement The Department of Energy (DOE) limits electronic access to...

  5. EIS-0265-SA-164: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Supplement Analysis EIS-0265-SA-164: Supplement Analysis Watershed Management Program - Idaho Model Watershed Habitat Projects - L-9 Irrigation Diversion Modification The...

  6. EIS-0265-SA-165: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Supplement Analysis EIS-0265-SA-165: Supplement Analysis Watershed Management Program - Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence The Bonneville...

  7. EIS-0285-SA-80: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Vegetation Management Program FEIS (July 2002) More Documents & Publications EIS-0285-SA-62: Supplement Analysis EIS-0285-SA-40: Supplement Analysis EIS-0285-SA-132...

  8. EIS-0285-SA-113: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Program Updates 92702 SA-113 (December 2002) More Documents & Publications EIS-0285-SA-151: Supplement Analysis EIS-0285-SA-132: Supplement Analysis EIS-0285-SA-17...

  9. DISTRIBUTED ENERGY PROJECTS SUPPLEMENTS TO RENEWABLE ENERGY AND...

    Energy Savers [EERE]

    SUPPLEMENTS TO RENEWABLE ENERGY AND EFFICIENCY ENERGY PROJECTS SOLICITATION DISTRIBUTED ENERGY PROJECTS SUPPLEMENTS TO RENEWABLE ENERGY AND EFFICIENCY ENERGY PROJECTS SOLICITATION...

  10. EIS-0350-SA-02: Final Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    350-SA-02: Final Supplement Analysis EIS-0350-SA-02: Final Supplement Analysis Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los...

  11. EIS-0421-SA-2: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Supplement Analysis EIS-0421-SA-2: Supplement Analysis The Bonneville Power Administration evaluated: design adjustments to minimize impacts to an area of high cultural...

  12. EIS-0421-SA-1: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Supplement Analysis EIS-0421-SA-1: Supplement Analysis The Bonneville Power Administration evaluated project modifications identified after the start of construction. PDF icon...

  13. EIS-0229: Supplement Analysis (September 2007) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis (September 2007) EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site The Department of Energy (DOE) ...

  14. EIS-0350-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SA-01: Supplement Analysis EIS-0350-SA-01: Supplement Analysis Chemistry and Metallurgy Research Building Replacement (CMRR) Project at Los Alamos National Laboratory, Los Alamos...

  15. EIS-0348-SA-02: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Supplement Analysis EIS-0348-SA-02: Supplement Analysis Cleanup of Contaminated Soil at the Building 850 Firing Table, Site 300 Lawrence Livermore National Laboratory PDF icon...

  16. EIS-0203-SA-04: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplement Analysis EIS-0203-SA-04: Supplement Analysis Naval Reactors Facility Sludge Pan Container Disposition Project The NRF SPC Disposition Project would provide for the...

  17. CMRR-NF Supplemental EIS Scoping Comments | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Office of General Counsel National Environmental Policy Act (NEPA) NEPA Reading Room CMRR-NF Supplemental EIS Scoping Comments CMRR-NF Supplemental EIS Scoping Comments...

  18. Final 2011 Supplement Analysis of the 2005 Final SWEIS | National...

    National Nuclear Security Administration (NNSA)

    Office of General Counsel National Environmental Policy Act (NEPA) NEPA Reading Room Final 2011 Supplement Analysis of the 2005 ... Final 2011 Supplement Analysis of the...

  19. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  20. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  1. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  2. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  3. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  4. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  5. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  6. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  7. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. EIS-0285-SA-448: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS- 0285/SA448 Pearl-Marion No. 1 Transmission Line Corridor) Project No. PP&A # 2049

  9. {In Archive} Fw: NEPA for German Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fw: NEPA for German Fuel Maxcine Maxted to: lsaraka 11/14/2014 08:14 AM Cc: Drew Grainger Archive: This message is being viewed in an archive. I got this late yesterday. Thanks, Maxcine Maxted (803) 208-0506 pager 20767 ----- Forwarded by Maxcine Maxted/DOE/Srs on 11/14/2014 08:14 AM ----- From: Herbert Crapse/DOE/Srs To: Jean Ridley/DOE/Srs@Srs, Maxcine Maxted/DOE/Srs@SRS, Date: 11/13/2014 02:25 PM Subject: Fw: NEPA for German Fuel As requested. I have reviewed their input for accuracy and find

  10. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  11. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  12. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  13. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Input-output model for MACCS nuclear accident impacts estimation¹

    SciTech Connect (OSTI)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  12. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  13. Microsoft Word - SmartGrid - NRC Input to DOE Requestrvjcomments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are most problematic near the end of a fuel cycle (typically 18 months) where reactor power control is more complicated. NPPs control systems will not be interfaced with or...

  14. US Nuclear Regulatory Commission Input to DOE Request for Information Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Implementation Input | Department of Energy US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New

  15. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

  16. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  17. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's Fuel Cell Technologies Office...

  18. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department ...

  19. Patent: Microbial fuel cell treatment of fuel process wastewater |

    Office of Scientific and Technical Information (OSTI)

    DOEpatents Microbial fuel cell treatment of fuel process wastewater Citation Details Title: Microbial fuel cell treatment of fuel process wastewater

  20. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  1. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  2. DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a supplemental proposed determination regarding miscellaneous residential refrigeration products.

  3. EIS-0423-S1: Draft Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Supplemental Environmental Impact Statement for the Long-Term Management and Storage of Elemental Mercury

  4. Supplement to Advanced Fossil Loan Guarantee Announcement 062315 |

    Energy Savers [EERE]

    Department of Energy to Advanced Fossil Loan Guarantee Announcement 062315 Supplement to Advanced Fossil Loan Guarantee Announcement 062315 PDF icon Supplement_third_to_Advanced_Fossil_Loan_Guarantee_Announcement_062315.pdf More Documents & Publications Supplement second to REEE Loan Guarantee Announcement 062315 DOE-LPO_Email-Update_001_Through_11 DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT

  5. EIS-0075-SA-01: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    1: Supplement Analysis EIS-0075-SA-01: Supplement Analysis Operational and Engineering Modifications, Regulatory Review, and Socioeconomic Variation - Supplement Analysis of Site-Specific and Programmatic EISs, Strategic Petroleum Reserve, New Orleans, Louisiana DOE's Strategic Petroleum Reserve (SPR) Project Management Office prepared a supplement analysis and determined that the potential environmental impacts of current configurations and operations of the SPR are not significantly different

  6. Feedback air-fuel control system for Stirling engines

    SciTech Connect (OSTI)

    Monahan, R.

    1991-11-19

    This patent describes improvement in combination with a Stirling engine having an air-fuel ratio control and an exhaust gas emission outlet. The improvement comprises an oxygen sensor in communication with the exhaust gas emission outlet for generating an output signal representative of the oxygen content in the outlet; a sensor signal conditioning unit for adapting the output signal to a conditioned input signal for a microprocessor; and a microprocessor controlled pilot for adjusting the air-fuel control in response to the control input signal.

  7. JOBS FC 1.0 (JOBS and economic impacts of Fuel Cells)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 (JOBS and economic impacts of Fuel Cells)* Marianne Mintz, Argonne National Laboratory Eric Stewart and Catherine Mertes, RCF Economic & Financial Consulting May 22, 2012 *Funded by EERE-FCT Program JOBS FC uses input-output approach to model deployment 2  JOBS FC is a user-friendly spreadsheet-based tool that calculates direct, indirect and induced job creation, wages and sales resulting from FC production, installation, operation and fueling.  JOBS FC uses Regional Input-Output

  8. Table 3. U.S. Inputs to biodiesel production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production" "million pounds" ,"Feedstock inputs" ,"Vegetable oils",,,,,,,,,,,,"Animal fats" "Period","Canola oil",,"Corn oil",,"Cottonseed oil",,"Palm oil",,"Soybean oil",,"Other",,"Poultry",,"Tallow" 2013 "January",16,,60,,0,,"W",,313,,"W",,7,,15

  9. STCH Annual Merit Review Input - EERE Hydrogen Program. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect STCH Annual Merit Review Input - EERE Hydrogen Program. Citation Details In-Document Search Title: STCH Annual Merit Review Input - EERE Hydrogen Program. Abstract not provided. Authors: Siegel, Nathan Phillip Publication Date: 2008-05-01 OSTI Identifier: 1145867 Report Number(s): SAND2008-3332C 518638 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Annual merit review held June 10-12, 2008 in DC, DC.; Related Information:

  10. Accident tolerant fuel analysis

    SciTech Connect (OSTI)

    Smith, Curtis; Chichester, Heather; Johns, Jesse; Teague, Melissa; Tonks, Michael Idaho National Laboratory; Youngblood, Robert

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  11. Accident Tolerant Fuel Analysis

    SciTech Connect (OSTI)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but subject to a special fuel tax at the rate of three-nineteenths of the conventional motor fuel tax. A reduction in special fuel tax is permissible if the fuel is already taxed by the Navajo Nation. Retailers, wholesalers, and suppliers of special fuel are eligible for a refund of the special fuel tax if dyed diesel fuel is

  13. Greenhouse Gas Emissions and Fuel Use

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gas Emissions and Fuel Use within the Natural Gas Supply Chain - Sankey Diagram Methodology James Bradbury, Zachary Clement, and Adrian Down Office of Energy Policy and Systems Analysis U.S. Department of Energy July, 2015 2 Acknowledgements The authors are grateful for excellent technical reviews and other contributions provided by several individuals. Within the Department of Energy, input was provided by Judi Greenwald, Elke Hodson and Diana Bauer. External reviewers included the

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  15. Optima: Low Greenhouse Gas Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPTIMA: Low Greenhouse Gas Fuels Blake Simmons Bioenergy 2015 June 24, 2015 2 Defining and Developing New Fuels * Workflow - Survey what fuels are available today - Provide fuel...

  16. Recommendations for the Supplement Analysis Process | Department of Energy

    Energy Savers [EERE]

    Supplement Analysis Process Recommendations for the Supplement Analysis Process DOE has prepared this guidance regarding Supplement Analyses.The guidance discusses decisions regarding whether to prepare a Supplement Analysis (SA), the substantive content of the analysis, procedural aspects of preparing an SA, and the outcomes that can result. PDF icon Recommendations for the Supplement Analysis Process More Documents & Publications 2013 Annual Planning Summary for the Carlsbad Field Office

  17. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S.

  18. Supplemental Analysis for the Final Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Supplemental Analysis for the Final Environmental Impact Statement Supplemental Analysis for the Final Environmental Impact Statement Supplemental Analysis for the Final Environmental Impact Statement for the Proposed Abendoa Biorefinery Project near Hugoton. PDF icon Supplemental Analysis More Documents & Publications EIS-0407-SA-01: Supplement Analysis EIS-0407: Notice of Intent to Prepare an Environmental Impact Statement Biomass IBR Fact Sheet: Abengoa Bio

  19. EIS-0312-SA-03: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    -SA-03: Supplement Analysis EIS-0312-SA-03: Supplement Analysis Fish and Wildlife Implementation Plan The attached Supplement Analysis for Bonneville Power Administration's (BPA's) Fish and Wildlife Implementation Plan Environmental Impact Statement (FWIP EIS) provides a review of whether BPA should prepare a new or supplemental FWIP EIS in light of the the Northwest Power and Conservation Council's (Council) newly amended 2009 Fish and Wildlife Program (2009 Program). PDF icon Supplement

  20. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S.

  1. Apparatus and method for combusting low quality fuel

    DOE Patents [OSTI]

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  2. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  3. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  4. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find

  5. Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder

  6. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  7. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Staples Delivers on Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Digg Find More

  8. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  9. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  10. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  11. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    SciTech Connect (OSTI)

    Pinckard, Margaret J.; Brown, Richard E.; Mills, Evan; Lutz, James D.; Moezzi, Mithra M.; Atkinson, Celina; Bolduc, Chris; Homan, Gregory K.; Coughlin, Katie

    2005-07-13

    The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

  12. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  13. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  14. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  15. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  16. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  19. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. The RFS originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007 (EISA). The RFS requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and importers to register and keep records of and report the volumes and carbon intensities of the fuels they provide in Oregon. DEQ adopted rules for the next phase of the Program, effective February 1, 2015, requiring fuel suppliers to reduce the carbon content of transportation fuels. For more information, see the DEQ

  5. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  6. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    SciTech Connect (OSTI)

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  9. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  10. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. PDF icon Fuel Cell...

  11. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOE Patents [OSTI]

    Geisbrecht, Rodney A. (New Alexandria, PA); Holcombe, Norman T. (McMurray, PA)

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  12. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  13. Microchannel cross load array with dense parallel input

    DOE Patents [OSTI]

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  14. U.S. Total Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    739 15,653 15,665 15,724 15,824 15,861 1982-2016 Gross Inputs 15,900 15,805 15,811 15,895 16,032 16,064 1990-2016 Operable Capacity (Calendar Day) 18,137 18,149 18,160 18,172 18,172 18,172 1990-2016 Percent Operable Utilization 87.7 87.1 87.1 87.5 88.2 88.4 1990-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components 104 200 257 502 612 696 2008-2016 RBOB 362 316 291 395 435 470 2010-2016 CBOB -355 -283 -247 -99 -16 46 2010-2016 GTAB 60 75 81 77 46 54 2010-2016 All Other 38 92 132

  15. U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Flex applications created using the Flex SDK may not properly filter HTML code from user-supplied input before displaying the input.

  16. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  17. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

  18. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of

  19. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  20. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  1. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  2. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative

  3. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle

  4. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  5. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve

  6. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share

  7. Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder

  8. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  9. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  10. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  11. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  12. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  13. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  14. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  15. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs January 2,...

  16. EA-1887: Supplemental Environmental Assessment | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

  17. EIS-0238-SA-04: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Continued Operation of Los Alamos National Laboratory: Recovery and Storage of Strontium-90 (Sr-90) Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

  18. EIS-0203-SA-01: Supplement Analysis

    Broader source: Energy.gov [DOE]

    INEEL Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management

  19. PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS

    SciTech Connect (OSTI)

    , K; Jonathan Lowrie, J; David Thoman , D; Austin Keller , A

    2008-07-30

    Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases.

  20. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  1. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  2. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  3. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  4. EIS-0423-S1: EPA Notice of Availability of a Draft Supplemental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Draft Supplemental Environmental Impact Statement EIS-0423-S1: EPA Notice of Availability of a Draft Supplemental Environmental Impact Statement Draft Supplemental Environmental...

  5. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  6. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  8. JOBS Models: JOBS FC (Fuel Cells) and JOBS H2 (Hydrogen)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models JOBS FC (Fuel Cells) & JOBS H2 (Hydrogen) (Argonne National Laboratory) Objectives The JOBS and economic impacts of Fuel Cells (JOBS FC) and JOBS and economic impacts of Hydrogen (JOBS H2) models estimate employment, earnings and economic output from the manufacture, installation and use of select types of fuel cells and hydrogen infrastructure. Key Attributes & Strengths The two JOBS models use input-output methodology to estimate economic impacts associated with expenditures on

  9. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  10. Surplus Plutonium Disposition Supplemental Environmental Impact Statement |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Plutonium Disposition Supplemental Environmental Impact Statement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  11. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  12. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  13. EIS-0026-SA-03: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Supplement Analysis EIS-0026-SA-03: Supplement Analysis Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant The U.S. Department of...

  14. EIS-0332-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-SA-01: Supplement Analysis EIS-0332-SA-01: Supplement Analysis McNary-John Day Transmission Line Project McNary-John Day Transmission Line - Review for significant new...

  15. EIS-0399-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -SA-01: Supplement Analysis EIS-0399-SA-01: Supplement Analysis Montana-Alberta Tie Ltd. 230-kV Transmission Line Project Proposed Action: Modification to relocate four segments of...

  16. EIS-0285-SA-450: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Flathead-Hot Springs Transmission Line Corridor EIS-0285-SA-450-2011.pdf More Documents & Publications EIS-0285-SA-449: Supplement Analysis EIS-0285-SA-451: Supplement Analysis...

  17. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school districts and municipalities to cover the incremental cost to purchase alternative fuel school buses and other motor vehicles, convert school buses and other motor vehicles to use U.S. Environmental Protection Agency compliant alternative fuel systems, purchase alternative fuel equipment, and install

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) Parking Space Regulation An individual is not allowed to park a motor vehicle within any parking space specifically designated for public parking and fueling of AFVs unless the motor vehicle is an AFV fueled by electricity, natural gas, methanol, propane, gasoline blended with at least 85% ethanol (E85), or other fuels the Oregon Department of Energy approves. Eligible AFVs must also be in the process of fueling or charging to park in the space. A person found responsible for

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Grants As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) provides grant funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. The grant funds 75% of the cost of public access fueling infrastructure and 50% of the cost of private access fueling

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Low Carbon Fuel Use Requirement Beginning January 1, 2017, at least 3% of the aggregate amount of bulk transportation fuel purchased by the state government must be from very low carbon transportation fuel sources. Beginning January 1, 2018, the required amount of very low carbon transportation fuel purchased will increase by 1% annually until January 1, 2024. Some exemptions may apply, as determined by the California Department of General Services (DGS). Very low carbon fuel is

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  9. EA-1722-SA-001: Supplement Analysis for an Environmental Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Battery and Component Manufacturing Initiative Application, Lancaster, OH This Supplement Analysis evaluates the potential environmental impacts of the proposed...

  10. DOE Supplemental Instructions for OMB Section 1512 Reporting - For Grant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Loan Recipients | Department of Energy DOE Supplemental Instructions for OMB Section 1512 Reporting - For Grant and Loan Recipients DOE Supplemental Instructions for OMB Section 1512 Reporting - For Grant and Loan Recipients Instructions for Quarterly reporting through FederalReporting.gov PDF icon DOE Supplemental Instructions for OMB Section 1512 Reporting - For Grant and Loan Recipients More Documents & Publications DOE Supplemental Instructions for OMB Section 1512 Reporting -

  11. Supplement No. 2 to the FUSRAP Summary Protocol - Verification and

    Energy Savers [EERE]

    Certification Protocol | Department of Energy 2 to the FUSRAP Summary Protocol - Verification and Certification Protocol Supplement No. 2 to the FUSRAP Summary Protocol - Verification and Certification Protocol Supplement No. 2 to the FUSRAP Summary Protocol - Verification and Certification Protocol (November 1985, Rev. 1) PDF icon Supplement No. 2 to the FUSRAP Summary Protocol - Verification and Certification Protocol (November 1985, Rev. 1) More Documents & Publications Supplement No.

  12. FTCP-12-003, Supplemental Competencies | Department of Energy

    Office of Environmental Management (EM)

    3, Supplemental Competencies FTCP-12-003, Supplemental Competencies FTCP Issue Paper: FTCP-12-003 Approved by FTCP Chair, December 19, 2012 PDF icon FTCP-12-003 Supplemental Competencies File Supplemental-Competencies-Template More Documents & Publications Functional Area Qualification Standards Template FTCP-08-002, Technical Qualification Program Requalification FTCP-12-001, Use of "Expert Level" in Qualification Path Forward

  13. DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE

    Office of Environmental Management (EM)

    ANNOUNCEMENT | Department of Energy SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT LPO has released a supplement to its existing advanced Fossil Energy Projects solicitations to provide guidance on the kinds of Distributed Energy Projects and project structures it can support under the Title XVII loan program. PDF icon DEP_Supplement_Advanced_Fossil_Solicitation_082415.pdf More Documents &

  14. EIS-0075-SA-02: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    2: Supplement Analysis EIS-0075-SA-02: Supplement Analysis Operational and Engineering Modifications and Regulatory Review - Supplement Analysis of Site-Specific and Programmatic EISs, Strategic Petroleum Reserve, New Orleans, Louisiana DOE's Strategic Petroleum Reserve (SPR) Project Management Office prepared a supplement analysis and determined that the potential environmental impacts of current configurations and operations of the SPR are not significantly different from those assessed in

  15. EIS-0082-SA-01: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    SA-01: Supplement Analysis EIS-0082-SA-01: Supplement Analysis Salt Processing Alternatives at the Savannah River Site, Savannah River Operations Office, Aiken, South Carolina The purpose of this Supplement Analysis (SA) is to evaluate the potential impacts associated with the proposed modified processing and disposition pathway and compare those impacts with those described in the SPA SEIS to determine if the SPA SEIS should be supplemented. Interim Salt Processing followed by High Capacity

  16. EIS-0169-SA-03: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    9-SA-03: Supplement Analysis EIS-0169-SA-03: Supplement Analysis Yakima Fisheries Project-Use of Washington Department of Fish and Wildlife's Yakima Hatchery and Acclimation and Research Activities, Yakima, Yakima County, Washington, Easton, Kittitas County, Washington The purpose of this Supplement Analysis is to determine if a Supplemental EIS is needed to analyze the use of the WDFW's existing Yakima Hatchery for rearing and possibly incubating coho. Additional acclimation and research

  17. EIS-0225-SA-05: Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    5: Supplement Analysis EIS-0225-SA-05: Supplement Analysis Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components, Texas This SA will enable DOE's NNSA to determine whether the existing SWEIS remains adequate, if a new SWEIS is warranted, or if the existing SWEIS should be supplemented. DOE/NNSA has prepared this SA in accordance with these requirements. PDF icon EIS-0225-SA-05-2012.pdf More Documents & Publications EIS-0225-SA-04: Supplement Analysis

  18. EIS-0288-S1: Draft Supplemental Environmental Impact Statement | Department

    Office of Environmental Management (EM)

    of Energy Draft Supplemental Environmental Impact Statement EIS-0288-S1: Draft Supplemental Environmental Impact Statement Production of Tritium in a Commercial Light Water Reactor The Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (DOE/EIS-0288-S1) supplements DOE's 1999 Final EIS (DOE/EIS-0288), which addressed the production of tritium in Tennessee Valley Authority (TVA) reactors at Watts Bar Unit 1 in Rhea County, TN,

  19. EIS-0288-S1: Final Supplemental Environmental Impact Statement | Department

    Office of Environmental Management (EM)

    of Energy Final Supplemental Environmental Impact Statement EIS-0288-S1: Final Supplemental Environmental Impact Statement Production of Tritium in a Commercial Light Water Reactor The Final Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (DOE/EIS-0288-S1) supplements DOE's 1999 Final EIS (DOE/EIS-0288), which addressed the production of tritium in Tennessee Valley Authority (TVA) reactors at Watts Bar Unit 1 in Rhea County, TN,

  20. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department of