National Library of Energy BETA

Sample records for input costs twelve

  1. GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process

    Office of Environmental Management (EM)

    GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process Step Description Associated task 1 Define estimate's purpose Determine estimate's purpose, required level of detail, and overall scope; Determine who will receive the estimate 2 Develop estimating plan Determine the cost estimating team and develop its master schedule; Determine who will do the independent cost estimate; Outline the cost estimating approach; Develop the estimate timeline 3 Define

  2. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  3. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect (OSTI)

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  4. Comparative analysis of twelve Dothideomycete plant pathogens

    SciTech Connect (OSTI)

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  5. Refiner Crude Oil Inputs

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net Inputs (Refiner and ...

  6. GAO Cost Estimating and Assessment Guide

    Broader source: Energy.gov [DOE]

    GAO Cost Estimating and Assessment Guide: Twelve Steps of a High-Quality Cost Estimating Process, from the first step of defining the estimate's purpose to the last step of updating the estimate to reflect actual costs and changes.

  7. DOE Selects Twelve Projects for Crosscutting Technology Research Funding |

    Office of Environmental Management (EM)

    Department of Energy Twelve Projects for Crosscutting Technology Research Funding DOE Selects Twelve Projects for Crosscutting Technology Research Funding August 11, 2015 - 12:16pm Addthis The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has selected 12 projects to receive funding through its Crosscutting Research Program's Transitional Technology Development to Enable Highly Efficient Power Systems with Carbon Management initiative. The NETL Crosscutting

  8. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mile. Table 8. Hybrid and Diesel Van Total Cost per Mile Car PWRTRN Mileage Total Non-Prop Mnt (mile) Prop Maint (mile) Fuel Cost (mile) Total Cost (mile) 663982 Diesel...

  9. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    DOE R&D Accomplishments [OSTI]

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  10. Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 May 18, 2015 - 2:38pm Addthis Twelve collegiate teams are gearing up to participate in the U.S. Department of Energy's (DOE's) second Collegiate Wind Competition that will take place at the annual American Wind Energy Association (AWEA) WINDPOWER Conference and Exhibition in New Orleans, Louisiana, from May 23 to 26, 2016. The Collegiate Wind Competition

  11. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  12. DOE Seeks Input On Addressing Contractor Pension and Medical Benefits

    Energy Savers [EERE]

    Liabilities | Department of Energy Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique

  13. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  14. Generation Inputs Workshop June 25, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inputs Workshop 25 June 2014 BPA's Centralized Wind Power Forecasting Initiative Scott Winner June 25, 2014 Generation Inputs Workshop Predecisional. For Discussion Purposes Only....

  15. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  16. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1","ME..."MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum Products ...

  17. Recommendation 177: Facilitating Early Public Input

    Broader source: Energy.gov [DOE]

    DOE should initiate consultation meetings with stake holders immediately to allow early public input into the planning for IFDP

  18. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  19. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  20. Input apparatus for dynamic signature verification systems

    DOE Patents [OSTI]

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  1. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  2. ,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  3. ,"Washington Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","09...

  4. ,"Texas Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  5. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    7:11:07 PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1...US1","MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum ...

  6. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  7. Factory Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-12-17

    The Factory Cost Model (FCM) is an economic analysis tool intended to provide flat panel display (FPD) and other similar discrete component manufacturers with the ability to make first-order estimates of the cost of unit production. This software has several intended uses. Primary among these is the ability to provide first-order economic analysis for future factories. Consequently, the model requires a minimal level of input detail, and accomodates situations where actual production data are notmore » available. This software is designed to be activity based such that most of the calculated direct costs are associated with the steps of a manufacturibg process. The FCM architecture has the ability to accomodate the analysis of existing manufacturing facilities. The FCM can provide assistance with strategic economic decisions surrounding production related matters. For instance, the program can project the effect on costs and resources of a new product''s introduction, or it can assess the potential cost reduction produced by step yield improvements in the manufacturing process.« less

  8. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the...

  9. Wireless, relative-motion computer input device

    DOE Patents [OSTI]

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  10. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  11. Opportunities for Public Input Into DOE Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities for Public Input Into DOE Projects There are currently several DOE-proposed activities that citizens can comment on in the near future. Here is a summary of each, as well as a description of how to provide your input into the project: Hanford Draft Closure and Waste Management Environmental Impact Statement Idahoans might be interested in this document because one of the proposed actions involves sending a small amount of radioactive waste (approximately 5 cubic meters of special

  12. U-139: IBM Tivoli Directory Server Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The Web Admin Tool does not properly filter HTML code from user-supplied input before displaying the input.

  13. U-147:Red Hat Enterprise MRG Grid Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The MRG Management Console (Cumin) does not properly filter HTML code from user-supplied input before displaying the input.

  14. Energy Cost Calculator for Urinals | Department of Energy

    Office of Environmental Management (EM)

    Urinals Energy Cost Calculator for Urinals Vary water cost, frequency of operation, and /or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with 10 years of life remaining for existing fixture. Input the following data (if any parameter is missing, calculator will set to default value). Defaults Water Saving Product Urinal Urinal Gallons per Flush gpf 1.0 gpf Quantity to be Purchased 1 Water Cost (including waste water charges)

  15. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Input 2,166,784 2,331,109 2,399,318 2,539,812 2,824,480 2,987,634 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  16. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total Input 262,502 262,483 248,620 258,292 242,060 252,467 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  17. Energy Cost Calculator for Faucets and Showerheads | Department of Energy

    Office of Environmental Management (EM)

    Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06

  18. Technological Feasibility and Cost Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis » Analysis Methodologies » Technological Feasibility and Cost Analysis Technological Feasibility and Cost Analysis Technology Feasibility and Cost Analysis is performed to determine the potential economic viability of a process or technology, and helps to identify which technologies have the greatest likelihood of economic success. Results from technology feasibility analysis efforts provide input to balanced portfolio development and technology validation plans. The economic

  19. XBox Input -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position,more » and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  20. Tribal Leaders Provide White House with Input on Bolstering Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am ...

  1. T-693: Symantec Endpoint Protection Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site...

  2. T-701: Citrix Access Gateway Enterprise Edition Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input...

  3. V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated...

  4. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting...

  5. U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

  6. Addressing Uncertainties in Design Inputs: A Case Study of Probabilist...

    Office of Environmental Management (EM)

    Addressing Uncertainties in Design Inputs: A Case Study of Probabilistic Settlement Evaluations for Soft Zone Collapse at SWPF Addressing Uncertainties in Design Inputs: A Case...

  7. DOE Seeks Input On Addressing Contractor Pension and Medical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm...

  8. decreasing water input and waste generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  9. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    SciTech Connect (OSTI)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  10. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  11. Prioritization Tool Measurement Input Form | Department of Energy

    Energy Savers [EERE]

    Prioritization Tool Measurement Input Form Prioritization Tool Measurement Input Form BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form. Download File Prioritization Tool Measurement Input Form More Documents & Publications Energy Savings Potential and RD&D Opportunities for Commercial Refrigration Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard

  12. PADD 3 Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    8,010 8,256 8,111 8,266 8,214 8,498 1992-2016 Gross Inputs 7,992 8,287 8,142 8,332 8,356 8,547 1990-2016 Operable Capacity (Calendar Day) 9,437 9,437 9,437 9,437 9,437 9,437 2010-2016 Percent Operable Utilization 84.7 87.8 86.3 88.3 88.6 90.6 2010-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components -1,974 -2,183 -2,099 -2,078 -1,837 -2,068 2004-2016 RBOB -73 -333 -278 -178 -192 -218 2010-2016 CBOB -1,786 -1,821 -1,763 -1,824 -1,574 -1,711 2004-2016 GTAB 0 0 0 0 0 0 2004-2016

  13. Energy Cost Calculator for Commercial Ice Machines | Department of Energy

    Office of Environmental Management (EM)

    Ice Machines Energy Cost Calculator for Commercial Ice Machines Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy

  14. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  15. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  16. U-144:Juniper Secure Access Input Validation Flaw Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks April 10,...

  17. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks July 5, 2013 -...

  18. Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. Connecticut Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. North Carolina Natural Gas Input Supplemental Fuels (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Input Supplemental Fuels (Million Cubic Feet) North Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. New York Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New York Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  3. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  4. U-001:Symantec IM Manager Input Validation Flaws

    Broader source: Energy.gov [DOE]

    Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks.

  5. Analysis of Stochastic Response of Neural Networks with Stochastic Input

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    Software permits the user to extend capability of his/her neural network to include probablistic characteristics of input parameter. User inputs topology and weights associated with neural network along with distributional characteristics of input parameters. Network response is provided via a cumulative density function of network response variable.

  6. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect (OSTI)

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  7. High-frequency matrix converter with square wave input

    DOE Patents [OSTI]

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  8. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  9. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  10. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  11. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    SciTech Connect (OSTI)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  12. NIDR (New Input Deck Reader) V2.0 2

    Energy Science and Technology Software Center (OSTI)

    2010-03-31

    NIDR (New Input Deck Reader) is a facility for processing block-structured input to large programs. NIDR was written to simplify maintenance of DAKOTA (a program for uncertainty quantification and optimization), to provide better error checking of input and to allow use of aliases in the input. While written to support DAKOTA input conventions, NIDR itself is independent of DAKOTA and can be used in many kinds of programs. The initial version of NIDR was copyrightedmore » in 2008. We have since extended NIDR to support a graphical user interface called Jaguar for DAKOTA. In the Review and Approval process for an updated paper on NIDR, the Classification Approver states that a new copyright assertion should be performed.processing input to programs. NIDR is not primarily for military applications.« less

  13. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  14. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    record documents the methodology and assumptions used to calculate that threshold cost. ... Calculation Methodology and Results: The consumer's cost per mile for the FCEV is set to ...

  15. Generates 2D Input for DYNA NIKE & TOPAZ

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Environmental Management (EM)

    Energy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical,

  17. V-192: Symantec Security Information Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks V-192: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site...

  18. ,"New Mexico Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  19. Abandoned Uranium Mines Report to Congress: LM Wants Your Input

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress.

  20. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  1. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  2. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  3. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

  4. Control Board Digital Interface Input Devices Touchscreen, Trackpad, or Mouse?

    SciTech Connect (OSTI)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  5. Developing a low input and sustainable switchgrass feedstock production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system utilizing beneficial bacterial endophytes | Department of Energy Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Dr. Chuansheng Mei gave this presentation at the Symbiosis Conference. PDF icon symbiosis_conference_mei.pdf More Documents & Publications Symbiosis Biofeedstock Conference:

  6. Cost Estimating Handbook for Environmental Restoration

    SciTech Connect (OSTI)

    1990-09-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

  7. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  8. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  9. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  10. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  11. User manual for IOSYM: an input-oriented simulation language for continuous systems

    SciTech Connect (OSTI)

    Polito, J.

    1981-03-01

    IOSYM is an extension of the GASP IV simulation language. It permits systems which are sequences of continuous processes to be modeled graphically. Normally the system can be described by data input only. The language permits stochastic sequencing and termination criteria for processes and allows crossing conditions for ending operations that are more general than GASP IV. Extensive capability exists for conditional branching and logical modification of the network. IOSYM has been used to model the cost of geothermal drilling where the various costly processes of drilling are represented by IOSYM operations. The language is much more general, however, since it retains most of GASP IV's discrete event capabilities and permits easy modeling of continuous processes.

  12. V-139: Cisco Network Admission Control Input Validation Flaw...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands PLATFORM: Cisco NAC Manager versions prior to 4.8.3.1 and 4.9.2 ABSTRACT: A...

  13. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  14. Proposed Process: NNMCAB Input on Campaigns | Department of Energy

    Office of Environmental Management (EM)

    Proposed Process: NNMCAB Input on Campaigns Proposed Process: NNMCAB Input on Campaigns Topic: Jeff Mousseau LANL, Provided Information on the New Proposed Campaign Process for Field Work. Field work at LANL to be Divided into 17 Campaigns in 5 Categories. PDF icon Campaign Process - April 9, 2014 More Documents & Publications Associate Directorate for Environmental Programs Update March 26, 2014 Chromium Groundwater Remediation Campaign Associate Directorate for Environmental Programs

  15. Tribal Leaders Provide White House with Input on Bolstering Climate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resilience | Department of Energy Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am Addthis As members of the President's State, Local, and Tribal Leaders Task Force on Climate Preparedness, Mayor Reggie Joule, Northwest Arctic Borough (AK) and Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN), were tasked by the President with providing

  16. Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board |

    Office of Environmental Management (EM)

    Department of Energy Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board Jimmy Bell's Experience Brings Valuable Input to Federal Advisory Board October 9, 2013 - 12:00pm Addthis As a youngster growing up in Hazlehurst, Ga., Jimmy Bell never imagined his future would take him across the globe to places he had only read about. However, through dedication and hard work, he was involved in important projects throughout the United States and around the world. Today, Jimmy is

  17. Summary of Stakeholder Input From May 2015 Request for Information |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Stakeholder Input From May 2015 Request for Information Summary of Stakeholder Input From May 2015 Request for Information The U.S. Department of Energy (DOE) sought FY15 feedback through issuance of a Request for Information from public and private sector stakeholders. This RFI received commentary across five areas of interest, including: Technology Commercialization Fund, Cross-Research and Development Linkages and Innovation Cycle Transitions, Central

  18. T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input before displaying the input.

  19. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Several scripts do not properly filter HTML code from user-supplied input before displaying the input via several parameters

  20. Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |

    Office of Environmental Management (EM)

    Department of Energy Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER -

  1. DOE's New Cost-Effectiveness Tool Builds the Business Case for Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrators | Department of Energy DOE's New Cost-Effectiveness Tool Builds the Business Case for Program Administrators DOE's New Cost-Effectiveness Tool Builds the Business Case for Program Administrators ce_tool.jpg In February, DOE released the beta version of a user-friendly tool that estimates the cost-effectiveness of a residential energy efficiency program based on a program administrator's inputs. Public utility commissions, and therefore utilities, use cost-effectiveness tests

  2. High Energy Cost Grants

    Broader source: Energy.gov [DOE]

    The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and distribution facilities servicing eligible rural communities with home...

  3. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  4. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  5. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi/gal) Normal Daily Use 30.5 Total miles/day City 55 % Hwy 45 % Other Trips 3484 Total miles/year City 20 % Hwy 80 % Fuel Cost Emissions Annual Fuel Cost $ $/gal Annual

  6. Input-output model for MACCS nuclear accident impacts estimation

    SciTech Connect (OSTI)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  7. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  8. US Nuclear Regulatory Commission Input to DOE Request for Information Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Implementation Input | Department of Energy US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New

  9. Table 3. U.S. Inputs to biodiesel production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production" "million pounds" ,"Feedstock inputs" ,"Vegetable oils",,,,,,,,,,,,"Animal fats" "Period","Canola oil",,"Corn oil",,"Cottonseed oil",,"Palm oil",,"Soybean oil",,"Other",,"Poultry",,"Tallow" 2013 "January",16,,60,,0,,"W",,313,,"W",,7,,15

  10. Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 22 66 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Virginia Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Virginia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 127 443 454 375 209 414 75 141 643 428 1990's 59 240 245 538 1,195 445 716 350 148 179 2000's 493 239 124 368 145 192 39 89 89 247 2010's 159 89 48 130 301 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 642 635 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  15. Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 249 435 553 560 517 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Total Supplemental Supply of Natural Gas Louisiana Supplemental Supplies of

  16. Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 107 809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. STCH Annual Merit Review Input - EERE Hydrogen Program. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect STCH Annual Merit Review Input - EERE Hydrogen Program. Citation Details In-Document Search Title: STCH Annual Merit Review Input - EERE Hydrogen Program. Abstract not provided. Authors: Siegel, Nathan Phillip Publication Date: 2008-05-01 OSTI Identifier: 1145867 Report Number(s): SAND2008-3332C 518638 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Annual merit review held June 10-12, 2008 in DC, DC.; Related Information:

  18. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  19. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  20. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  1. Computerized management report system for monitoring manpower and cost

    SciTech Connect (OSTI)

    Bullington, V.R.; Stephenson, R.L.; Cardwell, R.G.

    1980-04-01

    Although most cost systems offer complete detail and traceability, not all provide timely detail in a concise form useful to senior management. This system was developed for a multifunction research organization funded from many sources. It extracts cost and manpower data from the general cost systems, summarizes it, compares it by program with previous cost periods, and presents it with minimum detail yet with maximum overview. The system monitors the basic manpower distribution of effort at the source, that is, the division time-card input. Cost data are taken from the central computer ahead of the print-out and report-distribution steps; thus, the summary information is available several days ahead of the detailed reports. This procedure has been regularly used for several months, and has proven to be a valuable tool in management action and planning. 9 figures.

  2. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

  3. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  4. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  5. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  6. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  7. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  8. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  9. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  10. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  11. Microchannel cross load array with dense parallel input

    DOE Patents [OSTI]

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  12. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 50 23 91 9 54 14 3 2 17 16 1990's 320 332 171 410 69 0 18 21 2 4 2000's 0 0 0 22 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  13. Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 0 0 0 91 101 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  14. Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 8 6 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 3 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3 3,038 2,473 2,956 2,773 2,789 2,754 2,483 2,402 2,402 1990's 19,106 15,016 14,694 12,795 13,688 21,378 21,848 22,238 21,967 20,896 2000's 12,423 4,054 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  17. Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 2 376 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 4 0 2 2 2 4 11 11 32 37 1990's 125 0 30 38 9 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,574 11,504 9,786 9,896 8,616 13,421 12,099 13,774 14,846 14,539 1990's 9,962 14,789 14,362 14,950 7,737 7,291 6,778 6,464 9,082 5,761 2000's 8,296 12,330 3,526 473 530 435 175 379 489 454 2010's 457 392 139 255 530 - = No Data Reported; -- = Not Applicable;

  1. New Mexico Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) New Mexico Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1 3 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 45,736 48,394 - = No

  3. Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 416 641 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 3 6 6 10 10 6 3 1990's 3 4 2 3 2 2 2 2 2 3 2000's 2 2 5 5 2 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  5. Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 3 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  8. Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  9. Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 1990's 0 6 3 4 9 4 5 6 0 1 2000's 7 104 2 10 12 9 2 2 1 2 2010's 1 2 3 3 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  10. Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  11. U.S. Total Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    739 15,653 15,665 15,724 15,824 15,861 1982-2016 Gross Inputs 15,900 15,805 15,811 15,895 16,032 16,064 1990-2016 Operable Capacity (Calendar Day) 18,137 18,149 18,160 18,172 18,172 18,172 1990-2016 Percent Operable Utilization 87.7 87.1 87.1 87.5 88.2 88.4 1990-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components 104 200 257 502 612 696 2008-2016 RBOB 362 316 291 395 435 470 2010-2016 CBOB -355 -283 -247 -99 -16 46 2010-2016 GTAB 60 75 81 77 46 54 2010-2016 All Other 38 92 132

  12. Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  13. District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  14. Florida Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Florida Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1 3 1 0 3 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 2,658 2,743 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 36,713 29,509 19,005 19,734 17,308 19,805 22,980 12,514 9,803 9,477 1990's 8,140 6,869 8,042 9,760 7,871 6,256 3,912 4,165 2,736 2,527 2000's 1,955 763 456 52 14 15 13 11 15 20 2010's 17 1 1 63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1,602 5,056 3,496 4,142 4,027 2,711 2,351 3,890 4,243 3,512 1990's 3,015 3,077 3,507 3,232 2,457 3,199 3,194 3,580 3,149 5,442 2000's 5,583 5,219 1,748 2,376 2,164 1,988 1,642 635 30 1 2010's 1 5 1 6 69 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 42 2 131 259 94 4 1 0 6 44 1990's 2 2 5 16 50 6 45 24 2 3 2000's 10 2 1 98 0 15 3 124 15 18 2010's 5 8 1 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  20. Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 157 94 71 12 0 0 0 0 0 0 1990's 0 0 0 0 0 96 61 31 24 43 2000's 6 0 5 6 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  1. Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 4 13 2 6 14 1 1 2 5 1990's 1 1 1 3 5 2 21 5 21 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 124 222 518 373 271 316 339 303 291 167 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  3. U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Flex applications created using the Flex SDK may not properly filter HTML code from user-supplied input before displaying the input.

  4. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished

  5. Energy Cost Calculator for Electric and Gas Water Heaters | Department of

    Office of Environmental Management (EM)

    Energy Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of

  6. Local Sensitivity of Predicted CO2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    SciTech Connect (OSTI)

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficient (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.

  7. Local Sensitivity of Predicted CO2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  8. PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS

    SciTech Connect (OSTI)

    , K; Jonathan Lowrie, J; David Thoman , D; Austin Keller , A

    2008-07-30

    Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases.

  9. Risk assessment of K Basin twelve-inch and four-inch drain valve failure from a postulated seismic initiating event

    SciTech Connect (OSTI)

    MORGAN, R.G.

    1999-06-23

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rate which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. Five four-inch drain valves are located in the north and south loadout pits (NLOP and SLOP), the weasel pit, the technical viewing pit, and the discharge chute pit. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations indicate that only the valve's bonnet and stem are exposed above the basin concrete floor for the twelve-inch drain valve and that much less of the valve's bonnet and stem are exposed above the basin concrete floor for the five four-inch drain valves. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this analysis are to: (1) evaluate the likelihood of damaging the three twelve-inch drain valves located along the north wall of the main basin and the five four-inch drain valves located in the pits from a seismic initiating event, and (2) determine the likelihood of exceeding a specific consequence (initial leak rate) from a damaged valve. The analysis process is a risk-based uncertainty analysis where each variable is modeled using available information and engineering judgement. The uncertainty associated with each variable is represented by a probability distribution (probability density function). Uncertainty exists because of the inherent randomness associated with the distribution of values that a variable may assume, and because of a lack of knowledge concerning a variable. Engineering judgement and technical information are used to develop the variable probability density functions, but the bounds of the probability density function are based on physical limitations. The uncertainty, described by probability distributions, is propagated through the analysis by Monte Carlo convolution techniques. The corresponding results are developed as a probability distribution and expressed in terms of the corresponding complementary cumulative distribution function (''risk curve'').

  10. Table 1. Updated estimates of power plant capital and operating costs

    U.S. Energy Information Administration (EIA) Indexed Site

    Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced

  11. QGESS: Capital Cost Scaling Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the tonnes of CO2 utilized. The costs of the process are to include infrastructure, raw materials, processing, byproduct disposal, and utilities costs, as well as any other costs....

  12. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  13. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  14. Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Total Supplemental Supply of Natural Gas Alaska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual

  15. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  16. Gross Input to Atmospheric Crude Oil Distillation Units

    Gasoline and Diesel Fuel Update (EIA)

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 PADD 1 1,192 1,196 1,063 1,133 1,190 1,136 1985-2015 East

  17. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  18. Summary of Input Request for Information DE-FOA-0001346 | Department of

    Energy Savers [EERE]

    Energy Summary of Input Request for Information DE-FOA-0001346 Summary of Input Request for Information DE-FOA-0001346 PDF icon September 2015 More Documents & Publications Summary of Stakeholder Input From May 2015 Request for Information Summary of Input Request for Information DE-FOA-0001346 DE-FOA-0001346 -- Request for Information (RFI) Summary of Input Request for Information DE-FOA-0001346 FY 2017 President's Budget Request for the Office of Technology Transitions

  19. Efficient Screening of Climate Model Sensitivity to a Large Number of Perturbed Input Parameters [plus supporting information

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Covey, Curt; Lucas, Donald D.; Tannahill, John; Garaizar, Xabier; Klein, Richard

    2013-07-01

    Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less

  20. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operating Procedures | Department of Energy INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures PDF icon ICR_ICE SOP_Sep 2013_Final.pdf More Documents & Publications ICR-ICE Standard Operating Procedures (Update Sept 2013) Contractor SOW Template - ICR Contractor SOW Template - ICE

  1. Heat transfer analysis in Stirling engine heat input system

    SciTech Connect (OSTI)

    Chung, W.; Kim, S.

    1995-12-31

    One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

  2. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect (OSTI)

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  3. Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,868 9,133 8,877 7,927 9,137 8,934 8,095 8,612 10,322 9,190 1990's 15,379 6,778 7,158 8,456 8,168 7,170 6,787 6,314 5,292 4,526 2000's 4,772 5,625 5,771 5,409 5,308 5,285 6,149 6,869 6,258 7,527 2010's 5,148 4,268 4,412 4,077 4,120 - = No Data Reported; -- = Not

  4. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  5. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  6. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  7. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  9. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  10. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect (OSTI)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks that offer the greatest opportunities for cost reduction early in the research and development stages of technology invention.

  11. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  12. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  13. V-112: Microsoft SharePoint Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input Validation Flaws Permit Cross-Site Scripting and Denial of Service Attacks V-112: Microsoft SharePoint Input Validation Flaws Permit Cross-Site Scripting and Denial...

  14. V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis...

  15. T-602: BlackBerry Enterprise Server Input Validation Flaw in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation...

  16. V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks April 2, 2013 - 1:13am Addthis...

  17. U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The VPN management interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser.

  18. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  19. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  20. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect (OSTI)

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  1. Cost | OpenEI Community

    Open Energy Info (EERE)

    Cost Home Ocop's picture Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To...

  2. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  3. Cost and performance baseline for fossil energy plants

    SciTech Connect (OSTI)

    2007-05-15

    The objective of this report is to present performance and cost data for fossil energy power systems, specifically integrated gasification combined cycle (IGCC), pulverized coal (PC), and natural gas combined cycle (NGCC) plants, in a consistent technical and economic manner that accurately reflects current market conditions for plants starting operation in 2010. This is Volume 2 of the three-volume report. Twelve different power plant design configurations were analyzed. These include six IGCC cases utilizing the General Electric Energy (GEE), ConocoPhillips (CoP), and Shell gasifiers each with and without CO{sub 2} capture, and six cases representing conventional technologies: PC-subcritical, PC-supercritical, and NGCC plants both with and without CO{sub 2} capture. Cases 7 and 8 were originally included in this study and involve production of synthetic natural gas (SNG) and the repowering of an existing NGCC facility using SNG. The two SNG cases were subsequently moved to Volume 2 of this report resulting in the discontinuity of case numbers (1-6 and 9-14). Chapter 2 provides the basis for technical, environmental and cost evaluations. Chapter 3 describes the IGCC technologies modeled and presents the results for the six IGCC cases. Chapter 4 describes the PC technologies modeled and presents the results for the four PC cases. Chapter 5 described the NGCC technologies modeled and presents the results for the two NGCC cases. Chapter 6 contains the reference list. 64 refs., 253 exhibits.

  4. Reduction in Fabrication Costs of Gas Diffusion Layers

    SciTech Connect (OSTI)

    Jason Morgan; Donald Connors; Michael Hickner

    2012-07-10

    Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

  5. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  6. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  7. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  8. The SCALE Verified, Archived Library of Inputs and Data - VALID

    SciTech Connect (OSTI)

    Marshall, William BJ J; Rearden, Bradley T

    2013-01-01

    The Verified, Archived Library of Inputs and Data (VALID) at ORNL contains high quality, independently reviewed models and results that improve confidence in analysis. VALID is developed and maintained according to a procedure of the SCALE quality assurance (QA) plan. This paper reviews the origins of the procedure and its intended purpose, the philosophy of the procedure, some highlights of its implementation, and the future of the procedure and associated VALID library. The original focus of the procedure was the generation of high-quality models that could be archived at ORNL and applied to many studies. The review process associated with model generation minimized the chances of errors in these archived models. Subsequently, the scope of the library and procedure was expanded to provide high quality, reviewed sensitivity data files for deployment through the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). Sensitivity data files for approximately 400 such models are currently available. The VALID procedure and library continue fulfilling these multiple roles. The VALID procedure is based on the quality assurance principles of ISO 9001 and nuclear safety analysis. Some of these key concepts include: independent generation and review of information, generation and review by qualified individuals, use of appropriate references for design data and documentation, and retrievability of the models, results, and documentation associated with entries in the library. Some highlights of the detailed procedure are discussed to provide background on its implementation and to indicate limitations of data extracted from VALID for use by the broader community. Specifically, external users of data generated within VALID must take responsibility for ensuring that the files are used within the QA framework of their organization and that use is appropriate. The future plans for the VALID library include expansion to include additional experiments from the IHECSBE, to include experiments from areas beyond criticality safety, such as reactor physics and shielding, and to include application models. In the future, external SCALE users may also obtain qualification under the VALID procedure and be involved in expanding the library. The VALID library provides a pathway for the criticality safety community to leverage modeling and analysis expertise at ORNL.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  10. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  11. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  12. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  13. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Soft Costs The U.S. Department of Energy (DOE) SunShot Initiative accelerates the adoption of solar energy technologies in the marketplace. In support of SunShot Initiative goals, the solar office partners with manufacturers, communities, universities, utilities, and other stakeholders to: Reduce non-hardware costs Lower barriers Foster growth. These focus areas ensure that solar energy systems continue to become more affordable and accessible for Americans. Current Efforts DOE issues

  14. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  15. COSTS ASSOCIATED WITH WHISTLEBLOWER ACTIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A (May, 2014) COSTS ASSOCIATED WITH WHISTLEBLOWER ACTIONS Applicability: This section is applicable to all elements of the Department of Energy including the National Nuclear Security Administration. References: * Section 627 of the Energy Policy Act of 2005, codified at 42 U.S.C. 5853 * DEAR 931.205-47(h), Costs related to legal and other proceedings * DEAR 952.216-7, Allowable cost and payment * DEAR 970.3102-05-47(h), Costs related to legal and other proceedings * DEAR 970.5232-2, Payments

  16. Project Cost Profile Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet File Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template ...

  17. DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of

    Energy Savers [EERE]

    Energy Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest

  18. Rail-to-rail differential input amplification stage with main and surrogate differential pairs

    DOE Patents [OSTI]

    Britton, Jr., Charles Lanier; Smith, Stephen Fulton

    2007-03-06

    An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.

  19. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  20. DOE Seeks Public Input on an Integrated, Interagency Pre-Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Transmission Authorizations | Department of Energy Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The

  1. Stanford's input to the Commission to Review the Effectiveness of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Energy Laboratories | Department of Energy Stanford's input to the Commission to Review the Effectiveness of the National Energy Laboratories Stanford's input to the Commission to Review the Effectiveness of the National Energy Laboratories Stanford's input was presented to the Commission to Review the Effectiveness of the National Energy Laboratories by Bill Madia, Vice President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. PDF icon

  2. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  3. T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input.

  4. SRTC input to DOE-HQ R and D database for FY99

    SciTech Connect (OSTI)

    Chandler, L.R. Jr.

    2000-01-05

    This is a database of the Savannah River Site input to the DOE Research and Development database. The report contains approximately 50 project abstracts.

  5. [Composite analysis E-area vaults and saltstone disposal facilities]. PORFLOW and FACT input files

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This diskette contains the PORFLOW and FACT input files described in Appendix B of the accompanying report `Composite Analysis E-Area Vaults and Saltstone Disposal Facilities`.

  6. Renewable Energy Cost Optimization Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  7. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  8. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  9. Unreasonable Cost Waivers | Department of Energy

    Office of Environmental Management (EM)

    Unreasonable Cost Waivers Unreasonable Cost Waivers unreasonablecost10-03-2012.pdf cnmidecision.pdf eaglepassdecision.pdf...

  10. Low-Cost Microchannel Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cooling application tests * Complete high pressure application integrity and performance tests * Define performance and cost advantages over conventional approach Cost ...

  11. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  12. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect (OSTI)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  13. Geothermal Exploration Cost and Time

    SciTech Connect (OSTI)

    Jenne, Scott

    2013-02-13

    The Department of Energys Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  14. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  15. Cost Effective Water Heating Solutions

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

  16. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis: Hydrogen Cost Optimization Genevieve Saur and Todd Ramsden Technical Report NREL/TP-5600-50408 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd

  17. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.« less

  18. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  19. Price/Cost Proposal Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PRICE/COST PROPOSAL FORM Page No. of NREL Solicitation Document Number: Offeror's Name and Address: Title of Proposed Effort and Task No., Phase No., or Project Total, As Applicable: Telephone Number: Total Amount of Task/Phase No. ___________ $ _______________________ Proposal Summary Total $ ________________________ DETAIL DESCRIPTION OF COST ELEMENTS 1. DIRECT MATERIALS (Attach Itemized Listing for all Purchased Parts, Purchased Items or Services, Raw Materials, Standard Commercial Items, or

  20. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared: 10/28/09 Low Cost Non-Reactive Coating for Refractory Metals A non-reactive coating for refractory metals has been developed at The Ames Laboratory. Contamination of rare earth and reactive metals and their alloys has been a chronic problem that results from their interaction with the crucibles or other vessels used in high temperature processing or during other applications. As a consequence, processing and other costs are high due to the need to replace equipment or containers, or

  1. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2013 DOE Bioenergy Technologies Office: Project Peer Review Syngas Mixed Alcohol Cost Validation Abhijit Dutta, NREL This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Enable research and development of cost-competitive biomass to liquid fuels by providing: - Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable

  2. Estimated Cost Description Determination Date:

    Office of Environmental Management (EM)

    Revised and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next

  3. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  4. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  5. Role of the nonperturbative input in QCD resummed Drell-Yan Q{sub T}

    Office of Scientific and Technical Information (OSTI)

    distributions (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Role of the nonperturbative input in QCD resummed Drell-Yan Q{sub T} distributions Citation Details In-Document Search Title: Role of the nonperturbative input in QCD resummed Drell-Yan Q{sub T} distributions We analyze the role of the nonperturbative input in the Collins-Soper-Sterman (CSS) b-space QCD resummation formalism for Drell-Yan transverse momentum (Q{sub T}) distributions, and

  6. T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scripting Attacks Arbitrary Code | Department of Energy 6: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code January 31, 2011 - 7:00am Addthis PROBLEM: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: A

  7. T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit

    Energy Savers [EERE]

    Cross-Site Scripting Attacks | Department of Energy 2: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks September 21, 2011 - 8:15am Addthis PROBLEM: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks. PLATFORM: WebSphere Commerce Edition V7.0 ABSTRACT: A remote user can access the target user's cookies (including

  8. Summary of Input to DOE Request for Information DE-FOA-0000225 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FOA-0000225 Summary of Input to DOE Request for Information DE-FOA-0000225 Presentation on Sumary of Input to DOE Request for Information DE-FOA-0000225 - U.S. DOE Fuel Cells Technology Program PDF icon fuelcell_pre-solicitation_wkshop_mar10_kleen.pdf More Documents & Publications Long Term Innovative Technologies Summary of Input to DOE Request for Information DE-PS36-08GO38002 (Presentation) Balance of Plant (BoP) Components Validation for Fuel Cells

  9. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  10. Modifications to Replacement Costs System

    SciTech Connect (OSTI)

    Godec, M. [ICF Resources, Inc., Fairfax, VA (United States)

    1989-05-18

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985.

  11. DOE Seeks Further Public Input on How Best To Streamline Existing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Seeks Further Public Input on How Best To Streamline Existing Regulations December 7, 2011 - 12:34pm Addthis The Department of Energy (DOE) has announced a further step to...

  12. U-255: Apache Wicket Input Validation Flaw Permits Cross-Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in ajax links before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed...

  13. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August ... Addthis Related Articles V-211: IBM iNotes Multiple Vulnerabilities U-198: IBM Lotus ...

  14. Lessons Learned in Optimizing Workers' and Worker Representatives' Input to Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Tom McQuiston, Dr. P.H., United Steelworkers - Tony Mazzocchi Center for Health, Safety and Environmental Education. Lessons Learned in Optimizing Workers’ and Worker Representatives’ Input in Work Planning and Control.

  15. Tribes Provide Input on 10-Year Plan for Renewable Energy in the Arctic Region

    Broader source: Energy.gov [DOE]

    The DOE Office of Indian Energy hosted a second round of tribal consultations and outreach meetings throughout Alaska in February and March to gather input on the National Strategy for the Arctic Region (NSAR).

  16. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22, 2015 - 4:39pm Addthis The U.S. ...

  17. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, “Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input,” focuses on the issue of showing compliance with given...

  18. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  19. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION

    Office of Scientific and Technical Information (OSTI)

    FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS (Conference) | SciTech Connect HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS Citation Details In-Document Search Title: HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed

  20. First QER Report Incorporates Tribal Input on U.S. Transmission System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates | Department of Energy First QER Report Incorporates Tribal Input on U.S. Transmission System Updates First QER Report Incorporates Tribal Input on U.S. Transmission System Updates April 23, 2015 - 1:16pm Addthis Affordable, clean, and secure energy and energy services are essential for improving U.S. economic productivity, enhancing quality of life, protecting the environment, and ensuring national security. To help the federal government meet these energy goals, President Obama

  1. USDA, Departments of Energy and Navy Seek Input from Industry to Advance

    Energy Savers [EERE]

    Biofuels for Military and Commercial Transportation | Department of Energy USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation August 30, 2011 - 12:23pm Addthis WASHINGTON, Aug. 30, 2011 -Secretary of Agriculture Tom Vilsack, Secretary of Energy Steven Chu, and Secretary of the Navy Ray Mabus

  2. Microsoft Word - SmartGrid - NRC Input to DOE Requestrvjcomments.docx

    Office of Environmental Management (EM)

    Nuclear Regulatory Commission Input to DOE Request for Information/RFI (Federal Register / Vol. 75, No. 180 / Friday, September 17, 2010/Pages 57006-57011 / Notices) / Smart Grid Implementation Input - NRC Contact: Kenn A. Miller, Office of Nuclear Reactor Regulation, 301-415-3152 Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New Technologies" and "Reliability and Cyber-Security," Page 57010. Nuclear

  3. Microsoft PowerPoint - OTT RFI Summary of Input_Public_Oct 2015

    Office of Environmental Management (EM)

    Input Request for Information DE-FOA-0001346 September 2015 Prepared for the Office of Technology Transitions and Technology Transfer Policy Board 1 Note: the views expressed in this document solely reflect the input received from the RFI respondents and do not necessarily represent DOE's perspective. 13 10 8 7 6 5 4 2 24% 18% 15% 13% 11% 9% 7% 4% 0 5 10 15 Industry National Labs Funding Contractors Academic Tech commercialization consultants Independent Research Organizations Other Number of

  4. Microsoft Word - Levelized Cost of Energy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It takes into account all costs of generating electricity, including capital costs, ... - see OK wind capacity factor above o Capital cost - 1.75 mmMW (includes regional ...

  5. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  6. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  7. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect (OSTI)

    Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain???????¢????????????????s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

  8. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  9. Property:Cost | Open Energy Information

    Open Energy Info (EERE)

    Cost Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:Cost&oldid285418...

  10. Benchmark the Fuel Cost of Steam Generation

    Broader source: Energy.gov [DOE]

    This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is the ...

  12. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  13. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Reducing Photovoltaic Costs Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. The development of more ...

  14. Regulatory cost-risk study

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study is intended to provide some quantitative perspective by selecting certain examples of criteria for which estimates of risks and costs can be obtained, and the balance of the various risks, (i.e., internal versus external risks), can be put into perspective. 35 refs., 39 tabs. (JDB)

  15. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  16. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  17. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to 1,000, the utility must provide the comparison at no cost. If the...

  18. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  19. T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks.

  20. Low Cost, Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost, Durable Seal Low Cost, Durable Seal This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_roberts_utc.pdf More Documents & Publications Improved AST's Based on Real World FCV Data Low Cost Durable Seal Breakout Group 3: Water Management

  1. Hydrogen Pathway Cost Distributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Hydrogen Pathway Cost Distributions Presentation on hydrogen pathway cost distributions presented January 25, 2006. PDF icon wkshp_storage_uihlein.pdf More Documents & Publications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Pathway and Resource Overview HyPro: Modeling the Hydrogen Transition

  2. Novel, Low-Cost Nanoparticle Production

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing a modular hybrid plasma reactor and process to manufacture low-cost nanoparticles

  3. Cost Study Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Study Manual Cost Study Manual Update 6/29/12. PDF icon Memo regarding Cost Study Manual PDF icon Cost Study Manual More Documents & Publications Contractor Human Resources Management QER - Comment of Energy Innovation 7 QER - Comment of Energy Innovation 6

  4. Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Availability, Cost, and Use - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  5. 1998 Cost and Quality Annual

    Gasoline and Diesel Fuel Update (EIA)

    8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of

  6. COST AND QUALITY TABLES 95

    Gasoline and Diesel Fuel Update (EIA)

    5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost

  7. Factors Affecting PMU Installation Costs

    Office of Environmental Management (EM)

    September 2014 United States Department of Energy Washington, DC 20585 Department of Energy | September 2014 Factors Affecting PMU Installation Costs | Page ii Acknowledgments This report was sponsored by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (DOE-OE) and drafted by the Oak Ridge National Laboratory (ORNL). The effort was directed and supported by DOE program manager Joseph Paladino. The lead authors are Marcus Young of ORNL and Alison Silverstein

  8. Input for solar annual merit review. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Input for solar annual merit review. Citation Details In-Document Search Title: Input for solar annual merit review. Abstract not provided. Authors: Siegel, Nathan Phillip Publication Date: 2008-05-01 OSTI Identifier: 1145749 Report Number(s): SAND2008-3333C 518639 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Solar annual merit review held April 21-24, 2008 in austin, TX.; Related Information: Proposed for presentation at the solar annual merit

  9. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    SciTech Connect (OSTI)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.

    2015-09-22

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  10. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","12/2015","1/15/1985" ,"Release Date:","2/29/2016" ,"Next Release

  11. CASL-U-2015-0043-000 MPACT VERA Common Input User's Manual Benjamin Collins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    43-000 MPACT VERA Common Input User's Manual Benjamin Collins Oak Ridge National Laboratory Brendan Kochunas University of Michigan February 20, 2015 CASL-U-2015-0043-000 VERA Common Input User's Manual Version 2.0.0 February 20, 2015 CASL-U-2015-0043-000 2 Contributors (in alphabetical order) * Dr. Benjamin Collins (ORNL) * Prof. Thomas J. Downar (UM) * Dr. Jess Gehin (ORNL) * Andrew Godfrey (ORNL) * Aaron Graham (UM) * Daniel Jabaay (UM) * Blake Kelley (UM) * Dr. Kang Seog Kim (ORNL) * Dr.

  12. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","12/2015","1/15/2010" ,"Release Date:","2/29/2016" ,"Next Release

  13. DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE | Department of Energy DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE March 1, 2011 - 12:00pm Addthis During the months of April and May, 2011 the Department of Energy's Office of Environmental Management

  14. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 17, 2015 - 9:48am Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  15. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attacks | Department of Energy 9: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August 28, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in IBM Lotus iNotes PLATFORM: IBM Lotus iNotes 8.5.x ABSTRACT: IBM Lotus iNotes 8.5.x contains four cross-site scripting vulnerabilities REFERENCE LINKS: Security Tracker Alert ID 1028954 IBM Security Bulletin 1647740

  16. Forestry mitigation potential and costs in developing countries - Preface

    SciTech Connect (OSTI)

    Sathaye, Jayant A.; Makundi, Willy; Andrasko, Kenneth

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  17. Development of surface mine cost estimating equations

    SciTech Connect (OSTI)

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  18. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect (OSTI)

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the scope and magnitude of the cost-overrun problem, the benefits are likely to be significant.

  19. FY 1995 cost savings report

    SciTech Connect (OSTI)

    Andrews-Smith, K.L., Westinghouse Hanford

    1996-06-21

    Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

  20. Estimated Cost Description Determination Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title, Location Estimated Cost Description Determination Date: 2010 LCLS Undulator 2 is envisioned to be a 0.2 - 2keV FEL x-ray source, capable of delivering x-rays to End Station A (ESA), located in the existing Research Yard at SLAC. It will also be configurable as a non- FEL hard x-ray source capable of delivering a chirped x-ray pulse for single-shot broad-spectrum measurements. The project would entail reconstruction of the electron beam transport to End Station A, construction and

  1. Engineering Evaluation/Cost Analysis

    Office of Environmental Management (EM)

    PPPO/03-0145&D2 Engineering Evaluation/Cost Analysis for Group 1 Buildings X-103, X-334, and X-344B at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio This document has been approved for public release: Henry H. Thomas (signature on file) 10/29/10 Classification & Information Control Officer Date Restoration Services, Inc. (RSI) contributed to the preparation of this document and should not be considered an eligible contractor for its review DOE/PPPO/03-0145&D2 Engineering

  2. U-195: PHPlist Input Validation Flaws Permit Cross-Site Scripting and SQL Injection Attacks

    Broader source: Energy.gov [DOE]

    The 'public_html/lists/admin' pages do not properly validate user-supplied input in the 'sortby' parameter [CVE-2012-2740]. A remote authenticated administrative user can supply a specially crafted parameter value to execute SQL commands on the underlying database.

  3. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office has released a Request for Information (RFI) seeking stakeholder input on the following topics related to the use of advanced biofuel blends in small engines

  4. Summary, Attendee Input, and Day 1 Wrap Up | Department of Energy

    Energy Savers [EERE]

    Day 1 Wrap Up Summary, Attendee Input, and Day 1 Wrap Up Addthis Description Summary and wrap up of day 1 presentations and preview of day 2 by DOE Integrated Safety Management Co-champions Patricia R. Worthington, HSS Director, Office of Health and Safety; and and Ray J. Corey, Assistant Manager for Safety and Environment, DOE Richland Operations Office

  5. Summary, Attendee Input, and Final Day 2 Wrap up | Department of Energy

    Energy Savers [EERE]

    Final Day 2 Wrap up Summary, Attendee Input, and Final Day 2 Wrap up Addthis Description Summary and wrap up by DOE Integrated Safety Management Co-champions Patricia R. Worthington, HSS Director, Office of Health and Safety; and and Ray J. Corey, Assistant Manager for Safety and Environment, DOE Richland Operations Office of day 2 presentations and discussions

  6. Using Economic Input/Output Tables to Predict a Countrys Nuclear Status

    SciTech Connect (OSTI)

    Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

    2010-07-15

    Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nations efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a countrys or regions economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industrys output to the industrial sectors while a table column shows the input required of each industrial sector by a given industry.

  7. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  8. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    were able to better absorb increases in domestic production during planned maintenance. U.S. refinery inputs were about 360,000 bbld higher in November compared to this...

  9. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  10. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  11. WIPP - Cost of a FOIA request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost of a Freedom of Information Act (FOIA) request The FOIA generally requires that requestors pay fees for processing their requests. If costs associated with the processing of a...

  12. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  13. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  14. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  15. Evolving Utility Cost-Effectiveness Test Criteria

    Broader source: Energy.gov [DOE]

    Presents an overview of tests done to evaluate the cost-effectiveness of energy efficiency program benefits.

  16. Biotrans: Cost Optimization Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  17. Cost Analysis: Technology, Competitiveness, Market Uncertainty | Department

    Office of Environmental Management (EM)

    of Energy Technology to Market » Cost Analysis: Technology, Competitiveness, Market Uncertainty Cost Analysis: Technology, Competitiveness, Market Uncertainty As a basis for strategic planning, competitiveness analysis, funding metrics and targets, SunShot supports analysis teams at national laboratories to assess technology costs, location-specific competitive advantages, policy impacts on system financing, and to perform detailed levelized cost of energy (LCOE) analyses. This shows the

  18. Renewable Portfolio Standards: Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Heeter, J.; Barbose, G.; Weaver, S.; Flores, F.; Kuskova-Burns, K.; Wiser, R.

    2014-10-01

    This report summarizes state-level RPS costs to date, and considers how those costs may evolve going forward given scheduled increases in RPS targets and cost containment mechanisms. The report also summarizes RPS benefits estimates, based on published studies for individual states and discusses key methodological considerations.

  19. Sustainable Alternative Fuels Cost Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Tuesday, November 27, 2012 9:00 a.m. - 4:00 p.m. National Renewable Energy Lab Offices - Suite 930 901 D Street, SW, Washington, DC 20585 AGENDA 9:00 a.m.-9:15 a.m. Introduction 9:15 a.m.-9:45 a.m. Participant Introductions 9:45 a.m.-10:15 a.m. New Pathways - Alicia Lindauer, DOE 10:15 a.m.-10:45 a.m. Biochemical Conversion Processes - Mary Biddy, NREL 10:45 a.m.-11:15 a.m. Thermochemical Conversion Processes - Johnathan Holladay, PNNL 11:15 a.m.-11:45 a.m. Algae

  20. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    SciTech Connect (OSTI)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-20

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.

  1. Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input

    SciTech Connect (OSTI)

    Augustine, C.

    2011-10-01

    The U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) tasked the National Renewable Energy Laboratory (NREL) with conducting the annual geothermal supply curve update. This report documents the approach taken to identify geothermal resources, determine the electrical producing potential of these resources, and estimate the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs from these geothermal resources at present and future timeframes under various GTP funding levels. Finally, this report discusses the resulting supply curve representation and how improvements can be made to future supply curve updates.

  2. 2013 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, C.; Smith, A.; Maples, B.; Hand, M.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  3. Method for guessing the response of a physical system to an arbitrary input

    DOE Patents [OSTI]

    Wolpert, David H.

    1996-01-01

    Stacked generalization is used to minimize the generalization errors of one or more generalizers acting on a known set of input values and output values representing a physical manifestation and a transformation of that manifestation, e.g., hand-written characters to ASCII characters, spoken speech to computer command, etc. Stacked generalization acts to deduce the biases of the generalizer(s) with respect to a known learning set and then correct for those biases. This deduction proceeds by generalizing in a second space whose inputs are the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is the correct guess. Stacked generalization can be used to combine multiple generalizers or to provide a correction to a guess from a single generalizer.

  4. U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 154,590 175,702 144,811 131,894 109,977 126,363 113,189 101,382 101,134 106,745 1990's 122,806 112,606 117,919 118,999 110,826 110,290 109,455 103,153 102,189 98,249 2000's 90,000 86,312 67,980 67,706 60,365 63,691 66,058 63,132 60,889 65,259 2010's 64,575 60,088 61,366 54,650 59,528 59,693 - = No Data

  5. Steering and focusing effects in TESLA cavity due to high order mode and input couplers

    SciTech Connect (OSTI)

    Piot, P.; /Fermilab; Dohlus, M.; Flottmann, K.; Marx, M.; Wipf, S.G.; /DESY

    2005-05-01

    Many state-of-art electron accelerator proposals incorporate TESLA-type superconducting radio-frequency (rf) cavities [1]. These standing wave rf cavities include rf input couplers and a pair of high order mode (HOM) couplers to absorb the energy associated to HOM field excited as the bunch passes through the cavity. In the present paper we investigate, using numerical simulations, the impact of the input and HOM couplers on the beam dynamics to zeroth and first order in initial position, and present parametric studies of the strength of these effects for various incoming beam energies. We finally study the impact of this asymmetric field on the beam dynamics, taking as an example the low energy section of the X-ray FEL injector.

  6. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  7. Microsoft Word - cost study manual final 06 25 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost

  8. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  9. Cost comparison modeling between current solder sphere attachment technology and solder jetting technology

    SciTech Connect (OSTI)

    Davidson, R.N.

    1996-10-01

    By predicting the total life-cycle cost of owning and operating production equipment, it becomes possible for processors to make accurate and intelligent decisions regarding major capitol equipment investments as well as determining the most cost effective manufacturing processes and environments. Cost of Ownership (COO) is a decision making technique based on inputting the total costs of acquiring, operating and maintaining production equipment. All quantitative economic and production data can be modeled and processed using COO software programs such as the Cost of Ownership Luminator program TWO COOL{trademark}. This report investigated the Cost of Ownership differences between the current state-of-the-art solder ball attachment process and a prototype solder jetting process developed by Sandia National Laboratories. The prototype jetting process is a novel and unique approach to address the anticipated high rate ball grid array (BGA) production requirements currently forecasted for the next decade. The jetting process, which is both economically and environmentally attractive eliminates the solder sphere fabrication step, the solder flux application step as well as the furnace reflow and post cleaning operations.

  10. Low-cost inertial measurement unit.

    SciTech Connect (OSTI)

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  11. 2006 Update of Business Downtime Costs

    SciTech Connect (OSTI)

    Hinrichs, Mr. Doug; Goggin, Mr. Michael

    2007-01-01

    The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrial subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.

  12. BETO Seeks Stakeholder Input on Achieving High Yields from Algal Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Bioenergy Technologies Office (BETO) has released a Request for Information (RFI) titled "High Yields through Productivity and Integration Research." BETO is seeking input from industry, academia, and other stakeholders regarding supply systems and services for the cultivation, logistics, and preprocessing of algal feedstocks. This RFI provides algae stakeholders with an opportunity to contribute their views on the requirements necessary to develop reliable

  13. High-Frequency Matrix Converter with Square Wave Input - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Geothermal Geothermal Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search High-Frequency Matrix Converter with Square Wave Input DOE Grant Recipients Contact GRANT About This Technology Publications: PDF Document Publication 8995159.pdf (1,648 KB) Technology Marketing Summary As the use of renewable energy sources increase, there is an increasing need for power converters capable of

  14. 2012 Congestion Study Webinars to Present Preliminary Findings and Receive Input from Stakeholders

    Broader source: Energy.gov [DOE]

    The Department of Energy will host three webinars in August 2012 to present the preliminary findings of the 2012 National Electric Transmission Congestion Study and to receive input and suggestions from state officials, industry representatives, and other stakeholders. Two of the webinars will be designed to discuss with state officials the initial findings of the DOE 2012 congestion analysis. The third webinar will be for industry representatives and other interested parties, although stakeholders may dial into any of the three meetings.

  15. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  16. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  17. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  18. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  19. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  20. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion

  1. SPP Staff appreciates the opportunity to provide input regarding the Draft Conge

    Energy Savers [EERE]

    SPP Staff appreciates the opportunity to provide input regarding the Draft Congestion Study. The following remarks have not been vetted with SPP members, and do not represent any approved official remarks on behalf of SPP's members. Given the long lead times to get EHV transmission approved and constructed, DOE Congestion Studies need to look beyond 3-5 year horizons. DOE assessments regarding congestion need to go beyond reporting historical data and summarizing regional studies to reflect

  2. Microsoft Word - CR-091 Primary Basis of Cost Savings and Cost Savings Amount Custom Fields

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CR-091 Primary Basis of Cost Savings and Cost Savings Amount Custom Fields Primary Basis of Cost Savings and Cost Savings Amount Custom Fields Background On August 29 th , 2013 the PSWG approved Change Request 091 which adds two new custom fields to STRIPES. The names of the fields are Primary Basis of Cost Savings and Cost Saving Amount. The purpose of these fields is to allow DOE to capture Cost Savings documented at time of award and the subsequent reporting capability of this data via IDW.

  3. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  4. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

  5. Low Cost Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Durable Seal Low Cost Durable Seal Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 4_utc.pdf More Documents & Publications Low Cost, Durable Seal 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

  6. Low Cost Heliostat Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Heliostat Development Low Cost Heliostat Development This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042513_blackmon.pdf More Documents & Publications Next Generation Solar Collectors for CSP - FY13 Q1 Low-Cost Heliostat for Modular Systems - FY13 Q1 Next-Generation Solar Collectors for CSP - FY13 Q2

  7. Addressing Deferred Maintenance, Infrastructure Costs, and Excess

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities at Portsmouth and Paducah | Department of Energy Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Presentation from the 2015 DOE National Cleanup Workshop by William E. Murphie, Manager, Portsmouth/Paducah Project Office (PPPO). PDF icon Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth

  8. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  9. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  10. Benchmarking for Cost Improvement. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The US Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management (EM) conducted the Benchmarking for Cost Improvement initiative with three objectives: Pilot test benchmarking as an EM cost improvement tool; identify areas for cost improvement and recommend actions to address these areas; provide a framework for future cost improvement. The benchmarking initiative featured the use of four principal methods (program classification, nationwide cost improvement survey, paired cost comparison and component benchmarking). Interested parties contributed during both the design and execution phases. The benchmarking initiative was conducted on an accelerated basis. Of necessity, it considered only a limited set of data that may not be fully representative of the diverse and complex conditions found at the many DOE installations. The initiative generated preliminary data about cost differences and it found a high degree of convergence on several issues. Based on this convergence, the report recommends cost improvement strategies and actions. This report describes the steps taken as part of the benchmarking initiative and discusses the findings and recommended actions for achieving cost improvement. The results and summary recommendations, reported below, are organized by the study objectives.

  11. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  12. 2014 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, Christopher; Stehly, Tyler; Maples, Ben; Settle, Edward

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  13. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  14. Cost Mechanisms | OpenEI Community

    Open Energy Info (EERE)

    Cost Mechanisms Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  15. Cost Effectiveness of Electricity Energy Efficiency Programs...

    Open Energy Info (EERE)

    Effectiveness of Electricity Energy Efficiency Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost Effectiveness of Electricity Energy Efficiency Programs...

  16. Controller (Cost Compliance and Financial Reporting) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAAP, Cost Accounting Standards and internal controls required. Excellent analytical and problem solving skills Knowledge of DOE reporting requirements and prior Laboratory or...

  17. Aerogel commercialization: Technology, markets and costs

    SciTech Connect (OSTI)

    Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

    1994-10-07

    Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

  18. Modified Accelerated Cost-Recovery System (MACRS)

    Broader source: Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  19. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company

  20. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  1. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cutting Biofuel Production Costs Working to use sunlight to convert biomass to biofuels, ... bioderived alcohols to benzaldehyde, toluene, and the zero-emission biofuel hydrogen. ...

  2. Watt Does It Cost To Use It?

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students learn how electrical usage is counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items.

  3. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison This cost of ownership...

  4. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  5. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  6. Methods to Register Models and Input/Output Parameters for Integrated Modeling

    SciTech Connect (OSTI)

    Droppo, James G.; Whelan, Gene; Tryby, Michael E.; Pelton, Mitchell A.; Taira, Randal Y.; Dorow, Kevin E.

    2010-07-10

    Significant resources can be required when constructing integrated modeling systems. In a typical application, components (e.g., models and databases) created by different developers are assimilated, requiring the frameworks functionality to bridge the gap between the users knowledge of the components being linked. The framework, therefore, needs the capability to assimilate a wide range of model-specific input/output requirements as well as their associated assumptions and constraints. The process of assimilating such disparate components into an integrated modeling framework varies in complexity and difficulty. Several factors influence the relative ease of assimilating components, including, but not limited to, familiarity with the components being assimilated, familiarity with the framework and its tools that support the assimilation process, level of documentation associated with the components and the framework, and design structure of the components and framework. This initial effort reviews different approaches for assimilating models and their model-specific input/output requirements: 1) modifying component models to directly communicate with the framework (i.e., through an Application Programming Interface), 2) developing model-specific external wrappers such that no component model modifications are required, 3) using parsing tools to visually map pre-existing input/output files, and 4) describing and linking models as dynamic link libraries. Most of these approaches are illustrated using the widely distributed modeling system called Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES). The review concludes that each has its strengths and weakness, the factors that determine which approaches work best in a given application.

  7. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities. Process analysis of several leading routes to AB (Purdue's formate-based metathesis route and PNNL's NH{sub 4}BH{sub 4}-based route) indicated the cost to produce first-fill AB to be on the order of $9-10/kg AB, assuming a NaBH{sub 4} cost of $5/kg for a 10,000 metric tons/year sized AB plant. The analysis showed that the dominant cost component for producing first-fill AB is the cost of the NaBH4 raw material. At this AB cost and assuming 2.5 moles hydrogen released per mole of AB, it may be possible to meet DOE's 2010 storage system cost target, but the 2015 target will likely require lower cost AB and demonstrates the importance of having a low-cost route to NaBH{sub 4}. Substantial progress has also been made to define feasible pathways for the regeneration of spent ammonia borane fuel.

  8. Procedure for developing biological input for the design, location, or modification of water-intake structures

    SciTech Connect (OSTI)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  9. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOE Patents [OSTI]

    Chen, Dong; Eisley, Noel A; Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-03-10

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.

  10. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Office of Environmental Management (EM)

    :14 Report number: 2013:14 ISSN: 2000-0456 Available at www.stralsakerhetsmyndigheten.se Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries Evaluation for Regulatory Input Robert A. Meck Author: SSM perspektiv SSM har nyligen beslutat om föreskrifter om friklassning av material, loka- ler, byggnader och mark vid verksamhet med joniserande strålning (SSMFS 201 1:2). Föreskrifterna innehåller bland annat krav på att tillståndshavare, vid avveckling av

  11. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  12. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  13. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  14. Table A13. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural

  15. Table A39. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use

  16. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," "

  17. RELAP5/MOD3 code manual: User`s guide and input requirements. Volume 2

    SciTech Connect (OSTI)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. Volume II contains detailed instructions for code application and input data preparation.

  18. Summary of Input to DOE Request for Information DE-PS36-08GO38002

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy PS36-08GO38002 (Presentation) Summary of Input to DOE Request for Information DE-PS36-08GO38002 (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. PDF icon fuelcell_pre-solicitation_wkshop_jan08_peterson.pdf More Documents & Publications Greenpower Trap Mufflerl System BILIWG: Consistent "Figures of Merit" (Presentation) Heating Ventilation and Air Conditioning Effic

  19. Systematic Approach to Better Understanding Integration Costs

    SciTech Connect (OSTI)

    Stark, Gregory B.

    2015-09-01

    This research presents a systematic approach to evaluating the costs of integrating new generation and operational procedures into an existing power system, and the methodology is independent of the type of change or nature of the generation. The work was commissioned by the U.S. Department of Energy and performed by the National Renewable Energy Laboratory to investigate three integration cost-related questions: (1) How does the addition of new generation affect a system's operational costs, (2) How do generation mix and operating parameters and procedures affect costs, and (3) How does the amount of variable generation (non-dispatchable wind and solar) impact the accuracy of natural gas orders? A detailed operational analysis was performed for seven sets of experiments: variable generation, large conventional generation, generation mix, gas prices, fast-start generation, self-scheduling, and gas supply constraints. For each experiment, four components of integration costs were examined: cycling costs, non-cycling VO&M costs, fuel costs, and reserves provisioning costs. The investigation was conducted with PLEXOS production cost modeling software utilizing an updated version of the Institute of Electrical and Electronics Engineers 118-bus test system overlaid with projected operating loads from the Western Electricity Coordinating Council for the Sacramento Municipal Utility District, Puget Sound Energy, and Public Service Colorado in the year 2020. The test system was selected in consultation with an industry-based technical review committee to be a reasonable approximation of an interconnection yet small enough to allow the research team to investigate a large number of scenarios and sensitivity combinations. The research should prove useful to market designers, regulators, utilities, and others who want to better understand how system changes can affect production costs.

  20. Noise testing of gearboxes and transmissions using low cost digital analysis and control techniques

    SciTech Connect (OSTI)

    Middleton, A.H.

    1986-01-01

    The combination of low cost personal computer, powerful array processor and intelligent data interface make it possible to carry out multichannel noise and vibration analysis at high speed during acceleration of gearbox on a test rig. Order analysis is used to compare noise signatures with preset targets for up to 20 orders of input shaft rotation. Targets are derived by the computer from practical test results. The computer also controls the test sequence and provides for varying the sequence according to the gearbox to be tested. Design considerations for a Quality Audit system are discussed and practical test results presented.

  1. Draft Submission; Social Cost of Energy Generation

    SciTech Connect (OSTI)

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  2. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  3. PAFC Cost Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Challenges PAFC Cost Challenges Presentation at the MCFC and PAFC R&D Workshop held Nov. 16, 2009, in Palm Springs, CA PDF icon mcfc_pafc_workshop_kanuri.pdf More Documents & Publications MCFC and PAFC R&D Workshop Summary Report High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D PAFC History and Successes

  4. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es111_gallagher_2012_o.pdf More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  5. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es001_barnett_2010_o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV

  6. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  7. Input-independent, Scalable and Fast String Matching on the Cray XMT

    SciTech Connect (OSTI)

    Villa, Oreste; Chavarra-Miranda, Daniel; Maschhoff, Kristyn J.

    2009-05-25

    String searching is at the core of many security and network applications like search engines, intrusion detection systems, virus scanners and spam ?lters. The growing size of on-line content and the increasing wire speeds push the need for fast, and often real- time, string searching solutions. For these conditions, many software implementations (if not all) targeting conventional cache-based microprocessors do not perform well. They either exhibit overall low performance or exhibit highly variable performance depending on the types of inputs. For this reason, real-time state of the art solutions rely on the use of either custom hardware or Field-Programmable Gate Arrays (FPGAs) at the expense of overall system ?exibility and programmability. This paper presents a software based implementation of the Aho-Corasick string searching algorithm on the Cray XMT multithreaded shared memory machine. Our so- lution relies on the particular features of the XMT architecture and on several algorith- mic strategies: it is fast, scalable and its performance is virtually content-independent. On a 128-processor Cray XMT, it reaches a scanning speed of ? 28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range, variability is below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the type of input and dictionary size.

  8. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  9. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  10. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  11. Dissecting the Cost of the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI: cleanenergysolutions.orgcontentdissecting-cost-smart-grid Language: English Policies: Regulations Regulations: "Resource Integration Planning,Cost...

  12. Current and future costs for parabolic trough and power tower systems in the US market.

    SciTech Connect (OSTI)

    Turchi, Craig; Kolb, Gregory J.; Mehos, Mark Steven; Ho, Clifford Kuofei

    2010-08-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  13. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect (OSTI)

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  14. Renewable Energy Planning: Multiparametric Cost Optimization

    SciTech Connect (OSTI)

    Walker, A.

    2008-01-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  15. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect (OSTI)

    Walker, A.

    2008-05-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  16. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  17. EO 13690 (2015): Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input

    Broader source: Energy.gov [DOE]

    Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard [FFRMS] and a Process for Further Soliciting and Considering Stakeholder Input (2015) amends E.O. 11988,...

  18. Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design

    SciTech Connect (OSTI)

    Cramer, E.R.

    1994-10-01

    The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

  19. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect (OSTI)

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  20. Cost and code study of underground buildings

    SciTech Connect (OSTI)

    Sterling, R.L.

    1981-01-01

    Various regulatory and financial implications for earth-sheltered houses and buildings are discussed. Earth-sheltered houses are covered in the most detail including discussions of building-code restrictions, HUD Minimum Property Standards, legal aspects, zoning restrictions, taxation, insurance, and home financing. Examples of the initial-cost elements in earth-sheltered houses together with projected life-cycle costs are given and compared to more-conventional energy-conserving houses. For larger-scale underground buildings, further information is given on building code, fire protection, and insurance provisions. Initial-cost information for five large underground buildings is presented together with energy-use information where available.

  1. How three smart managers control steam costs

    SciTech Connect (OSTI)

    Kendall, R.

    1982-11-01

    Three steam-intensive companies report innovative ways to reduce steam-production costs. Goodyear Tire and Rubber Co. concentrated on regular maintenance, process modifications, and heat recovery, but also has an on-going policy of seeking further cost savings. Future efforts will explore computer-based boiler controls. Zenith Radio Corporation's color picture tube-making process uses 12% less steam after 700 mechanical steam traps were replaced with fixed-orifice traps. Petro-Tex Chemical Corp. reduced steam costs by monitoring and optimizing process units and by making capital investments to improve steam management. (DCK)

  2. Visualizations, Screen Shots, and Data Input Files from VisIT

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    VisIt is a free interactive parallel visualization and graphical analysis tool for viewing scientific data on Unix and PC platforms. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images for presentations. VisIt contains a rich set of visualization features so that you can view your data in a variety of ways. It can be used to visualize scalar and vector fields defined on two- and three-dimensional (2D and 3D) structured and unstructured meshes. VisIt was designed to handle very large data set sizes in the terascale range and yet can also handle small data sets in the kilobyte range. The VisIT website provides a gallery of vizualizations, another set of screen shots, and allows downloads of data files for input and source codes and executables for the VisIT software suite.

  3. Device for modular input high-speed multi-channel digitizing of electrical data

    DOE Patents [OSTI]

    VanDeusen, Alan L. (Lee's Summit, MO); Crist, Charles E. (Waxahachie, TX)

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  4. Device for modular input high-speed multi-channel digitizing of electrical data

    DOE Patents [OSTI]

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  5. Contaminant transport in unconfined aquifer, input to low-level tank waste interim performance assessment

    SciTech Connect (OSTI)

    Lu, A.H., Westinghouse Hanford

    1996-08-14

    This report describes briefly the Hanford sitewide groundwater model and its application to the Low-Level Tank Waste Disposal (LLTWD) interim Performance Assessment (PA). The Well Intercept Factor (WIF) or dilution factor from a given areal flux entering the aquifer released from the LLTWD site are calculated for base case and various sensitivity cases. In conjunction with the calculation for released fluxes through vadose zone transport,the dose at the compliance point can be obtained by a simple multiplication. The relative dose contribution from the upstream sources was also calculated and presented in the appendix for an equal areal flux at the LLTWD site. The results provide input for management decisions on remediation action needed for reduction of the released fluxes from the upstream facilities to the allowed level to meet the required dose criteria.

  6. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  7. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article, which is based on a longer report from Berkeley Lab, examines how twelve western utilities - Avista, Idaho Power, NorthWestern Energy (NorthWestern or NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E) - treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to suggest possible improvements to methods used to evaluate renewable energy as a resource option. This article begins with a discussion of the planned renewable energy additions called for by the twelve utilities in our sample, followed by an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  8. USDA High Energy Cost Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture (USDA) is accepting applications for the improvement of energy generation, transmission, and distribution facilities serving rural communities with home energy costs that are over 275% of the national average.

  9. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  10. Cost of Energy | Open Energy Information

    Open Energy Info (EERE)

    as well as projections for the future. Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P. (March 2013). 2011 Cost of Wind Energy Review. National Renewable...

  11. Extreme Balance of System Hardware Cost Reduction

    Broader source: Energy.gov [DOE]

    On September 1, 2011, DOE announced $42.4 million in funding over three years for the Extreme Balance of System Hardware Cost Reduction (BOS-X) funding opportunity. Part of the SunShot Systems...

  12. SEP 2015 Cost Benefit Analysis Paper

    Broader source: Energy.gov [DOE]

    This Superior Energy Performance® (SEP™) paper analyzes previously reported and newly collected data of costs and benefits associated with the implementation of an ISO 50001 and SEP certification.

  13. Top Low- or No-Cost Improvements

    Broader source: Energy.gov [DOE]

    This presentation describes the top low- or no-cost projects to improve energy efficiency as identified in energy assessments performed by DOE and by the Industrial Assessment Centers.

  14. Energy Cost Control: How the Money Works

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christopher Russell Energy PathFINDER www.energypathfinder.com crussell@energypathfinder.com Energy Cost Control: How the Money Works (Copies of these slides to be provided by ...

  15. New developments in capital cost estimating

    SciTech Connect (OSTI)

    Stutz, R.A.; Zocher, M.A.

    1988-01-01

    The new developments in cost engineering revolve around the ability to capture information that in the past could not be automated. The purpose of automation is not to eliminate the expert cost engineer. The goal is to use available technology to have more information available to the professionals in the cost engineering field. In that sense, the demand for expertise increases in order to produce the highest quality estimate and project possible from all levels of cost engineers. We cannot overemphasize the importance of using a good source of expert information in building these types of programs. ''Garbage in, garbage out'' still applies in this form of programming. Expert systems technology will become commonplace in many vertical markets; it is important to undersand what can and cannot be accomplished in our field, and where this technology will lead us in the future.

  16. Costs | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 working days of the event. Any additional costs that are the result of additional audio visual usage or extraordinary cleanupdamages will be billed to the user. Use of the...

  17. Low-Cost, Lightweight Solar Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    Cost, Lightweight Solar Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane

  18. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect (OSTI)

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  19. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low projected manufacturing costs, high ion conductivities, reduced cross-over, chemical and thermal stability in both acidic and alkaline environments, the Sandia membrane technology is positioned to lower the cost of many energy-water systems. Poly (phenylene)-based Hydrocarbon Membrane Separators With a larger component of our electricity generation coming from intermittent and variable sources, stationary energy storage and local power generation will be essential for continued growth of the

  20. Reducing Power Factor Cost | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Power Factor Cost Reducing Power Factor Cost Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. PDF icon Reducing

  1. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_joseck.pdf More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 H2A Delivery Models and Results Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout

  2. Certificate of Current Cost and Pricing Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF CURRENT COST AND PRICING DATA (OCT 1997) This is to certify that, to the best of my knowledge and belief, the cost or pricing data (as defined in section 15.401 of the Federal Acquisition Regulation (FAR) and required under FAR subsection 15.403-4) submitted, either actually or by specific identification in writing, to the Contracting Officer or to the Contracting Officer's representative in support of * are accurate, complete, and current as of **. This certification includes the

  3. Cost Competitive Electricity from Photovoltaic Concentrators Called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Imminent' - News Releases | NREL Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National

  4. Soft Costs Competitive Awards | Department of Energy

    Energy Savers [EERE]

    Soft Costs Competitive Awards Soft Costs Competitive Awards Open Funding Opportunities State Energy Evolution and Diffusion Studies II - State Energy Strategies (SEEDSII-SES) Mandatory concept paper due March 8, 2016 Current Awards Funding Program Year Announced Amount Awarded Solar Powering America by Recognizing Communities (SPARC) 2015 $13M SunShot Prize 2015 $10M Solar Market Pathways 2015 $16.5M Catalyst Energy Innovation Prize 2014 $1M Rooftop Solar Challenge II 2013 $12M Grid Engineering

  5. Project Cost Profile Spreadsheet | Department of Energy

    Energy Savers [EERE]

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Under DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, the Office of Acquisition and Project Management (OAPM) must perform a Performance Baseline External Independent Review (EIR) prior to Critical Decision (CD) 2, and a Construction/Execution Readiness EIR for all Major System projects prior to CD-3. The EIR Standard Operating Procedures (SOP) discuss all elements of EIRs including review

  6. Watt Does It Cost To Use It?

    Broader source: Energy.gov (indexed) [DOE]

    Watt Does It Cost to Use It? Grades: 5-8, 9-12 Topic: Energy Efficiency and Conservation Author: Mark Ziesmer Owner: Alliance to Save Energy This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. WATT DOES IT COST TO USE IT? By Mark Ziesmer, Sultana High School Hesperia Unified School District, California Overview: Familiarize students with how electrical usage is counted, electrical pricing, and measure and evaluate

  7. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  8. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Environmental Management (EM)

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. PDF icon DOE Hydrogen and Fuel Cells Program Record # 12024 More Documents & Publications Distributed Hydrogen

  9. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2015 Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 This paper presents average values of levelized costs for generating technologies that are brought online in 2020 1 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2015 (AEO2015) Reference case. 2 Both national values and the minimum and maximum values across the 22 U.S. regions of the NEMS electricity market module are presented. Levelized

  10. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  11. T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks

    Broader source: Energy.gov [DOE]

    Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks .

  12. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  13. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    SciTech Connect (OSTI)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Idury, K.S.N. Satish, E-mail: satishidury@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Ismail, T.P., E-mail: tpisma@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Bhadauria, Alok, E-mail: alokbhadauria1@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, S.K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}? method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: Effect of heat input on microstructure, residual stresses and corrosion is studied. HAZ and width of dendrite in the welded region increase with heat input. Residual stresses are tensile near the welded region after the highest heat input. Welded region has the highest pit density after highest heat input. Dendrites and ?-ferrite were highly oriented in the welded region.

  14. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    SciTech Connect (OSTI)

    Pinckard, Margaret J.; Brown, Richard E.; Mills, Evan; Lutz, James D.; Moezzi, Mithra M.; Atkinson, Celina; Bolduc, Chris; Homan, Gregory K.; Coughlin, Katie

    2005-07-13

    The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

  15. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  16. Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter

    SciTech Connect (OSTI)

    Li, H.

    2005-10-24

    There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

  17. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumey, S. J.; Guilderson, T. P.; Brown, T. A.; Broek, T.; Buesseler, K. O.

    2013-04-02

    We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. The resulting measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ~300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushimamore » backgrounds. The 129I results were coupled with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 × 10-6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific.« less

  18. Low-Cost Spectral Sensor Development Description.

    SciTech Connect (OSTI)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  19. Natural gas industry's response to transaction costs

    SciTech Connect (OSTI)

    Mulherin, J.H.

    1985-07-25

    Legislators and regulators have historically viewed the organizational features in the natural gas industry as noncompetitive. Challenging recent suggestions that the contractual arrangements in the industry are in violation of antitrust statutes, the author states that the methods of organization such as long-term contracts, take-or-pay provisions, and most-favored nation clauses are competitive responses to the costs of transacting in the natural gas industry. These arrangements lower transaction costs by mitigating the opportunistic behavior that can potentially arise in long-term relations involving specialized assets. If policymakers want to enable cost reductions in the industry to reduce the price burden felt by users of gas, an accompaniment of price decontrol by overall deregulation is in order.

  20. Solar at the cost of coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the cost of coal 1 Domestic shale gas 2 US shale gas enables solar g SunShot: towards $1 / Watt SunShot: towards $1 / Watt Silicon PV can reach coal parity p y *LCOE calculated assuming 5.75kWh/m 2 /day (17% capacity factor), a 7% discount rate, and a 30-year project life. Solar at the cost of coal 0 8 Half of PV manufacturing cost is making wafers, but currently wasteful and slow 40% 50% uring 0.6 0.7 0.8 $0.73/W Saw wafer 3x wafers per kg Si 20% 30% 40% Global Manufactu Direct Wafer Locate

  1. Shifting the cost curve for subsea developments

    SciTech Connect (OSTI)

    Solheim, B.J.; Hestad, E.

    1995-12-31

    A steadily increasing challenge in offshore oil and gas field developments in the Norwegian part of the North Sea is to design, construct, and install offshore installations that give an acceptable return of investment Deeper water, limited reservoirs and a low, fluctuating oil price make the task even more demanding. Saga Petroleum has recently faced this challenge with its last field development project. Attention in this paper is focused on the Vigdis subsea production system. However, the considerations and cost reduction elements are valid for offshore field developments in general. The main cost reductions are obtained by: Maximum use of industry capability; Application of new organization principles; Focus on functional requirements; Shortened project execution time; Technological development. In addition this paper presents thoughts on further cost reduction possibilities for future subsea field developments.

  2. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  3. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Gasoline and Diesel Fuel Update (EIA)

    and equipment) are not as volatile as drilling, pipe, and other well completion costs, ... and labor costs, are not as volatile as drilling rig costs, for example, because there ...

  4. Property:GeothermalArraAwardeeCostShare | Open Energy Information

    Open Energy Info (EERE)

    GeothermalArraAwardeeCostShare Property Type Number Description Geothermal ARRA Awardee Cost Share Pages using the property "GeothermalArraAwardeeCostShare" Showing 25 pages using...

  5. Levelized Cost of Energy in US | OpenEI Community

    Open Energy Info (EERE)

    Levelized Cost of Energy in US Home I'd like to pull a cost comparison for the levelized cost of energy in the US. How do I do this on this site? Does the LCOE interactive table...

  6. levelized cost of energy | OpenEI Community

    Open Energy Info (EERE)

    levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of...

  7. DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives

    Broader source: Energy.gov [DOE]

    Joseph Hezir, Chief Financial Officer, DOE presented on the topic DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives. The presentation focuses on FFRDCs, National Lab funding and cost accounting, ICR, and overhead costs.

  8. The New Science of Soft Costs Breakout Session Flier | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New Science of Soft Costs Breakout Session Flier The New Science of Soft Costs Breakout Session Flier Flier promoting The New Science of Soft Costs breakout session at the May...

  9. Microsoft PowerPoint - 15.1615_Cost Estimating Panel

    Energy Savers [EERE]

    Cost Estimate (ICE) - Same Basis as Project Cost Estimate (PCE) Sa e as s as ojec Cos s a e ( C ) - Reconcilable with PCE to Facilitate Validation * Independent Cost Review...

  10. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  11. 2011 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  12. Simple Modular LED Cost Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools » Simple Modular LED Cost Model Simple Modular LED Cost Model The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost elements and includes preliminary raw data and manufacturing process flow, which provide a starting point and can be customized by the user to model different processes, materials, and equipment. The tool enables those involved in the

  13. Costs of Storing and Transporting Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs of Storing and Transporting Hydrogen Costs of Storing and Transporting Hydrogen An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. PDF icon 25106.pdf More Documents & Publications Survey of the Economics of Hydrogen Technologies H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results -

  14. Cost Principles Webinar for DOE Grant Recipients | Department of Energy

    Office of Environmental Management (EM)

    Cost Principles Webinar for DOE Grant Recipients Cost Principles Webinar for DOE Grant Recipients The Office of Management and Budget (OMB) Cost Principles in the Code of Federal Regulations (CFR) define, by organization type, what kinds of costs are allowable or unallowable for reimbursement in Federal financial assistance awards. This Cost Principles webinar was developed to help DOE award recipients understand the costing and invoicing requirements for their awards funded by the American

  15. US-CERT Control System Center Input/Output (I/O) Conceputal Design

    SciTech Connect (OSTI)

    Not Available

    2005-02-01

    This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace and the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and components). This will be accomplished through the design and implementation of a modular infrastructure of control system, communications, networking, computing and associated equipment, and measurement/control devices. The architecture upgrade will provide a flexible patching system providing a quick ''plug and play''configuration through various communication paths to gain access to live I/O running over specific protocols. This will allow for in-depth assessments of control systems in a true-to-life environment. The full I/O upgrade will be completed through a two-phased approach. Phase I, funded by DHS, expands the capabilities of the Test Bed by developing an operational control system in two functional areas, the Science & Technology Applications Research (STAR) Facility and the expansion of various portions of the Test Bed. Phase II (see Appendix A), funded by other programs, will complete the full I/O upgrade to the facility.

  16. Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components

    SciTech Connect (OSTI)

    Khanbekyan, Mikayel; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-06-01

    By using the Green-function concept of quantization of the electromagnetic field in dispersing and absorbing media, the quantized field in the presence of a dispersing and absorbing dielectric multilayer plate is studied. Three-dimensional input-output relations are derived for both amplitude operators in the k space and the field operators in the coordinate space. The conditions are discussed, under which the input-output relations can be expressed in terms of bosonic operators. The theory applies to both (effectively) free fields and fields, created by active atomic sources inside and/or outside the plate, including also evanescent-field components.

  17. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  18. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  19. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  20. A Review of Cost Estimation in New Technologies - Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report reviews literature on cost estimation in several areas involving major capital ... projects, and cost estimating techniques and problems for chemical process plants. ...

  1. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final ...

  2. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and...

  3. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  4. Manufacturing R&D Initiative Lowers Costs and Boosts Quality...

    Energy Savers [EERE]

    Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality PDF icon mfg-initiativefactsheetjun2015.pdf More...

  5. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  6. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  7. Energy Department Report Calculates Emissions and Costs of Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not consider other factors such as capital costs of construction for wind, solar, fossil-fueled power plants, or transmission. These costs are significant, but outside the...

  8. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  10. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

  11. Cryo-Compressed Hydrogen Storage: Performance and Cost Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage: Performance and Cost Review Cryo-Compressed Hydrogen Storage: Performance and Cost Review Presented at the R&D Strategies for Compressed,...

  12. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint PDF icon 34851.pdf More Documents...

  13. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  14. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of...

  15. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy ...

  16. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million...

  17. Estimating the Opportunity Cost of REDD+: A Training Manual ...

    Open Energy Info (EERE)

    the Opportunity Cost of REDD+: A Training Manual Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating the Opportunity Cost of REDD+: A Training Manual Agency...

  18. Reducing Cost Barriers to Energy Efficiency Improvements (201...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Cost Barriers to Energy Efficiency Improvements (201) Reducing Cost Barriers to Energy Efficiency Improvements (201) Better Buildings Residential Network Peer Exchange...

  19. Understanding Cost Growth and Performance Shortfalls in Pioneer...

    Office of Environmental Management (EM)

    Cost Growth and Performance Shortfalls in Pioneer Process Plants Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants This report presents an empirical...

  20. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which...

  1. Natural Gas Vehicle Cost Calculator | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Cost Calculator AgencyCompany Organization: United States Department of...

  2. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Balance of Plant - Resin with lower density and cost - Carbon fiber from high volume ... and practices, DFMA software, innovation, and practicality Estimated Cost ...

  3. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  4. New Zealand Interactive Electricity Generation Cost Model 2010...

    Open Energy Info (EERE)

    Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency...

  5. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable,...

  6. Energy and Cost Savings Calculators for Energy-Efficient Products...

    Open Energy Info (EERE)

    Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for...

  7. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Office of Environmental Management (EM)

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's...

  8. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk ...

  9. Water-saving Measures: Energy and Cost Savings Calculator | Open...

    Open Energy Info (EERE)

    and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator AgencyCompany Organization:...

  10. 1222 6.b Plains and Eastern Project Cost.xlsx

    Broader source: Energy.gov (indexed) [DOE]

    Project Cost Estimate (mm) LINE CONSTRUCTION Miles Cost Line Segment - OK 427 853 Line Segment - AR 277 553 Line Segment - TN 16 33 HVDC CONVERTERS Oklahoma Converter Station...

  11. 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report...

  12. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    Patent: Low cost fuel cell diffusion layer configured for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured...

  13. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop -...

  14. Fireplaces and Woodburning Stoves...May Raise Energy Costs |...

    Broader source: Energy.gov (indexed) [DOE]

    Information on energy efficiency and costs with regard to fireplaces and woodburning stoves Fireplaces and Woodburning Stoves...May Raise Energy Costs More Documents & Publications...

  15. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Cost Reduction Prospects EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV...

  16. Financial and Cost Assessment Model (FICAM) | Open Energy Information

    Open Energy Info (EERE)

    and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) AgencyCompany Organization: UNEP-Risoe...

  17. Estimating Well Costs for Enhanced Geothermal System Applications

    SciTech Connect (OSTI)

    K. K. Bloomfield; P. T. Laney

    2005-08-01

    The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

  18. Idaho Power Develops Renewable Integration Tool for More Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power ...

  19. The Cost to Developing Countries of Adapting to Climate Change...

    Open Energy Info (EERE)

    Cost to Developing Countries of Adapting to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Cost to Developing Countries of Adapting to Climate Change...

  20. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM ...