Powered by Deep Web Technologies
Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

2

The input power of distributed sources  

Science Journals Connector (OSTI)

An alternative to the conventional method of calculation of net power radiated by flux integration is presented. This method allows power radiated by distributed sources to be calculated by an integral only over the source region. Furthermore the method is applicable to calculation of radiation from distributed sources in flow. Examples of power radiation for the geometry of the finite cylinder are given for both stationary and moving media. Analytic results are presented for the long wavelength approximation.

Marian Smith

1988-01-01T23:59:59.000Z

3

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

4

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

5

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

6

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

7

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

8

A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations  

SciTech Connect (OSTI)

A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

Butcher, B.M.

1997-08-01T23:59:59.000Z

9

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

10

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

11

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

12

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

13

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

14

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

15

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

16

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

17

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

18

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

19

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

20

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

22

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

23

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

24

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

25

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

26

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

27

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

28

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

29

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

30

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

31

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

32

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

33

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

34

Refiner Crude Oil Inputs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Day) Refiner Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net...

35

Automatic input rectification  

E-Print Network [OSTI]

We present a novel technique, automatic input rectification, and a prototype implementation, SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process correctly. ...

Long, Fan

36

Automatic Input Rectification  

E-Print Network [OSTI]

We present a novel technique, automatic input rectification, and a prototype implementation called SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process ...

Long, Fan

2011-10-03T23:59:59.000Z

37

TART input manual  

SciTech Connect (OSTI)

The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given. (WHK)

Kimlinger, J.R.; Plechaty, E.F.

1982-04-01T23:59:59.000Z

38

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

39

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

40

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

42

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

43

Table A13. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Combustible Inputs of Energy for Heat, Power, and" 3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural Gas(c)",,"and Breeze)","RSE" ,"Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","LPG","(1000 short","Row"

44

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

45

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

46

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

47

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

48

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

49

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

50

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

51

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

52

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

53

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

54

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

55

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

56

NUPlans Budgeting Grant Input View  

E-Print Network [OSTI]

NUPlans Budgeting Grant Input View FMS704 NUPlansGrantInputViewV2 Last updated 4/7/2014 - rb © 2014 Northwestern University FMS704 NUPlans Contributor Budgeting 1 of 5 NUPlans Grant Input View NUPlans enables schools and units with grant projects to input grant expense estimates per project for the next fiscal

Shull, Kenneth R.

57

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

58

Prioritization Tool Measurement Input Form  

Broader source: Energy.gov [DOE]

BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form.

59

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

60

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

62

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

63

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

64

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

65

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

66

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

67

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

68

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

69

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

70

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

71

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

72

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Input of Residuum (Thousand Barrels)","U.S. Blender Net Input of Gasoline Blending Components (Thousand Barrels)","U.S. Blender Net Input of Reformulated...

73

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

74

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

75

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

76

Intermediate inputs and economic productivity  

Science Journals Connector (OSTI)

...US sectoral-level production functions. Both the...316) and plastics and rubber-(326). The relationship...coefficients of the production function sum to a quantity...inputs were used in the production process. 16 This estimate...products 326 plastics and rubber products 327 non-metallic...

2013-01-01T23:59:59.000Z

77

PADD 3 Weekly Inputs & Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Utilization 97.4 95.3 94.8 94.9 95.9 92.2 2010-2015 Refiner and Blender Net Inputs Motor Gasoline Blending Components -2,174 -2,008 -2,012 -2,095 -2,214 -2,291 2004-2015 RBOB -283...

78

Resources Abstracts Input Transaction Form  

E-Print Network [OSTI]

#12;Resources Abstracts Input Transaction Form 4. Title 5. Report Date 6.Urban Aquaculture Covered The University of the District of Columbia 12. Sponsoring Organization Water Resources Research of the rainbow trout (Salmo gairdneri) in a closed recycling water system in an urban environment is described

District of Columbia, University of the

79

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

80

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002;" 5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

82

Table N8.2. Average Prices of Purchased Energy Sources, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Purchased Energy Sources, 1998;" 2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

83

Table 7.2 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002;" 2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

84

"Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Selected Purchased Energy Sources, 1998;" 2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

85

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

86

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

87

Using gasification as a reliable source of fuel  

SciTech Connect (OSTI)

The low cost and ready availability of coal has brought about a renewed interest in the gasification process. A new two-stage fixed-bed gasifier is presented as a reliable and economical source of industrial fuels. The relative heating value of low-Btu gas is compared with other fuels, and applications in the pulp and paper industry are discussed, along with a cash flow analysis of a sample installation.

Coffeen, W.G.

1983-02-01T23:59:59.000Z

88

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

89

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

90

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

91

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

92

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

93

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

94

Code input alternatives John C. Wright  

E-Print Network [OSTI]

Code input alternatives John C. Wright John Wright Oct 2009 ­ CSWIM Workshop@ORNL Extensible markup

Wright, John C.

95

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

96

E-Print Network 3.0 - additional power input Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W to 50 W. A closed-system efficiency of 65% at 50 ... RF and wind power sources operating over a 10:1 input power range from 500 W to 50 W. The...

97

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

98

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

99

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

100

National Climate Assessment: Available Technical Inputs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available Technical Inputs Print E-mail Available Technical Inputs Print E-mail Technical inputs for the 2013 National Climate Assessment were due March 1, 2012. Please note that these reports were submitted independently to the National Climate Assessment for consideration and have not been reviewed by the National Climate Assessment Development and Advisory Committee. Links to agency-sponsored reports will be posted here as they are made available. Sectors National Climate Assessment Health Sector Literature Review and Bibliography. Technical Input for the Interagency Climate Change and Human Health Group, September 2012. Overview Bibliography Bibliography User's Guide Search Strategy and Results Walthall et al. 2012. Climate Change and Agriculture in the United States: Effects and Adaptation. USDA Technical Bulletin 1935. Washington, DC. 186 pages. | Report FAQs

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of boolean formulas with restricted inputs  

E-Print Network [OSTI]

In this thesis, I will investigate the running time of quantum algorithms for evaluating boolean functions when the input is promised to satisfy certain conditions. The two quantum algorithms considered in this paper are ...

Zhan, Bohua

2010-01-01T23:59:59.000Z

102

Generation of RTL verification input stimulus  

E-Print Network [OSTI]

This thesis presents an approach for generating input stimulus for verification of register-transfer level (RTL) design of VLSI circuits. RTL design is often subjected to a significant verification effort due to errors introduced during manual...

Selvarathinam, Anand Manivannan

2012-06-07T23:59:59.000Z

103

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

104

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

105

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

106

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

107

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

108

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

109

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

110

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

111

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

112

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

113

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

114

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

115

,"Maryland Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

116

,"New Jersey Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snj_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snj_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

117

,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

118

,"Rhode Island Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sri_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sri_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

119

,"Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet)" Input Supplemental Fuels (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_ovi_sla_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_ovi_sla_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

120

,"North Carolina Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snc_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snc_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet)" Input Supplemental Fuels (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na_epg0_ovi_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na_epg0_ovi_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

122

,"Connecticut Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

123

,"Minnesota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

124

,"New Mexico Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snm_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snm_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

125

,"Wyoming Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

126

,"Washington Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

127

,"Wisconsin Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

128

,"New Hampshire Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

129

,"Kentucky Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

130

,"Tennessee Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

131

,"Indiana Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

132

,"Michigan Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

133

,"Virginia Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sva_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sva_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

134

,"Georgia Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sga_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sga_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

135

,"South Dakota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

136

,"Nebraska Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

137

,"Delaware Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

138

,"Arkansas Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

139

,"Illinois Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sil_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sil_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

140

,"Catalytic Reforming Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Catalytic Reforming Downstream Processing of Fresh Feed Input" Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","9/2013","1/15/2010" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_a_(na)_ydr_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_a_(na)_ydr_mbblpd_m.htm" ,"Source:","Energy Information Administration"

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"Pennsylvania Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

142

,"Iowa Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sia_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sia_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

143

,"Alabama Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

144

,"North Dakota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

145

,"South Carolina Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_ssc_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_ssc_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

146

,"Massachusetts Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

147

,"Nevada Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snv_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snv_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

148

,"Texas Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

149

,"U.S. Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9090us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9090us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM"

150

,"Colorado Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

151

,"Oregon Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sor_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sor_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

152

,"Florida Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

153

,"Vermont Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_svt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_svt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

154

,"Maine Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sme_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sme_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

155

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

156

Opportunities for Public Input Into DOE Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities for Public Input Into DOE Projects Opportunities for Public Input Into DOE Projects There are currently several DOE-proposed activities that citizens can comment on in the near future. Here is a summary of each, as well as a description of how to provide your input into the project: Hanford Draft Closure and Waste Management Environmental Impact Statement Idahoans might be interested in this document because one of the proposed actions involves sending a small amount of radioactive waste (approximately 5 cubic meters of special reactor components) to the Idaho Nuclear Technology and Engineering Center on DOE's Idaho Site for treatment. Here is a link to more information about the document: http://www.hanford.gov . A public hearing on the draft EIS will be held in Boise on Tuesday, Feb. 2 at the Owyhee Plaza Hotel. It begins at 6 p.m.

157

Voltage controlled current source  

DOE Patents [OSTI]

A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

Casne, Gregory M. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

158

Environmental Transport Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]).

M. Wasiolek

2004-09-10T23:59:59.000Z

159

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

160

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

162

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network [OSTI]

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

163

Automatic interpretation of loosely encoded input  

Science Journals Connector (OSTI)

Knowledge-based systems are often brittle when given unanticipated input, i.e. assertions or queries that misalign with the ontology of the knowledge base. We call such misalignments ''loose speak''. We found that loose speak occurs frequently in interactions ... Keywords: Knowledge based systems, Metonymy, Noun compound, Question answering

James Fan; Ken Barker; Bruce Porter

2009-02-01T23:59:59.000Z

164

U.S. Weekly Inputs & Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Utilization 95.4 93.5 93.5 94.4 93.9 91 1990-2015 Refiner and Blender Net Inputs Motor Gasoline Blending Components 8 234 445 192 -558 -219 2004-2015 RBOB 167 330 371 103 9 261...

165

Contractive Systems with Inputs Eduardo D. Sontag  

E-Print Network [OSTI]

Contractive Systems with Inputs Eduardo D. Sontag Dedicated to Y. Yamamoto on the occasion of his 60th birthday Abstract. Contraction theory provides an elegant way of analyzing the behaviors-contained introduction to some basic results, with a focus on contractions with respect to non-Euclidean metrics. 1

Sontag, Eduardo

166

Green Computing input for better outcomes  

E-Print Network [OSTI]

Journal Profile: Udi Dahan Green Maturity Model for Virtualization Profiling Energy Usage for Efficient suggests that tracking energy consumption at every level will become the factor of success for greenGreen Computing input for better outcomes Learn the discipline, pursue the art, and contribute

Amir, Yair

167

Input to Priorities Panel August 7, 2012  

E-Print Network [OSTI]

Input to Priorities Panel August 7, 2012 Jeff Freidberg MIT 1 #12;The Emperor of Fusion has · Comparison (1 GW overnight cost) · Coal $ 3B · Gas $ 1B · Nuclear $ 4B · Wind $ 2B · Solar-T $ 3B · ITER $25B

168

Dale Meade regarding input international collaboration panel  

E-Print Network [OSTI]

Dale Meade regarding input international collaboration panel 1 message Saskia to add 2 comments to this discussion: 1. This regards not only international collaborations, but also national collaborations. We need to decide on using 1 video conferencing system. One of the main

169

T-623: HP Business Availability Center Input Validation Hole...  

Broader source: Energy.gov (indexed) [DOE]

Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting...

170

Tribal Leaders Provide White House with Input on Bolstering Climate...  

Energy Savers [EERE]

Tribal Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 -...

171

U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...  

Broader source: Energy.gov (indexed) [DOE]

2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

172

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote...  

Broader source: Energy.gov (indexed) [DOE]

9: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input...

173

Application of computer voice input/output  

SciTech Connect (OSTI)

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

174

Generalized Input-Output Inequality Systems  

SciTech Connect (OSTI)

In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

Liu Yingfan [Department of Mathematics, Nanjing University of Post and Telecommunications, Nanjing 210009 (China)], E-mail: yingfanliu@hotmail.com; Zhang Qinghong [Department of Mathematics and Computer Science, Northern Michigan University, Marquette, MI 49855 (United States)], E-mail: qzhang@nmu.edu

2006-09-15T23:59:59.000Z

175

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

176

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

177

Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?  

E-Print Network [OSTI]

Are plasma depletions in Saturn's ionosphere a signature of time- dependent water input? Luke Moore the presence of numerous ``ionospheric holes'', or plasma depletions, in Saturn's upper atmosphere that cannot the observed plasma depletions. The required influxes present a target to assess for the possible sources

Mendillo, Michael

178

"Table A25 Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Selected Purchased Energy Sources by Census" Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors" ,,"Total United States" ,"RSE Column Factors:",0.7,0.8,1,2.8,1,0.7 20,"Food and Kindred Products",15.789,2.854,6.064,2.697,7.596,1.433,4.5

179

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

180

Gross Input to Atmospheric Crude Oil Distillation Units  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 PADD 1 1,134 1,188 1,178 1,142 1,122 1,130 1985-2013 East Coast 1,077 1,103 1,080 1,058 1,031 1,032 1985-2013 Appalachian No. 1 57 85 98 84 90 97 1985-2013 PADD 2 3,151 3,087 3,336 3,572 3,538 3,420 1985-2013 Ind., Ill. and Ky. 2,044 1,947 2,069 2,299 2,330 2,266 1985-2013

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On the Wind Power Input to the Ocean General Circulation  

E-Print Network [OSTI]

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

182

INGEN: A COBRA-NC input generator user's manual  

SciTech Connect (OSTI)

The INGEN (INput GENerator) computer program has been developed as a preprocessor to simplify input generation for the COBRA-NC computer program. INGEN uses several empirical correlations and geometric assumptions to simplify the data input requirements for the COBRA-NC computer code. The simplified input scheme is obtained at the expense of much flexibility provided by COBRA-NC. For more complex problems requiring additional flexibility however, INGEN may be used to provide a skeletal input file to which the more detailed input may be added. This report describes the input requirements for INGEN and describes the algorithms and correlations used to generate the COBRA-NC input. 9 refs., 3 figs., 6 tabs.

Wheeler, C.L.; Dodge, R.E.

1986-12-01T23:59:59.000Z

183

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64...

184

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46...

185

How Sensitive is Processor Customization to the Workload's Input Datasets?  

E-Print Network [OSTI]

How Sensitive is Processor Customization to the Workload's Input Datasets? Maximilien Breughe Zheng though is to what extent processor customiza- tion is sensitive to the training workload's input datasets. Current practice is to consider a single or only a few input datasets per workload during the processor

Eeckhout, Lieven

186

Soil-related Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash deposition and, as a direct consequence, radionuclide concentration in resuspended particulate matter in the atmosphere. The analysis was performed in accordance with the technical work plan for the biosphere modeling and expert support (TWP) (BSC 2003 [163602]). This analysis revises the previous one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M&O 2001 [152517]). In REV 00 of this report, the data generated were fixed (i.e., taking no account of uncertainty and variability) values. This revision incorporates uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content.

A. J. Smith

2003-07-02T23:59:59.000Z

187

,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_crq_a_epc0_ycs_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_crq_a_epc0_ycs_pct_m.htm" ,"Source:","Energy Information Administration"

188

Input–output signal selection for damping of power system oscillations using wind power plants  

Science Journals Connector (OSTI)

Abstract During the last years wind power has emerged as one of the most important sources in the power generation share. Due to stringent Grid Code requirements, wind power plants (WPPs) should provide ancillary services such as fault ride-through and damping of power system oscillations to resemble conventional generation. Through an adequate selection of input–output signal pairs, \\{WPPs\\} can be effectively used to provide electromechanical oscillations damping. In this paper, different analysis techniques considering both controllability and observability measures and input–output interactions are compared and critically examined. Recommendations are drawn to select the best signal pairs available from \\{WPPs\\} to contribute to power oscillations damping. Control system design approaches including single-input single-output and multivariable control are considered. The recommendation of analysis techniques is justified through the tools usage in a test system including a WPP.

José Luis Domínguez-García; Carlos E. Ugalde-Loo; Fernando Bianchi; Oriol Gomis-Bellmunt

2014-01-01T23:59:59.000Z

189

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total Input 1,184,435 1,522,193 1,850,204 2,166,784 2,331,109 2,399,318 2005-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,445 5,686 6,538 7,810 10,663 2008-2012 Pentanes Plus 2,012 474 1,808 1,989 2,326 4,164 2005-2012 Liquid Petroleum Gases 2,971 3,878 4,549 5,484 6,499 2008-2012 Normal Butane 2,943 2,971 3,878 4,549 5,484 6,499 2005-2012 Isobutane 2005-2006 Other Liquids 1,518,748 1,844,518 2,160,246 2,323,299 2,388,655 2008-2012 Oxygenates/Renewables 234,047 274,974 286,837 295,004 2009-2012 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 234,047 274,974 286,837 295,004 2009-2012 Fuel Ethanol 131,810 182,772 232,677 273,107 281,507 287,433 2005-2012

190

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Input 206,541 217,867 212,114 216,075 219,783 208,203 2005-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 891 352 376 196 383 1,397 2008-2013 Pentanes Plus 261 301 313 67 287 393 2005-2013 Liquid Petroleum Gases 630 51 63 129 96 1,004 2008-2013 Normal Butane 630 51 63 129 96 1,004 2005-2013 Isobutane 2005-2006 Other Liquids 205,650 217,515 211,738 215,879 219,400 206,806 2008-2013 Oxygenates/Renewables 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Fuel Ethanol 24,163 25,526 24,804 25,491 25,970 24,116 2005-2013

191

,"U.S. Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1987" Annual",2012,"6/30/1987" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_dwns_dc_nus_mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_dc_nus_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:28 AM" "Back to Contents","Data 1: U.S. Downstream Processing of Fresh Feed Input" "Sourcekey","M_NA_YDR_NUS_MBBLD","MCRCCUS2","MCRCHUS2","MCRDFUS2" "Date","U.S. Downstream Processing of Fresh Feed Input by Catalytic Reforming Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Catalytic Cracking Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Catalytic Hydrocracking Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Delayed and Fluid Coking Units (Thousand Barrels per Day)"

192

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

193

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

194

Soil-Related Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This analysis revises the previous version with the same name (BSC 2003 [DIRS 161239]), which was itself a revision of one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M&O 2001 [DIRS 152517]). In Revision 00 of this report, the data generated were fixed values (i.e., taking no account of uncertainty and variability). Revision 01 (BSC 2003 [DIRS 161239]) incorporated uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content. The current revision of this document improves the transparency and traceability of the products without changing the details of the analysis. This analysis report supports the treatment of six of the features, events, and processes (FEPs) applicable to the Yucca Mountain reference biosphere (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The use of the more recent FEP list in DTN: MO0407SEPFEPLA.000 [DIRS 170760] represents a deviation from the detail provided in the TWP (BSC 2004 [DIRS 169573]), which referenced a previous version of the FEP list. The parameters developed in this report support treatment of these six FEPs addressed in the biosphere model that are listed in Table 1-1. Inclusion and treatment of FEPs in the biosphere model is described in the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460], Section 6.2).

A. J. Smith

2004-09-09T23:59:59.000Z

195

The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2].  

E-Print Network [OSTI]

1 The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2]. 2 The transducer gain is the ratio of the power delivered to the load to the available power of the source [2] and is a function of the source impedance. If the source impedance has

Groppi, Christopher

196

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

197

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2005" Monthly","9/2013","1/15/2005" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt3_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt3_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:22:43 AM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRB_NUS_1","M_EPL0_YIB_NUS_MBBL","MPPRB_NUS_1","M_EPLL_YIB_NUS_MBBL","MBNRB_NUS_1","MBIRB_NUS_1","M_EPOL_YIB_NUS_MBBL","M_EPOOXR_YIB_NUS_MBBL","MMTRB_NUS_1","M_EPOOR_YIB_NUS_MBBL","MFERB_NUS_1","M_EPOORD_YIB_NUS_MBBL","M_EPOORO_YIB_NUS_MBBL","M_EPPU_YIB_NUS_MBBL","M_EPOUN_YIB_NUS_MBBL","M_EPOUK_YIB_NUS_MBBL","M_EPOUH_YIB_NUS_MBBL","M_EPOUR_YIB_NUS_MBBL","MBCRB_NUS_1","MO1RB_NUS_1","M_EPOBGRR_YIB_NUS_MBBL","MO3RB_NUS_1","MO4RB_NUS_1","MO2RB_NUS_1","MO5RB_NUS_1","MO6RB_NUS_1","MO7RB_NUS_1","MO9RB_NUS_1"

198

Interface module for transverse energy input to dye laser modules  

DOE Patents [OSTI]

An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

English, Jr., Ronald E. (Tracy, CA); Johnson, Steve A. (Tracy, CA)

1994-01-01T23:59:59.000Z

199

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

200

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network [OSTI]

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

Verdú, Sergio

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

V-139: Cisco Network Admission Control Input Validation Flaw...  

Broader source: Energy.gov (indexed) [DOE]

Sensitive Information U-270:Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query Module Lets Remote Users Inject SQL Commands U-015: CiscoWorks Common...

202

,"New York Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

203

Environmental Transport Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS M&O 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS M&O 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications.

M. A. Wasiolek

2003-06-27T23:59:59.000Z

204

Performance Measures For Input Shaping and Command Generation  

E-Print Network [OSTI]

Performance Measures For Input Shaping and Command Generation Kris Kozak Department of Precision performance measures for input shaping and command generation have appeared in the literature, but very rarely have these measures been critically evaluated or thoroughly discussed. In this paper we review

Singhose, William

205

Univariate input models for stochastic simulation , NM Steiger4  

E-Print Network [OSTI]

of the continuous univariate probabilistic input processes that drive discrete-event simulation experiments that accu- rately mimic the behaviour of the random input processes driving the system under study. Often the following interrelated difficulties arise in attempts to use standard distribution families for simulation

206

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network [OSTI]

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

207

Soft-Input Soft-Output Sphere Decoding Christoph Studer  

E-Print Network [OSTI]

Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft, 8092 Zurich, Switzerland Email: studer@iis.ee.ethz.ch Helmut Bölcskei Communication Technology

208

Link: exploiting the web of data to generate test inputs  

Science Journals Connector (OSTI)

Applications that process complex data, such as maps, personal data, book information, travel data, etc., are becoming extremely common. Testing such applications is hard, because they require realistic and coherent test inputs that are expensive to ... Keywords: System testing, Web of data, realistic test input

Leonardo Mariani; Mauro Pezzè; Oliviero Riganelli; Mauro Santoro

2014-07-01T23:59:59.000Z

209

T-623: HP Business Availability Center Input Validation Hole Permits  

Broader source: Energy.gov (indexed) [DOE]

3: HP Business Availability Center Input Validation Hole 3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks May 16, 2011 - 3:05pm Addthis PROBLEM: A vulnerability was reported in HP Business Availability Center. A remote user can conduct cross-site scripting attacks. PLATFORM: HP Business Availability Center software 8.06 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input before displaying the input. reference LINKS: SecurityTracker Alert ID:1025535 HP Knowledge Base CVE-2011-1856 Secunia ID: SA44569 HP Document ID:c02823184 | ESB-2011.0525 IMPACT ASSESSMENT: High Discussion: A remote user can cause arbitrary scripting code to be executed by the

210

An update on the wind power input to the surface geostrophic flow of the World Ocean  

Science Journals Connector (OSTI)

The rate of working of the surface wind stress on the geostrophic component of the surface flow of the World Ocean is revisited. The global mean is found to be about 0.85 to 1.0 TW. Consistent with previous estimates, about 0.75 to 0.9 TW comes from outside the equatorial region (poleward of 3 ? ). The rate of forcing of fluctuating currents integrates to only about 0.02 TW when the equatorial region is included, or close to zero over the extratropical region. Uncertainty in wind power input due to uncertainty in the surface currents is negligible. Results from several different wind stress products are compared, suggesting that uncertainty in wind stress is the dominant source of error. Ignoring the surface currents’ influence upon wind stress leads to a systematic bias in net wind power input; an overestimate of about 10 to 30%. (In previous estimates this positive bias was offset by too weak winds.) Small-scale, zonally elongated structures in the wind power input were found, but have both positive and negative contributions and lead to little net wind power input.

Robert B. Scott; Yongsheng Xu

2009-01-01T23:59:59.000Z

211

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal exec summary Executive Summary Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on existing coal-fired plants. EIA projects few new central-station coal-fired power plants, however, beyond those already under construction or supported by clean coal incentives. Generation from coal increases by 25 percent from 2009 to 2035, largely as a result of increased use of existing capacity; however, its share of the total generation mix falls from 45 percent to 43 percent as a result of more rapid increases in generation from natural gas and renewables over the same period. See more Mkt trends Market Trends U.S. coal production declined by 2.3 quadrillion Btu in 2009. In the

212

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/2005" 3,"Monthly","9/2013","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:05 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOORO_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

213

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Annual",2012,"6/30/2005" 2,"Annual",2012,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2012,"6/30/1986" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:04 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

214

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, R.P.; Paris, R.D.; Feldman, M.

1993-02-23T23:59:59.000Z

215

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

1993-01-01T23:59:59.000Z

216

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

217

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

218

Input to the 2012-2021 Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Federal Climate Efforts Related Federal Climate Efforts Input to the 2012-2021 Strategic Plan Print E-mail Engaging Stakeholders The USGCRP is dedicated to engaging stakeholders in strategic planning efforts. Our community outreach activities created a dialogue with our stakeholders through various communication channels, such as opportunities for interagency collaboration, town hall meetings, public presentations and listening sessions. These channels alongside our 60 day public comment period enabled the program to incorporate stakeholder input int the process of drafting this decadal plan. In addition, we welcome input - particularly on the future direction of USGCRP and on the climate information you need and use. Please send your comments to input@usgcrp.gov. Listening Sessions

219

V-192: Symantec Security Information Manager Input Validation Flaws Permit  

Broader source: Energy.gov (indexed) [DOE]

92: Symantec Security Information Manager Input Validation Flaws 92: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks V-192: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks July 4, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in Symantec Security Information Manager PLATFORM: Symantec Security Information Manager Appliance Version 4.7.x and 4.8.0 ABSTRACT: Symantec was notified of multiple security issues impacting the SSIM management console REFERENCE LINKS: SecurityTracker Alert ID: 1028727 Symantec Security Advisory SYM13-006 CVE-2013-1613 CVE-2013-1614 CVE-2013-1615 IMPACT ASSESSMENT: Medium DISCUSSION: The console does not properly filter HTML code from user-supplied input

220

Abandoned Uranium Mines Report to Congress: LM Wants Your Input |  

Broader source: Energy.gov (indexed) [DOE]

Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress. On January 2, 2013, President Obama signed into law the National Defense Authorization Act for Fiscal Year 2013, which requires the Secretary of Energy, in consultation with the Secretary of the U.S Department of the Interior (DOI) and the Administrator

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

222

Comparison of wind stress algorithms, datasets and oceanic power input  

E-Print Network [OSTI]

If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

Yuan, Shaoyu

2009-01-01T23:59:59.000Z

223

Operation of buck regulator with ultra-low input voltage  

E-Print Network [OSTI]

Based on the LTC3621 and LTC3624, the designed buck regulator proposed in this thesis aims to lower the allowed input voltage and increase efficiency compared to the original part without making significant changes to ...

Harris, Cory Angelo

2014-01-01T23:59:59.000Z

224

Data sheet acquired from Harris Semiconductor Buffered Inputs  

E-Print Network [OSTI]

1 Data sheet acquired from Harris Semiconductor SCHS121D Features · Buffered Inputs · Typical. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. CAUTION

Kretchmar, R. Matthew

225

Automatic testing of software with structurally complex inputs  

E-Print Network [OSTI]

Modern software pervasively uses structurally complex data such as linked data structures. The standard approach to generating test suites for such software, manual generation of the inputs in the suite, is tedious and ...

Marinov, Darko, 1976-

2005-01-01T23:59:59.000Z

226

Face Interface : a methodology for experimental learning of input modalities  

E-Print Network [OSTI]

This thesis demonstrates that creating a system with a visual representation of the face which mirrors the user's facial gestures appears to solve problems in teaching a user to use the new input affordances of face-based ...

Wetzel, Jon William

2007-01-01T23:59:59.000Z

227

T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits  

Broader source: Energy.gov (indexed) [DOE]

3: Symantec Endpoint Protection Manager Input Validation Hole 3: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks August 15, 2011 - 3:42pm Addthis PROBLEM: Two vulnerabilities were reported in Symantec Endpoint Protection Manager. A remote user can conduct cross-site scripting attacks. A remote user can conduct cross-site request forgery attacks. PLATFORM: Version(s): 11.0 RU6(11.0.600x), 11.0 RU6-MP1(11.0.6100), 11.0 RU6-MP2(11.0.6200), 11.0 RU6-MP3(11.0.6300) ABSTRACT: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks. reference LINKS:

228

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

229

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

230

Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input  

E-Print Network [OSTI]

The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.

Christian Iliadis; Richard Longland; Art Champagne; Alain Coc

2010-04-23T23:59:59.000Z

231

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Processing Plant Processing Definitions Key Terms Definition Extraction Loss The reduction in volume of natural gas due to the removal of natural gas liquid constituents such as ethane, propane, and butane at natural gas processing plants. Natural Gas Processed Natural gas that has gone through a processing plant. Natural Gas Processing Plant A facility designed to recover natural gas liquids from a stream of natural gas which may or may not have passed through lease separators and/or field separation facilities. These facilities also control the quality of the natural gas to be marketed. Cycling plants are classified as natural gas processing plants. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Natural Gas Processed, Total Liquids Extracted, and Extraction Loss Volume: Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production" . Estimated Heat Content of Extraction Loss: Estimated, assuming the makeup to total liquids production as reported on Form EIA-64A for each State was proportional to the components and products ultimately separated in the States as reported on the 12 monthly reports on Energy Information Administration, Form EIA-816, "Monthly Natural Gas Liquids Report," and applying the following conversion factors to the individual component and product production estimates (million Btu extraction loss per barrel of liquid produced): ethane - 3.082; propane - 3.836; normal butane - 4.326; isobutane - 3.974; pentanes plus - 4.620.

232

Contaminant Sources  

Science Journals Connector (OSTI)

Contaminant sources include almost every component in the manufacturing process: people, materials, processing equipment, and manufacturing environments. People can generate contaminating particles, gases, conden...

Alvin Lieberman

1992-01-01T23:59:59.000Z

233

Ion source  

DOE Patents [OSTI]

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

234

Impacts of atmospheric nutrient inputs on marine biogeochemistry  

E-Print Network [OSTI]

Industrial combustion Biomass burning Bioavailable ironand combustion sources (fossil fuel, biomass burning, and

Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie; Luo, Chao; Zender, Charles S

2010-01-01T23:59:59.000Z

235

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

236

Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Washington Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

237

Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Minnesota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

238

District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas District of Columbia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition)

239

Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Maryland Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

240

Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Iowa Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Pennsylvania Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

242

Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Missouri Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

243

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

244

DOE Seeks Input On Addressing Contractor Pension and Medical Benefits  

Broader source: Energy.gov (indexed) [DOE]

Input On Addressing Contractor Pension and Medical Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique Management and Operating and other site management contracts, DOE reimburses its contractors for allowable costs incurred in providing contractor employee pension and medical benefits to current employees and retirees. In FY2006, these costs reached approximately $1.1 billion - a more than 226 percent increase since FY2000 - and are expected to grow in future years.

245

Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Georgia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

246

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

247

South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Dakota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

248

New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Hampshire Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

249

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

250

Formalization of computer input and output: the Hadley model  

Science Journals Connector (OSTI)

Current digital evidence acquisition tools are effective, but are tested rather than formally proven correct. We assert that the forensics community will benefit in evidentiary ways and the scientific community will benefit in practical ways by moving beyond simple testing of systems to a formal model. To this end, we present a hierarchical model of peripheral input to and output from von Neumann computers, patterned after the Open Systems Interconnection model of networking. The Hadley model categorizes all components of peripheral input and output in terms of data flow; with constructive aspects concentrated in the data flow between primary memory and the computer sides of peripherals' interfaces. The constructive domain of Hadley is eventually expandable to all areas of the I/O hierarchy, allowing for a full view of peripheral input and output and enhancing the forensics community's capabilities to analyze, obtain, and give evidentiary force to data.

Matthew Gerber; John Leeson

2004-01-01T23:59:59.000Z

251

Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 144 1,584 1,077 291 239 343 298 180 245 251 1990's 111 146 40 94 29 68 48 37 33 31 2000's 20 6 6 57 191 273 91 0 0 1 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Connecticut Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

252

South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Carolina Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

253

Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Tennessee Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

254

Table 3. U.S. Inputs to Biodiesel Production  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Inputs to Biodiesel Production U.S. Inputs to Biodiesel Production (million pounds) 2011 January 8 17 - W 150 W 14 11 February 26 13 - W 150 W 14 11 March 68 14 - W 190 W 19 27 April 88 20 - W 236 W 15 47 May 113 21 - W 264 W 16 36 June 75 34 - W 311 W 23 49 July 77 35 - W 367 W 26 64 August 84 37 W W 398 W 34 38 September 84 27 W W 430 W

255

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

256

AEO2011: Energy Consumption by Sector and Source - New England | OpenEI  

Open Energy Info (EERE)

New England New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

257

AEO2011: Energy Consumption by Sector and Source - West South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 7, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption West South Central Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West South Central- Reference Case (xls, 297.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

258

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

259

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

260

AEO2011: Energy Consumption by Sector and Source - West North Central |  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 4, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West North Central- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AEO2011: Energy Consumption by Sector and Source - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 10, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption United States Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - United States- Reference Case (xls, 298.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

262

Competitive Sourcing  

Broader source: Energy.gov (indexed) [DOE]

COMPETITIVE SOURCING COMPETITIVE SOURCING ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Report on Competitive Sourcing Results Fiscal Year 2006 May 2007 Executive Office of the President Office of Management and Budget TABLE OF CONTENTS Executive Summary ...................................................................................... 1 Introduction................................................................................................. 4 I. The big picture ......................................................................................... 4 II. How public-private competition was used in FY 2006 .................................... 6 A. Anticipated benefits from competition in FY 2006

263

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

264

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks,  

E-Print Network [OSTI]

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks, and the Role of Global, Exporting, Knowledge and Technological Change Abstract Why do some firms create more knowledge than others stock of knowledge. But there is very little empirical evidence on production functions for new ideas

Sadoulet, Elisabeth

265

Fast RNA Structure Alignment for Crossing Input Rolf Backofena  

E-Print Network [OSTI]

is to predict for every input sequence the minimum free-energy non-crossing structure (in O(n3 ) time function. Since the structure of RNA is evolu- tionarily more conserved than its sequence, predicting a folding with minimal free energy [5, 6, 7, 8, 9]. Albeit this so-named thermodynamic approach is a success

Tsur, Dekel

266

Input to review of STFC UK Nuclear Physics Community  

E-Print Network [OSTI]

Input to review of STFC UK Nuclear Physics Community Introduction STFC covers essentially and project funding for Astronomy, Nuclear Physics, Particle Physics and Space Science Since STFC was formed programme. Grant funding Nuclear Physics grant funding was in EPSRC until 2007 and then moved to STFC

Crowther, Paul

267

Global sensitivity analysis of computer models with functional inputs  

E-Print Network [OSTI]

function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear with scalar input variables. For example, in the nuclear engineering domain, global SA tools have been applied (Helton et al. [7]), environmental model of dose calculations (Iooss et al. [10]), reactor dosimetry

Boyer, Edmond

268

Toward a Theory of Input Acceptance for Transactional Memories  

E-Print Network [OSTI]

-core architectures requires numerous events to be treated upon reception. In fact, the transactional code executed, experimental validation compares the presented TM designs in terms of input acceptance with realistic workloads database systems transac- tional events can be buffered on the server-side before treatment

Guerraoui, Rachid

269

The Matrix Converter Drive Performance Under Abnormal Input Voltage Conditions  

E-Print Network [OSTI]

that generates variable magnitude variable frequency output voltage from the ac utility line. It has high power voltage disturbance related performance issues of the MC drive. Since the MC is a direct frequencyThe Matrix Converter Drive Performance Under Abnormal Input Voltage Conditions Jun-Koo Kang

Hava, Ahmet

270

Competitive Sourcing  

Broader source: Energy.gov (indexed) [DOE]

Competitive Sourcing Competitive Sourcing The Department of Energy's (DOE) Competitive Sourcing program is a management initiative aimed at improving DOE's performance and reducing the Department's operational costs. The program is governed by Office of Management and Budget (OMB) Circular A- 76, Performance of Commercial Activities, dated May 29, 2003. The commercial activities selected for review and competition include functions performed by government employees that are readily available in the private sector, and where the potential for efficiencies, regardless of the winning provider, are highly likely. The candidate functions are chosen from the Department's annual Federal Activities Inventory Reform (FAIR) Act Inventory and subjected to a feasibility review to determine if a prudent business case can be made to enter

271

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

272

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

273

Documentation of Calculation Methodology, Input Data, and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation of Calculation Methodology, Input Data, and Infrastructure Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Title Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Publication Type Report LBNL Report Number LBNL-51938 Year of Publication 2005 Authors Pinckard, Margaret J., Richard E. Brown, Evan Mills, James D. Lutz, Mithra M. Moezzi, Celina S. Atkinson, Christopher A. Bolduc, Gregory K. Homan, and Katie Coughlin Document Number LBNL-51938 Pagination 108 Date Published July 13 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

274

Inhalation Exposure Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

K. Rautenstrauch

2004-09-10T23:59:59.000Z

275

New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,574 11,504 9,786 9,896 8,616 13,421 12,099 13,774 14,846 14,539 1990's 9,962 14,789 14,362 14,950 7,737 7,291 6,778 6,464 9,082 5,761 2000's 8,296 12,330 3,526 473 530 435 175 379 489 454 2010's 457 392 139 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Jersey Supplemental Supplies of Natural Gas

276

Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Nebraska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

277

Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3 3,038 2,473 2,956 2,773 2,789 2,754 2,483 2,402 2,402 1990's 19,106 15,016 14,694 12,795 13,688 21,378 21,848 22,238 21,967 20,896 2000's 12,423 4,054 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Michigan Supplemental Supplies of Natural Gas

278

Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,868 9,133 8,877 7,927 9,137 8,934 8,095 8,612 10,322 9,190 1990's 15,379 6,778 7,158 8,456 8,168 7,170 6,787 6,314 5,292 4,526 2000's 4,772 5,625 5,771 5,409 5,308 5,285 6,149 6,869 6,258 7,527 2010's 5,148 4,268 4,412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Colorado Supplemental Supplies of Natural Gas

279

Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Ohio Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

280

Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Hawaii Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Massachusetts Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

282

Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1,602 5,056 3,496 4,142 4,027 2,711 2,351 3,890 4,243 3,512 1990's 3,015 3,077 3,507 3,232 2,457 3,199 3,194 3,580 3,149 5,442 2000's 5,583 5,219 1,748 2,376 2,164 1,988 1,642 635 30 1 2010's 1 5 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Indiana Supplemental Supplies of Natural Gas

283

North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas

284

Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 36,713 29,509 19,005 19,734 17,308 19,805 22,980 12,514 9,803 9,477 1990's 8,140 6,869 8,042 9,760 7,871 6,256 3,912 4,165 2,736 2,527 2000's 1,955 763 456 52 14 15 13 11 15 20 2010's 17 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Illinois Supplemental Supplies of Natural Gas

285

COMPETITIVE SOURCING  

Broader source: Energy.gov (indexed) [DOE]

COMPETITIVE SOURCING COMPETITIVE SOURCING EXECUTIVE STEERING GROUP MEETING PROCEEDINGS June 17, 2002 8:30 am - 11:00 am Room 5E-069 ATTENDEES John Gordon Robert Card Bruce Carnes Kathy Peery Brendan Danaher, AFGE Tony Lane Karen Evans Bill Sylvester Claudia Cross Brian Costlow Laurie Smith Helen Sherman Frank Bessera Rosalie Jordan Dennis O'Brien Mark Hively Robin Mudd Steven Apicella AGENDA 8:30 a.m. - 8:35 a.m. Opening Remarks 8:35a.m. - 8:55 a.m. Executive Steering Group roles and responsibilities, A-76 status, and talking points Team Briefings 8:55 a.m. - 9:20 a.m. Information Technology Study 9:20 a.m. - 9:45 a.m. Financial Services Study

286

Reduced-Load Equivalence for Queues with Gaussian Input  

Science Journals Connector (OSTI)

In this note, we consider a queue fed by a number of independent heterogeneous Gaussian sources. We study under what conditions a reduced load equivalence holds, i.e., when a subset of the sources becomes asymptotically dominant as the buffer size increases. ... Keywords: Gaussian processes, extremes, large deviations, regular variation, ruin probabilities

A. B. Dieker

2005-04-01T23:59:59.000Z

287

231A. Hernndez-Sols et al. / Annals of Nuclear Energy 57 (2013) 230245 Lattice calculations use nuclear libraries as input basis data,  

E-Print Network [OSTI]

#12;231A. Hernández-Solís et al. / Annals of Nuclear Energy 57 (2013) 230­245 Lattice calculations use nuclear libraries as input basis data, describing the properties of nuclei and the fundamental/or estimated values from nuclear physics models are the source of information of these libraries. Because

Demazière, Christophe

288

,"U.S. Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1987" Monthly","9/2013","1/15/1987" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_dc_nus_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:28 AM" "Back to Contents","Data 1: U.S. Downstream Processing of Fresh Feed Input" "Sourcekey","M_NA_YDR_NUS_MBBLD","MCRCCUS2","MCRCHUS2","MCRDFUS2"

289

Device for modular input high-speed multi-channel digitizing of electrical data  

DOE Patents [OSTI]

A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

VanDeusen, A.L.; Crist, C.E.

1995-09-26T23:59:59.000Z

290

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

291

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

292

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

293

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

294

AEO2011: Energy Consumption by Sector and Source - East North Central |  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description http://en.openei.org/w/skins/openei/images/ui-bg_gloss_wave-medium_40_d6...); background-attachment: scroll; background-origin: initial; background-clip: initial; background-color: rgb(214, 235, 225); line-height: 17px; width: 650px; background-position: 50% 0%; background-repeat: repeat no-repeat; ">This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 3, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago)

295

A comparative study of avionics control input methods  

E-Print Network [OSTI]

Standardization of avionics locations in early models of small general aviation aircraft was almost non-existent, due largely to limited panel space and lack of human engineering considerations. Aircraft were typically purchased with a limited avionics package... Major Subject: Industrial Engineering A COMPARATIVE STUDY OF AVIONICS CONTROL INPUT METHODS A Thesis by JOHN ROBERT BARBER, JR. Approved as to style and content by: C airman of C ittee Dr. R. Dale H ingson Co-ch i n Dr. Rodger J. Koppa Member...

Barber, John Robert

1984-01-01T23:59:59.000Z

296

Inhalation Exposure Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the physical attributes of airborne particulate matter, such as the airborne concentrations of particles and their sizes. The conditions of receptor exposure (duration of exposure in various microenvironments), breathing rates, and dosimetry of inhaled particulates are discussed in more detail in ''Characteristics of the Receptor for the Biosphere Model'' (BSC 2005 [DIRS 172827]).

M. Wasiolek

2006-06-05T23:59:59.000Z

297

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical Chemistry, Catalysis, & Photosynthesis Thurs. Aug. 23 - Fri. Aug 24, 2012 Quantum Materials, Magnetism & Spin Dynamics Mon. Aug. 27 - Tues. Aug 28, 2012 Materials & Bio-imaging at the Nanoscale Thurs. Aug. 30 - Fri. Aug 31, 2012 Further information is available on the workshop website:

298

US Nuclear Regulatory Commission Input to DOE Request for Information Smart  

Broader source: Energy.gov (indexed) [DOE]

US Nuclear Regulatory Commission Input to DOE Request for US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New Technologies" and "Reliability and Cyber-Security," US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input More Documents & Publications Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Reply Comments of Entergy Services, Inc. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

299

Residential oil burners with low input and two stages firing  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

300

Heat transfer analysis in Stirling engine heat input system  

SciTech Connect (OSTI)

One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radio-Frequency Inverters With Transmission-Line Input Networks  

E-Print Network [OSTI]

A soft-switching inverter topology (the Class Phi ) is presented which draws dc source current through a transmission line or a lumped-network approximation of a distributed line. By aligning the inverter switching frequency ...

Phinney, Joshua W.

302

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network [OSTI]

a trade-off between cooling power and faster reaction time,a trade-off between cooling power and faster reaction time,derived potential peak cooling power of 77 W/m 2 (24 Btu/hr-

Moore, Timothy

2008-01-01T23:59:59.000Z

303

COMPETITIVE SOURCING  

Broader source: Energy.gov (indexed) [DOE]

EXECUTIVE STEERING GROUP Meeting Proceedings October 30, 2002 Room 6E-069, 10:30 - 12:00 Agenda Opening Remarks Bruce Carnes Competitive Sourcing Update Denny O'Brien Team Briefings Team Leads ESG Discussion/Wrap up Bruce Carnes Attendees Bruce Carnes, Acting Chair MaryAnn Shebek Robert Card Prentis Cook Ambassador Brooks Tony Lane Kyle McSlarrow Karen Evans Suzanne Brennan, NTEU Claudia Cross Brian Costlow Helen Sherman Frank Bessera Laurie Morman Denny O'Brien Travis McCrory Bill Pearce Jeff Dowl Mark Hively Steven Apicella Robin Mudd Bruce Carnes chaired the meeting and began with welcoming NTEU to the meeting. In regard to the OMB's Balanced Scorecard, the Department has achieved a Green on progress and we are close to achieving a yellow on status.

304

Radiation source  

DOE Patents [OSTI]

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

305

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm'...  

Broader source: Energy.gov (indexed) [DOE]

ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting...

306

U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site...  

Broader source: Energy.gov (indexed) [DOE]

Attacks U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks December 2, 2011 - 5:24am Addthis PROBLEM: Adobe Flex SDK Input Validation Flaw Permits...

307

E-Print Network 3.0 - ac input power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

factor with high total harmonic... input cur- rent shape at near unity power factor. Advantages of the proposed topology are: no dc... as well as input supply variations. Matrix...

308

V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...  

Broader source: Energy.gov (indexed) [DOE]

8: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis...

309

V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...  

Broader source: Energy.gov (indexed) [DOE]

4: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks April 2, 2013 - 1:13am Addthis...

310

T-602: BlackBerry Enterprise Server Input Validation Flaw in...  

Broader source: Energy.gov (indexed) [DOE]

02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation...

311

Integrating surprisal and uncertain-input models in online sentence comprehension: formal techniques and empirical results  

Science Journals Connector (OSTI)

A system making optimal use of available information in incremental language comprehension might be expected to use linguistic knowledge together with current input to revise beliefs about previous input. Under some circumstances, such an error-correction ...

Roger Levy

2011-06-01T23:59:59.000Z

312

Time-lag of record inputs to the international nuclear information system bibliographic database  

Science Journals Connector (OSTI)

This paper discusses the timeliness in inputting bibliographical records to international databases with a case study of the international nuclear information system bibliographic database from the inception (1970) to the year 2008. The authors have attempted to calculate the overall and average inputting time-lag of the database. The time-lags of inputting countries and international organisations are analysed separately. The study also tries to identify the nature of inputs that are responsible for this delayed response.

E.R. Prakasan; Nita Bhaskar; K. Bhanumurthy

2011-01-01T23:59:59.000Z

313

Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input?Output Tables  

Science Journals Connector (OSTI)

Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan ... Next, for each of the 400 sectors (the 399 sectors of the consolidated Input?Output Table plus the “consumption expenditure of households” sector, which is one of the final demand sectors), various statistics and source materials were used to estimate gross consumptions, expressed as a physical amount for each sector, of 6 coal-based fuels, 12 petroleum-based fuels, 3 natural gas-based fuels, and 5 other fuels. ... LPG. LPG for automobile and household use is more expensive than that used by industry, because of its higher tax rate and less efficient mode of supply. ...

Keisuke Nansai; Yuichi Moriguchi; Susumu Tohno

2003-04-04T23:59:59.000Z

314

OPTIONS FOR A STEADY-STATE COMPACT FUSION NEUTRON SOURCE M.P. Gryaznevich1  

E-Print Network [OSTI]

in the Fusion for Neutrons (F4N) approach. This is because the nuclear fusion reaction produces an abundance (power output over power input) to be viable as a power source, fusion still has a valuable role-fission process can provide a large gain over the input energy and yield sufficient heat output for economical

315

Reclamation cost inputs for the resource allocation and mine costing model. Final working paper  

SciTech Connect (OSTI)

The purpose of this study is to improve estimates of surface mining reclamation cost components used as inputs to the Energy Information Administration's Resource Allocation and Mine Costing (RAMC) model. Costs ignored by the RAMC equations and input separately into the model on a regional basis were the focus of this study. Estimates of costs associated with the following reclamation activities were developed: valley fill construction, topsoil handling, runoff and diversion ditch construction and backfilling, sediment pond construction and backfilling, final pit backfilling and highwall reduction, revegetation, and permitting. For each activity, separate estimates were developed by cost component (initial capital, deferred capital, and annual operating), region (central Appalachia, northern Appalachia, the Midwest, and the West), and overburden ratio. For the first five activities, a ''composite mine'' approach was used. Basic engineering data on the quantity of material moved, and the distance over which it is moved, were obtained on a task-by-task basis for regional samples of actual mining operations. Mine permit applications filed with state and federal regulatory agencies were used as the source of these data. On the basis of the collected data, average material quantities and transportation distances were calculated for each region and reclamation task; these averages were used as the composite mine specifications assumed to be representative of the typical earthmoving requirements associated with each task in each region. Revegetation costs were estimated on the basis of published or publicly available data representing either the actual or estimated costs to state governments of revegetating abandoned mine sites. Permitting costs were developed on the basis of estimates of typical regional permitting costs solicited from engineering contractors providing permitting services to the coal industry. 11 tabs.

Not Available

1984-11-30T23:59:59.000Z

316

Geothermal source potential and utilization for alcohol production  

SciTech Connect (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

317

RADIOGENIC ISOTOPES: TRACERS OF PAST OCEAN CIRCULATION AND EROSIONAL INPUT  

E-Print Network [OSTI]

in the ocean has varied as a function of changes in paleocircu- lation, source provenances, style and intensity-established paleoceano- graphic tracers such as carbon isotopes. INDEX TERMS: 1040 Geochemistry: Isotopic composition Atlantic Deep Water (NADW) according to latest estimates based on results of the World Ocean Circulation

Jellinek, Mark

318

FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS,  

E-Print Network [OSTI]

, greenhouse gas (GHG) emissions, criteria pollutant emissions, air toxics emissions, and multimedia impacts on a full fuel cycle basis for alternative-fueled vehicles is important when assessing the overall control, and assumptions regarding feedstock sources and fuel production conversion efficiency

319

We have developed a software system that takes standard electro-cardiogram (ECG) input and interprets this input along with user-  

E-Print Network [OSTI]

a software system that takes standard electro- cardiogram (ECG) input and interprets this input along months 30 patients were monitored using a digital ECG system and this information was used to test that T wave inversions are sometimes seen on normal ECGs. Control ECGs of normal hearts were also taken

O'Sullivan, Carol

320

A Temporal Study of Data Sources to Load a Corporate Data Warehouse  

Science Journals Connector (OSTI)

The input data of the corporate data warehouse is provided by the data sources, that are integrated. In the ... is stored in the database. Defining a data warehouse as a bitemporal database containing integrated ...

Carme Martin; Alberto Abelló

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U-001:Symantec IM Manager Input Validation Flaws | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U-001:Symantec IM Manager Input Validation Flaws U-001:Symantec IM Manager Input Validation Flaws U-001:Symantec IM Manager Input Validation Flaws October 3, 2011 - 12:45pm Addthis PROBLEM: Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks. PLATFORM: Version(s): prior to 8.4.18 ABSTRACT: Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks. reference LINKS: Security Advisory: SYM11-012 SecurityTracker Alert ID: 1026130 IMPACT ASSESSMENT: Medium Discussion: Several vulnerabilities were reported in Symantec IM Manager. A remote user can conduct cross-site scripting attacks. A remote user can inject SQL commands. Several scripts do not properly filter HTML code from user-supplied input before displaying the input [CVE-2011-0552]. A remote user can create a

322

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

323

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

324

MEaSUREs products Project PI ESDR Parameter(s) Generated Period(s) covered Input data and sources Discipline  

E-Print Network [OSTI]

and Oceanographic Applications Atlas, Robert High resolution (25km, every 6-hours) global ocean surface winds from of trace gases and aerosol properties. 1985-present Airborne field campaign data sets Atmospheric And Related trace gas Data records for the Stratosphere (GOZCARDS) Froidevaux, Lucien Zonal (mostly monthly

Christian, Eric

325

Catalytic Reforming Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,563 2,667 2,739 2,807 2,705 2,609 2010-2013 PADD 1 176 178 180 173 156 167 2010-2013 East Coast 166 164 163 161 140 153 2010-2013 Appalachian No. 1 9 14 16 12 15 14 2010-2013 PADD 2 642 638 668 695 677 615 2010-2013 Ind., Ill. and Ky. 426 411 426 460 450 399 2010-2013 Minn., Wis., N. Dak., S. Dak. 67 62 70 72 72 57 2010-2013 Okla., Kans., Mo.

326

Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input  

Science Journals Connector (OSTI)

The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.

M. Riedl; A. Suhrbier; H. Malberg; T. Penzel; G. Bretthauer; J. Kurths; N. Wessel

2008-07-24T23:59:59.000Z

327

Destruction of a wetland ecosystem by inputs of circumneutral, treated coal mine drainage  

SciTech Connect (OSTI)

Wymer Run Bog is a representative example of the naturally acidic Sphagnum-dominated wetlands that are scattered throughout the Appalachian coal mining region of West Virginia. This bog is situated downslope from a sediment pond associated with a coal surface mine. Sodium carbonate briquettes are used in the pond to raise the pH of the mine drainage water to between 6 and 9. For the past 3 years, a leak in the bank of the pond has served as a source of circumneutral, treated mine drainage water flowing into Wymer Run Bog. Initial observations showed that the area of the wetland receiving the treated mine drainage water was characterized by widespread death of the wetland vegetation, especially the Sphagnum and Polytrichum mosses, and that the peat had been eroded down to mineral soil. Laboratory studies indicated that Sphagnum recurvum grew well at pH 4, but at pH 8 the plants died in about 20 days. Observations from other wetlands indicated that S. recurvum can survive where untreated acid mine drainage enters a wetland, as long as the volume of the inputs is sufficiently low.

Wieder, R.K.; Lang, G.E.; Whitehouse, A.E.

1984-12-01T23:59:59.000Z

328

Energy input, carbon intensity and cost for ethanol produced from farmed seaweed  

Science Journals Connector (OSTI)

Abstract Macroalgae, commonly known as seaweed, has received significant interest as a potential source of ethanol because of its fast growth, significant sugar content and successful lab-scale conversion to ethanol. Issues such as energy input in seaweed conversion, lifecycle emissions, global production potential and cost have received limited attention. To address this gap, a well-to-tank model of ethanol production from brown seaweed is developed and applied to the case of ethanol production from Saccharina latissima in British Columbia, Canada. Animal feed is proposed as a co-product and co-product credits are estimated. In the case considered, seaweed ethanol is found to have an energy return on invested (EROI) of 1.7 and a carbon intensity (CI) of 10.8 gCO2e MJ?1. Ethanol production from conventionally farmed seaweed could cost less than conventional ethanol and be produced on a scale comparable to 1% of global gasoline production. A drying system is required in regions such as British Columbia that require seasonal seaweed storage due to a limited harvest season. The results are significantly influenced by variations in animal feed processing energy, co-product credit value, seaweed composition, the value of seaweed animal feed and the cost of seaweed farming. We find EROI ranges from 0.64 to 26.7, CI from 33 to ?41 gCO2e MJ?1 and ethanol production is not financially viable without animal feed production in some scenarios.

Aaron Philippsen; Peter Wild; Andrew Rowe

2014-01-01T23:59:59.000Z

329

11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,  

E-Print Network [OSTI]

, The exergy destruction in each component and the exergy efficiency of the compressor, the second-law efficiency, and the exergy destruction are to be determined. Assumptions 1 Steady operating conditions exist is 2.006=== Btu/lbm63.28 Btu/lbm43.57 COP inw qL (b) The exergy destruction in each component

Kostic, Milivoje M.

330

The SCALE Verified, Archived Library of Inputs and Data - VALID  

SciTech Connect (OSTI)

The Verified, Archived Library of Inputs and Data (VALID) at ORNL contains high quality, independently reviewed models and results that improve confidence in analysis. VALID is developed and maintained according to a procedure of the SCALE quality assurance (QA) plan. This paper reviews the origins of the procedure and its intended purpose, the philosophy of the procedure, some highlights of its implementation, and the future of the procedure and associated VALID library. The original focus of the procedure was the generation of high-quality models that could be archived at ORNL and applied to many studies. The review process associated with model generation minimized the chances of errors in these archived models. Subsequently, the scope of the library and procedure was expanded to provide high quality, reviewed sensitivity data files for deployment through the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). Sensitivity data files for approximately 400 such models are currently available. The VALID procedure and library continue fulfilling these multiple roles. The VALID procedure is based on the quality assurance principles of ISO 9001 and nuclear safety analysis. Some of these key concepts include: independent generation and review of information, generation and review by qualified individuals, use of appropriate references for design data and documentation, and retrievability of the models, results, and documentation associated with entries in the library. Some highlights of the detailed procedure are discussed to provide background on its implementation and to indicate limitations of data extracted from VALID for use by the broader community. Specifically, external users of data generated within VALID must take responsibility for ensuring that the files are used within the QA framework of their organization and that use is appropriate. The future plans for the VALID library include expansion to include additional experiments from the IHECSBE, to include experiments from areas beyond criticality safety, such as reactor physics and shielding, and to include application models. In the future, external SCALE users may also obtain qualification under the VALID procedure and be involved in expanding the library. The VALID library provides a pathway for the criticality safety community to leverage modeling and analysis expertise at ORNL.

Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

2013-01-01T23:59:59.000Z

331

V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

4: Splunk Web Input Validation Flaw Permits Cross-Site 4: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks April 2, 2013 - 1:13am Addthis PROBLEM: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 4.3.0 through 4.3.5 ABSTRACT: A vulnerability was reported in Splunk Web. REFERENCE LINKS: SecurityTracker Alert ID: 1028371 Splunk IMPACT ASSESSMENT: High DISCUSSION: Splunk Web does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the Splunk Web software and will run in the security context of that site. As a result, the code will be able to access the

332

U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

2: Barracuda Web Filter Input Validation Flaws Permit 2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September 6, 2012 - 6:00am Addthis PROBLEM: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks PLATFORM: Barracuda Web Filter 5.0.015 is vulnerable; other versions may also be affected. ABSTRACT: Barracuda Web Filter Authentication Module Multiple HTML Injection Vulnerabilities reference LINKS: Barracuda Networks Barracuda Networks Security ID: BNSEC-279/BNYF-5533 SecurityTracker Alert ID: 1027500 Bugtraq ID: 55394 seclists.org IMPACT ASSESSMENT: Medium Discussion: Two scripts not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to

333

T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits  

Broader source: Energy.gov (indexed) [DOE]

70: Skype Input Validation Flaw in 'mobile phone' Profile Entry 70: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks July 18, 2011 - 7:09am Addthis PROBLEM: A vulnerability was reported in Skype. A remote user can conduct cross-site scripting attacks. PLATFORM: 5.3.0.120 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input. reference LINKS: SecurityTracker Alert ID: 1025789 Skype Security Advisory KoreSecure News H Security ID: 1279864 IMPACT ASSESSMENT: High Discussion: Skype suffers from a persistent Cross-Site Scripting vulnerability due to a lack of input validation and output sanitization of the "mobile phone"

334

U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

0: Adobe Flex SDK Input Validation Flaw Permits Cross-Site 0: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks December 2, 2011 - 5:24am Addthis PROBLEM: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks. PLATFORM: Adobe Flex SDK 4.5.1 and earlier 4.x versions for Windows, Macintosh and Linux Adobe Flex SDK 3.6 and earlier 3.x versions for Windows, Macintosh and Linux ABSTRACT: Flex applications created using the Flex SDK may not properly filter HTML code from user-supplied input before displaying the input. reference LINKS: Adobe Security Bulletin CVE-2011-2461 SecurityTracker Alert ID: 1026361 IMPACT ASSESSMENT: High Discussion: A remote user may be able to cause arbitrary scripting code to be executed

335

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits  

Broader source: Energy.gov (indexed) [DOE]

8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' 8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks August 22, 2011 - 3:54pm Addthis PROBLEM: A vulnerability was reported in Adobe ColdFusion. A remote user can conduct cross-site scripting attacks. PLATFORM: Adobe ColdFusion 9.x ABSTRACT: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks. reference LINKS: Adobe Vulnerability Report Adobe Security Bulletin ColdFusion Support SecurityTracker Alert ID: 1025957 IMPACT ASSESSMENT: Medium Discussion: The 'probe.cfm' script does not properly filter HTML code from user-supplied input in the 'name' parameter before displaying the input. A remote user can create a specially crafted URL that, when loaded by a

336

T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits  

Broader source: Energy.gov (indexed) [DOE]

0: Skype Input Validation Flaw in 'mobile phone' Profile Entry 0: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks July 18, 2011 - 7:09am Addthis PROBLEM: A vulnerability was reported in Skype. A remote user can conduct cross-site scripting attacks. PLATFORM: 5.3.0.120 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input. reference LINKS: SecurityTracker Alert ID: 1025789 Skype Security Advisory KoreSecure News H Security ID: 1279864 IMPACT ASSESSMENT: High Discussion: Skype suffers from a persistent Cross-Site Scripting vulnerability due to a lack of input validation and output sanitization of the "mobile phone"

337

U-132: Apache Wicket Input Validation Flaw in 'wicket:pageMapName'  

Broader source: Energy.gov (indexed) [DOE]

2: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' 2: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks U-132: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks March 23, 2012 - 7:42am Addthis PROBLEM: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks PLATFORM: Apache Wicket 1.4.x ABSTRACT: A remote user can conduct cross-site scripting attacks. reference LINKS: Apache Wicket CVE-2012-0047 SecurityTracker Alert ID: 1026839 IMPACT ASSESSMENT: High Discussion: The software does not properly filter HTML code from user-supplied input in the 'wicket:pageMapName' request parameter before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target

338

Evaluation of Indian input to the international nuclear information system database  

Science Journals Connector (OSTI)

The study is aimed at analysing the INIS bibliographic records of publications in India during the period 2000-2008. The analysis includes the inputting trend, time-lag, contributing journals, country collaboration, content analysis through the classification and keywords. India has a total number of 14,697 records input to the database with an yearly average of 1631 records. The timeliness of input is very noteworthy as 29.15% of all articles are input in the same publication year, 52.57% articles are of only one year delay in inputting. Pramana, Journal of Medical Physics, Radiation Protection and Environment are found as the most contributed Indian journals. Scientists from USA, Germany, Japan, etc., are the main contributors. Nuclear physics and radiation physics, specific nuclear reactors and associated plants, particle accelerators, inorganic, organic, physical and analytical chemistry, etc., are main areas of the Indian input.

Anil Kumar; E.R. Prakasan; Sandeep Kadam; Nita Bhaskar

2011-01-01T23:59:59.000Z

339

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits  

Broader source: Energy.gov (indexed) [DOE]

8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' 8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks August 22, 2011 - 3:54pm Addthis PROBLEM: A vulnerability was reported in Adobe ColdFusion. A remote user can conduct cross-site scripting attacks. PLATFORM: Adobe ColdFusion 9.x ABSTRACT: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks. reference LINKS: Adobe Vulnerability Report Adobe Security Bulletin ColdFusion Support SecurityTracker Alert ID: 1025957 IMPACT ASSESSMENT: Medium Discussion: The 'probe.cfm' script does not properly filter HTML code from user-supplied input in the 'name' parameter before displaying the input. A remote user can create a specially crafted URL that, when loaded by a

340

Table 7.1 Average Prices of Purchased Energy Sources, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2010; Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar Manufacturing 5.02 0.31 0.00 53.34 236.66 3114 Fruit and Vegetable Preserving and Specialty Foods 9.78 0.27 0.00 90.59 0.00 3115 Dairy Products 11.21 0.10 0.00 103.12 0.00 3116 Animal Slaughtering and Processing

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities  

U.S. Energy Information Administration (EIA) Indexed Site

(Percent) (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1.43 1.38 1.41 1.43 1.47 1.42 1985-2013 PADD 1 0.75 0.73 0.69 0.68 0.73 0.68 1985-2013 East Coast 0.67 0.66 0.61 0.63 0.66 0.57 1985-2013 Appalachian No. 1 2.0 1.72 1.52 1.40 1.55 1.74 1985-2013 PADD 2 1.42 1.34 1.44 1.46 1.61 1.49 1985-2013 Ind., Ill. and Ky. 1.45 1.36 1.47 1.56 1.75 1.67 1985-2013 Minn., Wis., N. Dak., S. Dak. 2.33 2.11 2.18 2.03 2.01 1.69 1985-2013 Okla., Kans., Mo. 0.89 0.89 0.92 0.82 0.87 0.85 1985-2013 PADD 3 1.54 1.48 1.51 1.52 1.54 1.48 1985-2013

342

Summary of Input to DOE Request for Information DE-FOA-0000225  

Broader source: Energy.gov [DOE]

Presentation on Sumary of Input to DOE Request for Information DE-FOA-0000225 - U.S. DOE Fuel Cells Technology Program

343

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network [OSTI]

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

344

Combining frequency and time domain approaches to systems with multiple spike train input and output  

E-Print Network [OSTI]

between neuronal spike trains. Prog Biophys Mol Biol Vapnikto systems with multiple spike train input and output D. R.Keywords Multiple spike trains · Neural coding · Maximum

Brillinger, D. R.; Lindsay, K. A.; Rosenberg, J. R.

2009-01-01T23:59:59.000Z

345

E-Print Network 3.0 - alpha motoneurone input Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as input resistance (Ri,), membrane time constant (T... Spinalization on Ankle Extensor Motoneurons II. Motoneuron Electrical Properties S. HOCHMAN AND D. A. Mc......

346

A CSP Timed Input-Output Relation and a Strategy for Mechanised Conformance Verification  

Science Journals Connector (OSTI)

Here we propose a timed input-output conformance relation (named CSPTIO) based on the process algebra CSP. In contrast to other relations, CSPTIO...

Gustavo Carvalho; Augusto Sampaio…

2013-01-01T23:59:59.000Z

347

Factors Controlling the Input of Electrical Energy into a Fish in an ...  

Science Journals Connector (OSTI)

In order to determine the electrical energy - input into a fish, both voltage and resistance, as applied to the fish itself, should be known. Neither of these quantities ...

1999-12-13T23:59:59.000Z

348

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

349

FORMALIZATION OF INPUT AND OUTPUT IN MODERN OPERATING SYSTEMS: THE HADLEY MODEL.  

E-Print Network [OSTI]

??We present the Hadley model, a formal descriptive model of input and output for modern computer operating systems. Our model is intentionally inspired by the… (more)

Gerber, Matthew

2005-01-01T23:59:59.000Z

350

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

351

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

352

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

353

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

354

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

355

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

356

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

357

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

358

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

359

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

360

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

362

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

363

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

364

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

365

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

366

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

367

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

368

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

369

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

370

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

371

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

372

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

373

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

374

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

375

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

376

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

377

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

378

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

379

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

380

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

382

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

383

Voltage balanced multilevel voltage source converter system  

DOE Patents [OSTI]

A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

1997-01-01T23:59:59.000Z

384

Voltage balanced multilevel voltage source converter system  

DOE Patents [OSTI]

Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

Peng, F.Z.; Lai, J.S.

1997-07-01T23:59:59.000Z

385

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Supplies Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Coke-oven Gas The mixture of permanent gases produced by the carbonization of coal in a coke oven at temperatures in excess of 1,000 degrees Celsius.

386

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels  

E-Print Network [OSTI]

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels Fernando P procedure that generalizes the mercury/waterfilling algorithm, previously proposed for parallel non-interfering chan- nels. In this generalization the mercury level accounts for the sub- optimal (non-Gaussian) input

Verdú, Sergio

387

April 3-4, 2007/ARR Engineering Input to System Code and  

E-Print Network [OSTI]

with providing input to system code - Assessing high-leverage engineering parameters to guide integrated trade 3-4, 2007/ARR 2 Schematic of ARIES Next Step Study as I Understand It (TBD) Design Requirements to Demonstrate Those System Code Development and Integration (ARIES-AT as starting point) Translating Input to

Raffray, A. René

388

Polar study of ionospheric ion outflow versus energy input Yihua Zheng,1  

E-Print Network [OSTI]

versus energy input is performed by using multi- instrument data (TIDE, EFI, MFI, HYDRA) from PolarPolar study of ionospheric ion outflow versus energy input Yihua Zheng,1 Thomas E. Moore,2 Forrest/6 Hz), the electron density, temperature, and the electron energy flux. The perturbation fields used

California at Berkeley, University of

389

Pinch-drag-flick vs. spatial input: rethinking zoom & pan on mobile displays  

Science Journals Connector (OSTI)

The multi-touch-based pinch to zoom, drag and flick to pan metaphor has gained wide popularity on mobile displays, where it is the paradigm of choice for navigating 2D documents. But is finger-based navigation really the gold standard' In this paper, ... Keywords: mobile displays, multi-touch input, spatial input, spatially aware displays, user study

Martin Spindler; Martin Schuessler; Marcel Martsch; Raimund Dachselt

2014-04-01T23:59:59.000Z

390

Feeling Music: Integration of Auditory and Tactile Inputs in Musical Meter Perception  

E-Print Network [OSTI]

Feeling Music: Integration of Auditory and Tactile Inputs in Musical Meter Perception Juan Huang1 are integrated in humans performing a musical meter recognition task. Subjects discriminated between two types coherent meter percepts, and 3) Simultaneously presented bimodal inputs where the two channels contained

Wang, Xiaoqin

391

Estimation of input energy in rocket-triggered lightning Vinod Jayakumar,1  

E-Print Network [OSTI]

the input power and energy, each per unit channel length and as a function of time, associated with return- lightning first stroke, based on the conversion of measured optical energy to total energy using energy., 2002] and measured current, I(t), at the channel base to estimate the input power per unit length, P

Florida, University of

392

Asynchronous Gate-Diffusion----Input (GDI) Circuits Arkadiy Morgenshtein, Michael Moreinis and Ran Ginosar  

E-Print Network [OSTI]

1 Asynchronous Gate-Diffusion----Input (GDI) Circuits Arkadiy Morgenshtein, Michael Moreinis, Israel [ran@ee.technion.ac.il] Abstract: Novel Gate-Diffusion Input (GDI) circuits are applied to asynchronous design. A variety of GDI implementations are compared with typical CMOS asynchronous circuits

Ginosar, Ran

393

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach  

E-Print Network [OSTI]

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach L. Nehaoua1. For this purpose, we consider a unknown input high order sliding mode observer (UIHOSMO). First, a motorcycle- flected by an important increase of motorcycle's fatalities. Recent statistics confirm this fact

Paris-Sud XI, Université de

394

U-102: Cisco IronPort Encryption Appliance Input Validation Flaw Permits  

Broader source: Energy.gov (indexed) [DOE]

2: Cisco IronPort Encryption Appliance Input Validation Flaw 2: Cisco IronPort Encryption Appliance Input Validation Flaw Permits Cross-Site Scripting Attacks U-102: Cisco IronPort Encryption Appliance Input Validation Flaw Permits Cross-Site Scripting Attacks February 14, 2012 - 8:00am Addthis PROBLEM: A vulnerability was reported in Cisco IronPort Encryption Appliance. PLATFORM: Version(s): prior to 6.5.3 ABSTRACT: A remote user can conduct cross-site scripting reference LINKS: Vendor URL CVE-2012-0340 Security Tracker ID:1026669 IMPACT ASSESSMENT: Medium Discussion: The interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will originate from

395

V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

8: Splunk Web Input Validation Flaw Permits Cross-Site 8: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Splunk Web PLATFORM: Version(s) prior to 5.0.3 ABSTRACT: A reflected cross-site scripting vulnerability was identified in Splunk Web REFERENCE LINKS: SecurityTracker Alert ID: 1028605 Splunk Security Advisory SPL-59895 CVE-2012-6447 IMPACT ASSESSMENT: Medium DISCUSSION: The web interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will

396

U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

4: HP Network Node Manager i Input Validation Hole Permits 4: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks July 3, 2012 - 7:00am Addthis PROBLEM: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 8.x, 9.0x, 9.1x ABSTRACT: Potential security vulnerabilities have been identified with HP Network Node Manager I (NNMi) for HP-UX, Linux, Solaris, and Windows. The vulnerabilities could be remotely exploited resulting in cross site scripting (XSS). reference LINKS: The Vendor's Advisory SecurityTracker Alert ID: 1027215 CVE-2012-2018 IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in HP Network Node Manager i. The software does not properly filter HTML code from user-supplied input before

397

Oak Ridge's EM Program Seeks Public Input on Cleanup | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Public Input on Cleanup Seeks Public Input on Cleanup Oak Ridge's EM Program Seeks Public Input on Cleanup April 25, 2013 - 12:00pm Addthis Oak Ridge’s EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Oak Ridge's EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Oak Ridge EM Manager Mark Whitney addresses participants on EM’s mission and priorities.

398

V-139: Cisco Network Admission Control Input Validation Flaw Lets Remote  

Broader source: Energy.gov (indexed) [DOE]

9: Cisco Network Admission Control Input Validation Flaw Lets 9: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands V-139: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands April 21, 2013 - 11:50pm Addthis PROBLEM: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands PLATFORM: Cisco NAC Manager versions prior to 4.8.3.1 and 4.9.2 ABSTRACT: A vulnerability was reported in Cisco Network Admission Control. REFERENCE LINKS: SecurityTracker Alert ID: 1028451 Cisco Advisory ID: cisco-sa-20130417-nac CVE-2013-1177 IMPACT ASSESSMENT: High DISCUSSION: The Cisco Network Admission Control (NAC) Manager does not properly validate user-supplied input. A remote user can supply a specially crafted parameter value to execute SQL commands on the underlying database.

399

U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

4:Juniper Secure Access Input Validation Flaw Permits 4:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks April 10, 2012 - 7:30am Addthis PROBLEM: A vulnerability was reported in Juniper Secure Access/Instant Virtual Extranet (IVE). A remote user can conduct cross-site scripting attacks. PLATFORM: Version(s): prior to 7.0R9 and 7.1R ABSTRACT: The VPN management interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. reference LINKS: Vendor URL SecurityTracker Alert ID: 1026893 IMPACT ASSESSMENT: High Discussion: The code will originate from the interface and will run in the security

400

How are basement walls input in REScheck? | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basement walls input in REScheck? basement walls input in REScheck? After selecting a basement wall type, a basement wall illustration will appear with input boxes for the basement wall height, depth below grade, and depth of insulation. The illustration helps identify the dimensions being requested. You may enter basement wall dimensions directly into this illustration and select the OK button to have them transferred to the corresponding row in the table on the Envelope screen. If you prefer to enter the dimensions directly into the table on the Envelope screen, you can select Cancel to remove the illustration without entering dimensions. To view the basement wall illustration and inputs at a later time, click the right-mouse button anywhere on the basement row and select Edit Basement Inputs from the popup menu.

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oak Ridge's EM Program Seeks Public Input on Cleanup | Department of  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge's EM Program Seeks Public Input on Cleanup Oak Ridge's EM Program Seeks Public Input on Cleanup Oak Ridge's EM Program Seeks Public Input on Cleanup April 25, 2013 - 12:00pm Addthis Oak Ridge’s EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Oak Ridge's EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Oak Ridge EM Manager Mark Whitney addresses participants on EM’s mission and priorities.

402

V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

93: Barracuda SSL VPN Input Validation Hole Permits Cross-Site 93: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks July 5, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Barracuda SSL VPN PLATFORM: Version(s) prior to 2.3.3.216 ABSTRACT: Several scripts do not properly filter HTML code from user-supplied input before displaying the input via several parameters REFERENCE LINKS: SecurityTracker Alert ID: 1028736 Barracuda SSL VPN Release Notes Zero Science Lab IMPACT ASSESSMENT: Medium DISCUSSION: The code will originate from the Barracuda SSL VPN interface and will run in the security context of that site. As a result, the code will be able to access the target user's cookies (including authentication cookies), if

403

V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

3: Symantec Brightmail Gateway Input Validation Flaw Permits 3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks May 10, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Symantec Brightmail Gateway PLATFORM: The vulnerabilities are reported in versions prior to 9.5.x ABSTRACT: Symantec's Brightmail Gateway management console is susceptible to stored cross-site scripting (XSS) issues found in some of the administrative interface pages. REFERENCE LINKS: Security Tracker Alert ID: 1028530 Symantec Security Advisory CVE-2013-1611 IMPACT ASSESSMENT: Medium DISCUSSION: The administrative interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause

404

U-255: Apache Wicket Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

5: Apache Wicket Input Validation Flaw Permits Cross-Site 5: Apache Wicket Input Validation Flaw Permits Cross-Site Scripting Attacks U-255: Apache Wicket Input Validation Flaw Permits Cross-Site Scripting Attacks September 11, 2012 - 6:00am Addthis PROBLEM: Apache Wicket Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Apache Software Foundation Apache Wicket 1.5.5 Apache Software Foundation Apache Wicket 1.5-RC5.1 Apache Software Foundation Apache Wicket 1.4.20 Apache Software Foundation Apache Wicket 1.4.18 Apache Software Foundation Apache Wicket 1.4.17 Apache Software Foundation Apache Wicket 1.4.16 ABSTRACT: A vulnerability was reported in Apache Wicket reference LINKS: Apache Wicket SecurityTracker Alert ID: 1027508 Bugtraq ID: 55445 CVE-2012-3373 IMPACT ASSESSMENT: Medium Discussion: The software does not properly filter HTML code from user-supplied input in

405

U-139: IBM Tivoli Directory Server Input Validation Flaw | Department of  

Broader source: Energy.gov (indexed) [DOE]

39: IBM Tivoli Directory Server Input Validation Flaw 39: IBM Tivoli Directory Server Input Validation Flaw U-139: IBM Tivoli Directory Server Input Validation Flaw April 3, 2012 - 7:00am Addthis PROBLEM: A vulnerability was reported in IBM Tivoli Directory Server. A remote user can conduct cross-site scripting attacks PLATFORM: Version(s): 6.2, 6.3 ABSTRACT: The Web Admin Tool does not properly filter HTML code from user-supplied input before displaying the input. Reference LINKS: Vendor Advisory Security Tracker ID 1026880 CVE-2012-0740 IMPACT ASSESSMENT: Medium Discussion: A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the IBM Tivoli Directory Server software and will run in the security context

406

V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August 28, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in IBM Lotus iNotes PLATFORM: IBM Lotus iNotes 8.5.x ABSTRACT: IBM Lotus iNotes 8.5.x contains four cross-site scripting vulnerabilities REFERENCE LINKS: Security Tracker Alert ID 1028954 IBM Security Bulletin 1647740 Seclist.org CVE-2013-0590 CVE-2013-0591 CVE-2013-0595 IMPACT ASSESSMENT: Medium DISCUSSION: The software does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate

407

U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

204: HP Network Node Manager i Input Validation Hole Permits 204: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks July 3, 2012 - 7:00am Addthis PROBLEM: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 8.x, 9.0x, 9.1x ABSTRACT: Potential security vulnerabilities have been identified with HP Network Node Manager I (NNMi) for HP-UX, Linux, Solaris, and Windows. The vulnerabilities could be remotely exploited resulting in cross site scripting (XSS). reference LINKS: The Vendor's Advisory SecurityTracker Alert ID: 1027215 CVE-2012-2018 IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in HP Network Node Manager i. The software does not properly filter HTML code from user-supplied input before

408

DOE Seeking Input on Alternative Uses of Nickel Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeking Input on Alternative Uses of Nickel Inventory Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory March 9, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking input from industry representatives on the safe disposition of approximately 15,300 tons of nickel scrap recovered from uranium enrichment process equipment at the Department's Oak Ridge, TN, and Paducah, KY, facilities. The Expression of Interest (EOI), released today, will assist in DOE's evaluation of restricted uses of its nickel material for controlled radiological applications. These restricted uses could include use in commercial nuclear power plants, DOE nuclear facilities, or by the U.S. Navy. The Department will solicit input through May 8, 2007.

409

DOE Seeking Input on Alternative Uses of Nickel Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory March 9, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking input from industry representatives on the safe disposition of approximately 15,300 tons of nickel scrap recovered from uranium enrichment process equipment at the Department's Oak Ridge, TN, and Paducah, KY, facilities. The Expression of Interest (EOI), released today, will assist in DOE's evaluation of restricted uses of its nickel material for controlled radiological applications. These restricted uses could include use in commercial nuclear power plants, DOE nuclear facilities, or by the U.S. Navy. The Department will solicit input through May 8, 2007.

410

V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

68: Splunk Web Input Validation Flaw Permits Cross-Site 68: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Splunk Web PLATFORM: Version(s) prior to 5.0.3 ABSTRACT: A reflected cross-site scripting vulnerability was identified in Splunk Web REFERENCE LINKS: SecurityTracker Alert ID: 1028605 Splunk Security Advisory SPL-59895 CVE-2012-6447 IMPACT ASSESSMENT: Medium DISCUSSION: The web interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will

411

V-085: Cisco Unity Express Input Validation Hole Permits Cross-Site Request  

Broader source: Energy.gov (indexed) [DOE]

5: Cisco Unity Express Input Validation Hole Permits Cross-Site 5: Cisco Unity Express Input Validation Hole Permits Cross-Site Request Forgery Attacks V-085: Cisco Unity Express Input Validation Hole Permits Cross-Site Request Forgery Attacks February 6, 2013 - 1:06am Addthis PROBLEM: Cisco Unity Express Input Validation Hole Permits Cross-Site Request Forgery Attacks PLATFORM: Cisco Unity Express prior to 8.0 ABSTRACT: A vulnerability was reported in Cisco Unity Express. REFERENCE LINKS: Cisco Security Notice SecurityTracker Alert ID: 1028075 CVE-2013-1120 IMPACT ASSESSMENT: Medium DISCUSSION: Cisco Unity Express software prior to version 8.0 contains vulnerabilities that could allow an unauthenticated, remote attacker to conduct cross site request forgery attacks. The vulnerabilities are due to insufficient input validation. An attacker could exploit these vulnerabilities by

412

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

413

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

414

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

415

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network [OSTI]

energy utilization intensity (EUI) was 47 kBtu-sf/yr. TaskStar Energy Star Rating NA EUI 47.5 kBtu/sf/yr 71. kBtu/sf/Sensitivity Study Annual HVAC EUI (kBtu/sf/yr - source) Fans

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

416

Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding  

E-Print Network [OSTI]

to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

Yang, Yang

2005-11-01T23:59:59.000Z

417

Capital Sources and Providers  

Broader source: Energy.gov [DOE]

The most important elements of a clean energy lending program are the capital source and the capital provider. The capital source provides the funding to pay for clean energy projects, and the capital provider manages those funding sources. For example, a bank might use its customers' deposits as a capital source, but as the capital provider, the bank manages the investment of that capital.

418

GEOMETRIC SOURCE SEPARATION: MERGING CONVOLUTIVE SOURCE  

E-Print Network [OSTI]

adaptive beamforming algorithms by a cross-power criteria, we gain new geometric source separation with convo- lutive blind source separation. We concentrate on cross-power spectral min- imization which is su to ambiguities in the choice of separating lters. There are in theory multiple lters that invert the room

Parra, Lucas C.

419

All-optical routing of single photons with multiple input and output ports by interferences  

E-Print Network [OSTI]

We propose a waveguide-cavity coupled system to achieve the routing of photons by the phases of other photons. Our router has four input ports and four output ports. The transport of the coherent-state photons injected through any input port can be controlled by the phases of the coherent-state photons injected through other input ports. This control can be achieved when the mean numbers of the routed and control photons are small enough and require no additional control fields. Therefore, the all-optical routing of photons can be achieved at the single-photon level.

Wei-Bin Yan; Bao Liu; Ling Zhou; Heng Fan

2014-09-23T23:59:59.000Z

420

Industrial User Office | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Liaison Office Industrial Liaison Office Industrial Liaison Office registration page New to Synchrotron Radiation New to the APS Already a User Advanced Photon Source Industrial Liaison Office Welcome to the Advanced Photon Source (APS) Industrial Liaison Office home page. The purpose of this Office is to provide outreach from the APS to the industrial community. As we develop the Office and this website to better address the needs of industrial users of the APS, both current and prospective, we are soliciting input by requesting projects and measurements that you would like to perform at the APS. Please complete the form below so that we can begin communicating with you. Questions? Email aps-i@aps.anl.gov. General Information Company Name *required First Name *required Last Name *required

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject  

Broader source: Energy.gov (indexed) [DOE]

19: Symantec Web Gateway Input Validation Flaws Lets Remote 19: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords July 24, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords PLATFORM: Symantec Web Gateway 5.0.x.x ABSTRACT: Several vulnerabilities were reported in Symantec Web Gateway. REFERENCE LINKS: Security Advisories Relating to Symantec Products SecurityTracker Alert ID: 1027289 Bugtraq ID: 54424 Bugtraq ID: 54425 Bugtraq ID: 54426 Bugtraq ID: 54427 Bugtraq ID: 54429 Bugtraq ID: 54430

422

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

423

T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in  

Broader source: Energy.gov (indexed) [DOE]

1: Citrix Access Gateway Enterprise Edition Input Validation 1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks August 25, 2011 - 3:33pm Addthis PROBLEM: A vulnerability was reported in Citrix Access Gateway Enterprise Edition. A remote user can conduct cross-site scripting attacks. PLATFORM: Citrix Access Gateway Enterprise Edition 9.2-49.8 and prior. Citrix Access Gateway Enterprise Edition version 9.3 is not affected by this vulnerability. ABSTRACT: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks. reference LINKS: SecurityTracker Alert ID: 1025973 Citrix Document ID: CTX129971

424

U-195: PHPlist Input Validation Flaws Permit Cross-Site Scripting and SQL  

Broader source: Energy.gov (indexed) [DOE]

5: PHPlist Input Validation Flaws Permit Cross-Site Scripting 5: PHPlist Input Validation Flaws Permit Cross-Site Scripting and SQL Injection Attacks U-195: PHPlist Input Validation Flaws Permit Cross-Site Scripting and SQL Injection Attacks June 20, 2012 - 7:00am Addthis PROBLEM: Two vulnerabilities were reported in PHPlist. A remote user can conduct cross-site scripting attacks. A remote authenticated user can inject SQL commands. PLATFORM: Version(s): prior to 2.10.18 ABSTRACT: The 'public_html/lists/admin' pages do not properly validate user-supplied input in the 'sortby' parameter [CVE-2012-2740]. A remote authenticated administrative user can supply a specially crafted parameter value to execute SQL commands on the underlying database. REFERENCE LINKS: Vendor Advisory Security Tracker ID 1027181 CVE-2012-2740, CVE-2012-2741

425

T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

6: Microsoft MHTML Input Validation Hole May Permit Cross-Site 6: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code January 31, 2011 - 7:00am Addthis PROBLEM: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: A vulnerability was reported in Microsoft MHTML. A remote user can conduct cross-site scripting attacks. reference LINKS: Microsoft Security Advisory 2501696 Microsoft Support Security Tracker Alert CVE-2011-0096 IMPACT ASSESSMENT: Medium Discussion: The vulnerability exists due to the way MHTML interprets MIME-formatted requests for content blocks within a document. It is possible for this

426

U-238: HP Service Manager Input Validation Flaw Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

8: HP Service Manager Input Validation Flaw Permits Cross-Site 8: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks U-238: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks August 17, 2012 - 7:00am Addthis PROBLEM: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 7.11, 9.21, 9.30 ABSTRACT: Cross-site scripting (XSS) vulnerability in HP Service Manager Web Tier 7.11, 9.21, and 9.30, and HP Service Center Web Tier 6.28, allows remote attackers to inject arbitrary web script or HTML via unspecified vectors. REFERENCE LINKS: www2.hp.com http://www.securitytracker.com/id/1027399 CVE-2012-3251 IMPACT ASSESSMENT: Moderate Discussion: A vulnerability was reported in HP Service Manager. A remote user can conduct cross-site scripting attacks. The software does not properly filter

427

V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users  

Broader source: Energy.gov (indexed) [DOE]

0: Apache VCL Input Validation Flaw Lets Remote Authenticated 0: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges May 7, 2013 - 12:01am Addthis PROBLEM: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges PLATFORM: Apache VCL Versions: 2.1, 2.2, 2.2.1, 2.3, 2.3.1 ABSTRACT: A vulnerability was reported in Apache VCL. REFERENCE LINKS: Apache Securelist SecurityTracker Alert ID: 1028515 CVE-2013-0267 IMPACT ASSESSMENT: Medium DISCUSSION: A remote authenticated administrative user with minimal administrative privileges (i.e., nodeAdmin, manageGroup, resourceGrant, or userGrant) can send specially crafted data via the web interface or XMLRPC API to gain additional administrative privileges.

428

DOE Seeks Public Input on an Integrated, Interagency Pre-Application  

Broader source: Energy.gov (indexed) [DOE]

Seeks Public Input on an Integrated, Interagency Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The Federal Register Notice is available now for downloading. Comments must be received on or before September 30, 2013. As comments are received, they will be posted online. The proposed IIP Process is intended to improve interagency and intergovernmental coordination focused on ensuring that project proponents develop and submit accurate and complete information early in the project

429

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject  

Broader source: Energy.gov (indexed) [DOE]

19: Symantec Web Gateway Input Validation Flaws Lets Remote 19: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords July 24, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords PLATFORM: Symantec Web Gateway 5.0.x.x ABSTRACT: Several vulnerabilities were reported in Symantec Web Gateway. REFERENCE LINKS: Security Advisories Relating to Symantec Products SecurityTracker Alert ID: 1027289 Bugtraq ID: 54424 Bugtraq ID: 54425 Bugtraq ID: 54426 Bugtraq ID: 54427 Bugtraq ID: 54429 Bugtraq ID: 54430

430

U-229: HP Network Node Manager i Input Validation Flaw Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

9: HP Network Node Manager i Input Validation Flaw Permits 9: HP Network Node Manager i Input Validation Flaw Permits Cross-Site Scripting Attacks U-229: HP Network Node Manager i Input Validation Flaw Permits Cross-Site Scripting Attacks August 7, 2012 - 7:00am Addthis PROBLEM: HP Network Node Manager i Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: HP Network Node Manager I (NNMi) v8.x, v9.0x, v9.1x, v9.20 for HP-UX, Linux, Solaris, and Windows ABSTRACT: Potential security vulnerabilities have been identified with HP Network Node Manager i (NNMi) for HP-UX, Linux, Solaris, and Windows. The vulnerabilities could be remotely exploited resulting in cross site scripting (XSS). Reference LINKS: HP Document ID: c03405705 SecurityTracker Alert ID: 1027345 Bugtraq ID: 54815 CVE-2012-2022 IMPACT ASSESSMENT:

431

T-590: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

0: HP Diagnostics Input Validation Hole Permits Cross-Site 0: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks T-590: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks March 29, 2011 - 3:05pm Addthis PROBLEM: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks in ActiveSync Lets Remote Users Execute Arbitrary Code. PLATFORM: HP Diagnostics software: version(s) 7.5, 8.0 prior to 8.05.54.225 ABSTRACT: A potential security vulnerability has been identified in HP Diagnostics. The vulnerability could be exploited remotely resulting in cross site scripting (XSS). reference LINKS: HP Document ID: c02770512 SecurityTracker Alert ID: 1025255 CVE-2011-0892 Security Focus Document ID: c02770512 IMPACT ASSESSMENT: High Discussion: A vulnerability was reported in HP Diagnostics. A remote user can conduct

432

U-238: HP Service Manager Input Validation Flaw Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

38: HP Service Manager Input Validation Flaw Permits Cross-Site 38: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks U-238: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks August 17, 2012 - 7:00am Addthis PROBLEM: HP Service Manager Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 7.11, 9.21, 9.30 ABSTRACT: Cross-site scripting (XSS) vulnerability in HP Service Manager Web Tier 7.11, 9.21, and 9.30, and HP Service Center Web Tier 6.28, allows remote attackers to inject arbitrary web script or HTML via unspecified vectors. REFERENCE LINKS: www2.hp.com http://www.securitytracker.com/id/1027399 CVE-2012-3251 IMPACT ASSESSMENT: Moderate Discussion: A vulnerability was reported in HP Service Manager. A remote user can conduct cross-site scripting attacks. The software does not properly filter

433

T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

6: Microsoft MHTML Input Validation Hole May Permit Cross-Site 6: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code January 31, 2011 - 7:00am Addthis PROBLEM: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: A vulnerability was reported in Microsoft MHTML. A remote user can conduct cross-site scripting attacks. reference LINKS: Microsoft Security Advisory 2501696 Microsoft Support Security Tracker Alert CVE-2011-0096 IMPACT ASSESSMENT: Medium Discussion: The vulnerability exists due to the way MHTML interprets MIME-formatted requests for content blocks within a document. It is possible for this

434

V-034: RSA Adaptive Authentication (On-Premise) Input Validation Flaws  

Broader source: Energy.gov (indexed) [DOE]

4: RSA Adaptive Authentication (On-Premise) Input Validation 4: RSA Adaptive Authentication (On-Premise) Input Validation Flaws Permit Cross-Site Scripting Attacks V-034: RSA Adaptive Authentication (On-Premise) Input Validation Flaws Permit Cross-Site Scripting Attacks November 27, 2012 - 2:00am Addthis PROBLEM: RSA Adaptive Authentication (On-Premise) Input Validation Flaws Permit Cross-Site Scripting Attacks PLATFORM: RSA Adaptive Authentication (On-Premise) 6.x ABSTRACT: A vulnerability was reported in RSA Adaptive Authentication (On-Premise). REFERENCE LINKS: SecurityTracker Alert ID: 1027811 SecurityFocus Security Alert RSA Customer Support CVE-2012-4611 IMPACT ASSESSMENT: Medium DISCUSSION: A vulnerability was reported in RSA Adaptive Authentication (On-Premise). A remote user can conduct cross-site scripting attacks. The software does not

435

V-112: Microsoft SharePoint Input Validation Flaws Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

2: Microsoft SharePoint Input Validation Flaws Permit 2: Microsoft SharePoint Input Validation Flaws Permit Cross-Site Scripting and Denial of Service Attacks V-112: Microsoft SharePoint Input Validation Flaws Permit Cross-Site Scripting and Denial of Service Attacks March 15, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in Microsoft SharePoint PLATFORM: Microsoft SharePoint 2010 SP1 ABSTRACT: This security update resolves four reported vulnerabilities in Microsoft SharePoint and Microsoft SharePoint Foundation. REFERENCE LINKS: Security Tracker Alert ID 1028278 MS Security Bulletin MS13-024 CVE-2013-0080 CVE-2013-0083 CVE-2013-0084 CVE-2013-0085 IMPACT ASSESSMENT: High DISCUSSION: The security update addresses the vulnerabilities correcting the way that Microsoft SharePoint Server validates URLs and user input.

436

U-015: CiscoWorks Common Services Home Page Input Validation Flaw Lets  

Broader source: Energy.gov (indexed) [DOE]

15: CiscoWorks Common Services Home Page Input Validation Flaw 15: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands U-015: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands October 20, 2011 - 7:30am Addthis PROBLEM: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands. PLATFORM: CiscoWorks Common Services-based products prior to version 4.1 running on Microsoft Windows ABSTRACT: Successful exploitation of this vulnerability may allow an authenticated, remote attacker to execute arbitrary commands on the affected system with the privileges of a system administrator. reference LINKS: Cisco Security Advisory ID: cisco-sa-20111019-cs Cisco Security Advisories and Responses

437

T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit  

Broader source: Energy.gov (indexed) [DOE]

2: IBM WebSphere Commerce Edition Input Validation Holes Permit 2: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks September 21, 2011 - 8:15am Addthis PROBLEM: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks. PLATFORM: WebSphere Commerce Edition V7.0 ABSTRACT: A remote user can access the target user's cookies (including authentication cookies), if any, associated with the site running the IBM WebSphere software, access data recently submitted by the target user via web form to the site, or take actions on the site acting as the target user. reference LINKS: IBM Recommended Fixes for WebSphere Commerce IBM Support SecurityTracker Alert ID: 1026074

438

V-112: Microsoft SharePoint Input Validation Flaws Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

2: Microsoft SharePoint Input Validation Flaws Permit 2: Microsoft SharePoint Input Validation Flaws Permit Cross-Site Scripting and Denial of Service Attacks V-112: Microsoft SharePoint Input Validation Flaws Permit Cross-Site Scripting and Denial of Service Attacks March 15, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in Microsoft SharePoint PLATFORM: Microsoft SharePoint 2010 SP1 ABSTRACT: This security update resolves four reported vulnerabilities in Microsoft SharePoint and Microsoft SharePoint Foundation. REFERENCE LINKS: Security Tracker Alert ID 1028278 MS Security Bulletin MS13-024 CVE-2013-0080 CVE-2013-0083 CVE-2013-0084 CVE-2013-0085 IMPACT ASSESSMENT: High DISCUSSION: The security update addresses the vulnerabilities correcting the way that Microsoft SharePoint Server validates URLs and user input.

439

T-590: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

0: HP Diagnostics Input Validation Hole Permits Cross-Site 0: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks T-590: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks March 29, 2011 - 3:05pm Addthis PROBLEM: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks in ActiveSync Lets Remote Users Execute Arbitrary Code. PLATFORM: HP Diagnostics software: version(s) 7.5, 8.0 prior to 8.05.54.225 ABSTRACT: A potential security vulnerability has been identified in HP Diagnostics. The vulnerability could be exploited remotely resulting in cross site scripting (XSS). reference LINKS: HP Document ID: c02770512 SecurityTracker Alert ID: 1025255 CVE-2011-0892 Security Focus Document ID: c02770512 IMPACT ASSESSMENT: High Discussion: A vulnerability was reported in HP Diagnostics. A remote user can conduct

440

BPO Inputs to ITER Design Review on Pellet Pacing, RMP and RWM Coils,  

E-Print Network [OSTI]

Is a Pressing Issue for ITER Loarte et al., Nuclear Fusion, ITER Physics Basis,Chapter 4 Recent results reducedBPO Inputs to ITER Design Review on Pellet Pacing, RMP and RWM Coils, and Disruption Mitigation

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

On the Patterns of Wind-Power Input to the Ocean Circulation  

E-Print Network [OSTI]

Pathways of wind-power input into the ocean general circulation are analyzed using Ekman theory. Direct rates of wind work can be calculated through the wind stress acting on the surface geostrophic flow. However, because ...

Roquet, Fabien

442

SEMILAR: A Semantic Similarity Toolkit For Assessing Students' Natural Language Inputs  

E-Print Network [OSTI]

SEMILAR: A Semantic Similarity Toolkit For Assessing Students' Natural Language Inputs Vasile Rus to understand students' natural language responses. Accurate assessment of students' responses enables, & Graesser, in press). There are at least two different types of natural language assessments

Rus, Vasile

443

A study of the effects of natural fertility, weather and productive inputs in Chinese agriculture  

E-Print Network [OSTI]

This paper presents an investigation of the relations in China between farm output, the natural fertility of agricultural land, and the use of anthropogenic farm inputs. The methodology is presented as a potential increment ...

Eckaus, Richard S.; Tso, Katherine Kit-Yan.

444

U-255: Apache Wicket Input Validation Flaw Permits Cross-Site...  

Broader source: Energy.gov (indexed) [DOE]

Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Apache Software Foundation Apache Wicket 1.5.5 Apache Software Foundation Apache Wicket 1.5-RC5.1 Apache...

445

Code design for multiple-input multiple-output broadcast channels  

E-Print Network [OSTI]

Recent information theoretical results indicate that dirty-paper coding (DPC) achieves the entire capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This thesis presents practical code designs for Gaussian...

Uppal, Momin Ayub

2009-06-02T23:59:59.000Z

446

Estimating production functions with damage control inputs: an application to Korean vegetable production  

E-Print Network [OSTI]

This thesis focuses on the use of chemicals for pest control in Korean cucumber production. The empirical issue addressed is whether estimating crop production functions consistent with the economic theory of damage control inputs makes significant...

Park, Pil Ja

2002-01-01T23:59:59.000Z

447

A Survey of Inputs to the North Sea Resulting from Oil and Gas Developments [and Discussion  

Science Journals Connector (OSTI)

...annual inputs from the offshore oil and gas exploration and...of fresh, unweathered oil rapidly enters otherwise uncontaminated offshore sediments, producing...remain little affected by offshore oil and gas developments...

1987-01-01T23:59:59.000Z

448

Weathering rates in catchments calculated by different methods and their relationship to acidic inputs  

Science Journals Connector (OSTI)

The sensitivity of catchments to acidification is often assessed by calculation of weathering rates for comparison of the rates of release of base cations with the measured acidic inputs. Methods of calculatio...

D. C. Bain; S. J. Langan

449

Lessons Learned in Optimizing Workers' and Worker Representatives' Input to Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Tom McQuiston, Dr. P.H., United Steelworkers - Tony Mazzocchi Center for Health, Safety and Environmental Education. Lessons Learned in Optimizing Workers’ and Worker Representatives’ Input in Work Planning and Control.

450

Factors Controlling the Input of Electrical Energy into a Fish in an ...  

Science Journals Connector (OSTI)

of these conditions may cause changes in energy-input t,o the fish by ... errors during measurement owing to elcctrol- .... drop per unit length in the water immedi-.

1999-12-13T23:59:59.000Z

451

Stabilizability of the linear algebro-differential one-input control systems  

Science Journals Connector (OSTI)

Consideration was given to the controllable system of ordinary linear differential equations with the matrix at the derivative of the desired vector function that is identically degenerate in the domain of definition. For the one-input systems, the questions ...

A. A. Shcheglova

2010-09-01T23:59:59.000Z

452

Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits  

Science Journals Connector (OSTI)

Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic ...

A. Morgenshtein; A. Fish; I. A. Wagner

2002-10-01T23:59:59.000Z

453

A reduced-basis method for input-output uncertainty propagation in stochastic PDEs  

E-Print Network [OSTI]

Recently there has been a growing interest in quantifying the effects of random inputs in the solution of partial differential equations that arise in a number of areas, including fluid mechanics, elasticity, and wave ...

Vidal Codina, Ferran

2013-01-01T23:59:59.000Z

454

U-270:Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query  

Broader source: Energy.gov (indexed) [DOE]

0:Trend Micro Control Manager Input Validation Flaw in Ad Hoc 0:Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query Module Lets Remote Users Inject SQL Commands U-270:Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query Module Lets Remote Users Inject SQL Commands September 28, 2012 - 6:00am Addthis PROBLEM: Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query Module Lets Remote Users Inject SQL Commands PLATFORM: Control Manager - 3.0, 3.5, 5.0, 5.5, 6.0 ABSTRACT: Trend Micro has been notified of a potential product vulnerability in Control Manager. reference LINKS: Trend Micro Technical Support ID 1061043 SecurityTracker Alert ID: 1027584 Secunia Advisory SA50760 CVE-2012-2998 IMPACT ASSESSMENT: Medium Discussion: A vulnerability has been reported in Trend Micro Control Manager, which can

455

U.S. Crude Input Rising -- Still Need +1 MMB/D Through Mid-Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Refineries in fourth quarter 1999 and first quarter 2000 were running at fairly low input rates compared to prior years, despite higher demand. U.S. refineries typically increase their crude inputs during the second quarter over the first quarter as they return from maintenance and turnaround schedules to ramp up for the high demand gasoline season. The year began with low refining margins and a low level of crude inputs in January and February. This created a lower base than last year from which to grow into the summer gasoline season, when inputs will need to peak at higher levels than in 1998 or 1999. The good news is that crude runs have been increasing strongly as expected during March the first quarter. Keep in mind that they still need an additional 1 million barrels per day of crude oil between now and mid

456

DOE Seeks Public Input on an Integrated, Interagency Pre-Application  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeks Public Input on an Integrated, Interagency DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The Federal Register Notice is available now for downloading. Comments must be received on or before September 30, 2013. As comments are received, they will be posted online. The proposed IIP Process is intended to improve interagency and intergovernmental coordination focused on ensuring that project proponents develop and submit accurate and complete information early in the project

457

U-015: CiscoWorks Common Services Home Page Input Validation Flaw Lets  

Broader source: Energy.gov (indexed) [DOE]

5: CiscoWorks Common Services Home Page Input Validation Flaw 5: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands U-015: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands October 20, 2011 - 7:30am Addthis PROBLEM: CiscoWorks Common Services Home Page Input Validation Flaw Lets Remote Users Execute Arbitrary Commands. PLATFORM: CiscoWorks Common Services-based products prior to version 4.1 running on Microsoft Windows ABSTRACT: Successful exploitation of this vulnerability may allow an authenticated, remote attacker to execute arbitrary commands on the affected system with the privileges of a system administrator. reference LINKS: Cisco Security Advisory ID: cisco-sa-20111019-cs Cisco Security Advisories and Responses

458

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

459

Rethinking Pen Input Interaction: Enabling Freehand Sketching Through Improved Primitive Recognition  

E-Print Network [OSTI]

RETHINKING PEN INPUT INTERACTION: ENABLING FREEHAND SKETCHING THROUGH IMPROVED PRIMITIVE RECOGNITION A Dissertation by BRANDON CHASE PAULSON Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment... of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Computer Science RETHINKING PEN INPUT INTERACTION: ENABLING FREEHAND SKETCHING THROUGH IMPROVED PRIMITIVE RECOGNITION A Dissertation by BRANDON CHASE PAULSON Submitted to the O...

Paulson, Brandon C.

2011-08-08T23:59:59.000Z

460

Energy Input per Unit Length – High Accuracy Kinematic Metrology in Laser Material Processing  

Science Journals Connector (OSTI)

Laser material processes require constant energy input per unit length. Besides focal z-position, spot size, laser power and other process parameters, the relative travel speed (feed rate) of the laser spot on the work piece has the highest influence on the resulting energy input per unit length. In this paper a new metrology method is introduced, which enables users in industry and research to measure the real travel speed of the laser spot and the resulting contour of the trajectory.

Christoph Franz; Peter Abels; Raphael Rolser; Michael Becker

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TRIPLE 3-INPUT POSITIVE-NAND GATES SCHS317 NOVEMBER 2002  

E-Print Network [OSTI]

-SIDE MARKING PDIP ­ E Tube CD74AC10E CD74AC10E ­55°C to 125°C SOIC M Tube CD74AC10M AC10MSOIC ­ M Tape and Reel-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

462

CD54AC08, CD74AC08 QUADRUPLE 2-INPUT POSITIVE-AND GATES  

E-Print Network [OSTI]

SOIC M Tube CD74AC08M AC08M­55°C to 125°C SOIC ­ M Tape and reel CD74AC08M96 AC08M CDIP ­ F Tube CD54AC-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

463

CD54AC02, CD74AC02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES  

E-Print Network [OSTI]

to 125°C SOIC ­ M Tape and reel CD74AC02M96 AC02M CDIP ­ F Tube CD54AC02F3A CD54AC02F3A Package drawings-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

464

CD54AC32, CD74AC32 QUADRUPLE 2-INPUT POSITIVE-OR GATES  

E-Print Network [OSTI]

Tape and reel CD74AC32M96 AC32M CDIP ­ F Tube CD54AC32F3A CD54AC32F3A Package drawings, standard-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

465

CD54ACT00, CD74ACT00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES  

E-Print Network [OSTI]

CD74ACT00E 55°C to 125°C SOIC M Tube CD74ACT00M ACT00M­55°C to 125°C SOIC ­ M Tape and reel CD74ACT00-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

466

A study of array snr and coupling as a function of the input impedance of preamplifier  

E-Print Network [OSTI]

........................................................................................... 17 6 Use of matching network in conjunction with low input impedance preamplifier for decoupling .................................................................................. 18 7 FDTD model consisting of two coil array and tissue block... with tissue block. Experimental variables are system frequency f, inter coil distance d, coil to phantom distance D and preamplifier input impedance R .................................... 28 12 Circuit diagram for FDTD simulations at 3T (f = 128.752MHz...

Shah, Bijay Kamleshbhai

2009-05-15T23:59:59.000Z

467

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Broader source: Energy.gov [DOE]

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

468

On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic  

E-Print Network [OSTI]

Variations in power input to the ocean using a recent global “reanalysis” extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted ...

Zhai, Xiaoming

469

Ion Sources - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

470

Development of guidelines for Modeling Underfloor Air Distribution (UFAD) Systems in EnergyPlus, eQUEST, and EnergyPro for use in California non-residential Building Energy Efficiency Standards  

E-Print Network [OSTI]

Auxiliaries Fans Chiller HVAC EUI(Kbtu/sf/yr) Boiler Equest_Check run_Source HVAC EUI ? kBtu/sf/yr Auxiliaries FansSensitivity_Source (IP) HVAC EUI ? kBtu/sf/yr Fans Chiller

2011-01-01T23:59:59.000Z

471

A Comparison of Greedy and Optimal Assessment of Natural Language Student Input Using Word-to-Word Similarity Metrics  

E-Print Network [OSTI]

A Comparison of Greedy and Optimal Assessment of Natural Language Student Input Using Word-to-word similarity metrics to solve the important task of assessing natural language student input in dialogue of assessing natural language student input in dialogue-based tutoring systems where the primary form

Rus, Vasile

472

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data  

E-Print Network [OSTI]

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

Gille, Sarah T.

473

LCA of cropping systems with different external input levels for energetic purposes  

Science Journals Connector (OSTI)

Biofuels could become increasingly important for agriculture; however there is growing concern regarding the possible environmental drawbacks due to the risks of increased inputs during crop cultivation. These risks need to be evaluated in order to assess the best management practices. In this study, a life cycle assessment (LCA) was carried out: (i) to evaluate the environmental impacts of three cropping systems characterized by different external input levels (low S1, medium S2 and high S3) applied to sunflower and maize, both in rotation with wheat, in a Mediterranean region; (ii) to estimate the environmental benefits of the optimization of cropping systems for energy management. Output–input ratio, net energy balance, global warming potential (GWP), eutrophication potential (EP) and acidification potential (AP) were used as LCA impact categories. Data from cropping systems (external input and crop yields) were collected from a long-term experiment carried out in the coastal plain of Tuscany; data regarding fertilizers, machinery and pesticide production were taken from literature. The results obtained showed S1 with the highest output–input ratios and the lowest impact for the selected impact categories. The other cropping systems S2 and S3 showed limited differences between them for all the impact categories evaluated. Fertilizer use and application, irrigation and machinery use caused most of the environmental impacts and energy consumption. The allocation procedure, showing residues as co-products, had a strong influence on the overall efficiency of agricultural systems.

Pietro Goglio; Enrico Bonari; Marco Mazzoncini

2012-01-01T23:59:59.000Z

474

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel...

475

Spallation Neutron Source, SNS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

476

Sources and Electrodynamics  

Science Journals Connector (OSTI)

A new kind of particle theory is being explored, one that is intermediate in concept between the extremes of S matrix and field theory. It employs the methods of neither approach. There are no operators, and there is no appeal to analyticity in momentum space. It is a phenomenological theory, and cognizant that measurements are operations in space and time. Particles are defined realistically by reference to their creation or annihilation in suitable collisions. The source is introduced as an abstraction of the role played by all the other particles involved in such acts. Through the use of sources the production and detection of particles, as well as their interaction, are incorporated into the theoretical description. There is a creative principle that replaces the devices of other formulations. It is an insistence upon the generality of the space-time description of the coupling among sources that is inferred from a specific spatio-temporal arrangement, in which various particles propagate between sources. Standard quantum-mechanical and relativistic requirements, imposed on the source description of noninteracting particles, imply the existence of the two statistics and the connection with spin. In this situation sources are only required to emit and absorb the mass of the corresponding particle. Particle dynamics is introduced by an extension of the source concept. It is considered meaningful for a source to emit several particles with the same total quantum numbers as a single particle, if sufficient mass is available. This is most familiar as the photon radiation that accompanies the emission of charged particles. The new types of sources introduced in this way imply new couplings among sources, which supply still further varieties of sources. This proliferation of interactions spans the full dynamical content of the initial primitive interaction. The ambition of the phenomenological source theory is to represent all dynamical aspects of particles, within a certain context, by a suitable primitive interaction. This paper is devoted to the reconstruction of electrodynamics.

Julian Schwinger

1967-06-25T23:59:59.000Z

477

Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers, dissertations, books, book chapters, technical reports,...

478

DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A  

Broader source: Energy.gov (indexed) [DOE]

DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE March 1, 2011 - 12:00pm Addthis During the months of April and May, 2011 the Department of Energy's Office of Environmental Management will be holding nine public hearings on the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste. Hearings will be held at the each of the sites being considered for disposal of GTCC wastes and in Washington, DC. DOE does not have a preferred alternative at this time. These hearings will

479

DOE Seeks Further Public Input on How Best To Streamline Existing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Further Public Input on How Best To Streamline Existing Further Public Input on How Best To Streamline Existing Regulations DOE Seeks Further Public Input on How Best To Streamline Existing Regulations December 7, 2011 - 12:34pm Addthis The Department of Energy (DOE) has announced a further step to implementing the President's Executive Order on Improving Regulatory Review. The Executive Order directs federal agencies to review existing regulations and determine whether they are still necessary and crafted effectively to solve current problems. Engaging the public in an open, transparent process is a crucial step in DOE's regulatory review process. Because public comments in response to the Request for Information (RFI) issued in January were important in the development of DOE's plan for retrospective regulatory review, DOE issued a second RFI this week asking the public how

480

A multiple-input operational transconductance amplifier with a wide linear range  

E-Print Network [OSTI]

off'set is canceled 4. 3 Current mirrors 4. 4 Circuit I, a two- input COTA 4. 5 DC transfer function for circuit, I 37 39 40 tx 4. 6 4. 7 4. 8 4. 9 4. 10 5. 1 5. 2 5. 3 5. 4 5. 5 5. 6 5. 7 5. 8a 5. 8b 6. 1 6. 2a 6. 2b 6. 3 6...; (C1 G2 Vo )C2 Fig. 2. 2 An OTA filter circuit. The input stage is an emitter ? coupled differential amplifier and the output stage consists of one or more current mirrors. Of the two sections, the input stage has the most affect...

Reed, Russell Deryl

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "input btu source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

USDA, Departments of Energy and Navy Seek Input from Industry to Advance  

Broader source: Energy.gov (indexed) [DOE]

USDA, Departments of Energy and Navy Seek Input from Industry to USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation August 30, 2011 - 12:23pm Addthis WASHINGTON, Aug. 30, 2011 -Secretary of Agriculture Tom Vilsack, Secretary of Energy Steven Chu, and Secretary of the Navy Ray Mabus today announced the next step in the creation of a public-private partnership to develop drop-in advanced biofuels. The Secretaries issued a Request for Information (RFI) laying out the Administration's goals, assumptions, and tools and requesting from industry specific ideas for how to leverage private capital markets to establish a commercially viable drop-in biofuels

482

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

483

Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water  

E-Print Network [OSTI]

We analyze numerically and experimentally the effect of the input pulse chirp on the nonlinear energy transfer from 5 {\\mu}J fs-pulses at 800 nm to water. Numerical results are also shown for pulses at 400 nm, where linear losses are minimized, and for different focusing geometries. Input chirp is found to have a big impact on the transmitted energy and on the plasma distribution around focus, thus providing a simple and effective mechanism to tune the electron density and energy deposition. We identify three relevant ways in which plasma features may be tuned.

Milián, C; Brelet, Y; Jukna, V; Houard, A; Mysyrowicz, A; Couairon, A

2014-01-01T23:59:59.000Z

484

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

485

Radiation Source Replacement Workshop  

SciTech Connect (OSTI)

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

486

Neutron sources and applications  

SciTech Connect (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

487

Designing, selecting and installing a residential ground-source heat pump system  

SciTech Connect (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

488

T-602: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web  

Broader source: Energy.gov (indexed) [DOE]

02: BlackBerry Enterprise Server Input Validation Flaw in 02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks April 14, 2011 - 5:07am Addthis PROBLEM: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks PLATFORM: BlackBerry Enterprise Server Express versions 5.0.1 and 5.0.2 for Microsoft Exchange, 5.0.2 for IBM Lotus Domino, 5.0.0 through 5.0.3 for Microsoft Exchange and IBM Lotus Domino, and version 5.0.1 for Novell GroupWise. OS Platform(s): Windows (2000), Windows (2003), Windows (2008) ABSTRACT: The BlackBerry Web Desktop Manager not properly filter HTML code from

489

Using Feedforward Neural Networks and Forward Selection of Input Variables for an Ergonomics Data  

E-Print Network [OSTI]

Using Feedforward Neural Networks and Forward Selection of Input Variables for an Ergonomics Data-gradient algorithm to develop an FNN. This article presents an incremental step in the use of FNNs for ergonomics enhancing the effectiveness of the use of neural networks when observations are missing from ergonomics

Kaber, David B.

490

Selecting the appropriate input data set when configuring a permanent workforce  

E-Print Network [OSTI]

of new personnel planning and scheduling problems for management. With over 70% of the global workforceSelecting the appropriate input data set when configuring a permanent workforce Jonathan F. Bard to use when running a scheduling model to select a permanent workforce for a service facility. Because

Bard, Jonathan

491

Response of magnetostrictive smart structures to sinusoidal and step force inputs  

Science Journals Connector (OSTI)

Constitutive equations of magnetostrictive smart materials involving mechanical and magnetic fields are presented via Hamilton's principle. Finite element equations are used to solve the equations of motion subjected to different force inputs. Magnetostrictive ... Keywords: Fast Fourier Transformation, Magnotostriction, finite element, magnetic response, smart materials

Sultan Aljahdali; Syed J. Hyder

2006-04-01T23:59:59.000Z

492

Soft-Input, Iterative, Reed-Solomon Decoding using Redundant Parity-Check Equations  

E-Print Network [OSTI]

approach to the iterative decoding of Reed-Solomon (RS) codes. The pre- sented methodology utilizesSoft-Input, Iterative, Reed-Solomon Decoding using Redundant Parity-Check Equations Jason Bellorado techniques is achievable with the presented methodology. The complexity of the proposed algorithm is orders

Kavcic, Aleksandar

493

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

494

Excitatory inputs to spiny cells in layers 4 and 6 of cat striate cortex  

Science Journals Connector (OSTI)

...into two or more classes. The great bulk of 31 EPSPs...strongly reminiscent of class 1 spiny stellate...with the apparently greater frequency (42...histograms of the three classes of input. Even...1999) they can be greater, for example...

2002-01-01T23:59:59.000Z

495

Rank Tests for the Observability of Discrete-Time Jump Linear Systems with Inputs  

E-Print Network [OSTI]

Rank Tests for the Observability of Discrete-Time Jump Linear Systems with Inputs Ehsan Elhamifar of rank tests on the parameters of the JLS when the discrete state sequence is arbitrary. Our key verify observ- ability by checking a number of rank tests that is only quadratic in the number

496

Economic Input?Output Life-Cycle Assessment of Trade Between Canada and the United States  

Science Journals Connector (OSTI)

We use an economic input?output life-cycle assessment (EIO-LCA) technique to estimate the economy-wide energy intensity and greenhouse gas (GHG) emissions intensity for 45 manufacturing and resource sectors in Canada and the United States. ... Support?Activities?for?Agriculture ...

Jonathan Norman; Alex D. Charpentier; Heather L. MacLean

2007-01-23T23:59:59.000Z

497

Nuclear norm system identification with missing inputs and outputs Zhang Liua,  

E-Print Network [OSTI]

Nuclear norm system identification with missing inputs and outputs Zhang Liua, , Anders Hanssonb,1 formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing of the alternating direc- tion method of multipliers (ADMM) to solve regularized or non-regularized nuclear norm

Vandenberghe, Lieven

498

Handling Ambiguity via Input-Output Kernel Learning Xinxing Xu Ivor W. Tsang Dong Xu  

E-Print Network [OSTI]

of Computer Engineering, Nanyang Technological University, Singapore xuxi0006@ntu.edu.sg IvorTsang@ntu.edu.sg dongxu@ntu.edu.sg Abstract--Data ambiguities exist in many data mining and machine learning applications the effectiveness of our proposed IOKL framework. Keywords-Group Multiple Kernel Learning; Input-Output Kernel

Tsang Wai Hung "Ivor"

499

Nonlinear control for systems with bounded inputs: Real-time embedded control applied to UAVs  

E-Print Network [OSTI]

Nonlinear control for systems with bounded inputs: Real-time embedded control applied to UAVs Farid) UAVs including conventional helicopters, four- rotors aircraft (Draganflyer) and several designs for small aerial vehicles, some restrictions and conditions specific to small UAVs have to be considered

Sontag, Eduardo

500

Motion Tasks for Robot Manipulators on Embedded 2-D Manifolds under Input Constraints  

E-Print Network [OSTI]

a task along a particular surface, such as robotic surface painting, surface cleaning, and surfaceMotion Tasks for Robot Manipulators on Embedded 2-D Manifolds under Input Constraints Xanthi the end effector of a robotic manipulator, which is constrained in terms of joint rates, on the surface

Tanner, Herbert G.