National Library of Energy BETA

Sample records for inpe labsolar solar

  1. Advanced Ultra High Performance InP Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Ultra High Performance InP Solar Cells National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Indium Phosphide (InP) is a semiconductor compound typically used in solar cells and high speed electronics. InP has a number of performance benefits compared to other III-V materials due to its higher mean and peak saturation velocities, which result in optoelectronic devices with higher frequency. InP solar cells, with a bandgap of 1.34 eV and

  2. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-09-25

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (~10 nm) of amorphous TiO2 deposited at 120°C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. Lastly, a hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%.

  3. Improved Power Conversion Efficiency of InP Solar Cells Using Organic Window Layers

    SciTech Connect (OSTI)

    Li, N; Lee, K.; Renshaw, C. K.; Xiao, X.; Forrest, Stephen R.

    2011-01-01

    We employ the organic semiconductor 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) as a nanometer thick window layer for p-InP/indium tin oxide (ITO) Schottky barrierdiodesolar cells. The power conversion efficiency is enhanced compared to ITO/InP cells lacking the PTCDA window layer, primarily due to neutralizing InP surface state charges via hole injection from the PTCDA. This leads to an increased ITO/p-InP Schottky barrier height, and hence to an increased open circuit voltage. The power conversion efficiency of the cells increases from 13.2±0.5% for the ITO/InP cell to 15.4±0.4% for the ITO/4 nm PTCDA/p-InP cell under 1 sun, AM1.5G simulated solar illumination. The PTCDA window layer is also shown to contribute to the photocurrent by light absorption followed by exciton dissociation at the organic/inorganic semiconductor interface.

  4. InP single-junction concentrator cell. Semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Gregory, P.E.

    1981-01-01

    The purpose of this work is to develop a glass-sealed back-contacted InP or InGaAsP solar cell for use in concentrator systems. Work to be performed in developing this cell includes growing the InP epitaxial layers needed for cells and test structures, developing a model to be used in optimizing the cell structure, measurement of InP parameters necessary for use in the model, and developing the glass-bonding and back-contacting scheme. Accomplishments in these areas are discussed.

  5. Monolithic tandem solar cell

    SciTech Connect (OSTI)

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  6. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  7. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  8. Surface Chemistry of GaP(001) and InP(001) in Contact with Water...

    Office of Scientific and Technical Information (OSTI)

    Surface Chemistry of GaP(001) and InP(001) in Contact with Water Citation Details In-Document Search Title: Surface Chemistry of GaP(001) and InP(001) in Contact with Water ...

  9. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface ...

  10. Atoms.inp Archive: Crystallographic Data from GSECARS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newville, Matthew

    The Atoms.inp Archive is a collection of crystallographic data for use in XAFS analysis. The crystallographic data is stored as atoms.inp files, which contain all the information necessary to describe the crystal, and can be used by the program ATOMS to generate feff.inp files. These files can then be used by the FEFF program [See http://leonardo.phys.washington.edu/feff/] to calculate a theoretical XAFS spectrum for the crystal. This archive exists because it can take a considerable amount of time to locate a suitable reference for a model structure to use for making theoretical XAFS standards. Even then, references sometimes give non-standard or incomplete crystallographic notation that ATOMS has difficulty interpreting. All of this means that getting a reliable atoms.inp file can take quite a bit of effort. It is hoped that this collection of well-documented and well-tested atoms.inp files will eliminate much of the work in creating theoretical XAFS standards from FEFF. [Taken from http://cars9.uchicago.edu/~newville/adb/]. The collection currently has more than 200 crystal structures, 2748 data files, and it continues to expand. The collection is related to the UWXAFS Project [http://depts.washington.edu/uwxafs/] and to the work of the Consortium for Advanced Radiation Sources (CARS). After searching the Archive, a user may also choose to run the web version of ATOMS software.

  11. Azimuthally polarized cathodoluminescence from InP nanowires

    SciTech Connect (OSTI)

    Brenny, B. J. M.; Osorio, C. I.; Polman, A.; Dam, D. van; Gómez Rivas, J.

    2015-11-16

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  12. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  13. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  14. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  15. Excited-state spectroscopy of InP quantum dots

    SciTech Connect (OSTI)

    Bertram, D.; Micic, O.I.; Nozik, A.J.

    1998-02-01

    We have measured low-temperature size-selective photoluminescence excitation spectra of high-quality InP quantum dots prepared by collodial chemistry. A set of samples with mean emission energies in the range from 1.9 to 2.2 eV was investigated. All samples have a size distribution of about 10{percent}, resulting in an inhomogeneously broadened photoluminescence lineshape. Due to the finite size distribution, spectra were collected at different detection wavelengths to reveal the energies of the excited excitonic states. The size dependence of the quantization energies of InP nanoparticles was determined by measuring photoluminescence excitation at different detection energies within one sample. Up to eight excited-state transitions in a set of seven samples were observed, as the estimated quantum dot size was scanned from 1.8 to 4.0 nm. A comparison of the observed peaks with a six-band {bold k}{center_dot}{bold p} calculation is given. In contrast to the successful interpretation in the case of CdSe, no agreement between the calculated and the observed excited-state energies is achieved. {copyright} {ital 1998} {ital The American Physical Society}

  16. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Authors: Wood, B C ; ...

  18. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-07-01

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  19. Effect of emitter parameter variation on the performance of heteroepitaxial indium phosphide solar cells

    SciTech Connect (OSTI)

    Jain, R.K.; Flood, D.J.

    1990-12-01

    Metallorganic chemical-vapor-deposited heteroepitaxial indium phosphide (InP) solar cell experimental results were simulated by using a PC-1D computer model. The effect of emitter parameter variation on the performance of n(+)/p/p(+) heteroepitaxial InP/GaAs solar cell was presented. The thinner and lighter doped emitters were observed to offer higher cell efficiencies. The influence of emitter thickness and minority carrier diffusion length on the cell efficiency with respect to dislocation density was studied. Heteroepitaxial cells with efficiencies similar to present day homojunction InP efficiencies (greater than 16 percent AMO) were shown to be attainable if a dislocation density lower than 10(exp 6)/sq cm could be achieved. A realistic optimized design study yielded InP solar cells of over 22 percent AMO efficiency at 25 C.

  20. Defect reaction network in Si-doped InP : numerical predictions.

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2013-10-01

    This Report characterizes the defects in the defect reaction network in silicon-doped, n-type InP deduced from first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si-doped InP until culminating in immobile reaction products. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon-related defects in the reaction network. This Report serves to extend the results for intrinsic defects in SAND 2012-3313: %E2%80%9CSimple intrinsic defects in InP: Numerical predictions%E2%80%9D to include Si-containing simple defects likely to be present in a radiation-induced defect reaction sequence.

  1. Single-dot optical emission from ultralow density well-isolated InP quantum dots

    SciTech Connect (OSTI)

    Ugur, A.; Hatami, F.; Masselink, W. T.; Vamivakas, A. N.; Lombez, L.; Atatuere, M.

    2008-10-06

    We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

  2. Ordered InP nanostructures fabricated by Ar{sup +}-ion irradiation

    SciTech Connect (OSTI)

    Mohanta, S.K.; Soni, R.K.; Tripathy, S.; Chua, S.J.

    2006-01-23

    In this letter, we report fabrication of ordered InP nanostructures using 50 keV Ar{sup +}-ion irradiation at normal incidence. The structural and optical properties of these nanodots as a function of ion dose have been investigated. Scanning electron microscopy investigations reveal that the average sizes of the InP nanodots vary from 50 nm to 90 nm as the ion dose increases from 1x10{sup 17} to 1x10{sup 18} cm{sup -2}. Furthermore, an increase in ion dose results in a wider dot size distribution. Apart from the bulk InP band-edge photoluminescence (PL), the surface nanostructuring leads to the observation of an additional PL band at 1.98 eV. Such a blueshifted PL peak could arise due to a combined effect of carrier confinement in the surface nanodots and radiative recombination associated with surface states. The room-temperature micro-Raman investigation of InP nanodots reveals optical phonon softening due to phonon confinement in the surface nanodots.

  3. InP quantum dots: Electronic structure, surface effects, and the redshifted emission

    SciTech Connect (OSTI)

    Fu, H.; Zunger, A.

    1997-07-01

    We present pseudopotential plane-wave electronic-structure calculations on InP quantum dots in an effort to understand quantum confinement and surface effects and to identify the origin of the long-lived and redshifted luminescence. We find that (i) unlike the case in small GaAs dots, the lowest unoccupied state of InP dots is the {Gamma}{sub 1c}-derived direct state rather than the X{sub 1c}-derived indirect state and (ii) unlike the prediction of {bold k}{center_dot}{bold p} models, the highest occupied state in InP dots has a 1sd-type envelope function rather than a (dipole-forbidden) 1pf envelope function. Thus explanations (i) and (ii) to the long-lived redshifted emission in terms of an orbitally forbidden character can be excluded. Furthermore, (iii) fully passivated InP dots have no surface states in the gap. However, (iv) removal of the anion-site passivation leads to a P dangling bond (DB) state just above the valence band, which will act as a trap for photogenerated holes. Similarly, (v) removal of the cation-site passivation leads to an In dangling-bond state below the conduction band. While the energy of the In DB state depends only weakly on quantum size, its radiative lifetime increases with quantum size. The calculated {approximately}300-meV redshift and the {approximately}18 times longer radiative lifetime relative to the dot-interior transition for the 26-{Angstrom} dot with an In DB are in good agreement with the observations of full-luminescence experiments for unetched InP dots. Yet, (vi) this type of redshift due to surface defect is inconsistent with that measured in {ital selective} excitation for HF-etched InP dots. (vii) The latter type of ({open_quotes}resonant{close_quotes}) redshift is compatible with the calculated {ital screened} singlet-triplet splitting in InP dots, suggesting that the slow emitting state seen in selective excitation could be a triplet state. {copyright} {ital 1997} {ital The American Physical Society}

  4. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    SciTech Connect (OSTI)

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; Cossairt, Brandi M.

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formation of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.

  5. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; Cossairt, Brandi M.

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formationmore » of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.« less

  6. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect (OSTI)

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro; PRESTO, Japan Science and Technology Agency , Honcho Kawaguchi, 3320012 Saitama

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436?V, short-circuit current of 24.8?mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5?G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  7. Mechanism of lateral ordering of InP dots grown on InGaP layers

    SciTech Connect (OSTI)

    Bortoleto, J.R.R.; Gutierrez, H.R.; Cotta, M.A.; Bettini, J.

    2005-07-04

    The mechanisms leading to the spontaneous formation of a two-dimensional array of InP/InGaP dots grown by chemical-beam epitaxy are discussed. Samples where the InGaP buffer layer was grown at different conditions were characterized by transmission electron microscopy. Our results indicate that a periodic strain field related to lateral two-dimensional compositional modulation in the InGaP buffer layer determines the dot nucleation positions during InP growth. Although the periodic strain field in the InGaP is large enough to align the InP dots, both their shape and optical properties are effectively unaltered. This result shows that compositional modulation can be used as a tool for in situ dot positioning.

  8. Seeding of InP islands on InAs quantum dot templates

    SciTech Connect (OSTI)

    Medeiros-Ribeiro, G.; Maltez, R. L.; Bernussi, A. A.; Ugarte, D.; de Carvalho, W.

    2001-06-01

    The ability of stacking layers of islands and their corresponding alignment have prompted a number of studies. The main focus so far has been on stacking self-assembled quantum dot (QD) layers of the same material and composition. Our goal is to create systems of coupled QDs of different electronic properties, aiming at hybridization of their different electronic levels. In this work, we investigate the early stages of the coupling of alternate InAs{endash}InP QD layers through a GaAs spacer layer. We have found that by using an InAs layer containing QDs as seeds, we can control the size, shape and density of InP islands by varying the spacer thickness. We have observed a significant improvement of the InP island size uniformity, as well as an induced size reduction, thus providing an extra degree of tunability previously available only through growth kinetics. {copyright} 2001 American Institute of Physics.

  9. Structure of InP (001) surfaces prepared by decapping and by ion bombardment and annealing

    SciTech Connect (OSTI)

    Pahlke, D.; Kinsky, J.; Schultz, C.; Pristovsek, M.; Zorn, M.; Esser, N.; Richter, W.

    1997-07-01

    The structure of InP surfaces prepared by ion bombardment and annealing (IBA) and by decapping of InP (001) samples grown by metal organic vapor phase epitaxy is studied. The structural changes of the surfaces during preparation are monitored by low-energy electron diffraction and related to the surface electronic modifications as revealed by reflectance-anisotropy spectroscopy (RAS). For both preparation methods we find (2{times}4) reconstructions and almost identical RAS spectra. This finding contrasts with previous reports usually claiming a (4{times}2) surface after IBA Auger-electron spectroscopy as well as hydrogen-adsorbate vibrations recorded with high-resolution electron-energy spectroscopy indicate an In-rich surface stoichiometry. {copyright} {ital 1997} {ital The American Physical Society}

  10. The Facility for 500 MeV Plasma Wake-Field Acceleration Experiments at Budker INP

    SciTech Connect (OSTI)

    Petrenko, A. V.; Lotov, K. V.; Logatchov, P. V.; Burdakov, A. V.

    2010-11-04

    The experimental PWFA facility currently under construction at the Budker INP is described. The objective is to use electron and positron beams extracted from the VEPP-5 damping ring in PWFA experiments. Due to longitudinal beam compression many PWFA schemes including the efficient blowout regime as well as multibunch regime can be studied. The simulations of beam dynamics in the facility are presented. Also we propose a simple technique for longitudinal beam slicing using dipole kickers and collimator in the damping ring.

  11. Gate tunable monolayer MoS{sub 2}/InP heterostructure solar cells...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EFFICIENCY; ELECTRIC POTENTIAL; FERMI LEVEL; HETEROJUNCTIONS; ...

  12. Structural characterization of amorphized InP: Evidence for chemical disorder

    SciTech Connect (OSTI)

    Glover, C.J.; Ridgway, M.C.; Yu, K.M.; Foran, G.J.; Lee, T.W.; Moon, Y.; Yoon, E.

    1999-03-01

    Extended x-ray absorption fine-structure measurements at the In {ital K} edge of amorphous InP are presented. The presence of chemical disorder in the form of like-atom bonding has been unambiguously demonstrated in stoichiometric InP amorphized by ion implantation. In{endash}In bonding comprised 14{percent}{plus_minus}4{percent} of the In{endash}atom constituent bonds. Also, relative to the crystalline value of four P atoms, an increase in the total In coordination number to 4.16{plus_minus}0.32 atoms was observed for the amorphous phase, as composed of 3.56{plus_minus}0.19; P and 0.60{plus_minus}0.13; In atoms. Experimental results were consistent with recent {ital ab initio} structural calculations and, furthermore, demonstrated that amorphous InP is best described by a Polk-like continuous random network, containing both even- and odd-membered rings. {copyright} {ital 1999 American Institute of Physics.}

  13. Electronic properties of InP (001)/HfO{sub 2} (001) interface: Band offsets and oxygen dependence

    SciTech Connect (OSTI)

    KC, Santosh; Dong, Hong; Longo, Roberto C.; Xiong, Ka; Wang, Weichao; Wallace, Robert M.; Cho, Kyeongjae

    2014-01-14

    Using ab-initio methods, atomic structures and electronic properties of InP (001)/HfO{sub 2} (001) interface are studied within the framework of density functional theory. We examine the InP/HfO{sub 2} model interface electronic structures under varying oxidation conditions. The effects of indium and phosphorous concentrations on interfacial bonding, defect states, band offsets, and the thermodynamic stability at the interface are also investigated. The origin of interfacial gap states in InP (001)/HfO{sub 2} (001) interface are proposed, mainly from the P-rich oxides, which is validated by our experimental work. This highlights the importance of surface passivation prior to high-κ deposition based on the in situ spectroscopic results of atomic layer deposition of HfO{sub 2} on InP.

  14. The Dependence of the Oxidation Enhancement of InP(100) Surface on the Coverage of the Adsorbed Cs

    SciTech Connect (OSTI)

    Sun, Yun

    2010-06-07

    We report the oxidation of the InP(100) surface promoted by adsorbed Cs by synchrotron radiation photoemission. Oxygen exposure causes reduction of the charge transferred to the InP substrate from Cs and the growth of indium oxide and phosphorous oxide. The oxide growth displays a clear dependence on the Cs coverage. The oxidation of phosphorous is negligible up to 1000 L of O{sub 2} exposure when the Cs coverage is less than half a monolayer (ML), but the formation of the second half monolayer of Cs greatly accelerates the oxidation. This different enhancement of the InP oxidation by the first and the second half monolayer of Cs is due to the double layer structure of the adsorbed Cs atoms, and consequently the higher 6s electron density in the Cs atoms when Cs coverage is larger than 0.5 ML.

  15. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots

    SciTech Connect (OSTI)

    Micic, O.I.; Jones, K.M.; Cahill, A.; Nozik, A.J.

    1998-12-03

    Solid films consisting of close-packed arrays of InP quantum dots have been prepared by slowly evaporating colloidal solutions of InP quantum dots. The diameters of the quantum dots were controlled to be between about 30 to 60 {angstrom}; size-selective precipitation yielded a size distribution of about 10% about the mean diameter. The arrays show regions of hexagonal order, as well as disordered regions. Oxide layers can form irreversibly on the quantum dot surface and limit the effectiveness of the size-selective precipitation. Photoluminescence spectra obtained from close-packed films of InP quantum dots formed from quantum dots with a single mean diameter and from a mixture of two quantum dot sizes show that energy transfer occurs from the photoexcited smaller quantum dots to the larger quantum dots. The efficiency of this energy transfer process is high.

  16. Controllable growth and optical properties of InP and InP/InAs nanostructures on the sidewalls of GaAs nanowires

    SciTech Connect (OSTI)

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2014-12-07

    The growth and optical properties of InP and InP/InAs nanostructures on GaAs nanowires are investigated. InP quantum well and quantum dots (QDs) are formed on the sidewalls of GaAs nanowires successively with increasing the deposition time of InP. The GaAs/InP nanowire heterostructure exhibits a type-II band alignment. The wavelength of the InP quantum well is in the range of 857892?nm at 77?K, which means that the quantum well is nearly fully strained. The InP quantum dot, which has a bow-shaped cross section, exhibits dislocation-free pure zinc blende structure. Stranski-Krastanow InAs quantum dots are subsequently formed on the GaAs/InP nanowire core-shell structure. The InAs quantum dots are distributed over the middle part of the nanowire, indicating that the In atoms contributing to the quantum dots mainly come from the vapor rather than the substrate. The longest emission wavelength obtained from the InAs QDs is 1039?nm at 77?K. The linewidth is as narrow as 46.3?meV, which is much narrower than those on planar InP substrates and wurtzite InP nanowires, suggesting high-crystal-quality, phase-purity, and size-uniformity of quantum dots.

  17. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic ...

  18. Insight into the photoelectron angular dependent energy distribution of negative-electron-affinity InP photocathodes

    SciTech Connect (OSTI)

    Chen, Zhanghui; Jiang, Xiangwei; Dong, Shan; Li, Jingbo Li, Shushen; Wang, Linwang

    2014-01-13

    Energy distribution and angular distribution of the photoelectrons from InP photocathodes are investigated using a precise Monte Carlo model. It is found that ?-valley electrons contribute to the first peak of the energy distribution curve, but the second peak is contributed by both ?-valley and L-valley electrons rather than only L-valley electrons. L valley electrons are shown to have a smaller angular spread than ?-valley electrons, which is attributed to the much higher potential energy of L-valley minimum. The further simulation indicates that the performance of InP photocathodes can be improved by increasing the hole concentration or decreasing the temperature, but the activation layer thickness variation only has very slight influence on either energy or angular distribution.

  19. Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots

    SciTech Connect (OSTI)

    Franceschetti, Alberto; Zunger, Alex

    2000-07-15

    The electron and hole addition energies, the quasiparticle gap, and the optical gap of InAs, InP, and Si quantum dots are calculated using microscopic pseudopotential wave functions. The effects of the dielectric mismatch between the quantum dot and the surrounding material are included using a realistic profile for the dielectric constant {epsilon}(r). We find that the addition energies and the quasiparticle gap depend strongly on the dielectric constant of the environment {epsilon}{sub out}, while the optical gap is rather insensitive to {epsilon}{sub out}. We compare our results with recent tunneling spectroscopy measurements for InAs nanocrystals, finding excellent agreement. Our calculations for the addition energies and the quasiparticle gap of InP and Si nanocrystals serve as predictions for future experiments. (c) 2000 The American Physical Society.

  20. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  1. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  2. Photophysics of size-selected InP nanocrystals: Exciton recombination kinetics

    SciTech Connect (OSTI)

    Kim, S.; Wolters, R.H.; Heath, J.R.

    1996-11-01

    We report here on the size-dependent kinetics of exciton recombination in a III{endash}V quantum dot system, InP. The measurements reported include various frequency dependent quantum yields as a function of temperature, frequency dependent luminescence decay curves, and time-gated emission spectra. This data is fit to a three-state quantum model which has been previously utilized to explain photophysical phenomena in II{endash}VI quantum dots. The initial photoexcitation is assumed to place an electron in a (delocalized) bulk conduction band state. Activation barriers for trapping and detrapping of the electron to surface states, as well as activation barriers for surface-state radiationless relaxation processes are measured as a function of particle size. The energy barrier to detrapping is found to be the major factor limiting room temperature band-edge luminescence. This barrier increases with decreasing particle size. For 30 A particles, this barrier is found to be greater than 6 kJ/mol{emdash}a barrier which is more than an order of magnitude larger than that previously found for 32 A CdS nanocrystals. {copyright} {ital 1996 American Institute of Physics.}

  3. Structural modifications in InP nanostructures prepared by Ar{sup +}-ion irradiation

    SciTech Connect (OSTI)

    Mohanta, S. K.; Soni, R. K.; Gosvami, N. N.; Vajpeyi, A. P.; Tripathy, S.

    2007-10-01

    The evolution of nanopatterned InP surfaces by low-energy Ar{sup +}-ion irradiation and their dependence on incidence angle were investigated by field emission scanning electron microscopy, atomic force microscopy, and Raman scattering. Ordered surface nanodots of high aspect ratio were created. At large ion incidence angle the dot density decreases and the size varies in the range of 65-130 nm with height of around 25-30 nm. Rapid thermal annealing of the patterned surface shows cluster formation at annealing temperatures of 400 deg. C and above, with some micro-cracks at ion incidence angle of 45 deg. C . With increasing ion incidence angle, the optical phonon Raman modes display systematic downward shift and large asymmetric broadening associated with increased contribution of disorder activated LO and TO modes from the patterned surface. The lowering of phonon frequencies, induced by the phonon wave function confinement, signifies the presence of embedded nanocrystallites in the large sized nanodot patterned surface. The surface damage recovery is achieved by rapid thermal annealing of the samples as reflected in the increased optical phonon frequencies and reduced line shape broadening with annealing temperature. For large ion incident angle, the strain relaxation in the irradiated surface region leads to micro-crack formation in the patterned surface and further hardening of the phonon frequencies.

  4. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  5. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Labs Contributes to Solar Industry Innovation: A Partnership Story Customers & Partners, News, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia ...

  6. In situ study of HfO{sub 2} atomic layer deposition on InP(100)

    SciTech Connect (OSTI)

    Dong, H.; Brennan, B.; Kim, J.; Hinkle, C. L.; Wallace, R. M.; Zhernokletov, D.

    2013-04-29

    The interfacial chemistry of the native oxide and chemically treated InP samples during atomic layer deposition (ALD) HfO{sub 2} growth at 250 Degree-Sign C has been studied by in situ X-ray photoelectron spectroscopy. The In-oxide concentration is seen to gradually decrease on the native oxide and acid etched samples. No significant changes of the P-oxide concentrations are detected, while the P-oxides chemical states are seen to change gradually during the initial cycles of ALD on the native oxide and the chemically treated samples. (NH{sub 4}){sub 2}S treatment strongly decreases In-oxide and P-oxide concentrations prior to ALD and maintains low concentrations during the ALD process.

  7. In situ study of e-beam Al and Hf metal deposition on native oxide InP (100)

    SciTech Connect (OSTI)

    Dong, H.; KC, Santosh; Azcatl, A.; Cabrera, W.; Qin, X.; Brennan, B.; Cho, K.; Wallace, R. M.; Zhernokletov, D.

    2013-11-28

    The interfacial chemistry of thin Al (∼3 nm) and Hf (∼2 nm) metal films deposited by electron beam (e-beam) evaporation on native oxide InP (100) samples at room temperature and after annealing has been studied by in situ angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The In-oxides are completely scavenged forming In-In/In-(Al/Hf) bonding after Al and Hf metal deposition. The P-oxide concentration is significantly decreased, and the P-oxide chemical states have been changed to more P-rich oxides upon metal deposition. Indium diffusion through these metals before and after annealing at 250 °C has also been characterized. First principles calculation shows that In has lower surface formation energy compared with Al and Hf metals, which is consistent with the observed indium diffusion behavior.

  8. Growth mode and strain relaxation of InAs on InP (111)A grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li, H.; Daniels-Race, T.; Wang, Z.

    1999-03-01

    Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski{endash}Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. {copyright} {ital 1999 American Institute of Physics.}

  9. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  10. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Solar Newsletter Solar Newsletter Tara Camacho-Lopez 2016-07-11T20:14:36+00:00

  11. First Solar Manufacturing Solar Modules

    Broader source: Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  12. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  13. NREL: Solar Research - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Newsletter Subscribe: To receive new issues by email, subscribe to the newsletter. The Solar Newsletter is a monthly electronic newsletter that provides information on NREL's ...

  14. Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase

    SciTech Connect (OSTI)

    Hajlaoui, C. Pedesseau, L.; Raouafi, F.; Ben Cheikh Larbi, F.; Even, J.; Jancu, J.-M.

    2015-08-15

    We report first-principle density functional calculations of the spontaneous polarization, piezoelectric stress constants, and elastic constants for the III–V wurtzite structure semiconductors InAs and InP. Using the density functional theory implemented in the VASP code, we obtain polarization values–0.011 and–0.013 C/m{sup 2}, and piezoelectric constants e{sub 33} (e{sub 31}) equal to 0.091 (–0.026) and 0.012 (–0.081) C/m{sup 2} for structurally relaxed InP and InAs respectively. These values are consistently smaller than those of nitrides. Therefore, we predict a smaller built-in electric field in such structures.

  15. Detection of lateral composition modulation in a (InAs){sub n}/(GaAs){sub n} short period superlattice on InP by magnetoexciton spectroscopy

    SciTech Connect (OSTI)

    Jones, E.D.; Mirecki-Millunchick, J.; Follstaedt, D.; Hafich, M.; Lee, S.; Reno, J.; Twesten, R.; Zhang, Y.; Mascarenhas, A.

    1997-03-01

    An experimental signature for detecting spontaneous lateral composition modulation in a (InAs){sub n}/(GaAs){sub n} short period superlattice on a InP substrate based on magnetoexciton spectroscopy is presented. The authors find by aligning the magnetic field in three crystallographic directions, one parallel to and the other two perpendicular to the composition modulation direction, that the magnetoexciton shifts are anisotropic and are a good indicator for the presence of composition modulation.

  16. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect (OSTI)

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  17. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  18. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  19. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  20. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  1. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  2. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  3. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  4. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  5. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  6. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  7. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  8. Effect of matrix on InAs self-organized quantum dots on InP substrate

    SciTech Connect (OSTI)

    Ustinov, V.M.; Weber, E.R.; Ruvimov, S.; Liliental-Weber, Z.; Zhukov, A.E.; Egorov, A.Y.; Kovsh, A.R.; Tsatsulnikov, A.F.; Kopev, P.S.

    1998-01-01

    InAs self-organized quantum dots in In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.48}As matrices have been grown on InP substrates by molecular beam epitaxy. The dot size in InGaAs has been found to be 3{endash}4 times larger, but the areal density about an order of magnitude smaller than that in InAlAs. Low-temperature photoluminescence (PL) of the InAs/InGaAs quantum dots is characterized by a narrow (35 meV) PL line as compared to that of InAs/InAlAs quantum dots (170 meV). Quantum dot formation increases the carrier localization energy as compared to quantum well structures with the same InAs thickness in a similar manner for both InAs/InGaAs and InAs/InAlAs structures. The effect of the barrier band gap on the optical transition energy is qualitatively the same for quantum well and quantum dot structures. The results demonstrate a possibility of controlling the quantum dot emission wavelength by varying the matrix composition. {copyright} {ital 1998 American Institute of Physics.}

  9. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  10. Purchasing Solar Collectively with Solarize

    Broader source: Energy.gov [DOE]

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  11. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  12. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  13. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  14. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  15. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  16. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  17. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  18. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  19. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  20. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  1. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of ...

  2. MgSe/ZnSe/CdSe coupled quantum wells grown on InP substrate with intersubband absorption covering 1.55??m

    SciTech Connect (OSTI)

    Chen, Guopeng; Shen, Aidong; De Jesus, Joel; Tamargo, Maria C.

    2014-12-08

    The authors report the observation of intersubband (ISB) transitions in the optical communication wavelength region in MgSe/ZnSe/CdSe coupled quantum wells (QWs). The coupled QWs were grown on InP substrates by molecular beam epitaxy. By inserting ZnSe layers to compensate the strain, samples with high structural quality were obtained, as indicated by well resolved satellite peaks in high-resolution x-ray diffraction. The observed ISB transition energies agree well with the calculated values.

  3. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  4. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  5. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  6. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  7. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  8. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Administration and DOE EERE International Program: Solar Decathlon China 2013 16 | Building Technologies Office eere.energy.gov Project Integration, Collaboration & Market Impact ...

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  10. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  11. In situ study of the role of substrate temperature during atomic layer deposition of HfO{sub 2} on InP

    SciTech Connect (OSTI)

    Dong, H.; Santosh, K.C.; Qin, X.; Brennan, B.; McDonnell, S.; Kim, J.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Wallace, R. M.; Department of Physics, University of Texas at Dallas, Richardson, Texas 75080

    2013-10-21

    The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO{sub 2} on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO{sub 2} at different temperatures. An (NH{sub 4}){sub 2} S treatment is seen to effectively remove native oxides and passivate the InP surfaces independent of substrate temperature studied (200 °C, 250 °C and 300 °C) before and after the ALD process. Density functional theory modeling provides insight into the mechanism of the changes in the P-oxide chemical states.

  12. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  13. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  14. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  15. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  16. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  17. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  18. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  19. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  20. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  1. Solar interior and atmosphere

    SciTech Connect (OSTI)

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  2. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  3. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  4. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  5. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  6. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  7. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  8. 100 mm Engineered InP-on-Si Laminate Substrates for InP-based Multijunction Solar Cells

    SciTech Connect (OSTI)

    Atwater, Harry

    2012-06-25

    The project focused on fabrication of InP/Si laminate substrates as templates for growth of InGaAsP/InGaAs and InAlAs/InGaAsP/InGaAs multijunction solar cells. InP/Si template substrates were developed and used as templates for InGaAs solar growth. A novel feature of the program was development of the virtual substrate template, which enables a substrate to be formed with a lattice constant intermediate between those of GaAs and InP. Large-area virtual substrate templates were formed by transfer and bonding of dislocation free InGaAs films wafer onto silicon substrates.

  9. Solar Kit Lessons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Kit Lessons Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Cell Inquiry Sunshine Timer Parts of a Solar Panel Part 1 Parts of a Solar Panel Part 2 Build a Simple Ammeter Solar-Powered Battery Charger Positioning Solar Panels 1 Positioning Solar Panels 2 Properties of Solar Radiation: Reflection, Transmission, and Absorption Properties of Solar Radiation: Direct and Diffuse Light Power

  10. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  11. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  12. Low density of self-assembled InAs quantum dots grown by solid-source molecular beam epitaxy on InP(001)

    SciTech Connect (OSTI)

    Dupuy, E.; Regreny, P.; Robach, Y.; Gendry, M.; Chauvin, N.; Tranvouez, E.; Bremond, G.; Bru-Chevallier, C.; Patriarche, G.

    2006-09-18

    The authors report on a postgrowth method to obtain low density InAs/InP(001) quantum dots by solid-source molecular beam epitaxy. They used an approach based on the ripening of the InAs sticks, which is triggered by the sample cooling under arsenic overpressure, before InP capping. Atomic force microscopy images show the evolution of InAs islands from sticks oriented along the [1-10] direction to dot-shaped islands with a density that can be reduced to about 2x10{sup 9} dots/cm{sup 2}. Macro- and microphotoluminescence reveal that these diluted InAs dots exhibit a strong spatial confinement and emit in the 1.55 {mu}m range.

  13. VolmerWeber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    SciTech Connect (OSTI)

    Zhao, Yu Bertru, Nicolas; Folliot, Herv; Rohel, Tony; Mauger, Samuel J. C.; Koenraad, Paul M.

    2014-07-21

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to the surface energy changes induced by Sb atoms on surface.

  14. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  15. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  16. Solar Neutrinos

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  17. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  18. Creating solar media nets solar tools, publicity

    SciTech Connect (OSTI)

    Brewer, B.

    1980-01-01

    The utilization of locally produced solar tool to gain more access to commercial media is discussed. Central is a strategy of (1) giving commercial media something to report, (2) helping educate the media, and (3) simultaneously impacting that portion of the public which is likely to be most interested. Methods for reaching several target audiences include a Solar Calendar, a Passive Solar Film, a local Solar Directory, a local Solar Information Center, an Emergency Coolth brochure and a Conservation/Solar Retrofit Guide.

  19. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

  1. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  2. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Concentrating Solar Power Projects | Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities ...

  4. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  5. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation Details In-Document Search Title: Early solar mass loss, opacity uncertainties, and the solar ...

  6. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, ...

  7. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    Solar Position Algorithm for Solar Radiation Applications (Revised) Citation Details In-Document Search Title: Solar Position Algorithm for Solar Radiation Applications (Revised) ...

  8. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  9. Willard Kelsey Solar Group WK Solar | Open Energy Information

    Open Energy Info (EERE)

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  10. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    Open Energy Info (EERE)

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  11. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  12. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    Open Energy Info (EERE)

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  13. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  14. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  15. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  16. Creative Energy Solar Investments SA formerly Hellenic Solar...

    Open Energy Info (EERE)

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  17. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  18. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  19. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  20. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    Open Energy Info (EERE)

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  1. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  2. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  3. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  4. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  5. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America ...

  6. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  7. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  8. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  9. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  10. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  11. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  12. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  13. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  14. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  15. Solar Utility Networks: Replicable Innovations in Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding ...

  16. PROJECT PROFILE: The Solar Foundation - Solar Training Network...

    Energy Savers [EERE]

    Training Network PROJECT PROFILE: The Solar Foundation - Solar Training Network Project Name: Solar Training Network Funding Opportunity: Solar Training and Education for ...

  17. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  18. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  19. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  20. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  1. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  2. Solar engineering 1991

    SciTech Connect (OSTI)

    Mancini, T.R. ); Watanabe, K. ); Klett, D.E. )

    1991-01-01

    This book contains paper presented at the second ASME-JSES-JSME international solar energy conference. It is organized under the following headings: Solar ponds, Energy fundamentals in solar systems, General solar energy, Solar powered cars, Distributed receiver components and systems, Central receiver components and systems, Chemical processes and waste destruction, High flux and innovative applications, Solar thermal space propulsion, Solar dynamic power systems, Analysis methods for monitored building use. Photovoltaics, Testing and measurement.

  3. Effect of Cl{sub 2}- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-05-15

    A Cl{sub 2}-HBr-O{sub 2}/Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate ({approx}600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO{sub x} passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl{sub 2}-based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be {approx}1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl{sub 2}-based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl{sub 2}-based ICP etching for the recovery of the InP material.

  4. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Corona Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Corona Solar Place: Tholey-Theley, Germany Zip: D 66636 Sector: Solar Product: Engaged in solar passive large-size collectors. References:...

  6. AS Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: AS Solar Address: Am Tnniesberg 4A Place: Hannover, Germany Sector: Solar Product: PV, solar thermal Phone Number: +49 511 475578 - 0...

  7. Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Abengoa Solar Name: Abengoa Solar Address: 11500 W 13th Ave Place: Lakewood, Colorado Zip: 80215 Region: Rockies Area Sector: Solar Product:...

  8. First Solar | Open Energy Information

    Open Energy Info (EERE)

    First Solar Name: First Solar Address: 350 West Washington Street, Suite 600 Place: Tempe, Arizona Zip: 85281 Sector: Solar Product: Solar energy systems Year Founded: 1999 Phone...

  9. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  10. Ascent Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Ascent Solar Name: Ascent Solar Address: 12300 Grant Street Place: Thornton, Colorado Zip: 80241 Region: Rockies Area Sector: Solar Product:...

  11. Borrego Solar | Open Energy Information

    Open Energy Info (EERE)

    Borrego Solar Jump to: navigation, search Logo: Borrego Solar Name: Borrego Solar Address: 2560 9th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar...

  12. DPW Solar | Open Energy Information

    Open Energy Info (EERE)

    DPW Solar Jump to: navigation, search Logo: DPW Solar Name: DPW Solar Address: 4000 B Vassar Dr. NE Place: Albuquerque, New Mexico Zip: 87107 Sector: Solar Product: Renewable...

  13. Inovateus Solar | Open Energy Information

    Open Energy Info (EERE)

    Inovateus Solar Jump to: navigation, search Logo: Inovateus Solar Name: Inovateus Solar Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Product:...

  14. Standard Solar | Open Energy Information

    Open Energy Info (EERE)

    Standard Solar Name: Standard Solar Address: 202 Perry Parkway Place: Gaithersburg, Maryland Zip: 20877 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar...

  15. Wasatch Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Wasatch Solar Address: 4417 S 2950 E Place: Salt Lake City, Utah Zip: 84124 Sector: Solar Product: Solar Year Founded: 2009 Phone...

  16. Sylcom Solar | Open Energy Information

    Open Energy Info (EERE)

    Sylcom Solar provides the design, research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric...

  17. Shell Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  18. Apex Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  19. Atlantic Solar | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Atlantic Solar Name: Atlantic Solar Place: Cape Town, South Africa Sector: Solar Product: Solar Thermal Technology Year Founded: 1985 Phone Number:...

  20. Declination Solar | Open Energy Information

    Open Energy Info (EERE)

    San Francisco, California Sector: Solar Product: San Francisco solar installation firm acquired by SolarCity in September 2006. References: Declination Solar1 This article...

  1. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  2. Solar Easements | Department of Energy

    Office of Environmental Management (EM)

    Process Heat Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Kentucky Program Type SolarWind Access Policy Summary In Kentucky, solar ...

  3. Preussen Solar | Open Energy Information

    Open Energy Info (EERE)

    Preussen Solar Jump to: navigation, search Name: Preussen Solar Place: Berlin, Germany Zip: 10711 Sector: Solar Product: Involved in solar projects. Coordinates: 52.516074,...

  4. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  5. Genesis Solar | Open Energy Information

    Open Energy Info (EERE)

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  6. Solar PST | Open Energy Information

    Open Energy Info (EERE)

    search Name: Solar PST Place: Bergondo, Spain Zip: 15 165 Sector: Solar Product: Spanish company producing thermodynamic solar panels. References: Solar PST1 This article...

  7. Immodo Solar | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Immodo Solar Place: Spain Sector: Solar Product: Spanish company which installs and maintains solar panels. References: Immodo Solar1 This...

  8. Solarize Guidebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solarize Guidebook Solarize Guidebook This guidebook is intended to be a roadmap for project planners and solar advocates who want to create their own successful Solarize ...

  9. Solar cogeneration

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    After a brief introduction to the operational principles and advantages of solar cogeneration, seven cogeneration studies are summarized covering such applications as sulfur mining, copper smelting, enhanced oil recovery, natural gas processing, sugar mill operations, and space heating and cooling. For each plant is given a brief site description, project summary, conceptual design, and functional description, including a picture of the facility and a flow chart. Also listed are the addresses of the companies involved for obtaining additional information. (LEW)

  10. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  11. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  13. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    SciTech Connect (OSTI)

    Halder, Nripendra N.; Biswas, Pranab; Banerji, P.; Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S.; Biswas, D.

    2014-01-28

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 1080?K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19?meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of the

  14. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  15. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  16. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant built in the United States since 1999. Located in Boulder City, Nevada, about 40 miles southeast of Las Vegas, this parabolic trough system has been operating since June 2007. The US$260

  17. Copper Mountain Solar Farm

    Broader source: Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  18. Smart Solar Marketing Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... e Cost. Consumers report high up-front and out-of-pocket costs and long payback periods deter them from installing solar ... While state solar pro- grams do not produce solar panels, ...

  19. Solar Easements & Rights Laws

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Recordation Act describes the procedures for filing a solar right through the County Clerk's Office. The property owner seeking the solar right must give advanced notice to the adjacent...

  20. Solar Neutrino Problem

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  1. Concentrating Solar Power Projects - Xina Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Xina Solar One Abengoa has been selected by the Department of Energy (DOE) of South Africa to develop Xina Solar One, a 100 MW parabolic trough plant with a five-hour thermal energy storage system using molten salts. This project will form the largest solar complex in Africa together with Abengoa's plant KaXu Solar One that is currently under construction in the country. Xina Solar One was awarded to Abengoa in the third round of renewable energy projects organized by the

  2. Silicon Valley Solar Inc SV Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  3. Compound Solar Technology CompSolar | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology CompSolar Jump to: navigation, search Name: Compound Solar Technology (CompSolar) Place: Jhunan, Taiwan Zip: 350 Sector: Solar Product: Producer of glass-based...

  4. First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation...

    Office of Environmental Management (EM)

    First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo FirstSolarAVSRSolarRanchOneTechnic...

  5. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  6. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  7. Solar Two Tower System

    Broader source: Energy.gov [DOE]

    In this photograph of a concentrating solar power (CSP) technology, stretched membrane heliostats with silvered polymer reflectors will be used as demonstration units at the Solar Two central...

  8. Solar Affordable Housing Program

    Office of Environmental Management (EM)

    Solar Affordable Housing Program Why Solar for Tribes ... from a clean, renewable energy source Green jobs training ... with Other Tribal Communities The Great Plains Montana ...

  9. Rooftop Solar Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Rooftop Solar Challenge aims to reduce the cost of rooftop solar energy systems through improved permitting, financing, zoning, net metering, and interconnection processes for residential and...

  10. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Energy Savers [EERE]

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  11. Solar Power Basics

    Broader source: Energy.gov [DOE]

    This video summarizes the process of generating solar electricity from photovoltaic and concentrating solar power technologies. Research, manufacturing, and usage across the United States is also...

  12. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  13. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  14. Solar Thermoelectric Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  15. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Hawaii offers several specialty licenses for solar contractors through Hawaii’s Department of Commerce and Consumer Affairs. The following specialty licenses are available: Solar Power Systems...

  16. Solar Energy in Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Solar Energy in Alaska Photo by: Cassandra Cerny, GVEA David Lockard, Solar Program Manager Alaska Energy Authority BIA Providers Conference December 2, 2015 Alaska Energy ...

  17. Tribal Solar Energy Partnerships

    Broader source: Energy.gov (indexed) [DOE]

    SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating ...

  18. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  19. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Program (greater than 50 kW) * LIPA Solar Pioneer (homeowner) & Solar Entrepreneur (business - up to 50 kW) Research & Development collaborations on BOS cost ...

  20. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  1. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  2. Solar Research at BNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LIPA Issued Solar RFP on April 22, 2008 which sought: * 50 MW or more of capacity, energy, and Renewable Energy Credits (RECs) from solar photovoltaic generating ...

  3. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. Solarity | Open Energy Information

    Open Energy Info (EERE)

    Solarity Jump to: navigation, search Name: Solarity Address: 200 Innovation Blvd Suite 260A Place: State College, Pennsylvania Zip: 16801 Region: Northeast - NY NJ CT PA Area...

  5. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  6. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  7. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; et al

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector.more » The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.« less

  8. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    SciTech Connect (OSTI)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector. The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.

  9. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    The New York General City, Town, and Village codes also allow local zoning districts to make regulations regarding solar access that provide for "the accommodation of solar energy systems and...

  10. Flix Solar | Open Energy Information

    Open Energy Info (EERE)

    Flix Solar Jump to: navigation, search Name: Flix Solar Place: Spain Sector: Solar Product: Flix solar is developing a 12MW solar park in Flix, Tarragona, Spain. References: Flix...

  11. Sunshot Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  12. Solar collector

    DOE Patents [OSTI]

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  13. Solar Policy Environment: Sacramento

    Office of Energy Efficiency and Renewable Energy (EERE)

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  14. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  15. Solar Webinar Presentation Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Office of Indian Energy Webinar on solar renewable energy.

  16. Solar Policy Environment: Boston

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Boston’s objective in creating Solar Boston is to maximize solar technology’s role in the City’s sustainable development, educational and emergency preparedness policies. Solar Boston’s objective is the installation of solar technology on all feasible and appropriate locations throughout Boston.

  17. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  18. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  19. Solar collector array

    SciTech Connect (OSTI)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  20. NREL: Innovation Impact - Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration What is a quantum dot? Close Quantum dots are tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots are a leading candidate for a third generation of solar-cell technologies. Close Achieving significant gains in solar

  1. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  2. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  3. Using the standard solar model to constrain solar composition...

    Office of Scientific and Technical Information (OSTI)

    Using the standard solar model to constrain solar composition and nuclear reaction S factors Citation Details In-Document Search Title: Using the standard solar model to constrain ...

  4. Exploring changes in solar model physics to mitigate the solar...

    Office of Scientific and Technical Information (OSTI)

    Exploring changes in solar model physics to mitigate the solar abundance problem Citation Details In-Document Search Title: Exploring changes in solar model physics to mitigate the ...

  5. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  6. EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open...

    Open Energy Info (EERE)

    Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name: EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place: Mid Glamorgan, United Kingdom...

  7. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    Open Energy Info (EERE)

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  8. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  9. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  10. 20 Years of Solar Measurements: The Solar Radiation Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL Tom ... * Continuous measurements of key solar radiation resources * Calibrations of instruments ...