Sample records for inorganic chemicals nec

  1. Chemically stabilized ionomers containing inorganic fillers

    DOE Patents [OSTI]

    Roelofs, Mark Gerrit

    2013-12-31T23:59:59.000Z

    Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

  2. Thermal and chemical degradation of inorganic membrane materials. Topical report

    SciTech Connect (OSTI)

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01T23:59:59.000Z

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  3. Environmental impacts of petroleum production: Fate of inorganic and organic chemicals in

    E-Print Network [OSTI]

    Environmental impacts of petroleum production: Fate of inorganic and organic chemicals in produced%, respectively (1). Exploration for and production of petroleum typically involves activities such as road water from the Osage-Skiatook Petroleum Environmental Research sites, Osage County, Oklahoma Yousif K

  4. Effect of chronic inhalation of inorganic arsenic on the risk of stillbirth in a community surrounding an agriculture chemical production facility: a hospital-based study 

    E-Print Network [OSTI]

    Ihrig, Melanie M

    1997-01-01T23:59:59.000Z

    EFFECT OF CHRONIC INHALATION OF INORGANIC ARSENIC ON THE RISK OF STILLBIRTH IN A COMMUNITY SURROUNDING AN AGRICULTURE CHEMICAL PRODUCTION FACILITY: A HOSPITAL-BASED STUDY A Thesis by MELANIE M. IHRIG Submitted to the Office of Graduate...

  5. 74 IAEI NEWS March . April 2011 www.iaei.org what hath the 2011 nec wrought

    E-Print Network [OSTI]

    Johnson, Eric E.

    Electrical Code (NEC) has been published by the National Fire Protection Associa- tion (NFPA) and is now #12;www.iaei.org March . April 2011 IAEI NEWS 75 what hath the 2011 nec wrought Overview Code

  6. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    SciTech Connect (OSTI)

    Way, J Douglas

    2011-01-21T23:59:59.000Z

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  7. Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules

    SciTech Connect (OSTI)

    Kudo, Naomi; Honda, Satoshi; Shimazaki, Yuta; Ohkita, Hideo; Ito, Shinzaburo; Benten, Hiroaki [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); International Innovation Center, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)

    2007-04-30T23:59:59.000Z

    The effect of chemical modification of metal oxide surface with dye molecules in organic-inorganic hybrid solid solar cells was studied by using double layered cells consisting of poly(3-hexylthiophene) (P3HT) and a flat layer of dense TiO{sub 2}. The external quantum efficiency of the chemically modified cell was nearly double that expected from the photosensitizing effect of the dye molecules. The additional increase shows that the chemical modification with dye molecules can serve not only as a photosensitizer but mainly as an energy funnel and/or an electronic mediator to significantly improve the electron injection efficiency from P3HT to TiO{sub 2}.

  8. Lab 2: Mineral Lab notes. Minerals are inorganic, solid, naturally occurring substances that have a characteristic chemical compositions,

    E-Print Network [OSTI]

    Li, X. Rong

    a characteristic chemical compositions, distinctive physical properties, and crystalline structures. Chemical is silicon dioxide SiO2; the mineral galena is an ore of lead, and its chemical formula is PbS, a lead sulfide; and the mineral calcite, which is used as an antacid and in fertilizers, is calcium carbonate Ca

  9. Electric power system design: The NEC and the IEC approach

    SciTech Connect (OSTI)

    Parise, G.; Grasselli, U.; Zan, R. [Univ. of Rome La Sapienza (Italy). Electrical Engineering Dept.; Sanders, M.K. [TECo., Inc., Ankeny, IA (United States)

    1995-12-31T23:59:59.000Z

    The purpose of this paper is to compare the techniques and results obtained when a general industrial or commercial building power electrical system is prepared using the US National Electrical Code{copyright} (NEC) and the International Electrotechnical Commission (IEC) Standards. The final design offer the reader the possibility of making an initial comparison and analyzation of the two methods based of their overall effectiveness (sizing, protection, co-ordination of protective devices with components etc.), safety and cost. In order to make such a comparison a specific example was developed and limited in detail to avoid complexity in this study. The power source selected will be a delta-wye utility supplied transformer feeding various load groups such as lighting and motor circuits (possibly through associated transformers). Relevant NE Code references, IEC standards, and appropriate justifications will be made at various points. Since this paper is for comparison purpose only, arbitrary values were selected to illustrate various concepts. In a real life design, guidance from the Color Book series of the Institute of Electrical and Electronic Engineers (IEEE), is strongly recommended.

  10. Chemistry 411/611 Inorganic Chemistry (2010)

    E-Print Network [OSTI]

    Mather, Patrick T.

    2010-01-01T23:59:59.000Z

    -ligand reactivity, and the chemical synthesis of coordination compounds and other "solid" state materials 1 Chemistry 411/611 Inorganic Chemistry (2010) Instructor: Assistant Professor Mathew M. Maye: M-W 4:00-5:00, and by appointment Credits: 3 Text: (Required) Shriver & Atkins, "Inorganic Chemistry

  11. applied inorganic chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bus.Admin.Public Admin. Chemical Engineering Chem. Eng.Comp. Sci. Chemistry Civil Engineering Heller, Barbara 6 Role of inorganic chemistry on nuclear energy examined...

  12. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,ice particleSize

  13. Back Fed Main Breakers with Ground-Fault Protection The NEC has had for many editions, a requirement (230.95) that solidly grounded

    E-Print Network [OSTI]

    Johnson, Eric E.

    Back Fed Main Breakers with Ground-Fault Protection The NEC has had for evaluating the backfeeding of the basic circuit breaker, most of the accessories

  14. 114 home power 138 august & september 2010 In the course of helping the PV industry with NEC issues and

    E-Print Network [OSTI]

    Johnson, Eric E.

    where a utility-interactive PV system connection could backfeed this GFPD breaker? The answer-interactive PV situation. When a ground-fault trips a GFPD breaker that is being backfed by a PV inverter, both114 home power 138 · august & september 2010 In the course of helping the PV industry with NEC

  15. The 2011 National Electrical Code (NEC), published by the National Fire Protection Association (NFPA), is now available,

    E-Print Network [OSTI]

    Johnson, Eric E.

    for multimode inverters in grid-tied PV systems with battery backup. 690.11 Arc-Fault Circuit Protection (Direct. It will be adopted throughout the country over the next three years (possibly longer in some areas). PV systems For the 2011 NEC, the Code-Making Panel 4 (CMP-4) processed Article 690, Solar Photovoltaic PV Systems, and 705

  16. PEGylated Inorganic Nanoparticles

    SciTech Connect (OSTI)

    Karakoti, Ajay S.; Das, Soumya; Thevuthasan, Suntharampillai; Seal, Sudipta

    2011-02-25T23:59:59.000Z

    Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long term stability and attachment of selective functional groups. PEGylation of surfaces is a key strategic approach for providing stealth characteristics to nanomaterials otherwise identified as foreign materials by human body. The current review describes the role of surface modification of oxides by polyethylene glycol (PEG) in providing versatile characteristics to inorganic oxide nanoparticles with a focus on their biomedical applications. The role of PEG as structure directing agent in synthesis of oxides is also captured in this short review.

  17. Photocurable Inorganic-Organic Hydrogels for Biomedical Applications 

    E-Print Network [OSTI]

    Hou, Yaping

    2011-02-22T23:59:59.000Z

    -DA) with tunable chemical and physical properties for use as tissue engineering scaffolds. These inorganic-organic hydrogels provide a useful platform to study the effect of scaffold properties on cell behavior in tissue culture. Twenty compositionally unique...

  18. Crystallization and functionality of inorganic materials

    SciTech Connect (OSTI)

    Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Keyan [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Jun [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China)] [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China); Sun, Congting; Chen, Kunfeng [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-10-15T23:59:59.000Z

    In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

  19. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  20. Service Entrance Conductor Taps for Utility-Interactive Inverter Systems Section 690.64 of the National Electrical Code (NEC) establishes how and where a utility-

    E-Print Network [OSTI]

    Johnson, Eric E.

    1 of 3 Service Entrance Conductor Taps for Utility-Interactive Inverter Systems Section 690.64 of the National Electrical Code (NEC) establishes how and where a utility- interactive PV system may be connected or in a group of enclosures. The PV system may be counted as a separate service (230.2) and could have up to six

  1. Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign

    E-Print Network [OSTI]

    Karydis, V. A.

    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

  2. Extracting inorganics from scrap tires

    SciTech Connect (OSTI)

    Cummings, R.; Wertz, D.L. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

    1995-12-31T23:59:59.000Z

    Scrap tires contain several inorganic moieties in abundances >0.5% which are impregnated into their carbonaceous matrix. These inorganic species are known to produce acid rain, toxic aerosols, and boiler scale and could produce unwanted catalytic effects as well. It is our position that the potential of recycling scrap tires would be considerably enhanced if the inorganics in question - S, Ca, and Zn - were removed prior to attempts to upgrade the carbonaceous matrix. Using non-mechanical methods, we are attempting to cleave the adherence between the co-polymer matrix and to extract the inorganics. The efficiency of our methods is being measured by wavelength dispersive x-ray spectrometry and by other methods.

  3. Inorganic-Organic Hybrid Thermoelectrics

    Broader source: Energy.gov [DOE]

    Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and functionalized conducting polymer thin films) together with strategies for large-scale assembly are discussed

  4. Investigation of beam transmission in A 9SDH-2 3.0 MV NEC pelletron tandem accelerator

    SciTech Connect (OSTI)

    Deoli, Naresh T.; Kummari, Venkata C.; Pacheco, Jose L.; Duggan, Jerome L.; Glass, Gary A.; McDaniel, Floyd D.; Reinert, Tilo; Rout, Bibhudutta; Weathers, Duncan L. [Ion Beam Modification And Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-04-19T23:59:59.000Z

    Electrostatic tandem accelerators are widely used to accelerate ions for experiments in materials science such as high energy ion implantation, materials modification, and analyses. Many applications require high beam current as well as high beam brightness at the target; thus, maximizing the beam transmission through such electrostatic accelerators becomes important. The Ion Beam Modification and Analysis Laboratory (IBMAL) at University of North Texas is equipped with four accelerators, one of which is a 9SDH-2 3.0 MV National Electrostatic Corporation (NEC) Pelletron Registered-Sign tandem accelerator. The tandem accelerator is equipped with three ion sources: one radio frequency-He ion source (Alphatross) and two ion sources of Cs-sputter type, the SNICS II (Source of Negative Ions by Cesium Sputtering) and a Cs-sputter source for trace-element accelerator based mass spectrometry. This work presents a detailed study of the beam transmission of hydrogen, silicon, and silver ions through the accelerator using the SNICS ion source with injection energies ranging from 20 keV to 70 keV. The beam transmission is quantified for three different terminal voltages: 1.5 MV, 2.0 MV and 2.5 MV. For a given terminal voltage, it has been found that beam transmission is strongly dependent on the ion source injector potential. Details of experiments and data analysis are presented.

  5. Preparation and screening of crystalline inorganic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2008-10-28T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2010-08-03T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial screening of inorganic and organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Environmental toxicity of complex chemical mixtures

    E-Print Network [OSTI]

    Gillespie, Annika Margaret

    2009-05-15T23:59:59.000Z

    and inorganic constituents, as well as the pharmacokinetics and potential interactions of chemical mixtures. This research was conducted to investigate the potential genotoxic effects of complex chemical mixtures of polycyclic aromatic hydrocarbons (PAHs...

  9. Chemistry 411/611 Inorganic Chemistry (2011)

    E-Print Network [OSTI]

    Mather, Patrick T.

    2011-01-01T23:59:59.000Z

    1 Chemistry 411/611 Inorganic Chemistry (2011) Instructor: Assistant Professor Mathew M. Maye Chemistry", 5th Edition, Freeman Press. Available at SU bookstore. The solution manual is optional. (Suggested for CHE611 Students pursuing Inorganic) Huheey, "Inorganic Chemistry: Principles of Structure

  10. Inorganic non-aqueous cell

    SciTech Connect (OSTI)

    Kuo, H. C.; Dey, A. N.; Foster, D. L.; Gopikanth, M. L.; Schlaikjer, C. R.

    1985-04-23T23:59:59.000Z

    A novel inorganic non-aqueous electrochemical cell having an alkali or alkaline earth metal anode, an inorganic electrolyte comprised of an SO/sub 2/ solvent with an alkali or alkaline earth metal halide salt of aluminum, tantalum niobium or antimony, dissolved in the SO/sub 2/ and a cathode comprised of a carbonaceous material having an apparent bulk density in excess of 5 lb/ft/sup 3/ (80 gm/1). Lower bulk density carbonaceous material may, however, be used in electrolytes having high salt concentrations. Ketjenblack EC (furnace black) carbonaceous material may be admixed with a solid cathode active material which is substantially insoluble in the SO/sub 2/ electrolyte to provide a high primary cell capacity and an effectively rechargeable cell. There is no SO/sub 2/ per se discharge in the cell.

  11. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect (OSTI)

    Alvarado, Samuel R. [Ames Laboratory; Guo, Yijun [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Tavasoli, Elham [Ames Laboratory; Vela, Javier [Ames Laboratory

    2014-03-15T23:59:59.000Z

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  12. Inorganic Nanocrystal Bulk Heterojunctions - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Inorganic Nanocrystal Bulk Heterojunctions Brookhaven National Laboratory Contact BNL About This...

  13. Interfacial Coatings for Inorganic Composite Insulation Systems

    SciTech Connect (OSTI)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S. [Composite Technology Development, Inc., Lafayette, CO, 80026 (United States)

    2006-03-31T23:59:59.000Z

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass.

  14. Inorganic Nanotubes: A Novel Platform for Nanofluidics

    E-Print Network [OSTI]

    Yang, Peidong

    Inorganic Nanotubes: A Novel Platform for Nanofluidics JOSHUA GOLDBERGER, RONG FAN, AND PEIDONG are being developed for the synthesis of inorganic nanotubes, a novel platform for nanofluidics. Single modulation of ionic conductance. These nanofluidic devices have been further dem- onstrated to be useful

  15. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    SciTech Connect (OSTI)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13T23:59:59.000Z

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  16. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste disposition. July 31, 2013 Aspects of inorganic...

  17. Multifunctional, Inorganic-Filled Separators for Large Format...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

  18. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  19. acids inorganic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for inorganic synthesis MIT - DSpace Summary: Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an...

  20. active inorganic phosphate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as nanostructured templates for inorganic synthesis MIT - DSpace Summary: Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix...

  1. All-Boron Aromatic Clusters as Potential New Inorganic Ligands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in...

  2. Nanomaterials: Organic and Inorganic for Next-Generation Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies 2007 Diesel...

  3. TCD-IISc Symposium "Chemistry & Chemical Biology"

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

  4. Synthesis of a Cationic Inorganic Layered Material for Trapping Anionic Pharmaceutical Pollutants

    E-Print Network [OSTI]

    Sergo, Kevin Michael

    2013-01-01T23:59:59.000Z

    CRUZ SYNTHESIS OF A CATIONIC INORGANIC LAYERED MATERIAL FORAbstract Synthesis of a Cationic Inorganic Layered Material

  5. February 11, 1987 I Inorganic Chemistry

    E-Print Network [OSTI]

    Girolami, Gregory S.

    Volume 26 Number 3 February 11, 1987 I Inorganic Chemistry 0 Copyright 1987 by the American uranium phthalocyanine derivatives have been crystallographically (I) (a) Kasuga, K.; Tsutsui, M. Coord

  6. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOE Patents [OSTI]

    Yang, Peidong (Kensington, CA); Majumdar, Arunava (Orinda, CA); Fan, Rong (Pasadena, CA); Karnik, Rohit (Cambridge, MA)

    2011-03-01T23:59:59.000Z

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  7. Inorganic water chemistry 71 Chapter 4 -Inorganic Water Chemistry of the Boulder Creek

    E-Print Network [OSTI]

    Inorganic water chemistry 71 Chapter 4 - Inorganic Water Chemistry of the Boulder Creek Watershed Creek Watershed, Colorado were determined on a suite of water samples collected during high and low flow sixteen stream sites, twelve tributaries/inflows, and Saint Vrain Creek. The most upstream site was above

  8. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Alkoxide routes to Inorganic Materials

    SciTech Connect (OSTI)

    Thomas, George H [ORNL

    2007-12-01T23:59:59.000Z

    An all alkoxide solution chemistry utilizing metal 2-methoxyethoxide complexes in 2-methoxyethanol was used to deposit thin-films of metal oxides on single-crystal metal oxide substrates and on biaxially textured metal substrates. This same chemistry was used to synthesize complex metal oxide nanoparticles. Nuclear Magnetic Resonance spectroscopy was used to study precursor solutions of the alkaline niobates and tantalates. Film crystallization temperatures were determined from x-ray diffraction patterns of powders derived from the metal oxide precursor solutions. Film structure was determined via x-ray diffraction. Film morphology was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Epitaxial thin-films of strontium bismuth tantalate (SrBi{sub 2}Ta{sub 2}O{sub 9}, SBT) and strontium bismuth niobate (SrBi{sub 2}Nb{sub 2}O{sub 9}, SBN) were deposited on single crystal [1 0 0] magnesium oxide (MgO) buffered with lanthanum manganate (LaMnO{sub 3}, LMO). Epitaxial thin films of LMO were deposited on single crystal [100] MgO via Rf-magnetron sputtering and on single crysal [100] lanthanum aluminate (LaAlO{sub 3}) via the chemical solution deposition technique. Epitaxial thin-films of sodium potassium tantalate (na{sub 0.5}K{sub 0.5}TaO{sub 3}, NKT), sodium potassium niobate (Na{sub 0.5}K{sub 0.5}NbO{sub 3}, NKN) and sodium potassium tantalum niobate (Na{sub 0.5}K{sub 0.5}Ta{sub 0.5}O{sub 3}, NKTN) were deposited on single crystal [1 0 0] lanthanum aluminate and [1 0 0] MgO substrates (NKT and NKN) and biaxially textured metal substrates via the chemical solution deposition technique. Epitaxial growth of thin-films of NKT, NKN and NKTN was observed on LAO and Ni-5% W. Epitaxial growth of thin-films of NKN and the growth of c-axis aligned thin-films of NKT was observed on MgO. Nanoparticles of SBT, SBN, NKT and NKN were synthesized in reverse micelles from alkoxide precursor solutions. X-ray diffraction and transmission electron spectroscopy investigations reveal that amorphous nanoparticles ({approx} 5 nm) of SBT and SBN were synthesized. X-ray diffraction investigations reveal that nanoparticles ({approx} nm) of NKT and NKN were also synthesized by this method.

  10. Spin Contamination in Inorganic Chemistry Calculations

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of Iron­Sulfur ia618 Clusters). It is important to note that while spin-contaminated and broken

  11. Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction

    E-Print Network [OSTI]

    Jochem, Frank J.

    Lab 3: Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction Compounds of nitrogen. Silicate can play a regulating role in the growth of such organisms that carry shells of silicate. Most important are diatoms, which may form phytoplankton blooms under conditions of sufficient silicate

  12. FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry

    E-Print Network [OSTI]

    Doyle, Robert

    FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry Syracuse University The Department of Chemistry at Syracuse University invites applications for a tenure track faculty position at the Assistant Professor level in inorganic chemistry with specialization in materials chemistry (broadly defined

  13. Multifunctional, Inorganic-Filled Separators for Large Format...

    Broader source: Energy.gov (indexed) [DOE]

    microscopy Rhodia - Inorganic fillers ENTEK Manufacturing Inc -Equipment and materials processing Project objectives Selection of electrochemically stable,...

  14. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close

    E-Print Network [OSTI]

    Lin, Zhiqun

    , China ABSTRACT: Organic-inorganic hybrid solar cells composed of conjugated polymers (CPs) and inorganicToward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers to traditional silicon solar cells due to the capacity of producing high- efficiency solar energy in a cost

  15. NEW PROTON CONDUCTIVE COMPOSITE MATERIALS WITH INORGANIC AND STYRENE GRAFTED AND SULFONATED VDF/CTFE FLUOROPOLYMERS

    SciTech Connect (OSTI)

    Lvov, Serguei [ORNL; Payne, Terry L [ORNL

    2008-01-01T23:59:59.000Z

    Creation of new membrane materials for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH) is one of the major challenges in the implementation of the fuel cell technology. New candidate membrane materials are required to efficiently conduct protons at 120oC and RH down to 15%. Based on these criteria, we are working on the development of new membrane materials, which are composites of inorganic proton conductors with a functionalized and cross-linkable Teflon-type polymer. The synthesis of crosslinkable P(VDF-CTFE) copolymer with controllable structure, molecular weight and terminal and side chain silane groups was described in [1]. The chemistry of the synthesis was centered on a specifically designed functional borane initiator containing silane groups. The major role of polymer matrix is to maintain the continuity of charge transfer and to ensure membrane integrity. The primary considerations include sufficient proton conductivity, thermal and chemical stability at elevated temperature, mechanical strength, compatibility with inorganic particulate phases, processibility to form uniform thin film, and cost effectiveness. Several classes of inorganic proton conductors with high water retention capability, including mesoporous materials (sulfated and/or sulfonated alumina, zirconia, titania) and zirconium phosphate of different structure have been chosen as candidate components for the new composite membranes for PEMFC operation at elevated temperatures and reduced RH. The primary requirement to the inorganic phases is the ability to provide high proton conductivity with the minimum amount of water (reduced humidity).

  16. SciTech Connect: Metal-Organic Framework Templated Inorganic...

    Office of Scientific and Technical Information (OSTI)

    Metal-Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals Citation Details In-Document Search Title: Metal-Organic Framework Templated...

  17. aluminosilicate inorganic polymers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency in ZnO Nanowirep-Polymer Hybridized InorganicOrganic Ultraviolet Light-Emitting Diode by Piezo- Materials Science Websites Summary: of Technology, Atlanta, Georgia...

  18. Searching for Inorganic Substances using the Molecular Formula Search Field The following inorganic compounds can be searched within Reaxys

    E-Print Network [OSTI]

    Searching for Inorganic Substances using the Molecular Formula Search Field The following inorganic, but the exercise deals with the molecular formula search field. #12;Scenario: Search for Reactions containing on the [+] sign for Substance identification Click on the Molecular formula field. Leave the "is" operator

  19. Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics Demonstrates...

  20. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    the chemical synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom-up" formation of these inorganic materials by polymerization, controlled precipitation. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  1. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01T23:59:59.000Z

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  2. Nanoporous Metal-Inorganic Materials for Storage and Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanoporous Metal-Inorganic Materials for Storage and...

  3. anisotropic inorganic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anisotropic inorganic materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Hybrid...

  4. Lithium-based inorganic-organic framework materials

    E-Print Network [OSTI]

    Yeung, Hamish Hei-Man

    2013-01-01T23:59:59.000Z

    This dissertation describes research into lithium-based inorganic-organic frameworks, which has led to an increased understanding of the structural diversity and properties of these materials. The crystal structures of 11 new forms of lithium...

  5. Polyelectrolyte multilayers as nanostructured templates for inorganic synthesis

    E-Print Network [OSTI]

    Wang, Tom Chih-Hung, 1973-

    2002-01-01T23:59:59.000Z

    Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an important class of materials with potential application in optoelectronics and photonics, ...

  6. Fabrication of organic and inorganic nanoparticles using electrospray

    E-Print Network [OSTI]

    Deotare, Parag Bhaskar

    2009-05-15T23:59:59.000Z

    A new fabrication process of organic and inorganic nanoparticles and cups by electrospraying blended polymer-sol-gel solutions followed by calcination has been investigated. Because of low viscosity and high surface tension of blended polymersol...

  7. Prediction of heat of melting and heat capacity of inorganic liquids by the method of group contributions

    SciTech Connect (OSTI)

    Williams, J.D. [Los Alamos National Lab., NM (United States); Eakman, J.M. [University of Nebraska, Lincoln, NE (United States); Montoya, M.M. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-11-17T23:59:59.000Z

    Complex salts and salt/oxide combinations are being considered for the immobilization and storage or disposal of hazardous or radioactive wastes. There is very little information concerning such fundamental properties as heat of fusion and heat capacities for many of these inorganic materials. This work focuses on the use of elements or simple functional groups to estimate some of these fundamental thermodynamic properties for a variety of inorganic compounds. The major emphasis will be on properties for a variety of inorganic compounds. The major emphasis will be on properties for which some ancillary information may be easily measured, but which may be very difficult to measure directly. An example of such a property is the heat of fusion (or melting). The melting temperature for most pure materials is relatively easy to measure. However, the actual amount of energy required to liquefy, or conversely, the amount of energy which must be removed to solidify those same materials has not been measured. Similarly, important properties such as heat capacities of liquids are unavailable for many compounds. Such information is essential in the chemical industry and are paramount for chemical engineers if they are to design, build and operate plants and facilities in an economical and efficient manner.

  8. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  9. Biological and Chemical Sciences Department of Biological and Chemical Sciences

    E-Print Network [OSTI]

    Heller, Barbara

    Chromatography Regulatory Science Synthesis and Characterization of Inorganic Materials Synthesis Analytical Method Development Analytical Spectroscopy Characterization of Inorganic and Organic Materials, molecular biophysics and biochem- istry; analytical chemistry, inorganic chemistry, materi- als chemistry

  10. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect (OSTI)

    Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Chul-Ho [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Zande, Arend M. van der [Energy Frontier Research Center (EFRC), Columbia University, New York, New York 10027 (United States); Han, Minyong [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Cui, Xu; Arefe, Ghidewon; Hone, James [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Nuckolls, Colin [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Heinz, Tony F. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States); Kim, Philip, E-mail: pk2015@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States)

    2014-09-01T23:59:59.000Z

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  11. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect (OSTI)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

    2014-05-15T23:59:59.000Z

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  12. Selective Recovery of Enriched Uranium from Inorganic Wastes

    SciTech Connect (OSTI)

    Kimura, R. T.

    2003-02-26T23:59:59.000Z

    Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

  13. Biologically Inspired Synthesis Route to Three-Dimensionally Structured Inorganic Thin Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwenzer, Birgit; Morse, Daniel E.

    2008-01-01T23:59:59.000Z

    Inorganic thin films (hydroxide, oxide, and phosphate materials) that are textured on a submicron scale have been prepared from aqueous metal salt solutions at room temperature using vapor-diffusion catalysis. This generic synthesis approach mimics the essential advantages of the catalytic and structure-directing mechanisms observed for the formation of silica skeletons of marine sponges. Chemical composition, crystallinity, and the three-dimensional morphology of films prepared by this method are extremely sensitive to changes in the synthesis conditions, such as concentrations, reaction times, and the presence and nature of substrate materials. Focusing on different materials systems, the reaction mechanism for the formation ofmore »these thin films and the influence of different reaction parameters on the product are explained.« less

  14. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  15. Inorganic Nanotubes DOI: 10.1002/anie.200803447

    E-Print Network [OSTI]

    Davis, Ben G.

    (MWNTs) with liquid and molten-phase inorganic salts if the surface tension of the filling materials) by molten-phase capillary wetting.[3] Salt encapsulation was shown to result in a profound change in the structural chemistry of the included material relative to its bulk form. In the case of salts such as KI

  16. Role of inorganic chemistry on nuclear energy examined

    E-Print Network [OSTI]

    reprocessing or disposition of spent nuclear fuel materials. The articles in the issue discussed inorganic #12. Significance of the research The efficacy of nuclear power production rests on the ability to manage a nuclear fuel cycle safely, efficiently, and economically. "Fuel cycle" is the term used to describe how nuclear

  17. Photocurable Inorganic-Organic Hydrogels for Biomedical Applications

    E-Print Network [OSTI]

    Hou, Yaping

    2011-02-22T23:59:59.000Z

    ............................................. 4 1.3 Hydrogels as Sensor Membranes ............................................. 6 II PHOTO-CROSSLINKED PDMSstar-PEG HYDROGELS: SYNTHESIS, CHARACTERIZATION, AND POTENTIAL APPLICATION FOR TISSUE ENGINEERING SCAFFOLD........... 9........................................................... 5 1.2 Sequence of events that leads to formation of fibrous capsules around implanted biosesors .................................................................................... 8 2.1 Synthesis of: (top) inorganic PDMS star -MA (A...

  18. Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating

    E-Print Network [OSTI]

    Gospodinova, Kalina Doneva

    2012-01-01T23:59:59.000Z

    The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

  19. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Zender, Charles

    1 Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions Chao Luo1 , Charles S. Zender1 , Huisheng Bian2 , Swen Metzger3 Abstract We use an inorganic aerosol thermodynamic equilibrium model

  20. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom- up" formation of these inorganic materials by polymerization, controlled. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  1. ADVANCED INORGANIC LABORATORY FALL 2008 CHEMISTRY 410 (CRN 11299:), CHEMISTRY 510 (CRN 11315)

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    materials and announcements will be posted on the site. Required Text: "Synthesis and Technique in InorganicADVANCED INORGANIC LABORATORY ­ FALL 2008 CHEMISTRY 410 (CRN 11299:), CHEMISTRY 510 (CRN 11315 to a wide range of conceptual and practical (laboratory) inorganic chemistry. Because of the introductory

  2. Effects of composted dairy manure on soil chemical properties and forage yield and nutritive value of coastal Bermudagrass [Cynodon dactylon (L.) Pers.

    E-Print Network [OSTI]

    Helton, Thomas J.

    2005-02-17T23:59:59.000Z

    Research was conducted to compare the effects of composted dairy manure and raw dairy manure alone, or in combination with supplemental inorganic fertilizer, on soil chemical properties and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield...

  3. Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.

    SciTech Connect (OSTI)

    Tsai, S. P.; Pfromm, P.; Henry, M. P.; Fracaro, A. T.; Swanstrom, C. P.; Moon, P.; Energy Systems; Inst. of Paper Science and Tech.

    2000-11-01T23:59:59.000Z

    Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of inorganic NPEs can enable the mills to recycle bleach effluents to reduce water consumption. The electrodialysis process also effectively retained up to 98% of the organics and can reduce the organic discharge in the mill wastewater. By using suitable commercially available electrodialysis membranes, there were no indications of rapid or irreversible membrane fouling or scale formation, even in extended laboratory scale operations up to 100 hours. Results of laboratory experiments also showed that commercially available membranes properly selected for this process would have good stability to withstand the potentially oxidative conditions of the filtrate. A pilot-scale field demonstration was also conducted at a southern mill, using the D0 filtrate from the bleach plant. During the field demonstration we found serious membrane 2 stack clogging problems, which apparently were caused by fine fibers that escaped through the 5-micron pre-filters, although such a pre-filtration method had been satisfactory in the laboratory tests. Additional R&D is recommended to address this pre-filtration or clogging issue with systems approaches integrating pre-filtration, other separation methods, and stack design. After the pre-filtration/clogging issue is overcome, laboratory development and pilot demonstration are recommended to optimize the process parameters and to evaluate the long-term process parameters. The key technical issues here include membrane lives, control and mitigation of fouling and scaling, and cleaning-in-place protocols. From the data collected in this work, a preliminary process design and economic evaluations were performed for a model mill with 1,000-ton/day pulp production that uses a bleaching sequence based on chlorine dioxide. Assuming 3 m{sup 3} acidic effluents to be treated per ton of pulp produced, the electrodialysis process would require a membrane area of about 361 m{sup 2} for this model mill. The energy consumption of the electrodialytic stack for separation is estimated to be about $160/day, and the estimated capital cost of the electrodia

  4. Use of carbonates for biological and chemical synthesis

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-09-09T23:59:59.000Z

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  5. Survey of electrochemical production of inorganic compounds. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  6. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30T23:59:59.000Z

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  7. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Shah, N.; Huggins, F.E.; Huffman, G.P. (Kentucky Univ., Lexington, KY (United States))

    1991-09-01T23:59:59.000Z

    The technical objectives of this project are: (1) To define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and to characterize the resultant spectrum of products in detail. (2) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (3) to develop, based on the information required in (1) and (2), a tractable process'' model capable of predicting the significant features of the transformation process, most importantly, the nature and distribution of products. 26 refs., 151 figs., 51 tabs.

  8. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    SciTech Connect (OSTI)

    Coronado-Gonzalez, Jose Antonio [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico); Razo, Luz Maria del [Toxicology Departament, Cinvestav, Mexico D.F. (Mexico); Garcia-Vargas, Gonzalo [School of Medicine, Durango State Juarez University, Gomez Palacio, Durango (Mexico); Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Sanmiguel-Salazar, Francisca [Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Escobedo-de la Pena, Jorge [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico)]. E-mail: jorgeep@servidor.unam.mx

    2007-07-15T23:59:59.000Z

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.

  9. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

    SciTech Connect (OSTI)

    Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

    2010-12-01T23:59:59.000Z

    Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

  10. Organic and inorganic hazardous waste stabilization utilizing fossil fuel combustion waste materials

    SciTech Connect (OSTI)

    Netzel, D.A.; Lane, D.C.; Brown, M.A.; Raska, K.A.; Clark, J.A.; Rovani, J.F.

    1993-09-01T23:59:59.000Z

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of innovative clean coal technology (ICCT) waste to stabilize organic and inorganic constituents of hazardous wastes. The four ICCT wastes used in this study were: (1) the Tennessee Valley Authority (TVA) atmospheric fluidized bed combustor (AFBC) waste, (2) the TVA spray dryer waste, (3) the Laramie River Station spray dryer waste, and (4) the Colorado-Ute AFBC waste. Four types of hazardous waste stream materials were obtained and chemically characterized for use in evaluating the ability of the ICCT wastes to stabilize hazardous organic and inorganic wastes. The wastes included an API separator sludge, mixed metal oxide-hydroxide waste, metal-plating sludge, and creosote-contaminated soil. The API separator sludge and creosote-contaminated soil are US Environmental Protection Agency (EPA)-listed hazardous wastes and contain organic contaminants. The mixed metal oxide-hydroxide waste and metal-plating sludge (also an EPA-listed waste) contain high concentrations of heavy metals. The mixed metal oxide-hydroxide waste fails the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metal-plating sludge fails the TCLP for chromium. To evaluate the ability of the ICCT wastes to stabilize the hazardous wastes, mixtures involving varying amounts of each of the ICCT wastes with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest using the Toxicity Characteristic Leaching Procedure.

  11. Inorganic origin of carbon dioxide during low temperature thermal recovery of bitumen: Chemical and isotopic evidence

    SciTech Connect (OSTI)

    Hutcheon, I.; Abercrombia, H.J.; Krouse, H.R. (Univ. of Calgary, Alberta (Canada))

    1990-01-01T23:59:59.000Z

    Carbon dioxide, produced at low temperatures, is the dominant gaseous species evolved during steam-assisted thermal recovery of bitumen at the Tucker Lake pilot, Cold Lake, Alberta. Two possible sources for the produced CO{sub 2} are considered: pyrolysis of bitumen and dissolution of carbonate minerals. Data from natural systems and experiments by other authors suggest that clay-carbonate reactions are the dominant source of CO{sub 2}. Bitumen pyrolysis may contribute small amounts of CO{sub 2}, probably by decarboxylation, early in the production cycle but cannot contribute significant volumes. The recognition of production of CO{sub 2} by reactive calcite destruction at temperatures between 70 and 220{degree}C suggests that this process may be responsible for the production of large quantities of CO{sub 2} in natural systems, particularly in lithofeldspathic sands and shales with high carbonate content and abundant clays. Organic acids have been suggested to be the source of CO{sub 2} in diagenetic fluids, but the results presented here suggest that this hypothesis requires more complete investigation.

  12. 2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010

    SciTech Connect (OSTI)

    JOHN LOCKEMEYER

    2010-06-25T23:59:59.000Z

    The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

  13. Engineering the Interface Between Inorganic Materials and Cells

    SciTech Connect (OSTI)

    Schaffer, David

    2014-05-31T23:59:59.000Z

    To further optimize cell function in hybrid “living materials”, it would be advantageous to render mammalian cells responsive to novel “orthogonal” cues, i.e. signals they would not ordinarily respond to but that can be engineered to feed into defined intracellular signaling pathways. We recently developed an optogenetic method, based on A. thaliana Cry2, for rapid and reversible protein oligomerization in response to blue light. We also demonstrated the ability to use this method to channel the light input into several defined signaling pathways, work that will enhance communication between inorganic devices and living systems.

  14. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, Frank K. (Upper Macungie, PA)

    1986-01-01T23:59:59.000Z

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  15. Pattern Replication in Organic-Inorganic Hybrid Materials

    E-Print Network [OSTI]

    Nedelcu, Mihaela

    2014-05-27T23:59:59.000Z

    of an impeding fuel shortage and the need for clean renewable sources of energy, considerable effort has been made to reduce the cost of solar cells by primarily addressing the material processing techniques. Photo-electrochemical solar cells are an emerging... metal and the mesoporous TiO2 and Nb2O5, which have applications in dye sen- sitized solar cells. The first part of the thesis presents an overview of pattern formation in organic and inorganic materials and the working principles of dye sensitized solar...

  16. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, F.K.

    1986-07-29T23:59:59.000Z

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  17. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

    2009-09-15T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  18. Solid state radioluminescent sources: Mixed organic/inorganic hybrids

    SciTech Connect (OSTI)

    Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Smith, H.M. (Allied-Signal, Inc., Kansas City, MO (USA))

    1990-01-01T23:59:59.000Z

    This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments. 12 refs., 2 figs., 1 tab.

  19. ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX

    SciTech Connect (OSTI)

    Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

    2011-03-31T23:59:59.000Z

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  20. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect (OSTI)

    J. T. Brown; G. Matthern; A. Glenn (INEEL); J. Kauffman (EnviroIssues); S. Rock (USEPA); M. Kuperberg (Florida State U); C. Ainsworth (PNNL); J. Waugh (Roy F. Weston Assoc.)

    2000-02-01T23:59:59.000Z

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.

  1. Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei

    E-Print Network [OSTI]

    Gong, Xingao

    Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei and Department of Physics, Fudan UniVersity, Shanghai 200433, China ReceiVed: August 17, 2009 As a newly developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest

  2. Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems

    E-Print Network [OSTI]

    Roegner, Matthias

    Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 Ŕ uptake -- CO2

  3. Theme issue: inorganic nanotubes and DOI: 10.1039/b900135m

    E-Print Network [OSTI]

    Wang, Zhong L.

    . This themed issue on inorganic 1D nano- materials gathers papers about the synthesis, characterization Jin Fan et al. gave a review on the synthesis of 1D nano- materials of spinel structured materialsTheme issue: inorganic nanotubes and nanowires DOI: 10.1039/b900135m Nanotubes, nanowires

  4. Thin films and nanolaminates incorporating organic/inorganic Srinivas Manne and Ilhan A Aksay

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    nanolaminates has ranged from fundamental studies of biomineralization to the synthesis of novel materials continued to inspire materials scientists, research involving organic/inorganic interfaces, thin layers in the synthesis and processing of inorganic thin films at organic interfaces and between organic layers

  5. Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment

    E-Print Network [OSTI]

    Peters, Achim

    Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level Electronic coupling in a hybrid structure made of ZnMgO and a spirobifluorene derivative SP6 is inves- tigated in the situation where the energy level alignment at the organic/inorganic interface revealed

  6. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2007-05-15T23:59:59.000Z

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  7. Elucidation of the inorganic chemistry of hydrotreating catalysts

    SciTech Connect (OSTI)

    DeCanio, E.C.; Edwards, J.C.; Storm, D.A. [Texaco, Inc., Beacon, NY (United States); Bruno, J.W. [Wesleyan Univ., Middletown, CT (United States)

    1993-12-31T23:59:59.000Z

    New environmental regulations are making it necessary to developed improved hydrotreating catalysts for the removal of sulfur, nitrogen and aromatics from refinery streams. In order to develop better catalysts, the authors must gain a more detailed understanding of the inorganic chemistry of these catalysts. Commercial catalysts typically contain ca. 15 wt% molybdenum or tungsten oxides and ca. 4 wt% nickel or cobalt. Additives, such as phosphate and fluoride, are often added to improve the catalytic activity. However, the role of these additives is not fully understood. The authors have, therefore, carried out studies on alumina supported phosphate and flouride materials using FT-IR, powder x-ray diffraction, and solid-state NMR ({sup 31}P, {sup 27}Al, and {sup 1}H). The results of this work have enabled the authors to determine the structures of the various compounds formed on the alumina system when fluoride or phosphate is present.

  8. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOE Patents [OSTI]

    Gash, Alexander E. (Livermore, CA); Satcher, Joe H. (Patterson, CA); Simpson, Randy (Livermore, CA)

    2004-11-16T23:59:59.000Z

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  9. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Boni, A.A.; Helble, J.J.; Srinivasachar, S. (PSI Technology Co., Andover, MA (USA)); Flagan, R.C. (California Inst. of Tech., Pasadena, CA (USA)); Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (USA)); Peterson, T.W.; Wendt, J.O.L. (Arizona Univ., Tucson, AZ (USA)); Sarofim, A.F. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    1989-05-01T23:59:59.000Z

    The technical objectives of this project are: (a) To (1) define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and (2) to characterize the resultant spectrum of products in detail; (b) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (c) To develop, based on the information required in a. and b. above, a tractable process model capable of predicting the significant features of the transformation process, most importantly, the distribution and nature of products. This report represents work accomplished in the tenth quarter of performance on the contract. The authors specifically highlight work accomplished: at the California Institute of Technology (CalTech) on developing and constructing a thermophoretic sampling probe, for submicron fume particle sampling; at MIT on (1) completion of the baseline ash particle size distribution measurements for seven program coals (five US and two Australian), and (2) analysis of the fragmentation model results in terms of a closed-form solution for a simplified case; at the University of Arizona, on obtaining detailed ash particle and submicron fume chemistry for four program coals; and at PSI Technology Company (PSIT) on concluding data analysis and describing mineral interaction trends observed during combustion of two program coals. Individual progress reports have been indexed separately for inclusion on the data base.

  10. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect (OSTI)

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworkth, C.; Waugh, J.

    2000-02-01T23:59:59.000Z

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially successful in more areas.

  11. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01T23:59:59.000Z

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  12. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krssig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H....

  13. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect (OSTI)

    Rich Ciora; Paul KT Liu

    2012-06-27T23:59:59.000Z

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  14. Department of Biological and Chemical Sciences Department of Biological and Chemical Sciences

    E-Print Network [OSTI]

    Heller, Barbara

    Characterization of Inorganic and Organic Materials Chromatography Synthesis and Characterization of Inorganic Materials Synthesis and Characterization of Organic Materials Research Centers International Center magnetic resonance facility, state-of- the-art inorganic-, organic- and polymer synthesis

  15. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  16. The Periodic Table as a Part of the Periodic Table of Chemical Compounds

    E-Print Network [OSTI]

    Labushev, Mikhail M

    2011-01-01T23:59:59.000Z

    The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

  17. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    SciTech Connect (OSTI)

    Hughes, Steven Michael

    2007-12-31T23:59:59.000Z

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  18. Organic and inorganic hazardous waste stabilization using combusted oil shale

    SciTech Connect (OSTI)

    Sorini, S.S.; Lane, D.C.

    1991-04-01T23:59:59.000Z

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

  19. Removal of inorganic trace contaminants by electrodialysis in a remote Australian community 

    E-Print Network [OSTI]

    Banasiak, Laura J.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    Water provision for developing countries is a critical issue as a vast number of lives are lost annually due to lack of access to safe drinking water. The presence and fate of inorganic trace contaminants is of particular ...

  20. Assembly and detection of viruses and biological molecules on inorganic surfaces

    E-Print Network [OSTI]

    Sinensky, Asher Keeling

    2007-01-01T23:59:59.000Z

    This work is composed of three distinct, albeit related, projects. Each project is an exploration of the ways in which interactions between inorganic surfaces and biological molecules can be advantageously exploited. The ...

  1. First principles study of structure and lithium storage in inorganic nanotubes

    E-Print Network [OSTI]

    Tibbetts, Kevin (Kevin Joseph)

    2009-01-01T23:59:59.000Z

    The exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross ...

  2. Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test on Multiple Trophic Levels

    E-Print Network [OSTI]

    Wagner, Diane

    Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration

  3. Organic-inorganic nanocomposite membranes from highly ordered mesoporous thin films for solubility-based separations

    E-Print Network [OSTI]

    Yoo, Suk Joon

    2009-05-15T23:59:59.000Z

    properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed...

  4. Inorganic Chemistry, "01. 13,No. 7, 1974 exchange resin using acetonitrile as eluent. The acetonitrile was

    E-Print Network [OSTI]

    Bodner, George M.

    Inorganic Chemistry, "01. 13,No. 7, 1974 exchange resin using acetonitrile as eluent. The acetonitrile was removed in vacuo and the residue sublimed at 40-45" to obtain 0.764 g (4.3 5% yield, mp 145

  5. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Oyewole, O. K. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, Kwara State (Nigeria); Tong, T. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Anye, V. C.; Rwenyagila, E. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Asare, J.; Fashina, A. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Soboyejo, W. O. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria)

    2014-08-21T23:59:59.000Z

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  6. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors

    E-Print Network [OSTI]

    Steiner, Ullrich

    Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors Wendy Niu,1,a) Anna-inorganic perovskite (C6H9C2H4NH3)2PbI4 are produced using micromechanical exfoliation. Mono- and few-layer areas microme- chanical exfoliation of 2D PbI perovskites and explore the few-layer behaviour of such systems

  7. Reactions of inorganic nitrogen species in supercritical water

    SciTech Connect (OSTI)

    Dell`Orco, P.C. [Texas Univ., Austin, TX (United States)] [Texas Univ., Austin, TX (United States)

    1994-12-31T23:59:59.000Z

    Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

  8. 3.5 Dissolved inorganic carbon (CT) 5 February 2005

    E-Print Network [OSTI]

    , and to clarify the mechanism of the CO2 absorption, because the magnitude of the predicted global warming depends such as burning of fossil fuels, deforestation, cement production, etc. It is an urgent task to estimate. For the system A, the module consists of two electric dehumidifiers (kept at 1 - 2 °C) and a chemical desiccant

  9. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials | Center forChemical

  10. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    SciTech Connect (OSTI)

    Lash, Lawrence H. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)]. E-mail: l.h.lash@wayne.edu; Putt, David A. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Hueni, Sarah E. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Payton, Scott G. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Zwickl, Joshua [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

    2007-06-15T23:59:59.000Z

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.

  11. Analytical and characterization studies of organic and inorganic species in brown coal

    SciTech Connect (OSTI)

    G. Domazetis; M. Raoarun; B.D. James; J. Liesegang; P.; J. Pigram; N. Brack [La Trobe University, Vic. (Australia). Department of Chemistry

    2006-08-15T23:59:59.000Z

    Detailed studies have been carried out on the distribution of organic functional groups and inorganic species in as-received (ar) and acid-washed (aw) brown coals using elemental analysis, energy dispersive X-ray analysis (SEM-EDX), X-ray photoelectron spectroscopy (XPS), and Time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Surface concentrations of the various carbon groups, organic oxygen, and inorganic hydroxide were obtained using XPS, but oxygen from clay and quartz, if present, interfered with organic oxygen determinations for the coals. A comparison of ar and aw coals using XPS and SEM-EDX is provided in terms of inorganic and organic sulfur groups. Chloride in these coals is present mainly as acid extractable forms, but small amounts of chloride in the organic matrix were indicated by the elemental analysis of ultra low-ash coals. TOF-SIMS fragments from brown coals were indicative of polymers consisting mainly of single aromatic groups linked by hydrocarbons with carboxyl and phenol functional groups. Sulfur fragments were from inorganic sulfur, thiols, organo-sulfates, and S-N-organic species. Numerous fragments containing organically bound chloride were observed. Fragments of the inorganic species Na, Mg, Al, Si, K, Ca, Ti, Cr, Fe, Mn, Ni, Cu, and Ga were also observed. Environmentally undesirable species, particularly from organo-sulfur and organo-chloride groups in brown coal, are likely to emerge from processes that heat coal-water mixture. 54 refs., 3 figs., 10 tabs.

  12. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    SciTech Connect (OSTI)

    Rooney, James P.K., E-mail: jrooney@rcsi.ie

    2014-02-01T23:59:59.000Z

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.

  13. Isotopic variations of dissolved inorganic carbon in the Gulf of Mexico

    E-Print Network [OSTI]

    Kan, David Lan-Rong

    1970-01-01T23:59:59.000Z

    ISOTOPIC VARIATIONS OF DISSOLVED INORGANIC CARBON IN THE GULF OF MEXICO A Thesis DAVID LAN-RONG RAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August... l9IO Maj or Subject: Oceanography ISOTOPIC VARIATIONS OF DISSOLVED INORGANIC CARBON IN THE GULF OF MEXICO A Thesis by DAVID LAN-RONG ZAN Approved as to style and content by: (Chairman of Committee) (Head of Departm at) ember) g~& (Member...

  14. Fermentation and chemical treatment of pulp and paper mill sludge

    DOE Patents [OSTI]

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02T23:59:59.000Z

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  15. Fractionation between inorganic and organic carbon during the Lomagundi (2.222.1 Ga) carbon isotope excursion

    E-Print Network [OSTI]

    Bekker, Andrey

    is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger deposition, a carbon isotope fractionation as large as ~37 appears to characterize the production of bulk was dominated by a large dissolved inorganic carbon reservoir during the Lomagundi excursion. Our study suggests

  16. Microfluidic chemical reaction circuits

    SciTech Connect (OSTI)

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26T23:59:59.000Z

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  17. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications · Use and develop with usable ­ Chemical ­ Electronic ­ Optical ­ Magnetic ­ Transport, thermal and mechanical properties

  18. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  19. Nano Res (2010) 3: 170173170 Synthesis and Characterization of WS2 Inorganic Nanotubes with

    E-Print Network [OSTI]

    Davis, Ben G.

    2010-01-01T23:59:59.000Z

    Nano Res (2010) 3: 170­173170 Synthesis and Characterization of WS2 Inorganic Nanotubes]. Folding and bonding of edge atoms on the periphery of the quasi two-dimensional planar nano- structure this nanotubular structure is suitable for capillary filling using molten metal halides. Nano Res (2010) 3: 170

  20. Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with

    E-Print Network [OSTI]

    Macdonald, Ellen

    Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain M.L. Macrae, K.J. Devito, I.F. Creed, and S.E. Macdonald Abstract: Spatial distributions of soil extractable

  1. INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Pennycook, Steve

    INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

  2. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite

    E-Print Network [OSTI]

    McFadden, Geoff

    cytosol has a relatively low Na1 concentration2,4 and there is therefore a large inward Na1 gradient gradient to energize the uptake of inorganic phosphate (Pi), an essential nutrient. Pi was taken up of the ionic composition of its host cell. Pi is an important nutrient in cell metabolism and is required

  3. The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    are found in a variety of industries, from food and pharmaceuticals to petroleum production and refining and refining operations of the petroleum industry. 2. Background 2.1. Surface-Active Species in PetroleumThe Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability Andrew P

  4. Mn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe

    E-Print Network [OSTI]

    Li, Jing

    for optoelectronics and information storage technology. In this study, we demonstrate that the hybrid nanostructuresMn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe: Nanostructures That May Lead are highly desirable and extremely attractive in the development of new multifunctional devices

  5. Synthesis, Computed Stability, and Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Synthesis, Computed Stability, and Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates Hailong Chen, Geoffroy Hautier,§ and Gerbrand Ceder* Department of Materials Science are now being used to search and predict new functional materials and novel compounds. However, system

  6. Inorganic islands on a highly stretchable polyimide substrate Jeong-Yun Sun

    E-Print Network [OSTI]

    Inorganic islands on a highly stretchable polyimide substrate Jeong-Yun Sun Department of Material. A polyimide substrate is first coated with a thin layer of an elastomer, on top of which SiNx islands, but SiNx islands on much stiffer polyimide (PI) sub- strates crack and debond when the substrates

  7. Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{

    E-Print Network [OSTI]

    Angell, C. Austen

    Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

  8. Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays

    E-Print Network [OSTI]

    Malen, Jonathan A.

    ) is a close-packed structure of nanocrystals (i.e., inorganic cores 2-20 nm in diameter encapsulated transistors,4 memory devices,5 light-emitting diodes,6 photodetectors,7,8 solar cells,9-11 and thermoelectric

  9. Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry

    E-Print Network [OSTI]

    Meyer, Karsten

    Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry Department of Chemistry chemistry in the Meyer laboratory bridges the field of classical coordination chemistry with fields, and K. Meyer Carbon Dioxide Activation with Sterically Pressured Mid- and High-Valent Uranium Complexes

  10. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis

    E-Print Network [OSTI]

    Lin, Zhiqun

    Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis Mengye Wang,ab James Ioccozia,b Lan Sun,*a Changjian Lin*a and Zhiqun Lin*b Semiconductor photocatalysis is a promising resistance, and nontoxicity. This Review briefly introduces the key mechanisms of photocatalysis, highlights

  11. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13T23:59:59.000Z

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  12. Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process

    E-Print Network [OSTI]

    Chelawat, Hitesh

    2010-01-01T23:59:59.000Z

    Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

  13. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    SciTech Connect (OSTI)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28T23:59:59.000Z

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  14. chemical analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical analysis chemical analysis Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions....

  15. r XXXX American Chemical Society A dx.doi.org/10.1021/la104757g |Langmuir XXXX, XXX, 000000 pubs.acs.org/Langmuir

    E-Print Network [OSTI]

    Lee, Seung-Wuk

    r XXXX American Chemical Society A dx.doi.org/10.1021/la104757g |Langmuir XXXX, XXX, 000 University, Jinju, 660-701 South Korea ^ Department of Orthopedics & Physical Rehabilitation and Department. INTRODUCTION Biomaterials composed of integrated inorganic and organic components possess unique properties

  16. Mat. Res. Soc. Symp. Proc. Vol. 628 2000 Materials Research Society Hybrid Inorganic/Organic Diblock Copolymers. Nanostructure in Polyhedral Oligomeric

    E-Print Network [OSTI]

    Mather, Patrick T.

    Our main approach to the synthesis and study of hybrid organic/inorganic materials involvesMat. Res. Soc. Symp. Proc. Vol. 628 © 2000 Materials Research Society CC2.6.1 Hybrid Inorganic the synthesis of melt processable, linear hybrid polymers containing pendent inorganic clusters, and allows us

  17. Guidance Document Reactive Chemicals

    E-Print Network [OSTI]

    showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

  18. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  19. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14T23:59:59.000Z

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  20. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  1. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31T23:59:59.000Z

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  2. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  3. Microfabricated sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA)

    2003-01-01T23:59:59.000Z

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  4. 2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)

    SciTech Connect (OSTI)

    Abu-Omar, Mahdi M.

    2012-12-08T23:59:59.000Z

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  5. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01T23:59:59.000Z

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  6. 2007 Inorganic Reaction Mechanisms Gordon Research Conference-February 18-23

    SciTech Connect (OSTI)

    Andreja Bakac

    2008-01-01T23:59:59.000Z

    This conference focuses on kinetic, mechanistic, and thermodynamic studies of reactions that play a role in fields as diverse as catalysis, energy, bioinorganic chemistry, green chemistry, organometallics, and activation of small molecules (oxygen, nitrogen, carbon monoxide, carbon dioxide, alkanes). Participants from universities, industry, and national laboratories present results and engage in discussions of pathways, intermediates, and outcome of various reactions of inorganic, organic, coordination, organometallic, and biological species. This knowledge is essential for rational development and design of novel reactions, compounds, and catalysts.

  7. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    SciTech Connect (OSTI)

    Maverick, Andrew W.

    2011-12-17T23:59:59.000Z

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ���²-diketone ligands as �¢����building blocks�¢��� to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  8. Carbons for lithium ion cells prepared using sepiolite as an inorganic template.

    SciTech Connect (OSTI)

    Sandi, G.

    1998-12-09T23:59:59.000Z

    Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

  9. Study of Electron Transport in Organic and Inorganic Atomic Monolayer Based MOS/MOSFET

    E-Print Network [OSTI]

    Azariah, J Cyril Robinson; Devaprakasam, D

    2014-01-01T23:59:59.000Z

    The wide research interest for the potential nanoelectronics applications are attracted by the organic and inorganic monolayer materials. In this work, we have studied the organic monolayer such as trichloro (1H,1H,2H,2H-perfluorooctyl)-silane (FOTS), hexamethyldisilazane (HMDS) and inorganic monolayers such as hexagonal - boron nitride (h-BN) and molybdenum disulfide (MoS2) based MOS devices. The organic monolayer based configurations are Au/FOTS/p-Si and Au/HMDS/p-Si. The inorganic monolayer based configurations are Au/MoS2/SiO2/p-Si and Au/h-BN/SiO2/p-Si. These configurations were examined and compared with Au/SiO2/p-Si MOS configuration using the Multi-dielectric Energy Band Diagram Program (MEBDP) and MOSFeT simulation software. The C-V and I-V characteristics of MOS and MOSFET of FOTS, HMDS, h-BN, MoS2 and SiO2 were reported. The results show that the above configurations are suitable for designing MOSFETs with smaller drain induced barrier lowering (DIBL) and reduced threshold voltage. We noted that th...

  10. Controlled Synthesis of Organic/Inorganic van de Waals Solid for Tunable Light-matter Interactions

    E-Print Network [OSTI]

    Niu, Lin; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay-Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Jeng, Horng-Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-01-01T23:59:59.000Z

    Van de Waals (vdW) solids, as a new type of artificial materials that consisting of alternative layers bonded by weak interactions, have shed light on fantastic optoelectronic devices. As a result, a large variety of shining vdW devices have been engineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids have been proved a scalable and swift way towards vdW solids, reflected by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Enlightened by it, with a three-step deposition and reaction, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide as the organic part (organic perovskite) and 2D monolayers inorganic as counterpart. Being a perfect light absorbent, the electrons and holes generated in organic perovskite couple with its inorganic 2D companions, and behave dramaticall...

  11. Evaluating the origins and transformations of organic matter and dissolved inorganic nitrogen in two contrasting North Sea estuaries 

    E-Print Network [OSTI]

    Ahad, Jason Michael Elias

    In order to delineate the potential sources and to understand the main controls on the biogeochemical cycling of dissolved and particulate organic matter (DOM, POM) and dissolved inorganic nitrogen (DIN) during estuarine ...

  12. High yield production of inorganic graphene-like materials (MoS?, WS?, BN) through liquid exfoliation testing key parameters

    E-Print Network [OSTI]

    Pu, Fei, S.B. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Inorganic graphene-like materials such as molybdenum disulfide (MoS?), tungsten sulfide (WS?), and boron nitride (BN) are known to have electronic properties. When exfoliated into layers and casted onto carbon nanofilms, ...

  13. On coupling NEC-violating matter to gravity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatterjee, Saugata; Parikh, Maulik; van der Schaar, Jan Pieter

    2015-05-01T23:59:59.000Z

    We show that effective theories of matter that classically violate the null energy condition cannot be minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to higher-curvature theories of gravity.

  14. PP-60 Northern Electric Cooperative Association (NEC) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Northern9-1518-3

  15. PP-60 Northern Electric Cooperative Association (NEC) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLC PP-235-1PP-32PP-40-151Energy PP-60

  16. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27T23:59:59.000Z

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  17. Chemistry 455 Chemical Nanotechnology

    E-Print Network [OSTI]

    Rohs, Remo

    Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

  18. SUGGESTIONS FOR WIRING ENPHASE MICROINVERTERS Code references are to the 2008 NEC/2011NEC except where noted

    E-Print Network [OSTI]

    Johnson, Eric E.

    compatibility with the various inverter modules. I have four of these inverters connected to Sharp PV modules modules that have Enphase inverters attached. These combinations of PV modules and microinverters do not meet the definition or requirements associated with true AC PV Modules as defined in 690.2 and in 690

  19. and Chemical Engineering

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    is constructing a new building that will house the Department of Chemical Engineering and the DepartmentBiological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta and Engineering Quad, the new building will be part of a neighborhood of four buildings that house a community

  20. Equilibrium Chemical Engines

    E-Print Network [OSTI]

    Tatsuo Shibata; Shin-ichi Sasa

    1997-10-30T23:59:59.000Z

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  1. Department of Chemical Engineering

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

  2. PHYSICS DIVISION CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Kemner, Ken

    PHYSICS DIVISION CHEMICAL HYGIENE PLAN 2008 Prepared by _________________________________________________ T. Mullen Physics Division Chemical Hygiene Officer Reviewed by ___________________________________________________ J. Woodring Site Chemical Hygiene Officer Approved

  3. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Napp, Nils

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2014 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY.......................................................................................... 2 2.1 CHEMICAL HYGIENE OFFICER

  4. Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet

    E-Print Network [OSTI]

    Wikswo, John

    Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet Vanderbilt Environmental.safety.vanderbilt.edu HIGHLY HAZARDOUS CHEMICAL WASTES Certain chemical wastes must be handled by special procedures due to their highly hazardous nature. These chemicals include expired isopropyl and ethyl ethers (these chemicals

  5. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

  6. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    · ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  7. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  8. Inorganic nitrogen and phosphorus dynamics in the water column of the patuxent river. Final technical report, 1 July 1989-31 December 1991

    SciTech Connect (OSTI)

    Capone, D.G.; Miller, V.; Love, J.; Duguay, L.

    1992-01-01T23:59:59.000Z

    An analysis was made of nitrogen (N) and phosphorus (P) dynamics in the water column of the Patuxent River, Maryland, over a 2 year cycle. Specifically, inorganic N and P assimilation were determined by isotopic tracer methods at 3 stations along the salinity gradient of the river on a monthly basis. The authors determined the concentrations of particulate N and P and the major dissolved species. Among inorganic species, nitrate showed the greatest seasonal variation, particularly at the upstream stations. Nitrate, which increased going upstream, tended to dominate the inorganic N pools. Ammonium, nitrate and phosphate uptake varied over a wide range among and within sites. Values tended to increase moving upstream. Nitrate uptake dominated inorganic N assimilation upstream while ammonium uptake was of greater importance at the most saline station. With respect to indicies of nutrient limitation, except for the summer, dissolved inorganic N was in excess relative to inorganic P, suggestive of P limitation.

  9. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15T23:59:59.000Z

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  10. Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic?organic frameworks

    SciTech Connect (OSTI)

    Furman, Joshua D.; Burwood, Ryan P.; Tang, Min; Mikhailovsky, Alexander A.; Cheetham, Anthony K. (Cambridge); (UCSB)

    2011-11-17T23:59:59.000Z

    Five novel inorganic-organic framework compounds containing the organic chromophore ligand anthraquinone-2,3-dicarboxylic acid (abbreviated H{sub 2}AQDC) and calcium (CaAQDC), zinc (ZnAQDC), cadmium (CdAQDC), manganese (MnAQDC), and nickel (NiAQDC), respectively, have been synthesized. The photoluminescence of these materials is only visible at low temperatures and this behaviour has been evaluated in terms of ligand rigidity. It is proposed that the 2,3 position bonding sites result in luminescence-quenching ligand motion, as supported by X-ray diffraction and temperature-dependent luminescence studies.

  11. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    SciTech Connect (OSTI)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.; Farmer, O.T.; Greenwood, L.R.; Hoppe, E.W.; Hoopes, F.V.; Lumetta, G.J.; Mong, G.M.; Ratner, R.T.; Soderquist, C.Z.; Steele, M.J.; Swoboda, R.G.; Urie, M.W.; Wagner, J.J.

    2000-10-17T23:59:59.000Z

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  12. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03T23:59:59.000Z

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-02-01T23:59:59.000Z

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  14. Excimer laser chemical problems

    SciTech Connect (OSTI)

    Tennant, R.; Peterson, N.

    1982-01-01T23:59:59.000Z

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  15. EMSL - chemical analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical-analysis en Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. http:www.emsl.pnl.govemslwebpublications...

  16. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22T23:59:59.000Z

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  17. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2011-05-10T23:59:59.000Z

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  18. Chemical Engineering Division research highlights, 1979

    SciTech Connect (OSTI)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01T23:59:59.000Z

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  19. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    SciTech Connect (OSTI)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04T23:59:59.000Z

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  20. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOE Patents [OSTI]

    Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Peterson, Eric S. (Idaho Falls, ID) [Idaho Falls, ID; Wertsching, Alan K. (Idaho Falls, ID) [Idaho Falls, ID; Orme, Christopher J. (Shelley, ID) [Shelley, ID; Luther, Thomas A. (Idaho Falls, ID) [Idaho Falls, ID; Jones, Michael G. (Pocatello, ID) [Pocatello, ID

    2009-12-15T23:59:59.000Z

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  1. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Zare, Richard N.

    bonds, 2 to 10 ev). The methods that have revealed this richness and order of medium- and high-energy, mass spectrometry. While hot-atom studies overcome the energy limitations of thermochemical methods energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical

  2. CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM FeCl3 Iron(III) chloride Corrosive - acid FeSO4 Iron(II) sulfate Toxic H2O Water HCl Hydrochloric

  3. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21T23:59:59.000Z

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  4. Photochemistry of 9,10-anthraquinone-2-sulfonate in solution. Part 2. Effects of inorganic anions: quenching vs. radical formation at moderate and high anion concentrations

    SciTech Connect (OSTI)

    Loeff, I.; Treinin, A.; Linschitz, H.

    1984-10-11T23:59:59.000Z

    The chemical aspects of the interactions between excited 9,10-anthraquinone-2-sulfonate (AQS) and various inorganic anions are examined. The anions which quench triplet AQS can be divided into two groups: Cl/sup -/, Br/sup -/, I/sup -/ and NCS/sup -/ (group I) photoreduce AQS to AQS/sup -/ radical anion only at concentrations higher than that required for complete triplet quenching. The effect increases with concentration and passes through a maximum, with highest quantum yields of radical formation reaching approx. 1 for Cl/sup -/ and NCS/sup -/; on the other hand, NO/sub 2//sup -/, SO/sub 3//sup 2 -/, and N/sub 3//sup -/ (group II) give AQS/sup -/ in parallel to triplet quenching. The nature of the high-concentration effect shown by group I is analyzed. Some results obtained with mixtures of anions support the conclusion that triplet AQS is also responsible for this effect, and it is suggested that triple exciplexes of the type /sup 3/(AQS/sup -/.X/sub 2//sup -/) are involved. With this view and the recently proposed intraradical spin-orbit-coupling (IRSOC) model, a quantitative interpretation of the results is presented.

  5. Photochemistry of 9,10-anthraquinone-2-sulfonate in solution. Part II. Effects of inorganic anions; quenching vs. radical formation at moderate and high anion concentrations

    SciTech Connect (OSTI)

    Loeff, I.; Treinin, A.; Linschitz, H.

    1983-12-30T23:59:59.000Z

    The chemical aspects of the interactions between excited 9, 10-anthraquinone-2-sulfonate (AQS) and various inorganic anions are examined. The anions which quench triplet AQS can be divided into two groups: Cl/sup -/, Br/sup -/, I/sup -/ and NCS/sup -/ (Group I) photoreduce the quinone to AQS/sup -/ only at concentrations higher than that required for complete triplet quenching. The effect increases with concentration and passes through a maximum with highest quantum yields of radical formation reaching approx. 1 for Cl/sup -/ and NCS/sup -/; NO/sub 2//sup -/, SO/sub 3//sup 2 -/ and N/sub 3//sup -/ (Group II) reduce AQS in parallel to triplet quenching. The nature of the high-concentration effect shown by Group I is analyzed. Some results obtained with mixtures of anions support the conclusion that triplet AQS is also responsible for this effect and it is suggested that triple exciplexes of the type /sup 3/(AQS/sup -/.X/sub 2//sup -/) are involved. With this view and the recently proposed intra-radical-spin-orbit-coupling (IRSOC) model, a quantitative interpretation of the results is presented.

  6. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA)

    1994-01-01T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  7. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, S.G.

    1994-07-26T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  8. Crystal structure and catalytic properties of three inorganic–organic hybrid constructed from heteropolymolybdate and aminopyridine

    SciTech Connect (OSTI)

    Deng, Qian; Huang, Yilan; Peng, Zhenshan; Dai, Zengjin; Lin, Minru [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Tiejun, E-mail: tjcai53@163.com [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2013-04-15T23:59:59.000Z

    Three new organic–inorganic hybrid compounds (2-C{sub 5}H{sub 7}N{sub 2}){sub 3}·(SiMo{sub 12}O{sub 40})·(C{sub 4}H{sub 8}N{sub 4}){sub 0.5}·(C{sub 5}H{sub 6}N{sub 2}){sub 2}·(H{sub 2}O){sub 2} (1), (3-C{sub 5}H{sub 7}N{sub 2}){sub 8}·(SiMo{sub 12}O{sub 40}){sub 2}·(C{sub 5}H{sub 7}N{sub 3}){sub 2}·(H{sub 8}O{sub 4})·(H{sub 2}O){sub 8} (2) and (4-C{sub 5}H{sub 7}N{sub 2}){sub 6}·(SiMo{sub 12}O{sub 40}) (3) composed the heteropolymolybdate ?-H{sub 4}SiMo{sub 12}O{sub 40} and the organic substrate 2/3/4-aminopyridine have been hydrothermally synthesized and characterized by routine methods. Compounds 1 and 2 exhibit a three-dimensional supramolecular network via hydrogen bond and ?–? stacking interactions. Compound 2 contains a tetramolecular water cluster which consists of four water molecules connected by hydrogen bonds. These compounds exhibit good thermal stability and photoluminescent phenomena. Compounds 1 and 3 are active for catalytic oxidation of methanol in a continuous-flow fixed-bed micro-reactor, when the initial concentration of methanol is 2.75 g m{sup ?3} in air and flow rate is 10 mL min{sup ?1} at 150 °C, corresponding to the elimination rate of methanol i.e. 87.7% and 76.8%, respectively. - Three new Keggin type inorganic–organic hybrid frameworks were synthesized. Compounds exhibit an extended three-dimensional supramolecular network. Compounds 1 and 3 have better catalytic activity for eliminating methanol. Highlights: ? Three 3-D Keggin inorganic–organic hybrid frameworks were synthesized. ? The ?–? stacking interactions are existed in Compounds 1 and 2. ? Compound 2 contains a tetramolecular water cluster connected by hydrogen bond. ? Compounds 1 and 3 are active in the catalytic oxidation of methanol into CO{sub 2} and H{sub 2}O.

  9. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19T23:59:59.000Z

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  10. Energy considerations for steam plasma gasification of black liquor and chemical recovery

    SciTech Connect (OSTI)

    Grandy, J.D.; Kong, P.C.

    1995-10-01T23:59:59.000Z

    This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which bums the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

  11. Energy considerations for steam plasma gasification of black liquor and chemical recovery

    SciTech Connect (OSTI)

    Grandy, J.D.; Kong, P.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-07-01T23:59:59.000Z

    This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which burns the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

  12. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  13. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  14. Controlling the release of active compounds from the inorganic carrier halloysite

    SciTech Connect (OSTI)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M. [National Research Council - Institute of Composites and Biomedical Materials, P.le E. Fermi, 1 80055 Portici (Naples) (Italy)

    2014-05-15T23:59:59.000Z

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  15. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12T23:59:59.000Z

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  16. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Berkeley, CA); Colvin, Vicki L. (Berkeley, CA)

    1998-01-01T23:59:59.000Z

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  17. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-14T23:59:59.000Z

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  18. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-01T23:59:59.000Z

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  19. Small angle neutron and X-ray scattering studies of carbons prepared using inorganic templates

    SciTech Connect (OSTI)

    Sandi, G.; Thiyagarajan, P.; Winans, R.E.; Carrado, K.A.

    1997-09-01T23:59:59.000Z

    Small angle neutron (SANS) and X-ray (SAXS) scattering analyses of carbons derived from organic-loaded inorganic template materials, used as anodes in lithium ion cells, have been performed. Two clays were used as templates to load the organic precursors, pillared montmorrillonite (PILC), a layered silicate clay whose sheets have been permanently propped open by sets of thermally stable molecular props, and sepiolite, a natural channeled clay. Five different organic precursors were used to load the PILC: pyrene, styrene, pyrene/trioxane copolymer, ethylene and propylene, whereas only propylene and ethylene were used to load sepiolite. Pyrolysis took place at 700{degrees}C under nitrogen. Values such as hole radius, fractal dimension, cutoff length and density of the final carbons will be compared as a function of the clay and carbon precursors.

  20. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01T23:59:59.000Z

    The emergence of biomolecular homochirality is a critically important question about life phenomenon and the origins of life. In a previous paper (arXiv:1309.1229), I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. However, how a homochirality world of biomolecules could have formed in the absence of enzymatic networks before the origins of life remains unanswered. Here I discussed the electron spin properties in Fe3S4, ZnS, and transition metal doped dilute magnetic ZnS, and their possible roles in the prebiotic synthesis of chiral molecules. Since the existence of these minerals in hydrothermal vent systems is matter of fact, the suggested prebiotic inorganic-organic reaction model, if can be experimentally demonstrated, may help explain where and how life originated on early Earth.

  1. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect (OSTI)

    Wen, J.; Jordens, K.; Wilkes, G.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1996-12-31T23:59:59.000Z

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  2. High-performance hybrid organic-inorganic solar cell based on planar n-type silicon

    SciTech Connect (OSTI)

    Chi, Dan [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Qi, Boyuan; Wang, Jizheng [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Shengchun, E-mail: qsc@semi.ac.cn; Wang, Zhanguo [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-05-12T23:59:59.000Z

    Hybrid organic-inorganic solar cells were fabricated by spin coating the hole transporting conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film on n-type crystalline silicon (n-Si). By incorporating different additives into the PEDOT:PSS, the conductivity and wettability of PEDOT:PSS film are markedly improved, and the device performance is greatly enhanced accordingly. To further optimize the device performance, poly(3-hexylthiophene) (P3HT) layer was inserted between the n-Si and PEDOT:PSS layer. The P3HT layer blocks electrons from diffusing to the PEDOT:PSS, and hence reduces recombination at the anode side. The device eventually exhibits a high power conversion efficiency of 11.52%.

  3. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01T23:59:59.000Z

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?°C as compared with 175?°C for uncoated CNC aerogels, an improvement of over 100?°C.

  4. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  5. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 C

    E-Print Network [OSTI]

    California at Riverside, University of

    compared to treatment with just pressurized hot water at the same temperature. Although the addition, and especially the latter, significantly increased xylose mono- mer and xylotriose degradation in water heated of these inorganic salts produced a significant drop in pH, the degradation rates with salts were much faster than

  6. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    E-Print Network [OSTI]

    von der Linde, D.

    to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

  7. ANALYTICAL METHODS in CHEMICAL ECOLOGY

    E-Print Network [OSTI]

    ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

  8. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  9. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  10. Appendix H. Chemicals Appendix H. Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  11. PhD Chemical Engineering MS Chemical Engineering

    E-Print Network [OSTI]

    Collins, Gary S.

    phenomena in nature and technology. The chemical engineer leverages knowledge of molecular processes across1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School faculty

  12. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01T23:59:59.000Z

    G-31 Fluorocarbonhydrocarbons, and (3) fluorocarbon solvents. However, aHigh Hazard Chemicals Fluorocarbon Solvents Fluorocarbon

  13. November 2006 CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Bordenstein, Seth

    .0 DEPARTMENTAL SAFETY MANAGEMENT 4.1 CHEMISTRY SAFETY COMMITTEE 4.2 TRAINING 4.3 CHEMICAL SAFETY PROTOCOLS 4.2 CHEMICAL HAZARD INFORMATION 6.3 CHEMICAL STORAGE IN LABORATORIES 6.4 WORKING WITH PARTICULARLY HAZARDOUS PROCEDURES 6.8 CHEMICAL WASTE DISPOSAL 6.9 COMPRESSED GASES 6.10 CRYOGENIC LIQUIDS #12;November 2006 3 6

  14. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA)

    1999-03-02T23:59:59.000Z

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  15. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02T23:59:59.000Z

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  16. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thalman, R.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-01-01T23:59:59.000Z

    Multiphase OH and O? oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O? can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O? is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O? exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O? exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  17. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Somasundaran, P.

    1994-08-31T23:59:59.000Z

    The aim of this contract is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations and other inorganic and polymeric species will also be determined. Solids of relevant mineralogy and a multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability will be used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes.

  18. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28T23:59:59.000Z

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  19. Small angle neutron scattering characterization of the porous structure of carbons prepared using inorganic templates

    SciTech Connect (OSTI)

    Sandi, G.; Thiyagarajan, P.; Carrado, K.A.; Winans, R.E. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

    1999-02-01T23:59:59.000Z

    Small angle neutron scattering (SANS) was used for the characterization of the microstructure of carbons derived from organic-loaded inorganic template materials that are used as anodes in lithium ion cells. Pillared clays (PILC), layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props, were used as a template to load the organic precursors. Five organic precursors, namely pyrene, styrene, pyrene/trioxane copolymer, ethylene, and propylene, were used to load the PILC. Pyrolysis was carried out at 700 C under nitrogen atmosphere. From SANS, information has been derived about the pore radius, mass fractal dimension, and the cutoff length (above which the fractal property breaks down) on each carbon. In general, the pore radius ranges from 4 to 11 {angstrom}, and the mass fractal dimension varies in the range from 2.5 to 2.9. Contrast-match SANS studies of carbons wetted in 84% deuterated toluene indicate that a significant amount of pores in carbon from pyrene are not accessible to the solvent, while most of the porous network of carbon from propylene is accessible.

  20. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

  1. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOE Patents [OSTI]

    Liu, Wei

    2014-05-06T23:59:59.000Z

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  2. Review of Wildfire Effects on Chemical Water Quality

    SciTech Connect (OSTI)

    Kelly Bitner; Bruce Gallaher; Ken Mullen

    2001-05-01T23:59:59.000Z

    The Cerro Grande Fire of May 2000 burned almost 43,000 acres of forested land within the Pajarito Plateau watershed in northern New Mexico. Runoff events after the fire were monitored and sampled by Los Alamos National Laboratory. Changes in the composition of runoff water were noted when compared to runoff water composition of the previous 20 years. In order to understand the chemical water quality changes noted in runoff water after the Cerro Grande Fire, a summary of the reported effects of fire on runoff water chemistry and on soils that contribute to runoff water chemistry was compiled. The focus of this report is chemical water quality, so it does not address changes in sediment transport or water quantity associated with fires. Within the general inorganic parameters, increases of dissolved calcium, magnesium, nitrogen, phosphorus, and potassium and pH in runoff water have been observed as a result of fire. However, the dissolved sodium, carbon, and sulfate have been observed to increase and decrease as a result of fire. Metals have been much less studied, but manganese, copper, zinc, and cesium-137 have been observed to increase as a result of fire.

  3. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  4. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    None

    2013-07-24T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  5. Chemical and Biochemical

    E-Print Network [OSTI]

    Neimark, Alexander V.

    - nology fields where they can test the side effects of antibiotics or develop agricultural chemicals clean drinking water to a village in Kenya, a country experiencing its worst drought in 20 years," said and three collab- orating institutions to improve the manufacture of pharmaceutical, food, and agricultural

  6. Hybrid inorganic-organic, organic charge transfer, and radical based compounds with chalcofulvalene donors and organic acceptors

    E-Print Network [OSTI]

    Reinheimer, Eric Wade

    2009-05-15T23:59:59.000Z

    HYBRID INORGANIC-ORGANIC, ORGANIC CHARGE TRANSFER, AND RADICAL BASED COMPOUNDS WITH CHALCOFULVALENE DONORS AND ORGANIC ACCEPTORS A Dissertation by ERIC WADE REINHEIMER Submitted to the Office of Graduate Studies... COMPOUNDS WITH CHALCOFULVALENE DONORS AND ORGANIC ACCEPTORS A Dissertation by ERIC WADE REINHEIMER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  7. Removal mechanisms of organic and inorganic solutes in raw, upland drinking water by nanofiltration: influence of solute-solute and solute-membrane interactions 

    E-Print Network [OSTI]

    De Munari, Annalisa; Munari, Annalisa de

    2012-11-29T23:59:59.000Z

    Nanofiltration (NF) membranes have been applied successfully for the removal of inorganic and organic pollutants, including micropollutants, from drinking water for the past two decades. However, a complete and quantitative ...

  8. Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina

    E-Print Network [OSTI]

    Cauffman, Toya Lyn

    1987-01-01T23:59:59.000Z

    DETERMINATION OF TRANSPORT PARAMETERS OF COINCIDENT INORGANIC AND ORGANIC PLUMES IN THE SAVANNAH RIVER PLANT M-AREA, AIKEN, SOUTH CAROLINA A Thesis by TOYA. LYN CAUFFMAN Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1987 Major Subject: Geology DETERMINATION OF TRANSPORT PARAMETERS OF COINCIDENT INORGANIC AND ORGANIC PLUMES IN THE SAVANNAH RIVER PLANT M-AREA, AIKEN& SOUTH CAROLINA A Thesis...

  9. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  10. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  11. Appendix H: Chemicals Appendix H: Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  12. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-Print Network [OSTI]

    Pennycook, Steve

    such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  13. COOEE bitumen: chemical aging

    E-Print Network [OSTI]

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01T23:59:59.000Z

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  14. Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001

    E-Print Network [OSTI]

    conditions of low dust loading, SO2 condensation and gas phase ammonia distribution determine the nitrate includes the on-line gas-aerosol thermodynamic module SCAPE II, and explicitly considers chemical aging of dust, is used in the analysis. The model is found to represent many of the important observed features

  15. AGRI-SCIENCE CHEMICAL BIOLOGY

    E-Print Network [OSTI]

    photosynthetic efficiency Improve chemical agronomic and agro-ecological control measures Modelling through translation of chemical biology tools and technologies Control weeds, disease and pests Minimise a platform to steer future research and policy directions. · Encourage external outreach to engage

  16. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01T23:59:59.000Z

    Radioactive Hazardous or Other Location LBL On-Site Bldgs.hazardous chemicals usedin the laboratory: and (v} The locationhazardous chemicals are present: and. (irl}The location and

  17. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  18. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  19. Cotton Harvest-Aid Chemicals.

    E-Print Network [OSTI]

    Metzer, Robert B.; Supak, James

    1987-01-01T23:59:59.000Z

    of Application Managing Harvest-Aid Program Secondary Growth Insect Control Care of Equipment Safety with Chemicals Guide for Using Cotton Harvest Aids Defoliants Desiccants Mixtures Plant Regulators-Conditioners 3 3 4 4 4 4 5 5 6 7 7 COTTON... HARVEST-AID CHEMICALS Robert B. Metzer and James Supak* As the name implies, harvest-aid chemicals pre pare the cotton crop for harvest by reducing foliage and plant moisture that interfere with harvesting operations. Harvest-aid chemicals...

  20. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research University of California at Santa Barbara Spectroscopy Department Chemical Hygiene Plan NMR and EPR

  1. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs______________________19 #12;3 Introduction 10/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Department Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information

  2. Effect of chronic inhalation of inorganic arsenic on the risk of stillbirth in a community surrounding an agriculture chemical production facility: a hospital-based study

    E-Print Network [OSTI]

    Ihrig, Melanie M

    1997-01-01T23:59:59.000Z

    was exposed to levels of airborne arsenic not typically found in the environment in the United States, and in excess of Texas state Effect Screening Level (ESL). A hospital-based, case-control study of stillbirths was conducted at a major delivery hospital...

  3. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  4. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  5. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  6. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  7. Carbon Emissions: Chemicals Industry

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic Feet) Cameron,Chemicals

  8. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic LawEnergyEnhanced Chemical Cleaning

  9. Sandia Energy - Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & ComputationalBriefChemical

  10. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  11. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Chemicals for Plant Disease Control at Home

    E-Print Network [OSTI]

    Ong, Kevin

    2007-10-30T23:59:59.000Z

    common chemical names and the corresponding chemical name for each active ingredient. Kevin Ong* ?Assistant Professor and Extension Plant Pathologist, The Texas A&M University System Table 1. Plant disease control chemicals. Common name Chemical name 1...

  16. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  17. MASS SPECTROMETRIC APPROACHES FOR CHEMICAL CHARACTERISATION OF...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASS SPECTROMETRIC APPROACHES FOR CHEMICAL CHARACTERISATION OF ATMOSPHERIC AEROSOLS: CRITICAL REVIEW OF MOST RECENT ADVANCES. MASS SPECTROMETRIC APPROACHES FOR CHEMICAL...

  18. NATIONAL INSTITUTES OF Chemical Hygiene Plan

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NATIONAL INSTITUTES OF HEALTH Chemical Hygiene Plan Division of Occupational Health Chemical Hygiene Plan Evaluation and Record Keeping

  19. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  20. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  1. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-02-17T23:59:59.000Z

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  2. COSIMA-Rosetta calibration for in-situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds

    E-Print Network [OSTI]

    Krüger, Harald; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, François-Régis; Rynö, Jouni; Schulz, Rita; Silen, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin

    2015-01-01T23:59:59.000Z

    COSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{\\Delta}m of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these mi...

  3. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31T23:59:59.000Z

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  4. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  5. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    cost and risk in chemical manufacturing facilities. 24 25 At the core of PI is the optimization of process performance by focusing on molecular level kinetics, 26...

  6. Chemical Biology Chemical Screening for Hair Cell Loss and Protection

    E-Print Network [OSTI]

    Rubel, Edwin

    Chemical Biology Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line Rubel,1,2 and David W. Raible1,4 Abstract In humans, most hearing loss results from death of hair cells, the mechanosensory receptors of the inner ear. Two goals of current hearing research are to protect hair cells from

  7. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    SciTech Connect (OSTI)

    B.G. Potter, Jr.

    2010-10-15T23:59:59.000Z

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  8. Page 1 of 3 MITSUBISHI CHEMICAL CENTER FOR ADVANCED MATERIALS

    E-Print Network [OSTI]

    Bigelow, Stephen

    and hybrid organic-inorganic materials for electronic and optical device applications and has put into place involve the design, synthesis, characterization, and/or fabrication of new functional materials or devices, especially those based on organic or hybrid organic-inorganic materials, which could have application

  9. American Chemical Society Division of Colloid and Surface Chemistry

    E-Print Network [OSTI]

    Wagner, Oliver

    Crystals M. A. Banares, Organizer Papers 241-245 · Synthesis and Structure of Organic and Inorganic Oxide, Organizer Papers 260-265 · Synthesis and Structure of Organic and Inorganic Oxide or Sulfide Composites S. Banares, Organizer Papers 5-9 · Applications of Porous Materials in Environmental Problems T. J. Bandosz

  10. Chemical Evolution in Omega Centauri

    E-Print Network [OSTI]

    Verne V. Smith

    2003-10-22T23:59:59.000Z

    The globular cluster Omega Centauri displays evidence of a complex star formation history and peculiar internal chemical evolution, setting it apart from essentially all other globular clusters of the Milky Way. In this review we discuss the nature of the chemical evolution that has occurred within Omega Cen and attempt to construct a simple scenario to explain its chemistry.

  11. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Sideris, Thomas C.

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research Hygiene Plan NMR and EPR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  12. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

    2007-10-09T23:59:59.000Z

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  13. DEPARTMENT OF CHEMISTRY AND CHEMICAL BIOLOGY

    E-Print Network [OSTI]

    Lawson, Catherine L.

    Semiconducting and Porous Materials: Synthesis, Properties, and Applications" Abstract: The self in the synthesis of reduced TiO2 as photocatalytic materials for water reduction will also be covered. Host of either organic or inorganic species as structure directing agents. The structural analysis based

  14. Research on fundamental aspects of inorganic vapor and particle deposition in coal-fired systems

    SciTech Connect (OSTI)

    Rosner, D.E.

    1992-06-01T23:59:59.000Z

    Parallel research studies are underway on the following interrelated and fundamental subjects; Geometrical Approach to Determining the Sticking Probability of Particles Impacting on Convex Solid Surfaces; Correlations for High Schmidt Number Particle Deposition From Dilute Flowing Rational Engineering Suspensions; Average Capture Probability of Arriving Particles Which Are Distributed With ResPect to ImPact VelocitY and Incidence Angle (Relative to Deposit Substrate); Experimental and Theoretical Studies of Vapor Infiltration of Non-isothermal Granular Deposits; Effective Area/Volume of Populations of 'MicroPorous' Aerosol Particles (Compact and 'Fractal' Quasispherical Aggregates); Effects of Radiative Heat Transfer on the Coagulation Rates of Combustion-Generated Particles; Structure-Sensitivity of Total Mass Deposition Rates from Combustion Product Streams containing Coagulation-Aged Populations of Aggregated Primary Particles; and Na[sub 2]SO[sub 4] Chemical Vapor Deposition From Chlorine-containing Coal-Derived Gases.

  15. Temperature Dependent Interaction Non-Additivity in the Inorganic Ionic Clusters

    E-Print Network [OSTI]

    Chaban, Vitaly V

    2015-01-01T23:59:59.000Z

    Interaction non-additivity in the chemical context means that binding of certain atom to a reference atom cannot be fully predicted from the interactions of these two atoms with other atoms. This constitutes one of key phenomena determining an identity of our world, which would have been much poorer otherwise. Ionic systems provide a good example of the interaction non-additivity in most cases due to electron transfer and delocalization effects. We report Born-Oppenheimer molecular dynamics (BOMD) simulations of LiCl, NaCl, and KCl at 300, 1500, and 2000 K. We show that our observations originate from interplay of thermal motion during BOMD and cation nature. In the case of alkali cations, ionic nature plays a more significant role than temperature. Our results bring fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering.

  16. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  17. Department of Biological, Chemical and Physical Sciences IIT Graduate Bulletin 20062008

    E-Print Network [OSTI]

    Heller, Barbara

    Physics Synthesis and Characterization of Inorganic Materials Synthesis and Characterization of Organic Analytical Spectroscopy Characterization of Inorganic and Organic Materials Chromatography Radiological Master of Chemistry Master of Chemistry in Analytical Chemistry Master of Chemistry in Materials

  18. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  19. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06T23:59:59.000Z

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  20. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

    1993-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  1. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  2. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31T23:59:59.000Z

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  3. Alternatives for balanced production of fibers, chemicals, and energy from wood

    SciTech Connect (OSTI)

    Sjoestroem, E.

    1983-01-01T23:59:59.000Z

    Increased oil prices and shortage of fossil materials have recently focused interest on the possibilities of conversion of wood to various forms of fuels and chemicals. It is to be expected that new approaches are emerging from the totality of the research effort now in progress. However, irrespective of this, the function of wood as a construction material and a source for fibers presumably remains unchanged or even becomes more important in the future. In regard to the principal pulping methods for production of fibers, no abrupt changes in current practices are probable, apart from important progress in energy saving. In a very favorable situation of the kraft process, when surplus energy generated from the burning of black liquor is availiable, a partial recovery of dissolved organic solids, such as lignin and carbohydrates and their degradation products, becomes more attractive. Quite different is the case of the conventional sulfite process when evaporation and burning of the spent liquor result in severe air pollution. Successful recovery, conversion, and marketing of the dissolved solids can then be the only way to compensate for the expense of using external fuel. Alternatives for production of organic chemicals from kraft and sulfite spent liquors are discussed by taking into consideration the fiber production, composition of dissolved solids, energy requirements, pollution problems, and recovery of inorganic pulping chemicals. 11 references, 10 figures, 5 tables

  4. Influence of image charge effect on exciton fine structure in an organic-inorganic quantum well material

    SciTech Connect (OSTI)

    Takagi, Hidetsugu; Kunugita, Hideyuki; Ema, Kazuhiro [Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sato, Mikio; Takeoka, Yuko [Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2013-12-04T23:59:59.000Z

    We have investigated experimentally excitonic properties in organic-inorganic hybrid multi quantum well crystals, (C{sub 4}H{sub 9}NH{sub 3}){sub 2}PbBr{sub 4} and (C{sub 6}H{sub 5}?C{sub 2}H{sub 4}NH{sub 3}){sub 2}PbBr{sub 4}, by measuring photoluminescence, reflectance, photoluminescence excitation spectra. In these materials, the excitonic binding energies are enhanced not only by quantum confinement effect (QCE) but also by image charge effect (ICE), since the dielectric constant of the barrier layers is much smaller than that of the well layers. By comparing the 1s-exciton and 2s-exciton energies, we have investigated the influence of ICE with regard to the difference of the Bohr radius.

  5. UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES

    SciTech Connect (OSTI)

    DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

  6. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  7. Total and Inorganic Arsenic in Mid-Atlantic Marine Fish and Shellfish and Implications for Fish Advisories

    SciTech Connect (OSTI)

    Greene, Richard; Crecelius, Eric A.

    2006-02-06T23:59:59.000Z

    Up to 33.3 metric tons of arsenic trioxide were spilled off the Middle Atlantic coast of the United States in January of 1992 during a shipping accident. Historical fish tissue data for samples collected in the Delaware Inland Bays before and after the spill reveal a prominent spike in total arsenic in summer flounder following the spill and a gradual decline ever since. In 2002, a small study was conducted to determine whether summer flounder migrating into the Delaware Inland Bays from the Continental Shelf in the spring contain higher body burdens of arsenic than summer flounder migrating out of the Inland Bays in the fall. Total arsenic was significantly higher in the incoming fish. Considering that summer flounder overwinter at the spill site, that arsenic trioxide is a dense powder of limited solubility that would tend to incorporate into the sediments, and that summer flounder are demersal fish, we conclude that summer flounder accumulate arsenic offshore and that the likely source of their extra body burden is the spilled arsenic. Speciation of arsenic in the summer flounder, as well as in Atlantic croaker, striped bass, and hard clam reveal low concentrations (0.5 ? 20 ug/kg ww) of toxic inorganic arsenic. DMA was more than an order of magnitude greater in hard clam meats than in the other species tested, a finding attributed to arsenic uptake by phytoplankton and subsequent dietary uptake by the clam. Risk assessment using the inorganic arsenic concentrations was used to conclude that a fish advisory is not warranted.

  8. Non-planar chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Sokolowski, Sara S. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2006-10-10T23:59:59.000Z

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  9. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Some Inorganic Substances, Chlorinated Hydrocarbons, Aromatic Amines, N-Nitroso Compounds,

    E-Print Network [OSTI]

    Barthelat, Francois

    Inorganic Substances, Chlorinated Hydrocarbons, Aromatic Amines, N-Nitroso Compounds, and Natural Products 1973; 181 pages ISBN 92 832 1202 9 (out of print) Volume 3 Certain Polycyclic Aromatic Hydrocarbons, and Acrolein 1979; 513 pages ISBN 92 832 1219 3 (out of print) Volume 20 Some Halogenated Hydrocarbons 1979

  10. Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering

    E-Print Network [OSTI]

    Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

  11. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering

    E-Print Network [OSTI]

    Azevedo, Ricardo

    | Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

  12. DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY CHEMICAL HYGIENE

    E-Print Network [OSTI]

    Firestone, Jeremy

    DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY CHEMICAL HYGIENE PLAN #12, 2014 #12;University of Delaware Department of Environmental Health & Safety Chemical Hygiene) #12;University of Delaware Department of Environmental Health & Safety Chemical Hygiene Plan

  13. California Institute of Technology CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Faraon, Andrei

    California Institute of Technology CHEMICAL HYGIENE PLAN Caltech Environment, Health, and Safety: safety@caltech.edu Website: www.safety.caltech.edu #12;CHEMICAL HYGIENE PLAN ­ AUGUST 2013 Page 2 of 45 CHEMICAL HYGIENE PLAN Table of Contents INTRODUCTION

  14. chemical (CHE) CHE overview programs available

    E-Print Network [OSTI]

    Rohs, Remo

    , Environmental, Manufacturing and Petroleum En- gineering. Programs Available · Chemical Engineering Bachelor Engineering (Environmental) Bachelor of Science 135 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering (Polymer Science) Bachelor of Science 136 units · Petroleum

  15. New Science for Chemicals Policy

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    of the State-of-the-Science of Endocrine Disruptors (WHO,461, 472 (2009). 17. NRC, Science and Decisions: AdvancingPOLICYFORUM SCIENCE AND REGULATION New Science for Chemicals

  16. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2007-01-30T23:59:59.000Z

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  17. CHEN 3600 Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4

    E-Print Network [OSTI]

    Clement, Prabhakar

    CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE: "Engineering With Excel" Larsen Page 2 will be added using "cutting and pasting". #12;CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical

  18. Sandia National Laboratories: MOgene Green Chemicals LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOgene Green Chemicals LLC Sandia to Partner with MOgene Green Chemicals on ARPA-E REMOTE Project On October 2, 2013, in Energy, News, News & Events, Partnership, Research &...

  19. Multidimensional simulation and chemical kinetics development...

    Broader source: Energy.gov (indexed) [DOE]

    Developing chemical kinetic mechanisms and applying them to simulating engine combustion processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on...

  20. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

  1. Correlations Between Optical, Chemical and Physical Properties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols....

  2. Keeping Tabs on the World's Dangerous Chemicals

    Broader source: Energy.gov [DOE]

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  3. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov |...

  4. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering

    SciTech Connect (OSTI)

    Ryan, Joseph V.; Pantano, C. G.

    2007-01-03T23:59:59.000Z

    Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2?2x) Cx films, with a continuous range of compositions where 0

  5. Inorganic-organic hybrid materials and abrasion resistant coatings based on a sol-gel approach

    SciTech Connect (OSTI)

    Betrabet, C.S.

    1993-01-01T23:59:59.000Z

    Attempts to synthesize hybrid materials from polytetramethylene oxide (PTMO) end-functionalized with triethoxy silyl groups and, tetraethylorthosilicate (TEOS) under basic conditions met with only partial success. The films obtained had low mechanical stability. In contrast, films with good mechanical stability were obtained when the TEOS was replaced with tritanium tetraisopropoxide (TIOPR). The microstructure of the TIOPR/PTMO hybrid synthesized under near neutral conditions was generally similar to the acid catalyzed PTMO/TIOPR hybrids. In another closely related study, the effect of subjecting acid catalyzed hybrid materials to aqueous and basic solutions was examined. Two chemically different systems were chosen which were namely the PTMO-TEOS system and the PTMO-TIOPR system. In addition to the difference in the reactivity between the TEOS and TIOPR, another point of differentiation was the relative solubility of the silicon oxide in basic aqueous solutions in contrast to the relative insolubility of the titanium oxide species in all but the very concentrated basic solutions. An application of the hybrid materials in the area of abrasion resistant coatings was also studied. The effects of the various organic structures on abrasion resistance, the extent of reaction and the mechanism of abrasion was examined. Various low molecular weight organics were functionalized triethoxy silyl groups and coated on polycarbonate and cured. They were then subjected to a Taber abrader test. The results showed that all the functionalized organics showed better abrasion resistance than the polycarbonate if sufficiently cured. NMR data showed that the reaction of the functionalized coatings was limited by vitrification and the extent of reaction was influenced by the basicity of the organic backbone. SEM observations of the abraded surfaces showed that the polycarbonate was abraded by a mechanism different from the functionalized coatings.

  6. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Oliver, Douglas L.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

  7. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

  8. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

  9. Northern California Nanotechnology Center Chemical Hygiene Plan

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Northern California Nanotechnology Center Chemical Hygiene Plan Rev 11/12 Page 1 Northern California Nanotechnology Center Chemical Hygiene Plan 1.0 Introduction Cal-OSHA (Title 8 CCR 5191) and campus regulations require that all laboratories have a written Chemical Hygiene Plan. The Chemical

  10. Chemical Hygiene Plan 1.0 Introduction

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Chemical Hygiene Plan 1.0 Introduction Satisfying Cal-OSHA (Title 8 CCR 5191) and campus regulations, this Chemical Hygiene Plan includes safety information specific to the Center for Nano and Micro chemicals and gasses available. If you have any questions about this Chemical Hygiene Plan, please email

  11. Dimension Reduction of Chemical Process Simulation Data

    E-Print Network [OSTI]

    Truemper, Klaus

    of a laminar methane/air combustion process described by 29 chemical species, 3 thermodynamic properties] for the computational effort carried out for some 3-dimensional models. Reduced chemical schemes, for example, ILDM-based memory as well. These chemical schemes are based on an analysis of chemical pathways that identifies

  12. Master of Engineering (ME), Major: Chemical Engineering

    E-Print Network [OSTI]

    Shihadeh, Alan

    Master of Engineering (ME), Major: Chemical Engineering Apply Now The Chemical Engineering Program to the following degrees: Master of Engineering, major Chemical Engineering The ME program will be open to students with a Bachelor of Engineering (BE) in Chemical Engineering, or other related disciplines

  13. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01T23:59:59.000Z

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  14. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  15. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    SciTech Connect (OSTI)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-06-29T23:59:59.000Z

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

  16. Amyn S. Teja Title: Regents' Professor Emeritus, Chemical & Biomolecular Engineering

    E-Print Network [OSTI]

    Das, Suman

    Materials & Processes Research Areas of Interest Continuous hydrothermal synthesis of inorganic supercritical fluids," in Supercritical Fluid Technology in Materials Science and Engineering: Synthesis for Electronics and Nanotechnology Technology Areas MEMS/NEMS Nanostructures & Materials Semiconductor

  17. Thematic Questions about Chemical Elements Nature of the chemical elements

    E-Print Network [OSTI]

    Polly, David

    Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental thorium uranium Relativeabundance(Si=106)Relative Abundance in the Sun · non-uniform trend G302.protons 90 234Th 145 #12;5 Alpha Decay - Loss of He Atom · Decay of Uranium-238 to Thorium-234 G302

  18. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21T23:59:59.000Z

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  19. Recycling and surplus chemical programs

    SciTech Connect (OSTI)

    Harper, T.J.

    1993-05-01T23:59:59.000Z

    In 1988, 45 years of defense production came to a close at the US Department of Energy (DOE) Hanford Site. The mission of the Hanford Site was formally changed to environmental restoration and remediation. Westinghouse Hanford Company (WHC) is the management and operations (M&O) contractor leading the cleanup. Within the framework of future Site cleanup, Hanford recycling and surplus chemical programs are making a viable contribution today to waste minimization, diversion of materials from the waste stream, and setting a standard for future operations. This paper focuses on two successful efforts: paper recycling and surplus chemical sales.

  20. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  1. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Quarterly technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Somasundaran, P.

    1993-02-01T23:59:59.000Z

    The aim of this project is to elucidate the mechanisms of adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations and other inorganic and polymeric species will also be determined using solids of relevant mineralogy. A multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability will be used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. Adsorption of selected individual surfactants on oxide minerals was determined. The aim was to characterize the microstructure of the adsorbed layers. Work was began with alkyl phenoxy polyoxyether type nonionic surfactants and anionic meta xylene sulfonates.

  2. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. [Alkyl phenoxy polyoxyether type nonionic surfactants and anionic meta xylene sulfonates

    SciTech Connect (OSTI)

    Somasundaran, P.

    1993-02-01T23:59:59.000Z

    The aim of this project is to elucidate the mechanisms of adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations and other inorganic and polymeric species will also be determined using solids of relevant mineralogy. A multi-pronged approach consisting of micro nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability will be used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. Adsorption of selected individual surfactants on oxide minerals was determined. The aim was to characterize the microstructure of the adsorbed layers. Work was began with alkyl phenoxy polyoxyether type nonionic surfactants and anionic meta xylene sulfonates.

  3. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    SciTech Connect (OSTI)

    Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2014-09-14T23:59:59.000Z

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO{sub 2} micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632?nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2??m wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.

  4. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors

    SciTech Connect (OSTI)

    Gash, A E; Tillotson, T M; Satcher Jr, J H; Hrubesh, L W; Simpson, R L

    2000-09-12T23:59:59.000Z

    We have developed a new sol-gel route to synthesize several transition and main-group metal oxide aerogels. The approach is straightforward, inexpensive, versatile, and it produces monolithic microporous materials with high surface areas. Specifically, we report the use of epoxides as gelation agents for the sol-gel synthesis of chromia aerogels and xerogels from simple Cr(III) inorganic salts. The dependence of both gel formation and its rate was studied by varying the solvent used, the Cr(III) precursor salt, the epoxide/Cr(III) ratio, as well as the type of epoxide employed. All of these variables were shown to affect the rate of gel formation and provide a convenient control of this parameter. Dried chromia aerogels were characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses, results of which will be presented. Our studies have shown that rigid monolithic gels can be prepared from many different metal ions salts, provided the formal oxidation state of the metal ion is greater than or equal to +3. Conversely, when di-valent transition metal salts are used precipitated solids are the products.

  5. Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    skills and knowledge in the chemical, engineering and socio-economic aspects of drug and specialityChemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of --Chemical Engineering and Chemical Technology This publication refers to the session 2009­10. The information given

  6. Fe{sub 3}O{sub 4}–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries

    SciTech Connect (OSTI)

    Guo, Qixun, E-mail: qxguo@xmu.edu.cn; Guo, Pengfei; Li, Juntao, E-mail: jtli@xmu.edu.cn; Yin, Hao; Liu, Jie; Xiao, Feilong; Shen, Daoxiang; Li, Ning

    2014-05-01T23:59:59.000Z

    Fe{sub 3}O{sub 4}–CNTs nanocomposites with a particle size of ?80 nm have been synthesized through an organic-free hydrothermal synthesis strategy by using Sn(OH){sub 6}{sup 2?} as an inorganic dispersant, and served as anode materials of lithium ion batteries. Nano-sized and micro-sized Fe{sub 3}O{sub 4} without CNTs have also been prepared for comparison. The cycle performances of the as-obtained Fe{sub 3}O{sub 4} are highly size-dependent. The Fe{sub 3}O{sub 4}–CNTs nanocomposites can deliver reversible discharge capacity of ?700 mA h/g at a current density of 50 mA/g after 50 cycles. The discharge capacity of the micro-sized Fe{sub 3}O{sub 4} decreased to 171 mA h/g after 50 cycles. Our work not only provides new insights into the inorganic dispersant assisted hydrothermal synthesis of metal oxides nanocrystals but also gives guidance for finding new nanocomposites as anode materials of lithium ion batteries. - Graphical abstract: Fe{sub 3}O{sub 4}–CNTs nanocomposites have been prepared through an inorganic dispersant assisted hydrothermal synthesis strategy, and served as anode materials of lithium ion batteries with enhanced performance. - Highlights: • Sn(OH){sub 6}{sup 2?} is a good inorganic dispersant for the hydrothermal synthesis of nano Fe{sub 3}O{sub 4}. • The cycle performances of nano Fe{sub 3}O{sub 4} anode are much better than that of micro Fe{sub 3}O{sub 4} anode. • Compositing CNTs can enhance the cycle performances of nano Fe{sub 3}O{sub 4} anode.

  7. Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices

    SciTech Connect (OSTI)

    Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

  8. Chemical emergency preparedness and prevention advisory: Hydrogen fluoride, series 8, No. 3

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The advisory recommends ways Local Emergency Planning Committees (LEPCs) and chemical facilities can reduce risks posed by the presence of hydrogen fluoride (HF) in their communities. Hydrogen fluoride, a strong inorganic acid, is produced and used as a gas or liquid without water (i.e., in anhydrous form), or in a water (aqueous) solution. Inhalation of hydrogen fluoride vapor, either in anhydrous form or from water solutions, can cause irritation if the exposure is mild (i.e., low concentration in air for a short time), or severe damage to the respiratory system or death in the case of exposure to high concentrations. Contact with the liquid or vapor can severely burn the skin, eyes, and other tissue. The largest use of hydrogen fluoride is in the manufacture of fluorine-containing chemicals, particularly chlorofluorocarbons (CFCs). Hydrogen fluoride may be used in some petroleum refinery operations, aluminum production, nuclear applications, glass etching and polishing, and metal treating and cleaning. Hydrogen fluoride's acute toxicity prompted EPA to list it as an extremely hazardous substance (EHS), with a threshold planning quantity (TPQ) of 100 pounds, under Section 302 of the Emergency Planning and Community Right-to-Know Act (commonly known as SARA Title III).

  9. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  10. Qualitative Theory and Chemical Explanation

    E-Print Network [OSTI]

    Weisberg, Michael

    Abstract Roald Hoffmann and other theorists claim that we we ought to use highly idealized chemical models defend Hoffmann's norm for modelling. Many thanks to Michael Friedman, Robin Hendry, Ben Kerr, Deena to thank Roald Hoffmann who has been an in- spiring mentor and who's reflections on the philosophical

  11. CompositionsCHEMICAL Mallet Library

    E-Print Network [OSTI]

    CompositionsCHEMICAL Mallet Library Chairman's Corner Computer facility opens West wing renovation fall 1996 chemistry & biochemistry departmental newsletter The Chemistry Library has existed almost- istry Department and of the General Libraries, from modest beginnings in the late 19th century

  12. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18T23:59:59.000Z

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  13. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07T23:59:59.000Z

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  14. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

  15. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    Science, Biochemical, Environmental and Petroleum Engineering. CHEMICAL & MATERIALS SCIENCE CHE OVERVIEW (Environmental) Bachelor of Science 135 units Chemical Engineering (Petroleum) Bachelor of Science 136 units Chemical Engineering (Polymer Science) Bachelor of Science 136 units Petroleum Engineering minor

  16. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01T23:59:59.000Z

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  17. NEC Hazardous classification and compliance regarding the surface moisture monitor measurement system

    SciTech Connect (OSTI)

    Bussell, J.H., WHC

    1996-06-12T23:59:59.000Z

    The National Electrical Code, NFPA 70, and National Fire Protection Association requirements for use of Surface Moisture Monitor Systems in classified locations are discussed. The design and configuration of the surface moisture monitor are analyzed with respect to how they comply with requirements of the National Electrical Code requirements, articles 500-504.

  18. SUGGESTIONS FOR WIRING ENPHASE MICROINVERTERS Code references are to the 2008 NEC except where noted

    E-Print Network [OSTI]

    Johnson, Eric E.

    with the various inverter modules. I have four of these inverters connected to Sharp PV modules and bolted inverters attached. These combinations of PV modules and microinverters do not meet the definition or requirements associated with true AC PV Modules as defined in 690.2 and in 690.6. Instructions supplied

  19. Tailored usage of the NEC SX-8 and SX-9 systems

    E-Print Network [OSTI]

    Stuttgart, Universität

    spherical harmonics): V(, , r) = GM R l=0 l m=0 R r l+1 ŻPlm(sin ) (Żclm cos m + Żslm sin m) gravitational) = GM R3 l=0 l m=0 R r l+3 (l + 1)(l + 2)· · ŻPlm(sin )[Żclm cos m + Żslm sin m] #12;Methodology (2) 7 in A: Vrr Żclm = L m=0 cos m L l=m GM R3 R r l+3 (l + 1)(l + 2) ŻPlm(sin ) Vrr Żslm = L m=0 sin m L l

  20. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    profilefull.pdf More Documents & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals:...

  1. Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

    SciTech Connect (OSTI)

    Bond, Tami C; Rood, Mark J; Brem, Benjamin T; Mena-Gonzalez, Francisco C; Chen, Yanju

    2012-04-16T23:59:59.000Z

    Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively in situ at 467 and 530 nm. Closure modeling with the dynamic effective medium approximation (DEMA) refractive index model was able to capture the increasing absorption trend with RH indicating that the droplets were heterogeneously mixed while containing dispersed insoluble absorbing material within those droplets. Seven other refractive index mixing models including LVA did not adequately describe the measurements for OC. Mixing the biomass OC aerosol with select mass fractions of ammonium sulfate ranging from 25 to 36% and sodium chloride ranging from 21 to 30% resulted in an increase in light scattering and extinction with RH and inorganic mass fraction. However, no detectable difference in light absorption behavior in comparison to pure biomass OC was observed. The main finding of this research is a measured increase in absorption with increasing RH, which is currently not represented in radiative transfer models even though biomass burning produces most of the primary OC aerosol in the atmosphere.

  2. 1932 Inorganic Chemistry, Vol. 14, No. 8,1975 George M. Bodner Contribution from the William A. Noyes Laboratory,

    E-Print Network [OSTI]

    Bodner, George M.

    of tungsten carbonyl derivatives which question the generality of this correlation. A linear correlation may = C1, Me, OMe, OPh). The effect upon the carbonyl chemical shift of the replacement of X by Y replacement of carbonyl by phosphorus ligands. An excellent correlation is observed between the carbonyl

  3. Biotreatment techniques get chemical help

    SciTech Connect (OSTI)

    Elizardo, K. (Solvay Interox, Houston, TX (United States))

    1993-11-01T23:59:59.000Z

    Biological treatment methods for contaminated soils and groundwater, including landfarming, pump-and-treat bioreactors and in situ bioremediation, are using hydrogen peroxide (H[sub 2]O[sub 2]) as an oxidant to reduce cleanup time and save money. Some examples of how the chemical is being used include the following: recent studies indicate peroxygen compounds, such as calcium peroxide, can be used to chemically aerate soils in landfarming applications. Pump-and-treat bioreactor systems for treating halogenated aliphatics can use an H[sub 2]O[sub 2] solution to deliver oxygen to oxygen-deficient systems. The solution has proven effective for improving bioreactor efficiency during limited oxygen solubility; in situ peroxidation can be used to partially oxidize soil contaminants to reduce their toxicity and enhance their biodegradability in the unsaturated zone prior to in situ bioremediation.

  4. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  5. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiological ScienceCareers Careers ComeChemical Science

  6. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01T23:59:59.000Z

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  7. Alternative Energy Department of Chemical Engineering

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Alternative Energy Department of Chemical Engineering Graduate Handbook 2014-2015 Victoria Heberling, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical

  8. Alternative Energy Department of Chemical Engineering

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Alternative Energy Department of Chemical Engineering Graduate Handbook 2013-2014 Gina Eagan, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical Engineering Page

  9. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Studying the Solar System's Chemical Recipe Print Tuesday, 26 March 2013 00:00 To study the origins of different isotope ratios among...

  10. Future scenarios for green chemical supply chains

    E-Print Network [OSTI]

    Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

  11. Basic Chemical Safety and Laboratory Survival Skills

    E-Print Network [OSTI]

    Gallivan, Martha A.

    : Reagent bottles, Squirt bottles, spray bottles Label must have name of chemical and hazard information (s handling chemicals Lab coat must cover the wearer to the knees Plastic aprons are allowed only

  12. SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology)

    E-Print Network [OSTI]

    Wang, Hai

    SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology) Undergraduate Hometown.D. in chemical engineering with an emphasis in nanotechnology. Lindsay stands out as a very well-balanced student

  13. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov (indexed) [DOE]

    interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

  14. 442013-14 Suggested Course Plan CHEMICAL (PETROLEUM)

    E-Print Network [OSTI]

    Zhou, Chongwu

    442013-14 Suggested Course Plan CHEMICAL (PETROLEUM) FIRST YEAR FALL: 18 units SPRING: 18 units. to Chemical Engineering CHE 205: Numerical Methods in Chemical Engineering CHE 330: Chemical Engr: Chemical Reactor Analysis CHE 443: Viscous Flow CHE 444AL: Chemical Engineering Lab CHE 444bL: Chemical

  15. 482012-13SuggestedCoursePlan CHEMICAL (PETROLEUM)

    E-Print Network [OSTI]

    Zhou, Chongwu

    482012-13SuggestedCoursePlan CHEMICAL (PETROLEUM) FIRST YEAR FALL: 18 units SPRING: 18 units SECOND. to Chemical Engineering CHE 205: Numerical Methods in Chemical Engineering CHE 330: Chemical Engr: Chemical Reactor Analysis CHE 443: Viscous Flow CHE 444AL: Chemical Engineering Lab CHE 444BL: Chemical

  16. Appendix G. Chemicals Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    by the development of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial more hazardous chemicals result from the direct or indirect actions of humans. Building materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  17. 7, 1009710129, 2007 Chemical ozone loss

    E-Print Network [OSTI]

    ACPD 7, 10097­10129, 2007 Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes et al. Title Chemistry and Physics Discussions Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes 1 , R. M Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes et al. Title Page Abstract Introduction

  18. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING

    E-Print Network [OSTI]

    Palanki, Srinivas

    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING Volume 4 2006 Article A19 Design of a Fuel for automotive ap- plications, using methane as a fuel, are analyzed. Basic chemical engineering principles methane to generate hydrogen, are analyzed. In particular, basic chemical engineering principles

  19. Chemical Hygiene Policy Procedure: 6.05

    E-Print Network [OSTI]

    Jia, Songtao

    Chemical Hygiene Policy Procedure: 6.05 Version: 1.0 Created: 6/15/2013 1 A. Purpose: The Chemical Hygiene policy establishes Columbia University's position for the protection of laboratory workers and emergency response. For details and further requirements consult the Columbia University Chemical Hygiene

  20. Chemical Hygiene Plan For University of Florida

    E-Print Network [OSTI]

    Slatton, Clint

    Chemical Hygiene Plan For University of Florida Laboratories This is a site specific Chemical Hygiene Plan for: Laboratory or Room number(s): Building: Principal Investigator/Lab Manager: Department Reviewed August 2007 Revised August 2007 #12;2 I. Introduction This Chemical Hygiene Plan has been

  1. UNIVERSITY OF ARKANSAS CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Li, Jiali

    UNIVERSITY OF ARKANSAS CHEMICAL HYGIENE PLAN OFFICE OF ENVIRONMENTAL HEALTH AND SAFETY FACILITIES Record Keeping 82 Appendix I: Chemical Hygiene at the 90-day Accumulation Facility 84 Appendix II: List and Safety (EH&S) in accordance with Federal and State regulations provides this Chemical Hygiene Plan

  2. Chemical Hygiene Plan UNIVERSITY OF CALIFORNIA, IRVINE

    E-Print Network [OSTI]

    Burke, Peter

    Chemical Hygiene Plan For UNIVERSITY OF CALIFORNIA, IRVINE The Henry Samueli School of Engineering INTEGRATED NANOSYSTEMS RESEARCH FACILITY 1 #12;Table of Contents List of Abbreviations 1.0 Chemical Hygiene Plan for the INRF Research Laboratory 1.1 Facility Description 1.2 Introduction to the Chemical Hygiene

  3. CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  4. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-07-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e.g., radium and thorium) were measured at back-ground levels and were eliminated from further consideration. Chemical contaminants identified in wells at the chemical plant area and ordnance works area include nitroaromatic compounds, metals, and inorganic anions. Trichloroethylene (TCE) and 1,2-dichloroethylene (1,2 -DCE) have been detected recently in a few wells near the raffinate pits at the chemical plant.

  5. CRAD, Chemical Management Implementation - June 30, 2011 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Management Implementation - June 30, 2011 CRAD, Chemical Management Implementation - June 30, 2011 June 30, 2011 Chemical Management Implementation Inspection Criteria,...

  6. Dissection of Plant Defense Mechanisms Using Chemical and Molecular Genomics

    E-Print Network [OSTI]

    Rodriguez-Salus, Melinda Sue

    2012-01-01T23:59:59.000Z

    of auxins by a chemical genomics approach." Journal ofadvances in chemical genomics." Current Medicinal Chemistrymolecular and chemical genomics." Phytopathology 97(7): S58-

  7. Global Optimization of Chemical Reactors and Kinetic Optimization

    E-Print Network [OSTI]

    ALHUSSEINI, ZAYNA ISHAQ

    2013-01-01T23:59:59.000Z

    Computers and Chemical Engineering, 24, 67-79. [9] Zhou,Critical cfstrs. Chemical Engineering Science. 2000b; 55,17:region theory. Chemical Engineering Science.. 1999; 54:

  8. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-12-27T23:59:59.000Z

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  9. PEGylated Inorganic Nanoparticles. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    functional groups. PEGylation of surfaces is a key strategic approach for providing stealth characteristics to nanomaterials otherwise identified as foreign materials by...

  10. Inorganic ion sorbent method

    DOE Patents [OSTI]

    Teter, David M. (Edgewood, NM); Brady, Patrick V. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM)

    2007-07-17T23:59:59.000Z

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  11. Inorganic ion sorbents

    DOE Patents [OSTI]

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17T23:59:59.000Z

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  12. Printed inorganic transistors

    E-Print Network [OSTI]

    Ridley, Brent (Brent Alan), 1974-

    2003-01-01T23:59:59.000Z

    Forty years of exponential growth of semiconductor technology have been predicated on the miniaturization of the transistors that comprise integrated circuits. While complexity has greatly increased within a given area of ...

  13. Chemical Enrichment at High Redshifts

    E-Print Network [OSTI]

    Snigdha Das; Pushpa Khare

    1998-08-09T23:59:59.000Z

    We have tried to understand the recent observations related to metallicity in Ly $\\alpha$ forest clouds in the framework of the two component model suggested by Chiba & Nath (1997). We find that even if the mini-halos were chemically enriched by an earlier generation of stars, to have [C/H] $\\simeq$ -2.5, the number of C IV lines with column density $>10^{12} cm^{-2}$, contributed by the mini-halos, at the redshift of 3, would be only about 10% of the total number of lines, for a chemical enrichment rate of $(1+z)^{-3}$ in the galaxies. Recently reported absence of heavy element lines associated with most of the Ly $\\alpha$ lines with H I column density between $10^{13.5} cm^{-2}$ and $10^{14} cm^{-2}$ by Lu et al (1998), if correct, gives an upper limit on [C/H]=-3.7, not only in the mini-halos, but also in the outer parts of galactic halos. This is consistent with the results of numerical simulations, according to which, the chemical elements associated with the Ly $\\alpha$ clouds are formed in situ in clouds, rather than in an earlier generation of stars. However, the mean value of $7 \\times 10^{-3}$ for the column density ratio of C IV and H I, determined by Cowie and Songaila (1998) for low Lyman alpha optical depths, implies an abundance of [C/H] =-2.5 in mini-halos as well as in most of the region in galactic halos, presumably enriched by an earlier generation of stars. The redshift and column density distribution of C IV has been shown to be in reasonable agreement with the observations.

  14. UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan

    E-Print Network [OSTI]

    Reed, Christopher A.

    UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan UCR CHEMISTRY DEPARTMENT CHEMICAL HYGIENE PLAN

  15. Overview of chemical vapor infiltration

    SciTech Connect (OSTI)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01T23:59:59.000Z

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  16. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  17. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22T23:59:59.000Z

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  18. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Pasco, WA); Birmingham, Joseph G. (Richland, WA); McDonald, Carolyn Evans (Richland, WA); Kurath, Dean E. (Benton County, WA); Friedrich, Michele (Prosser, WA)

    1998-01-01T23:59:59.000Z

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  19. Chemical Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrownFirst martian Chemical

  20. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrownFirst martianChemical

  1. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015Analysis ofChemical

  2. chemicals | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2theChemical Methods

  3. Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride

    SciTech Connect (OSTI)

    Oliveira Ribeiro, C.A. [Departamento de Biologia Celular, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil)]. E-mail: ciro@ufpr.br; Filipak Neto, F. [Departamento de Biologia Celular, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Mela, M. [Departamento de Biologia Celular, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Silva, P.H. [Departamento de Patologia Medica, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Randi, M.A.F. [Departamento de Patologia Medica, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Rabitto, I.S. [Departamento de Biologia Celular, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Alves Costa, J.R.M. [Departamento de Biologia Celular, Universidade Federal do Parana, CP. 19031, CEP: 81.531-990 Curitiba, PR (Brazil); Pelletier, E. [Institut des Sciences de la Mer de Rimouski, Universite du Quebec a Rimouski, 310 allee des Ursulines, Rimouski, Quebec, G5L 3A1 (Canada)

    2006-05-15T23:59:59.000Z

    Hematological indices are gaining general acceptance as valuable tools in monitoring various aspects the health of fish exposed to contaminants. In this work some effects of methyl mercury (MeHg), inorganic lead (Pb{sup 2+}), and tributyltin (TBT) in a tropical fish species were evaluated by hematological methods after a trophic exposition at a subchronic level. Forty-two mature individuals of the freshwater top predator fish Hoplias malabaricus were exposed to trophic doses (each 5 days) of MeHg (0.075 {mu}g g{sup -1}), Pb{sup 2+} (21 {mu}g g{sup -1}), and TBT (0.3 {mu}g g{sup -1}) using young fish Astyanax sp. as prey vehicle. After 14 successive doses over 70 days, blood was sampled from exposed and control groups to evaluate hematological effects of metals on erythrocytes, total leukocytes and differential leukocytes counts, hematocrit, hemoglobin concentration, and red blood cell indices mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). Transmission electron microscopy and image analysis of erythrocytes were also used to investigate some morphometric parameters. Results show no significant effects in MCH and MCHC for all tested metals, but differences were found in erythrocytes, hemoglobin, hematocrit, MCV, and white blood cells counts. The number of leukocytes was increased in the presence of MeHg, suggesting effects on the immune system. Also the MCV increased in individuals exposed to MeHg. No ultrastructural damages were observed in red blood cells but the image analysis using light microscopy revealed differences in area, elongation, and roundness of erythrocytes from individuals exposed to Pb{sup 2+} and TBT but not in the group exposed to MeHg. The present work shows that changes in hematological and blood indices could highlight some barely detectable metal effects in fish after laboratory exposure to contaminated food, but their application in field biomonitoring using H. malabaricus will need more detailed studies and a careful consideration of environmental parameters.

  4. Efficient room temperature aqueous Sb2S3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies

    E-Print Network [OSTI]

    Gödel, Karl C.; Choi, Yong Chan; Roose, Bart; Sadhanala, Aditya; Snaith, Henry J.; Seok, Sang Il; Steiner, Ullrich; Pathak, Sandeep K.

    2015-04-14T23:59:59.000Z

    . Steiner and S. K. Pathak, Chem. Commun., 2015, DOI: 10.1039/C5CC01966D. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies† Karl C. Go¨del,a Yong Chan Choi,b Bart Roose,ac Aditya Sadhanala... -gu, Sungkyunkwan University, Suwon 440-746, Republic of Korea. Further, the material has been used to improve the stability of methyl-ammonium lead iodide perovskite solar cells.5 Antimony sulfide synthesis typically involves deposition in aqueous and non...

  5. Inorganic hazardous air pollutants before and after a limestone flue gas desulfurization system as a function of <10 micrometer particle sizes and unit load

    SciTech Connect (OSTI)

    Maxwell, D.P.; Williams, W.A.; Flora, H.B. II [Radian Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    Radian Corporation collected size-fractionated particulate samples from stack gas at a unit burning high sulfur coal with a venturi scrubber FGD system. Independent sample fractions were collected under high-load and low-load operating conditions and subjected to various techniques designed to measure the total composition and surface-extractable concentrations of selected trace elements. The relationships between unit load, particle-size distribution, total composition, and surface-extractable inorganic species are reported and compared to show the availability of trace elements relevant to potential health risks from flue gas particulate emissions.

  6. Helium in Chemically Peculiar Stars

    E-Print Network [OSTI]

    F. Leone

    1998-05-05T23:59:59.000Z

    For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and helium abundance have to be determined simultaneously by matching the Balmer line profiles. New MULTI NLTE calculations, performed adopting ATLAS9 model atmospheres and updated helium atomic parameters, reproduce most of the observed equivalent widths of neutral helium lines for main sequence B-type stars and they make us confident of the possibility to correctly derive the helium abundance in chemically peculiar stars. An application of previous methods to the helium rich star HD 37017 shows that helium could be stratified in the magnetic pole regions, as expected in the framework of the diffusion theory in the presence of mass loss.

  7. Spectroscopical Analysis of Mechano-chemically Activated Surfaces 

    E-Print Network [OSTI]

    Cooper, Rodrigo

    2012-10-19T23:59:59.000Z

    Mechano-chemical activation is fundamentally different than chemical activation in that energy is added to alter the state of bond energy instead of exciting electrons to produce a chemical reaction. Mechano-chemical ...

  8. DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING UNIVERSITY OF CALGARY

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING UNIVERSITY OF CALGARY SCHULICH.UCALGARY.CA/CHEMICAL/ (403) 220-5751 Department Of Chemical & Petroleum Engineering ZANDMER DISTINGUISHED LECTURE SERIES 2014 Lecture Series in Chemical & Petroleum Engineering is designed to attract internationally renowned

  9. Undergraduate Bulletin 2014-15 Energy, Environmental and Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    Undergraduate Bulletin 2014-15 Energy, Environmental and Chemical Engineering (09/02/14) 1 Energy, Environmental and Chemical Engineering About Energy, Environmental and Chemical Engineering Our department focuses on environmental engineering, energy systems engineering and chemical engineering. We provide

  10. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO ................................................................................................................... 5 B Personal Hygiene

  12. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-09-19T23:59:59.000Z

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

  13. Tank 40 Final SB7b Chemical Characterization Results

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-11-06T23:59:59.000Z

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon? vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.

  14. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  15. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  16. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  17. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  18. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  19. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  20. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01T23:59:59.000Z

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  1. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22T23:59:59.000Z

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  2. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01T23:59:59.000Z

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  3. The Chemical Engineer's Role in Economic Recovery

    E-Print Network [OSTI]

    Felch, D. E.; Stine, L. O.; Vickers, A. G.

    1984-01-01T23:59:59.000Z

    Chemical engineers must lead industry to a clearer view of the thermodynamic potential of existing plants and more realistic expectations for emerging new technologies...

  4. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  5. Chemical and Microstructural Effects in Electrode Polarization

    SciTech Connect (OSTI)

    Virkar, A.; Armstrong, T.; Radhakrishman, R.; Ramanan, G.; Zhao, F.; Singhal, S.

    2005-01-28T23:59:59.000Z

    This presentation discusses the chemical and microstructural effects in electrode polarization and a relative comparison of contributions of the various polarizations in anode-supported cells.

  6. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  7. Chemical Characterization of Individual Particles and Residuals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Chemical Characterization of Individual Particles and Residuals of Cloud Droplets...

  8. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we...

  9. Methods and compounds for chemical ligation

    DOE Patents [OSTI]

    Church, George M.; Sismour, A. Michael

    2013-07-09T23:59:59.000Z

    Compositions and methods for chemical ligation are provided. Methods for nucleic acid sequencing, nucleic acid assembly and nucleic acid synthesis are also provided.

  10. Climate VISION: Private Sector Initiatives: Chemical Manufacturing

    Office of Scientific and Technical Information (OSTI)

    American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas...

  11. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  12. CHEMICAL ENGINEERING 2014-2016 CATALOG

    E-Print Network [OSTI]

    Lightsey, Glenn

    Semester Semester Hours CH 302, Principles of Chemistry II ...........................................3 CH...........................4 CHE 372, Chemical Reactor Analysis and Design....................3 American History

  13. CHEMICAL ENGINEERING 2012-2014 CATALOG

    E-Print Network [OSTI]

    Texas at Austin, University of

    Semester Semester Hours CH 302, Principles of Chemistry II ...........................................3 CH...........................4 CHE 372, Chemical Reactor Analysis and Design....................3 American History

  14. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical...

  15. Chemical Characterization of Crude Petroleum Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solvents that are rarely used for petroleum characterization. Citation: Eckert PA, PJ Roach, A Laskin, and J Laskin.2012."Chemical Characterization of Crude Petroleum Using...

  16. Distribution Category: Atomic, Molecular, and Chemical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic, Molecular, and Chemical Physics (UC-411) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, TIlinois 60439 ANLI APSILS-151 RESULTS OF DESIGN CALCULATIONS FOR THE...

  17. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  18. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

  19. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  20. CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II

    E-Print Network [OSTI]

    Zhang, Yuanlin

    CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics Engineering Thermodynamics I M E 3311 Materials Science M E 3322 Engineering Thermodynamics II M

  1. Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes

    E-Print Network [OSTI]

    Pike, Ralph W.

    Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes #12;Outline · Introduction to Sustainable Development · Research Vision · Biomass conversion of biotechnology in existing plant complex · Conclusions #12;Sustainability Sustainability refers to integrating

  2. Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-

    E-Print Network [OSTI]

    , Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Water, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant

  3. he six articles in the Chemical Sciences Section demarcate the broad contours of

    E-Print Network [OSTI]

    Joshi, Yogesh Moreshwar

    . Synthesis, characterization and design of inorganic materials have seen enormous advances in recent years be combined with the synthetic toolbox of a chemist to create organic-inorganic hybrid materials, including the close links with biological, materials and environmental sciences, have meant that key ideas

  4. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Wang, Feng; Graetz, Jason; Moreno, M. Sergio; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei

    2011-01-01T23:59:59.000Z

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid?electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10?50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  5. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Zhu, Y.; Wang, F.; Graetz, J.; Moreno, M.S.; Ma, C.; Wu, L.; Volkov, V.

    2011-02-01T23:59:59.000Z

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  6. The Chemical Engineering Ph.D. Program Department of Chemical Engineering

    E-Print Network [OSTI]

    Firestone, Jeremy

    and engineering knowledge in a particular area of scholarship. The conduct of this research, as well a foundation of technical knowledge in chemical engineering. This knowledge should be obtained in a wayThe Chemical Engineering Ph.D. Program Department of Chemical Engineering University of Delaware

  7. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson)Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  8. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  9. Chemical Hygiene Plan The purpose of the Chemical Hygiene Plan (CHP) is to outline laboratory work

    E-Print Network [OSTI]

    de Lijser, Peter

    Chemical Hygiene Plan I. Policy The purpose of the Chemical Hygiene Plan (CHP) is to outline The Chemical Hygiene Plan, required to comply with provisions of CCR Title 8 §5191 et al: A. Standard Operating engineering controls, the use of personnel protective equipment and hygiene practices. C. A requirement

  10. First-Principles Simulations of Chemical Reactions in an HCl Molecule Embedded inside a C or BN Nanotube Induced by Ultrafast Laser Pulses

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501 (Japan); Zhang Hong [School of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Rubio, Angel [Nano-Bio Spectroscopy group and ETSF Scientific Development Centre, Department Fisica de Materiales, Universidad del Pais Vasco, Avenida de Tolosa 72, E-20018 San Sebastian (Spain)

    2010-12-10T23:59:59.000Z

    We show by first-principles simulations that ultrafast laser pulses induce different chemical reactions in a molecule trapped inside a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond stretch of an encapsulated HCl molecule in semiconducting carbon nanotube or in a BN nanotube. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different: either complete disintegration or rebonding of the HCl molecule. Radial motion of the nanotube is always observed and a vacancy appears on the tube wall when the HCl is perpendicular to the tube axis. Those results are important to analyze confined nanochemistry and to manipulate molecules and nanostructures encapsulated in organic and inorganic nanotubes.

  11. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  12. Chemical Transport Policy Virginia Tech Chemistry Department

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Chemical Transport Policy Virginia Tech Chemistry Department This policy was enacted. The purpose of this policy is to ensure the safety of personnel transporting chemicals and anyone who might be affected by a problem occurring during such transport. The policy also helps to shield stockroom personnel

  13. The Chemical Formula of a Magnetotactic Bacterium

    E-Print Network [OSTI]

    Mittal, Aditya

    ARTICLE The Chemical Formula of a Magnetotactic Bacterium Mohit Naresh,1 Sayoni Das,1 Prashant allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By devel

  14. hz.genium.com Proper Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Lab Safety 1 hz.genium.com #12;Proper Chemical Storage · Store in compatible groups. Consult above flammables and reactives. · Label storage areas, and label all chemicals being stored. · Store hazardous with contents. · Lids should be tightly closed. · Secondary containment for floor storage. · Do not store

  15. Chemical Reactor Models of Digestion Modulation

    E-Print Network [OSTI]

    Logan, David

    Chemical Reactor Models of Digestion Modulation William Wolesensky & J. David Logan Department give an overview of the application of chemical reactor theory to models of digestion processes and indicate how those models extend to eco-physiological questions of modulation of digestion and feeding

  16. GULF OF MEXICO PHYSICAL AND CHEMICAL DATA

    E-Print Network [OSTI]

    -^ ^ / GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Marine Biological Laboratory, Commissioner GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Compiled by Albert Collier Fishery OF THE GULF OF MEXICO By Kenneth H. Driimmond and George B. Austin, Jr. Department of Oceanography The A. & M

  17. Computing Resources at Chemical and Biochemical Engineering

    E-Print Network [OSTI]

    Main Site Dept. of Chemical and Biochemical Engineering, 98 Brett Road Piscataway, NJ 08854-8058 PhoneComputing Resources at Chemical and Biochemical Engineering Note that use of all Rutgers University at: http://rucs.rutgers.edu/acceptable- use.html. Microlab. The PC Microlab (Engineering Room C233

  18. Department of Chemical and Petroleum Engineering

    E-Print Network [OSTI]

    Habib, Ayman

    Real World Process from Inception to Pre-construction ­ Apply Concepts Learned in Class to Industrial Quality and Air Pollution Control Chemical Engineering Energy & Env. Specialization #12;CHEMICAL World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed

  19. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  20. College of Engineering CME Chemical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering CME Chemical Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 CME 006 THE ENGINEERING PROFESSION (JUNIOR AND SENIOR). (0) Activities of the Student Chapter of the American Institute of Chemical Engineers

  1. Thomas F. Edgar Professor of Chemical Engineering

    E-Print Network [OSTI]

    Lightsey, Glenn

    Thomas F. Edgar Professor of Chemical Engineering The University of Texas at Austin (1/23/13) Thomas F. Edgar is the George T. and Gladys H. Abell Chair in Chemical Engineering at the University.D. from Princeton University. Edgar worked as a process engineer with the Continental Oil Company before

  2. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  3. Conservation in a Gulf Coast Chemical Plant

    E-Print Network [OSTI]

    Murray, F.

    1983-01-01T23:59:59.000Z

    The MCA reports chemical industry energy compared to 1972 to be 24.2% (1981 data). This paper will describe the activity of one Gulf Coast chemical industry plant which has reduced consumption by 41%. Improvements have been made via energy...

  4. Department of Energy, Environmental & Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    Department of Energy, Environmental & Chemical Engineering Opportunities for Undergraduate Students laboratory is a good way to expand your classroom experience. department of energy, environmental & chemicalIndustryPlantTour.Thedepartmentoffers twoplanttourseachfall. Cover: International Experience Brazil 2012 in sugar can mill, Usina Ester, Campina, Brazil #12

  5. Chemical Reactor Analysis and Optimal Digestion

    E-Print Network [OSTI]

    Jumars, Pete

    J 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily derived from basic principles o f chemical reactor analysis and design Deborah L. Penry and Peter a reactor and an operating strategy that maximize the yield or yield rate of desired reaction products

  6. Use and Misuse of Chemical Reactivity Spreadsheets

    SciTech Connect (OSTI)

    Simmons, F

    2005-09-20T23:59:59.000Z

    Misidentifying chemical hazards can have serious deleterious effects. Consequences of not identifying a chemical are obvious and include fires, explosions, injury to workers, etc. Consequences of identifying hazards that are really not present can be equally as bad. Misidentifying hazards can result in increased work with loss of productivity, increased expenses, utilization/consumption of scarce resources, and the potential to modify the work to include chemicals or processes that are actually more hazardous than those originally proposed. For these reasons, accurate hazard identification is critical to any safety program. Hazard identification in the world of chemistry is, at best, a daunting task. The knowing or understanding, of the reactions between any of approximately twelve million known chemicals that may be hazardous, is the reason for this task being so arduous. Other variables, such as adding other reactants/contaminants or changing conditions (e.g., temperature, pressure, or concentration), make hazard determination something many would construe as being more than impossibly difficult. Despite these complexities, people who do not have an extensive background in the chemical sciences can be called upon to perform chemical hazard identification. Because hazard identification in the area of chemical safety is so burdensome and because people with a wide variety of training are called upon to perform this work, tools are required to aid in chemical hazard identification. Many tools have been developed. Unfortunately, many of these tools are not seen as the limited resource that they are and are used inappropriately.

  7. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23T23:59:59.000Z

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  8. 2005 Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Cynthia M. Friend

    2006-03-14T23:59:59.000Z

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  9. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17T23:59:59.000Z

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  10. Chemical composition of Earth-like planets

    E-Print Network [OSTI]

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01T23:59:59.000Z

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  11. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect (OSTI)

    Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  12. Chemical compatibility screening test results

    SciTech Connect (OSTI)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01T23:59:59.000Z

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.

  13. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect (OSTI)

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01T23:59:59.000Z

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  14. Crystal structure and electric properties of the organic–inorganic hybrid: [(CH{sub 2}){sub 6}(NH{sub 3}){sub 2}]ZnCl{sub 4}

    SciTech Connect (OSTI)

    Mostafa, M.F., E-mail: Mohga40@Yahoo.com; El-khiyami, S.S.

    2014-01-15T23:59:59.000Z

    The new organic-inorganic hybrid [(CH{sub 2}){sub 6}(NH{sub 3}){sub 2}]ZnCl{sub 4}, M{sub r}=325.406 crystallized in a triclinic, P1Ż, a=7.2816 (5) Ĺ, b=10.0996 (7) Ĺ, c=10.0972 (7) Ĺ, ?=74.368 (4)°, ?=88.046 (4)°, ?=85.974 (3)°, V=713.24 (9) Ĺ{sup 3} and Z=2, D{sub x}=1.486 Mg m{sup ?3}. Differential thermal scanning and x-ray powder diffraction, permittivity and ac conductivity indicated three phase transitions. Conduction takes place via correlated barrier hopping. - Graphical abstract: Display Omitted.

  15. Solution based prompt inorganic condensation and atomic layer deposition of Al{sub 2}O{sub 3} films: A side-by-side comparison

    SciTech Connect (OSTI)

    Smith, Sean W.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331-5501 (United States); Wang, Wei; Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2014-07-15T23:59:59.000Z

    A comparison was made of Al{sub 2}O{sub 3} films deposited on Si via prompt inorganic condensation (PIC) and atomic layer deposition (ALD). Current–voltage measurements as a function of annealing temperature indicate that the solution-processed PIC films, annealed at 500?°C, exhibit lower leakage and roughly equivalent breakdown strength in comparison to ALD films. PIC films are less dense than as-deposited ALD films and capacitance–voltage measurements indicate a lower relative dielectric constant. On the basis of x-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy, it is found that the 500?°C anneal results in the formation of a ?6?nm thick interfacial SiO{sub 2} layer at the Si interface. This SiO{sub 2} interfacial layer significantly affects the electrical performance of PIC Al{sub 2}O{sub 3} films deposited on Si.

  16. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    SciTech Connect (OSTI)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01T23:59:59.000Z

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  17. West Virginia University 1 Department of Chemical Engineering

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Department of Chemical Engineering Degrees Offered · Masters of Science in Chemical Engineering · Masters of Science in Engineering with a major in Chemical Engineering · Doctor of Philosophy with a major in Chemical Engineering The Department of Chemical Engineering, with fourteen active

  18. Center for Nano and Micro Manufacturing Chemical Hygiene Plan

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Center for Nano and Micro Manufacturing Chemical Hygiene Plan Vers. 12/13 Page 1 Chemical Hygiene have a written Chemical Hygiene Plan. The Chemical Hygiene Plan includes laboratory-specific hazards. If you have any questions about this Chemical Hygiene Plan, please email Corey Wolin at cdwolin

  19. Chemical Enrichment from Massive Stars in Starbursts

    E-Print Network [OSTI]

    Henry A. Kobulnicky

    1999-01-20T23:59:59.000Z

    The warm ionized gas in low-mass, metal-poor starforming galaxies is chemically homogeneous despite the prevalence of large H II regions which contain hundreds of evolved massive stars, supernovae, and Wolf-Rayet stars with chemically-enriched winds. Galaxies with large Wolf-Rayet star content are chemically indistinguishable from other vigorously star-forming galaxies. Furthermore, no significant localized chemical fluctuations are present in the vicinity of young star clusters, despite large expected chemical yields of massive stars. An ad-hoc fine-tuning of the release, dispersal and mixing of the massive star ejecta could give rise to the observed homogeneity, but a more probable explanation is that fresh ejecta from massive stars reside in a hard-to-observe hot or cold phase. In any case, the observed chemical homogeneity indicates that heavy elements which have already mixed with the warm interstellar medium (thus accessible to optical spectroscopy) are homogeneously dispersed over scales exceeding 1 kpc. Mixing of fresh ejecta with the surrounding warm ISM apparently requires longer than the lifetimes of typical H II regions (>10^7 yrs). The lack of observed localized chemical enrichments is consistent with a scenario whereby freshly-synthesized metals from massive stars are expelled into the halos of galaxies in a hot, 10^6 K phase by supernova-driven winds before they cool and ``rain'' back down upon the galaxy, creating gradual enrichments on spatial scales >1 kpc.

  20. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect (OSTI)

    Tupy, Mike; Schrodi Yann

    2006-11-06T23:59:59.000Z

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

  1. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8846343 2012 MRS Fall Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small

    E-Print Network [OSTI]

    Dietz, Nikolaus

    a superior potential for the development of high performance photovoltaic (PV) devices with reduced cost Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device

  2. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    SciTech Connect (OSTI)

    Glick, D.C.; Davis, A.

    1984-07-01T23:59:59.000Z

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  3. Final Technical Report: Ocean CO{sub 2} Measurements for the WOCE Hydrographic Survey in the Pacific Ocean, 1992-1995 Field Years: Shore Based Analysis of Dissolved Inorganic Carbon January 1, 1993-April 15, 1998

    SciTech Connect (OSTI)

    Keeling, Charles D.

    1998-04-15T23:59:59.000Z

    Participation in the hydrographic survey of the world ocean circulation experiment (WOCE) began in December 1990 with a two year grant from DOE for shore related analyses of inorganic carbon in sea water. These analyses were intended to assure that the measurements carried out under difficult laboratory conditions on board ships were consistent with measurements made under more carefully controlled shore laboratory conditions.

  4. CHEMICAL SAFETY: ASKING THE RIGHT QUESTIONS

    SciTech Connect (OSTI)

    Simmons, F

    2008-08-05T23:59:59.000Z

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  5. Chemical safety: asking the right questions

    SciTech Connect (OSTI)

    Whyte, Helena M [Los Alamos National Laboratory; Quigley, David [Y-12/NSC; Simmons, Fred [SRS; Freshwater, David [DOE/NNSA; Robertson, Janeen [LLNL

    2008-01-01T23:59:59.000Z

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  6. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1998-05-26T23:59:59.000Z

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  7. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect (OSTI)

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03T23:59:59.000Z

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  8. Chemical Hydrogen Storage R & D | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Storage Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient...

  9. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

    SciTech Connect (OSTI)

    Bauer, Elvira M. [Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy)], E-mail: Elvira.Bauer@ism.cnr.it; Bellitto, Carlo [Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy); Gomez Garcia, Carlos J. [Instituto de Ciencia Molecular, University of Valencia, Pol La Coma s/n, E-46980 Paterna, Valencia (Spain)], E-mail: carlos.gomez@uv.es; Righini, Guido [Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy)

    2008-05-15T23:59:59.000Z

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

  10. Chemical Additive Selection in Matrix Acidizing

    E-Print Network [OSTI]

    Weidner, Jason 1981-

    2011-05-09T23:59:59.000Z

    This work proposes to survey new chemical knowledge, developed since 1984, on fluid additives used in matrix stimulation treatments of carbonate and sandstone petroleum reservoirs and describes one method of organizing this new knowledge in a...

  11. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01T23:59:59.000Z

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  12. Chemical and Petroleum Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    electives in Petroleum Reservoir Engineering and Petroleum Production Engineering Chemical and Petroleum Engineering Petroleum Engineering Minor Students their skills by taking a minor in petroleum engineering. Energy is the largest

  13. Electric Power Reliability in Chemical Plants

    E-Print Network [OSTI]

    Cross, M. B.

    The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion...

  14. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05T23:59:59.000Z

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  15. Chemical structure and dynamics: Annual report 1996

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1997-03-01T23:59:59.000Z

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  16. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    target for the U.S. (7%) and the EU (8%). During the same period, chemical industry production rose 41%. As a result, GHG emissions intensity improved 38%. Indirect greenhouse gas...

  17. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    Frontiers in Chemical Imaging Seminar Series On the trail of the Chimera The Atom the Chimera is still elusive. 1. Thomas F. Kelly and David J. Larson. Ann Rev. Materials Res 42 (2012) 1. 2

  18. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  19. BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING

    E-Print Network [OSTI]

    Heller, Barbara

    BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL ENGINEERING ELECTRICAL AND COMPUTER ENGINEERING MECHANICAL, MATERIALS, AND AEROSPACE ENGINEERING COLLEGE OF ENGINEERING IIT ARMOUR #12;WHY ENGINEERINGAT IIT ARMOUR? Five Departments. One Distinctive Educational

  20. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect (OSTI)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15T23:59:59.000Z

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.