Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Measurement - Inorganic chemical composition  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

2

PP-60 Northern Electric Cooperative Association (NEC) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Northern Electric Cooperative Association (NEC) PP-60 Northern Electric Cooperative Association (NEC) Presidential Permit authorizing Northern Electric Cooperative Association...

3

Thermal/chemical degradation of inorganic membrane materials  

SciTech Connect

The overall objective of this program is to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Specific objectives of this program are to (1) quantify the extent of the degradation process for the three most detrimental mechanisms by performing laboratory-scale experiments, and (2) develop a predictive model for membrane degradation under operating conditions. At present, no inorganic membranes are commercially available for application in the high-temperature, high-pressure (HTHP) gas environments encountered in integrated gasification combined cycle (IGCC), pressurized fluidized bed combustion (PFBC), and direct coal fired turbine (DCFT) applications. Most of the inorganic membrane development efforts have focused on hydrogen separation membranes which may be used in an IGCC system for maximizing hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition of these contaminants. The candidate inorganic membranes may be grouped as follows: dense metallic membranes; silica based membranes; alumina based membranes; and carbon based membranes. Results are reported for membrane characterization done so far.

Krishnan, G.N.; Sanjurjo, A.; Damle, A.S.; Wood, B.J.; Lau, K.H.

1994-10-01T23:59:59.000Z

4

PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS  

DOE Green Energy (OSTI)

The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

Thomas E. Mallouk

2007-05-27T23:59:59.000Z

5

Diffusion of inorganic chemical wastes in compacted clay  

SciTech Connect

The factors that were investigated included the water content/dry unit weight, the method of compaction, the mineralogy of the soil, and the concentration of the ions. The effective diffusion coefficients (D{asterisk}) of three anions (Cl{sup {minus}}, Br{sup {minus}}, and I{sup {minus}}) and three cations (K{sup +}, Cd{sup 2+}, and Zn{sup 2+}) in a simulated waste leachate were measured. Two clay soils (kaolinite and Lufkin clay) and a sand were used in the study. The clay samples were compacted and pre-soaked to minimize hydraulic gradients due to negative pore pressures. Mass balance calculations were performed to indicate possible sinks/sources in the diffusion system. The results of the diffusion tests were analyzed using two analytical solutions to Fick's second law and a commercially available semi-analytical solution. The D{asterisk} values for tests using high-concentration (0.04 N) leachate generally fell in the narrow range of about 4.0 {times} 10{sup {minus}6} to 2.0 {times} 10{sup {minus}5} cm{sup 2}/s, and were relatively insensitive to compaction water content/dry unit weight and to compaction method. The variability in the results from the tests with low-concentration (0.013 N) leachate precluded any definite conclusions from these tests. The values of D{asterisk} measured in this study were compared to values from previous studies, and the D{asterisk} values from this study were found to be slightly conservative (i.e., high). However, the results of the tests may be affected by several chemical and physical factors, and care should be taken to ensure that the soils used in the tests are representative of those used in the application of the test results. Recommendations are made for estimating D{asterisk} values for use in the design of compacted clay barriers for the containment of inorganic chemical wastes.

Shackelford, C.D.

1988-01-01T23:59:59.000Z

6

STATEMENT OF CONSIDERATIONS REQUEST BY MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04GO14153; W(A)-04-084; CH-1263 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Millennium Inorganic Chemicals, Inc. (Millennium) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Millennium is leading a teaming arrangement including Exxon Mobil Research and Engineering and Sandia National

7

Empirical MOdels for the Uptake of Inorganic Chemicals from Soil by Plants (BJC/OR-133)  

NLE Websites -- All DOE Office Websites (Extended Search)

33 33 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants This document has received the appropriate reviews for release to the public. Date: 9/23/98 BJC/OR-133 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants Date Issued-September 1998 Prepared for the U.S. Department of Energy Office of Environmental Management BECHTEL JACOBS COMPANY LLC managing the Environmental Management Activities at the East Tennessee Technology Park Oak Ridge Y-12 Plant Oak Ridge National Laboratory Paducah Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant under contract DE-AC05-98OR22700 for the U.S. DEPARTMENT OF ENERGY iii CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . .

8

Inorganic Chemical Metrology Homepage  

Science Conference Proceedings (OSTI)

... mass spectrometries as well as nuclear analytical techniques ... to public safety and security include a ... inertial fusion energy (IFE) reactor, the plasma ...

2012-11-19T23:59:59.000Z

9

High-temperature chemical and microstructural transformations of an organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide  

Science Conference Proceedings (OSTI)

The thermal evolution of a crystalline organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide (LDH) [Mg{sub 0.68}Al{sub 0.32}(OH){sub 2}] (C{sub 9}H{sub 13}NO{sub 3}S){sub 0.130}(CO{sub 3}){sub 0.030}.0.53H{sub 2}O obtained by coprecipitation method is studied based upon in situ high-temperature X-ray diffraction, in situ infrared and thermogravimetric analysis coupled with mass spectroscopy analysis. The results reveal that a metastable quasi-interstratified layered nanohybrid involving carbonate-LDH and reoriented less ordered captopril-LDH was firstly observed as captopril-LDH heat-treated between 140 and 230 deg. C. The major decomposition/combustion of interlayer organics occur between 270 and 550 deg. C. A schematic model on chemical and microstructural evolution of this particular drug-inorganic nanohybrid upon heating in air atmosphere is proposed.

Zhang Hui [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)], E-mail: huizhang67@gst21.com; Guo Shaohuan; Zou Kang; Duan Xue [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)

2009-05-06T23:59:59.000Z

10

Performance of MC2 and the ECMWF IFS forecast model on the Fujitsu VPP700 and NEC SX-4M  

Science Conference Proceedings (OSTI)

The NEC SX-4M cluster and Fujitsu VPP700 supercomputers are both based on custom vector processors using low-power CMOS technology. Their basic architectures and programming models are however somewhat different. A multi-node SX-4M cluster contains up ...

Michel Desgagn\\'e; Stephen Thomas; Stephen Thomas Michel Valin

2000-01-01T23:59:59.000Z

11

Inorganic Chemical Metrology - Staff Directory  

Science Conference Proceedings (OSTI)

... Group. Search for Staff Member. The Search box will accept a name, phone number, organization name, email address, etc.

2012-11-16T23:59:59.000Z

12

Inorganic polymer engineering materials  

Science Conference Proceedings (OSTI)

Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

Stone, M.L.

1993-06-01T23:59:59.000Z

13

Available Technologies: Modular Inorganic Nanocomposites  

... “Modular Inorganic Nanocomposites by Conversion of Nanocrystal Superlattices,” Angewandte Chemie International Edition 49, 2878–2882 (2010) ...

14

Supported inorganic membranes  

DOE Patents (OSTI)

Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

1998-01-01T23:59:59.000Z

15

Argonne CNM Highlight: Using Biomolecules to Guide Assembly of Inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Biomolecules to Guide Assembly of Inorganic Nanostructures Using Biomolecules to Guide Assembly of Inorganic Nanostructures Lee Makowski A number of potential methods might be useful in guiding the assembly of inorganic nanostructures. A key objective in this effort is the ability to specify the exact locations of different nanoparticles within a nanostructure, a capability that will be critical in designing and producing future nanodevices. Nanoparticles One technique discussed involves the possibility of using proteins to create a framework on which nanoparticles could then be attached at specified points. Some type of chemical processing could then be used to remove the organics after assembly. Attaching the inorganic particles to a protein framework might be accomplished using binding sites identified via "phage display" techniques where phage-displaying proteins with randomized surfaces are selected for an affinity to a desired inorganic material. The advantages of this method include the ability to isolate a single binding phage and then grow large quantities of it for characterization. A particularly advantageous type of protein for these constructs are diabodies, constructed from fragments of antibodies. These can incorporate binding sites identified through phage display and then be used to attach inorganic materials at preselected places on the protein framework.

16

Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign  

E-Print Network (OSTI)

One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

Karydis, V. A.

17

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

18

Hybrid Organic: Inorganic Materials for Alternative Energy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Hybrid Organic: Inorganic Materials for Alternative Energy. Sponsorship.

19

The Molecular Foundry - Inorganic Nanostructures - Staff - Delia...  

NLE Websites -- All DOE Office Websites (Extended Search)

and soluble inorganic clusters. Visit The Milliron Research Group Current projects Nanocrystal synthetic development Our research aims to manipulate the properties of...

20

Development of inorganic membranes for gas separation  

DOE Green Energy (OSTI)

Hydrogen for commercial coal liquefaction processes may be provided by a coal gasification plant operated to maximize hydrogen production. Hydrogen is a major chemical requirement for coal liquefaction, and the use of liquefaction by-products such as mineral ash residue as feed to the gasifier can improve the overall process efficiency and economics. Also, recovery of hydrogen from gaseous streams in the coal liquefaction plant can have a significant impact on coal liquefaction process economics. In these hydrogen production scenarios, there is a need to improve the quality of the hydrogen produced by separating the other impurity gases from it. The DOE-Fossil Energy AR TD Materials Program is presently developing inorganic membranes for gas separation, including the recovery of valuable resources such as hydrogen from hot-gas streams. A summary of efforts to produce alumina membranes with mean pore radii <5 {angstrom} is presented as well as a status report on declassification of this important technology. 2 refs., 7 figs.

Egan, B.Z.; Fain, D.E.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Inorganic dual-layer microporous supported membranes  

SciTech Connect

The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

Brinker, C. Jeffrey (14 Eagle Nest Dr. NE., Albuquerque, NM 87122); Tsai, Chung-Yi (6 Mount Vernon Dr., Apt. C, Vernon, CT 06066); Lu, Yungfeng (1055 N. Capital Ave., #20, San Jose, CA 95133)

2003-03-25T23:59:59.000Z

22

Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis  

DOE Green Energy (OSTI)

Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

Thorn, David [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

23

Inorganic Materials Chemistry Desk Reference, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Oct 23, 2006 ... The book begins with an introduction to various inorganic materials processes, followed by a glossary of terms commonly found in inorganic ...

24

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

25

STATEMENT OF CONSIDERATIONS REQUEST BY MILLENNIUM INORGANIC CHEMICALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and National Laboratories. Millennium is leading a teaming arrangement including Exxon Mobil Research and Engineering and Sandia National Laboratory to enhance productivity...

26

Application of Oak Ridge Inorganic Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Inorganic Membrane Oak Ridge Inorganic Membrane Technology to Cat Cracker Recycle Gas Hydrogen* FINAL REPORT DOE FEW FEAC324 June 2003 L.D. Trowbridge *AKA: Application of Inorganic Membrane Technology to Hydrogen-Hydrocarbon Separations ORNL/TM-2003/139 Application of Inorganic Membrane Technology To Hydrogen-hydrocarbon Separations June 2003 Prepared by L. D. Trowbridge DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847)

27

Inorganic nanotubes and electro-fluidic devices fabricated therefrom  

DOE Patents (OSTI)

Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

Yang, Peidong (Kensington, CA); Majumdar, Arunava (Orinda, CA); Fan, Rong (Pasadena, CA); Karnik, Rohit (Cambridge, MA)

2011-03-01T23:59:59.000Z

28

Source Apportionment of Airborne Particulate Matter using Inorganic and  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

29

NETL: Novel Inorganic/Polymer Composite Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Inorganic/Polymer Composite Membranes Novel Inorganic/Polymer Composite Membranes Project No.: DE-FE0007632 Ohio State University is developing a cost-effective design and manufacturing process for new membrane modules that capture carbon dioxide (CO2) from flue gas. The membranes consist of a thin, selective inorganic layer, embedded in a polymer structure so that it can be made in a continuous manufacturing process. They will be incorporated in spiral-wound modules for bench-scale tests using coal-fired flue gas. Preliminary cost calculations show that a single-stage membrane process is economically unfavorable, primarily because of the low concentration of CO2 (~14 percent) in the flue gas stream. A two-stage process is more economical, but requires plant operation with a CO2-enriched recycle stream.

30

Studies on the Effects of Inorganic Salts on Biochemical Treatment ...  

Science Conference Proceedings (OSTI)

Effects of two inorganic salts (sodium chloride and sodium sulphate) on biochemical ... Numerical Investigation of Heat Transfer Characteristics in Microwave ...

31

Electric Cell-impedance Spectroscopy at the Biological-inorganic ...  

Science Conference Proceedings (OSTI)

Presentation Title, Electric Cell-impedance Spectroscopy at the Biological- inorganic Interface, Shewanella Oneidensis - Gold, for Microbial Fuel Cell ...

32

Inorganic rechargeable non-aqueous cell  

DOE Patents (OSTI)

A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

Bowden, William L. (Nashua, NH); Dey, Arabinda N. (Needham, MA)

1985-05-07T23:59:59.000Z

33

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

34

Photocurable Inorganic-Organic Hydrogels for Biomedical Applications  

E-Print Network (OSTI)

There are two primary objectives of this dissertation research. The first objective was to prepare a library of inorganic-organic hydrogels from methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene oxide) (PEO-DA) with tunable chemical and physical properties for use as tissue engineering scaffolds. These inorganic-organic hydrogels provide a useful platform to study the effect of scaffold properties on cell behavior in tissue culture. Twenty compositionally unique hydrogels were prepared by photo-crosslinking varing molecular weights (Mn) of PEO-DA (Mn = 3.4k and 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 5k and 7k g/mol) at varying weight ratios (up to 20 wt% PDMSstar-MA). Introduction of PDMSstar-MA caused formation of discrete PDMS-enriched "microparticles" dispersed within the PEO hydrogel matrix. The swelling ratio, mechanical properties in tension and compression, non-specific protein adhesion and cytotoxicity of hydrogels were studied. The second objective was to prepare thermoresponsive nanocomposite hydrogels, which are mechanically robust and can remove adhered cells via thermal modulation. Such hydrogels may be useful as "self-cleaning" membranes for implanted biosensors to extend their lifetime and efficiency. These hydrogels are comprised of a poly(Nisopropylacrylamide) (PNIPAAm) hydrogel matrix and polysiloxane colloidal nanoparticles (~220 nm and 50 nm ave. diameter). Due to the low preparation temperature, the nanocomposite hydrogels exhibited a homogeneous morphology by SEM analysis. The volume phase transition temperature (VPTT, ~33 degrees C) of the nanocomposite hydrogels was not altered versus the pure PNIPAAm hydrogel, which is near body temperature. Generally, nanoparticles led to improve mechanical properties versus pure PNIPAAm hydrogels. When these nanocomposite hydrogels are heated above the VPTT, they become more hydrophobic. When they are reversibly switched from a water-swollen to a deswollen state, the change in surface properties, as well as swelling-deswelling, was effective upon the removal of adhered cells.

Hou, Yaping

2009-12-01T23:59:59.000Z

35

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

36

Nanoporous Metal-Inorganic Materials for Storage and Capture ...  

Nanoporous Metal-Inorganic Materials for Storage and Capture of Hydrogen, Carbon Dioxide (CO2) and Other Gases Lawrence Berkeley National Laboratory

37

Development of Inorganic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

This paper presents information and data relative to recent advances in the development at Oak Ridge National Laboratory of porous inorganic membranes for high-temperature hydrogen separation. The Inorganic Membrane Technology Laboratory, which was formerly an organizational element of Bechtel Jacobs Company, LLC, was formally transferred to Oak Ridge National Laboratory on August 1, 2002, as a result of agreements reached between Bechtel Jacobs Company, the management and integration contractor at the East Tennessee Technology Park (formerly the Oak Ridge Gaseous Diffusion Plant or Oak Ridge K-25 Site); UT-Battelle, the management and operating contractor of Oak Ridge National Laboratory; and the U.S. Department of Energy (DOE) Oak Ridge Operations Office. Research emphasis during the last year has been directed toward the development of high-permeance (high-flux) and high-separation-factor metal-supported membranes. Performance data for these membranes are presented and are compared with performance data for membranes previously produced under this program and for membranes produced by other researchers. New insights into diffusion mechanisms are included in the discussion. Fifteen products, many of which are the results of research sponsored by the DOE Fossil Energy Advanced Research Materials Program, have been declared unclassified and have been approved for commercial production.

Bischoff, B.L.; Judkins, R.R.

2003-04-23T23:59:59.000Z

38

Development of Inorganic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

The purpose of this work is to improve the method of fabricating tubular metal supported microporous inorganic membranes. Earlier work focused on the original development of inorganic membranes for the purification of hydrogen. These membranes are now being scaled up for demonstration in a coal gasification plant for the separation of hydrogen from coal-derived synthesis gas for a project funded by the Office of Fossil Energy's Gasification and Coal Fuels programs [1]. This project is part of FutureGen, an initiative to build the world's first integrated sequestration and hydrogen production research power plant. Although previous work in the Advanced Research Materials Program project led to development of a tubular metal supported microporous membrane which was approved by the Department of Energy for testing, the membranes generally have lower than desired selectivities for hydrogen over other gases common in synthesis gas including carbon dioxide. The work on this project over three years will lead to general improvements in fabrication techniques that will result in membranes having higher separation factors and higher fluxes. Scanning electron microscopy and profilometry data will be presented to show qualitatively and quantitatively the surface roughness of the support tubes. We will discuss how the roughness affects membrane quality and methods to improve the quality of the support tube surface.

Bischoff, Brian L [ORNL; Adcock, Kenneth Dale [ORNL; Powell, Lawrence E [ORNL; Sutton, Theodore G [ORNL; Miller, Curtis Jack [ORNL

2007-01-01T23:59:59.000Z

39

Microporous Inorganic Membranes for Hydrogen Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Microporous Microporous Inorganic Membranes for Hydrogen Purification Brian L. Bischoff, Roddie R. Judkins, and Timothy R. Armstrong Oak Ridge National Laboratory Presented at: DOE Workshop on Hydrogen Separations and Purification Technologies Arlington, Virginia September 8, 2004 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Hydrogen Separation Membranes * Non-Porous - Palladium based films - Ion transport membranes * Porous - Ordered microporous membranes (IUPAC Recommendations 2001), e.g. zeolite membranes - Microporous membranes 3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Microporous Membranes * IUPAC defines micropores as pores smaller than 2nm in diameter * Generally a microporous membrane is made by applying 1 to 3 thin layers to a porous support * Porous support can be ceramic or metallic

40

Chemically modified electrodes: molecular design for electroanalysis  

Science Conference Proceedings (OSTI)

Electrochemical methods traditionally have found important applications in sample analysis and organic and inorganic synthesis. The electrode surface itself can be a powerful tool. This article is an update of chemically modified electrodes (CMEs) and rational molecular design of electrode surfaces.

Murray, R.W.; Ewing, A.G.; Durst, R.A.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Molecular Foundry - Inorganic Nanostructures - Staff Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

of the American Chemical Society 130 (11), 3294 (2008). pdf G. Han, T. Mokari, C. Ajo-Franklin and B. Cohen, "Caged Quantum Dots", J. Am. Chem. Soc., 130 (47), 15811-15813 (2008...

42

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

43

Polyelectrolyte multilayers as nanostructured templates for inorganic synthesis  

E-Print Network (OSTI)

Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an important class of materials with potential application in optoelectronics and photonics, ...

Wang, Tom Chih-Hung, 1973-

2002-01-01T23:59:59.000Z

44

Argonne CNM News: Graphene Decoupling of Organic/Inorganic Interfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene Decoupling of OrganicInorganic Interfaces C60 monolayer STM three-dimensional rendered image of a C60 self-assembled monolayer at a domain boundary of graphene and bare...

45

Inorganic Polymer Derived Ceramic Membranes 2  

Science Conference Proceedings (OSTI)

Ceramic porous membranes capable of molecular sieving represent a promising alternative to energy-intensive distillation or cryogenic separation technologies used for processes such as purification of natural gas, air separation, and flue gas cleanup. Such membranes, fabricated at laboratory scale as part of this study, are capable of operating at temperatures as high as 200 degrees Celsius and can withstand harsh chemical environments and aggressive cleaning after fouling. Their selectivity factors and ...

2001-11-14T23:59:59.000Z

46

Chemical Sciences Division annual report 1994  

SciTech Connect

The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

NONE

1995-06-01T23:59:59.000Z

47

Selective Recovery of Enriched Uranium from Inorganic Wastes  

SciTech Connect

Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

Kimura, R. T.

2003-02-26T23:59:59.000Z

48

Chemical Transformations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Chemical Transformations Chemical Transformations Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Chemical Transformations Print Text Size: A A A RSS Feeds FeedbackShare Page Research themes include the characterization, control, and optimization of chemistry in many forms. Catalysis science underpins the design of new catalytic methods for the clean and efficient production of fuels and chemicals and emphasizes inorganic and organic complexes; interfacial chemistry, nanostructured and supramolecular catalysts, photocatalysis and electrochemistry, and bio-inspired catalytic processes. Heavy element

49

Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition, Limnol  

E-Print Network (OSTI)

The concept that the formation ofCnC0, coccoliths functions as a photosynthetic adaptation for the use of bicarbonate is evaluated in the coccolithophorids Coccoliths hudeyi and Cricosphneru carterae by two new methods. In the first, carbon fixation is measured at 10-s intervals in the first 2 min after addition of “CO, and II’“CO,- to buffered cultures; this method exploits the relatively long half-time for the hydration or dehydration of dissolved COP. In the second, shifts in pH and alkalinity resulting from carbon fixation by cells growing in liqllid culture are assessed to indicate fluxes of COz and HC03- into cells and these values compared to measurements of l”C incorporation in photosynthesis and carbonate deposition. The data are interpreted in terms of one of several net inorganic reactions of deposition considered. In this reaction, CO, is the substrate of photosynthesis and HCO,- is the form of carbon supplied to the calcification site. CO, resulting from carbonate deposition supplements the COz from the medium that diffuses into cells as a source of carbon for photosynthesis. The relationship between photosynthesis and calcification has received considerable attention (see Darlcy 1974; Borowitzka and Larkum 1976; Pentecost 1978). Although calcification is clearly stimulated by light, a direct link to photosynthesis has been difficult to establish. An early hypothesis held that both processes depended on a common supply of IICO13- from the medium (Lewin 1962):

C. Stewn Sikes; Robert D. Row; Karl M. Wilbur

1980-01-01T23:59:59.000Z

50

Chemical Sciences Division: Annual report 1992  

Science Conference Proceedings (OSTI)

The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

Not Available

1993-10-01T23:59:59.000Z

51

Inorganic lead (Pb)- and mercury (Hg)-induced neuronal cell death involves cytoskeletal reorganization  

E-Print Network (OSTI)

Inorganic lead and mercury are widely spread xenobiotic neurotoxicants threatening public health. The exposure to inorganic lead and mercury results in adverse effects of poisoning including IQ deficit and peripheral neuropathy. Additionally, inorganic neurotoxicants have even more serious impact on earlier stages of embryonic development. This study was therefore initiated in order to determine the cytotoxic effects of lead and mercury in earlier developmental stages of chick embryo. Administration of inorganic lead and mercury into the chick embryo resulted in the prolonged accumulation of inorganics in the neonatal brain, with detrimental cytotoxicity on neuronal cells. Subsequent studies demonstrated that exposure of chick embryo to inorganic lead and mercury resulted in the reorganization of cytoskeletal proteins in the neonatal brain. These results therefore suggest that inorganics-mediated cytoskeletal reorganization of the structural proteins, resulting in neurocytotoxicity, is one of the underlying mechanisms by which inorganics transfer deleterious effects on central nervous system.

Woo-sung Choi; Su-jin Kim; Jin Suk Kim

2011-01-01T23:59:59.000Z

52

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network (OSTI)

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

53

Argonne Chemical Sciences & Engineering - People - Catalysis and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Projects Support Electrochemical Projects Support Walter F. Podolski, Chemical Engineer and Group Leader phone: 630/252-7558, fax: 630/972-4430, podolski@anl.gov Ph.D., Chemical Engineering, Northwestern University Technical contract management and support of research, development, and demonstration of fuel-cell-powered vehicles Thomas G. Benjamin, Chemical Engineer phone: 630/252-1632, fax: 630/252-4176, e-mail: benjamin@anl.gov BS, MS Chemical Engineering, University of Connecticut MBA University of Chicago Polymer electrolyte membrane fuel cells Hydrogen storage William L. Cleary, Mechanical Engineer, Project Manager phone: 202/506-1570 e-mail: bill.cleary@ee.DOE.gov John Kopasz, Inorganic Chemist phone : 630/252-7531, fax : 630/972-4405, e-mail: kopasz@anl.gov Ph.D., Inorganic Chemistry, State University of New York at Buffalo

54

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

55

7th International Symposium on Inorganic Phosphate Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

ISIPM7 Home ISIPM7 Home About ISIPM7 Conference Brochure Organizers Scientific Committee Proceedings Sponsors Speakers Exhibitors Program Call for Abstracts & Posters Registration Hotels Maps Bus Schedule Contact Us isipm7 header About the Conference It is a great pleasure for the organizing committee of the 7th International Symposium on Inorganic Phosphate Materials (ISIPM7) to invite all who are interested in the design and development of inorganic phosphate materials with applications in various domains of modern technology including energy storage, biomaterials, storage of waste, catalysis, and optics. Read more » Dates to Remember July 18 - Abstracts due (new) July 18 - Registration opens July 25 - Paper and poster acceptance (new) October 17 - Final registration and payment due

56

Study of nonproportionality in the light yield of inorganic scintillators  

SciTech Connect

Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a {gamma}-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHSE, Charles Darwin University, Darwin, Northern Territory 0909 (Australia)

2011-07-15T23:59:59.000Z

57

Identifying Optimal Inorganic Nanomateirals for Hybrid Solar Cells  

DOE Green Energy (OSTI)

As a newly developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest because of the combined advantages from both components. An ideal inorganic acceptor should have a band gap of about 1.5 eV and energy levels of frontier orbitals matching those of the organic polymer in hybrid solar cells. Hybrid density functional calculations are performed to search for optimal inorganic nanomaterials for hybrid solar sells based on poly(3-hexylthiophene) (P3HT). Our results demonstrate that InSb quantum dots or quantum wires can have a band gap of about 1.5 eV and highest occupied molecular orbital level about 0.4 eV lower than P3HT, indicating that they are good candidates for use in hybrid solar cells. In addition, we predict that chalcopyrite MgSnSb{sub 2} quantum wire could be a low-cost material for realizing high-efficiency hybrid solar cells.

Xiang, H.; Wei, S. H.; Gong, X. G.

2009-01-01T23:59:59.000Z

58

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

59

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

60

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Linear Controller Design for the NEC Laser Bonder via  

E-Print Network (OSTI)

advances in optimization theory and algorithms, as well as an almost exponential growth in computing power is the model of the plant, i.e., the system to be controlled. K is the controller that implements the control, and u is the output of the controller that drives the plant. w and z represent inputs and outputs

Balakrishnan, Venkataramanan "Ragu"

62

PKU-NEC @ TRECVid 2012 SED: Uneven-Sequence Based ...  

Science Conference Proceedings (OSTI)

... from the spatiotemporal overlap between the ground truth tracks and ... Wang, Yonghong Tian, Tiejun Huang, Selective Eigenbackgrounds Method ...

2012-11-29T23:59:59.000Z

63

PKU-NEC @ TRECVid 2011 SED: Sequence-Based Event ...  

Science Conference Proceedings (OSTI)

... from the spatiotemporal overlap between the ground truth tracks and ... Wang, Yonghong Tian, Tiejun Huang, Selective Eigenbackgrounds Method ...

2013-07-23T23:59:59.000Z

64

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

65

Low-melting point inorganic nitrate salt heat transfer fluid  

DOE Patents (OSTI)

A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

2009-09-15T23:59:59.000Z

66

Coal liquefaction in an inorganic-organic medium  

SciTech Connect

Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl.sub.2 catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl.sub.2 and is a hydroaromatic hydrocarbon, selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

Vermeulen, Theodore (Berkeley, CA); Grens, II, Edward A. (Danville, CA); Holten, Ronald R. (El Cerrito, CA)

1982-01-01T23:59:59.000Z

67

Solid state radioluminescent sources: Mixed organic/inorganic hybrids  

Science Conference Proceedings (OSTI)

This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments. 12 refs., 2 figs., 1 tab.

Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Smith, H.M. (Allied-Signal, Inc., Kansas City, MO (USA))

1990-01-01T23:59:59.000Z

68

Automated process for solvent separation of organic/inorganic substance  

DOE Patents (OSTI)

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

Schweighardt, Frank K. (Upper Macungie, PA)

1986-01-01T23:59:59.000Z

69

Automated process for solvent separation of organic/inorganic substance  

DOE Patents (OSTI)

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

Schweighardt, F.K.

1986-07-29T23:59:59.000Z

70

Carbons for battery anodes prepared using inorganic templates  

DOE Green Energy (OSTI)

Unique carbons with demonstrated utility as anodes for lithium secondary batteries have been prepared by heating hydrocarbons within an inorganic template. Disordered carbons with novel and desirable molecular porosity were synthesized by the pyrolysis of pyrene at 700 C within a pillared clay. The clay was removed by treatment with acid, leaving behind carbons with 15 to 50 {angstrom} holes. These holey carbons, when converted into electrodes, allow rapid diffusion of the lithium into and out of a carbon. Favorable results have been obtained in several tests, for example, a reversible capacity of 825 mAh/g has been achieved, about four times greater than commercial batteries using convention pyrolytic carbon.

Winans, R.E.; Carrado, K.A.; Sandi, G. [Argonne National Lab., IL (United States). Chemistry Div.

1997-07-01T23:59:59.000Z

71

Argonne CNM News: New inorganic semiconductor layers hold promise for solar  

NLE Websites -- All DOE Office Websites (Extended Search)

New inorganic semiconductor layers hold promise for solar energy New inorganic semiconductor layers hold promise for solar energy Inorganic surface ligands Inorganic surface ligands enable facile electron transport between quantum dots and opened novel opportunities for using nanostructures in solar cells. Inorganic dot array Arrays of quantum dots allow fabrication of solar cells by printing and other inexpensive techniques. A team of users from the University of Chicago, working with the NanoBio Interfaces Group, has demonstrated a method that could produce cheaper semiconductor layers for solar cells. The inorganic nanocrystal arrays, created by spraying a new type of colloidal "ink," have excellent electron mobility and could be a step toward addressing fundamental problems with current solar technology.

72

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

73

Study on Heteropolyacids/Ti/Zr Mixed in the Inorganic Composites ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion/Fuel Cells. Presentation Title, Study on Heteropolyacids/Ti/Zr Mixed in the Inorganic Composites for Fuel Cell Electrolytes.

74

ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX  

SciTech Connect

The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

2011-03-31T23:59:59.000Z

75

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

76

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

77

Physicochemical phenomena of electro-kinetic extraction of inorganic contaminants from kaolinite  

E-Print Network (OSTI)

Experiments investigating the use of electro-kinetics for removal of inorganic chemicals from kaolinite clay were performed. Kaolinite was homogeneously saturated with a NaCl solution and consolidated to the desired void ratio. Fluid reservoir chambers, a power supply and data acquisition instrument were connected to the consolidated sample. A voltage difference was applied to electrodes at each end of the sample to induce electro-osmotic fluid flow and ionic migration of NaCl. After electro-kinetic treatment the sample was disconnected from the reservoirs, power supply and data acquisition system, then sectioned to allow water content, sodium and chloride concentration, and pH analyses of each section. The data obtained was reduced and prepared in graph form for analysis of results. Energy for electrolysis, total energy expended, and removal efficiency were calculated and graphed for selected experiments. It was concluded that the voltage gradient became non-linear during experimentation, contaminant distribution was dependent on initial concentration, and zones of altered pH and ion removal did correspond in some experiments. Also, the removal efficiency decreased with time during experimentation and increased with intial contaminant concentration. Comparisons to a predictive model suggested that ionic mobility and dissusivity values varied between experiments and the model.

Scott, Travis Brooks

1994-01-01T23:59:59.000Z

78

Application of Inorganic Membrane Technology to Hydrogen-hydrocarbon Separations  

DOE Green Energy (OSTI)

Separation efficiency for hydrogen/light hydrocarbon mixtures was examined for three inorganic membranes. Five binary gas mixtures were used in this study: H{sub 2}/CH{sub 4} , H{sub 2}/C{sub 2}H{sub 6}, H{sub 2}/C{sub 3}H{sub 8}, He/CO{sub 2}, and He/Ar. The membranes examined were produced during a development program at the Inorganic Membrane Technology Laboratory in Oak Ridge and provided to us for this testing. One membrane was a (relatively) large-pore-diameter Knudsen membrane, and the other two had much smaller pore sizes. Observed separation efficiencies were generally lower than Knudsen separation but, for the small-pore membranes, were strongly dependent on temperature, pressure, and gas mixture, with the most condensable gases showing the strongest effect. This finding suggests that the separation is strongly influenced by surface effects (i.e., adsorption and diffusion), which enhance the transport of the heavier and more adsorption-prone component and may also physically impede flow of the other component. In one series of experiments, separation reversal was observed (the heavier component preferentially separating to the low-pressure side of the membrane). Trends showing increased separation factors at higher temperatures as well as observations of some separation efficiencies in excess of that expected for Knudsen flow suggest that at higher temperatures, molecular screening effects were observed. For most of the experiments, surface effects were stronger and thus apparently overshadow molecular sieving effects.

Trowbridge, L.D.

2003-06-30T23:59:59.000Z

79

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

Science Conference Proceedings (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

80

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

DOE Green Energy (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

82

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

83

Microfabricated electrochemiluminescence cell for chemical reaction detection  

DOE Patents (OSTI)

A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA); Hsueh, Yun-Tai (Davis, CA); Smith, Rosemary L. (Davis, CA)

2003-01-01T23:59:59.000Z

84

The Periodic Table as a Part of the Periodic Table of Chemical Compounds  

E-Print Network (OSTI)

The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

Labushev, Mikhail M

2011-01-01T23:59:59.000Z

85

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

86

Excursions in Chemical Dynamics  

E-Print Network (OSTI)

2009). [118] F. A. Cotton, Chemical Applications of GroupExcursions in Chemical Dynamics by Shervin Fatehi AFall 2010 Excursions in Chemical Dynamics Copyright 2010 by

Fatehi, Shervin

2010-01-01T23:59:59.000Z

87

Assembly and detection of viruses and biological molecules on inorganic surfaces  

E-Print Network (OSTI)

This work is composed of three distinct, albeit related, projects. Each project is an exploration of the ways in which interactions between inorganic surfaces and biological molecules can be advantageously exploited. The ...

Sinensky, Asher Keeling

2007-01-01T23:59:59.000Z

88

First principles study of structure and lithium storage in inorganic nanotubes  

E-Print Network (OSTI)

The exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross ...

Tibbetts, Kevin (Kevin Joseph)

2009-01-01T23:59:59.000Z

89

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Areas Heavy Element Separations Science Interfacial Processes Process Safeguards Environmental Science Radiochemistry Process Simulation and Equipment Design Pyroprocess Development Management and Support Mark A. Williamson, Chemist and Department Manager phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Ph.D., Physical Chemistry, University of Kansas Advanced nuclear fuel cycles Pyrochemical process research and development Actinide thermodynamics and inorganic chemistry High-temperature chemistry Monica C. Regalbuto, Senior Chemical Engineer phone:630/252-4616, e-mail: regalbuto@anl.gov George F. Vandegrift, Argonne Distinguished Fellow phone: 630/252-4513, fax: 630/972-4513, e-mail: vandegrift@anl.gov Ph.D., Inorganic Chemistry, Iowa State University

90

Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species  

SciTech Connect

Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables.

Rard, J.A.

1983-09-15T23:59:59.000Z

91

Inorganic compounds for passive solar energy storage. Solid-state dehydration materials and high specific heat materials. Progress report  

DOE Green Energy (OSTI)

Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al/sub 2/O/sub 3/-SO/sub 3/-H/sub 2/O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6/sup 0/C to 33/sup 0/C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g//sup 0/C and for the monosubstituted phases between 0.23 and 0.28 cal/g//sup 0/C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

Struble, L.J.; Brown, P.W.

1986-04-01T23:59:59.000Z

92

Questions and Answers - In the chemical equation for methane gas why is  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon found in all organicand inorganic matter? carbon found in all organic<br>and inorganic matter? Previous Question (Is carbon found in all organic and inorganic matter?) Questions and Answers Main Index Next Question (How do you separate tungsten from its ore?) How do you separatetungsten from its ore? In the chemical equation CH4 for methane gas why is there more hydrogen than carbon? This is a very good question, and the answer is at the heart of modern atomic physics. The nucleus is at the center of the atom, like the sun is at the center of the solar system. Electrons move around in orbits around the nucleus, like the planets around the sun. But there is an important difference: electrons can only have very special energies, which correspond to specific orbits. The orbits in the atoms are called shells, and each shell can only hold so

93

Inorganic resins for clinical use of .sup.213Bi generators  

DOE Patents (OSTI)

Applicant's invention is a radionuclide generator resin material for radiochemical separation of daughter radionuclides, particularly .sup.213Bi, from a solution of parental radionuclides, the resin material capable of providing clinical quantities of .sup.213Bi of at least 20-mCi, wherein the resin material comprises a silica-based structure having at least one bifunctional ligand covalently attached to the surface of the silica-based structure. The bifunctional ligand comprises a chemical group having desirable surface functionality to enable the covalent attachment of the bifunctional ligand thereon the surface of the structure and the bifunctional ligand further comprises a second chemical group capable of binding and holding the parental radionuclides on the resin material while allowing the daughter radionuclides to elute off the resin material. The bifunctional ligand has a carbon chain with a limited number of carbons to maintain radiation stability of the resin material.

DePaoli, David W. (Knoxville, TN); Hu, Michael Z. (Knoxville, TN); Mirzadeh, Saed (Knoxville, TN); Clavier, John W. (Elizabethton, TN)

2011-03-29T23:59:59.000Z

94

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network (OSTI)

Reduction of trichloroethylene (TCE), chromium (VI), and 2,4 dinitrotoluene (2,4-DNT) by zero valent iron and palladized iron under anaerobic conditions was investigated. Reduction experiments of the contaminants were carried out individually and in combination. All three target contaminants were effectively reduced by both iron (Feo) and palladized iron (Pd/Fe'). However, the rate of reduction by Pd/Fe' was found to be much faster than that by Feo. The reduction of all the contaminants in mixed waste was found to be slower than in the individual experiments, but the difference was most significant in the 2,4-DNT reduction. This observation indicates that there may be a possibility of competition for reactive sites among the contaminants and precipitation resulting from CR(VI) reduction may coat iron surfaces, which may ultimately slow the whole zero valent metals (ZVMS) treatment process in remediating mixed waste sites. The 20 mg/L of CR(VI) was reduced below detection limits in 10 hours by Fe' and in 1.5 hours by the same amount of Pd/Fe' in individual experiment. An initial concentration of 20 mg/L of TCE was reduced below detection limits in 72 hours by Pd/Fe' whereas only 62% of TCE was reduced by the same amount of Fe' in 144 hours in individual experiment. The reaction orders of 1.84 and 2.04 for total TCE loss alone and in mixed waste by Fe' indicates that the reaction mechanisms are complex. The reduction of 72 mg/L of 2,4-DNT proceeded to below detection limits within 3 hours by both Fe' and Pd/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2,4-DAT alone occurred, these results indicate the possibility of other intermediates or products formation under aerobic conditions. Overall, the results demonstrated the potential application of ZVMs in reducing mixed wastes containing both inorganic and organic contaminant interactions before implementing a ZVMs treatment system, which may help in designing a proper remedial system.

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

95

MICROBIAL TRANSFORMATIONS OF URANIUM COMPLEXED WITH ORGANIC AND INORGANIC LIGANDS.  

SciTech Connect

Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the mechanisms of microbial transformations of uranium under a variety of environmental conditions will be useful in developing appropriate remediation and waste management strategies as well as predicting the microbial impacts on the long-term stewardship of contaminated sites.

FRANCIS,A.J.

2002-09-15T23:59:59.000Z

96

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network (OSTI)

by one of us for devices that produce beams of chemically interesting species at relative kinetic energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical. It is obvious that while some methods of theoretical chemical kinetics (for instance, "absolute" rate theory

Zare, Richard N.

97

Microfluidic chemical reaction circuits  

DOE Patents (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

98

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

99

NIST - Physical and Chemical Properties Division - Technical ...  

Science Conference Proceedings (OSTI)

... Clay is the key inorganic substance in applications ranging from pollution prevention and remediation, enhanced oil recovery, the treatment of ...

100

Inorganic and Radiochemical Analysis of AW-101 and AN-107 Tank Waste  

SciTech Connect

This report presents the inorganic and radiochemical analytical results for AW-101 and AN-107 as received materials. The analyses were conducted in support of the BNFL Proposal No. 30406/29274 Task 5.0. The inorganic and radiochemical analysis results obtained from the as received materials are used to provide initial characterization information for subsequent process testing and to provide data to support permit application activities. Quality Assurance (QA) Plan MCS-033 provides the operational and quality control protocols for the analytical activities, and whenever possible, analyses were performed to SW-846 equivalent methods and protocols.

MW Urie; JJ Wagner; LR Greenwood; OT Farmer; SK Fiskum; RT Ratner; CZ Soderquist

1999-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

102

An analysis of cost improvement in chemical process technologies  

DOE Green Energy (OSTI)

Cost improvement -- sometimes called the learning curve or progress curve -- plays a crucial role in the competitiveness of the US chemical industry. More rapid cost improvement for a product results in expanding market share and larger profits. Expectations of rapid cost improvement motivate companies to invest heavily in the development and introduction of new chemical products and processes, even if production from the first pioneer facility is economically marginal. The slope of the learning curve can also indicate whether government support of new chemical processes such as synthetic fuels can be expected to have large social benefits or to simply represent a net loss to the public treasury. Despite the importance of the slope of the learning curve in the chemical process industries (CPI), little analytical investigation has been made into the factors that accelerate or retard cost improvement. This study develops such a model for the CPI. Using information from ten in-depth case studies and a database consisting of year-by-year market histories of 44 chemical products, including organic chemicals, inorganic chemicals, synthetic fibers, and primary metals, the analysis explores the relationships among the rate of learning and characteristics of the technologies, the nature of markets, and management approaches. 78 refs., 8 figs., 15 tabs.

Merrow, E.W.

1989-05-01T23:59:59.000Z

103

Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process  

E-Print Network (OSTI)

Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

Chelawat, Hitesh

2010-01-01T23:59:59.000Z

104

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

105

Chapter 13. Chemical Kinetics  

E-Print Network (OSTI)

of chemical reactions. · Only gases, for which the kinetic theory of Chapter 4 is applicable, are consideredChapter 13. Chemical Kinetics #12;· Why do some chemical reactions proceed with lighting speed when the way in which molecules combine to form products? · All of these questions involve chemical kinetics

Ihee, Hyotcherl

106

and Chemical Engineering  

E-Print Network (OSTI)

Biological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta is constructing a new building that will house the Department of Chemical Engineering and the Department and Chemical Engineering Building will provide critically needed space for innovators in multiple disciplines

Prinz, Friedrich B.

107

Chemical Sciences Division Homepage  

Science Conference Proceedings (OSTI)

... Development of Measurements and Standards for Biofuels; Chemical Metrology in Support of the US Hydrogen Infrastructure; ...

2013-06-07T23:59:59.000Z

108

Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis  

SciTech Connect

Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. While accurate measurements can be made in the analytical laboratory, we have developed a rapid, portable technique that can be used to obtain accurate and precise data in the field as well.

VESPER, DJ, Edenborn, Harry

2012-01-01T23:59:59.000Z

109

Nano Res (2010) 3: 170173170 Synthesis and Characterization of WS2 Inorganic Nanotubes with  

E-Print Network (OSTI)

Nano Res (2010) 3: 170­173170 Synthesis and Characterization of WS2 Inorganic Nanotubes]. Folding and bonding of edge atoms on the periphery of the quasi two-dimensional planar nano- structure this nanotubular structure is suitable for capillary filling using molten metal halides. Nano Res (2010) 3: 170

Davis, Ben G.

110

Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells  

E-Print Network (OSTI)

Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells Chiatzun in hybrid TiO2/regioregular poly 3-hexylthiophene P3HT photovoltaic cells. By employing a series of para in the field of organic photovoltaic PV cells1­7 and dye-sensitized solar cells DSSCs Refs. 7­10 as part

McGehee, Michael

111

Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report  

DOE Green Energy (OSTI)

Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

Goldman, J. C.

1981-04-01T23:59:59.000Z

112

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

113

Environmental toxicity of complex chemical mixtures  

E-Print Network (OSTI)

Complex chemical mixtures may be released into the environment from a variety of sources including hazardous waste sites. Components of chemical mixtures and their metabolites may be genotoxic leading to cancer and heritable gene mutations. Chemical analysis alone does not always provide the most accurate information from which to estimate the risk of adverse effects associated with exposure to mixtures. Current methods to estimate the human health risk for complex mixtures assume additive effects of the components. Although it is assumed that this approach is protective of human and ecological health, it is also recognized that chemical mixtures may induce a variety of interactions including potentiation, synergism, and antagonism. A combined testing protocol, using chemical analysis coupled with a battery of in vitro, in vivo, and in situ bioassays, provides the most accurate information from which to estimate risk. Such a combined testing protocol provides information to describe the major organic and inorganic constituents, as well as the pharmacokinetics and potential interactions of chemical mixtures. This research was conducted to investigate the potential genotoxic effects of complex chemical mixtures of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated aromatics (PCA) using microbial bioassays (Salmonella/microsome assay and the E. coli prophage induction assay), the 32P-postlabeling assay in mice, and in situ measurements of genotoxicity using flow cytometry. Samples of environmental media and wildlife tissues were collected from four National Priority List Superfund sites within the United States. In general, chemical analysis was not always predictive of mixture toxicity. Although biodegradation reduced the concentration of total and carcinogenic PAHs in soils and groundwater, the genotoxicity of extracts from environmental media did not display a corresponding reduction. Mixtures of polychlorinated biphenyls (PCBs) extracted from sediments were found to inhibit the genotoxicity of PAH mixtures when administered dermally to rodents. This inhibition exhibited a dose-response relationship, with the adduct frequency reduced at increasing doses of sediment extract. Finally, PAH concentrations in environmental media and tissues were found to correlate with DNA damage in wildlife receptors. An integrated approach, combining in vitro and in vivo methods to characterize genotoxicity provides more accurate information from which to estimate uptake and risk associated with exposure to complex mixtures and should be considered in both the human and ecological risk assessment process.

Gillespie, Annika Margaret

2006-05-01T23:59:59.000Z

114

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. Chemicals--Safety measures. 3. Hazardous wastes. I. National Research Council (U.S.). Committee on Prudent) produced two major reports on laboratory safety and laboratory waste disposal: Prudent Practices Nanomaterials, 77 4.G Biohazards, 79 4.H Hazards from Radioactivity, 79 5 Management of Chemicals 83 5.A

Tai, Yu-Chong

115

Chemical Reference Data Group Homepage  

Science Conference Proceedings (OSTI)

Chemical Reference Data Group. Welcome. The Chemical Reference Data Group compiles, evaluates, correlates and measures ...

2013-07-10T23:59:59.000Z

116

Microfabricated sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA)

2003-01-01T23:59:59.000Z

117

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

1996-01-01T23:59:59.000Z

118

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

1996-12-31T23:59:59.000Z

119

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

120

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network (OSTI)

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of ChemicalD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description of chemical engineering: "chemical engineers seek to understand, manipulate, and control the molecular basis

Collins, Gary S.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

122

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

123

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

124

Chemical biology drug discovery  

E-Print Network (OSTI)

Keywords Chemical biology drug discovery high-throughput screening protein ligands proteases novel chemical and biochemical methods for the identification and optimization of protein ligands us of pro- tein ligands. Results of this research are translated into protein-specific, chemical probes

SchĂĽler, Axel

125

Chemical engineering Research !!  

E-Print Network (OSTI)

Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation University/Faculty of Engineering-LTH/Department of Chemical Engineering Membrane Group Ann-Sofi Jönsson More research projects. #12;Lund University/Faculty of Engineering-LTH/Department of Chemical Engineering

126

Chemical Zeolites Combinatorial . . .  

E-Print Network (OSTI)

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

Servatius, Brigitte

127

CHEMICAL AND PAPER ENGINEERING  

E-Print Network (OSTI)

SAFETY HANDBOOK For CHEMICAL AND PAPER ENGINEERING 2010-2011 #12;Page 1 Safety Guidelines Department of Chemical and Paper Engineering Miami University - Oxford, Ohio 45056 The following safety and Laboratory Coordinator Responsibilities III. Emergency Procedures IV. Chemical Storage V. Routine

Dollar, Anna

128

Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers  

DOE Green Energy (OSTI)

Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in the fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in boiler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Jenkins, B.M. [California Univ., Davis, CA (United States). Dept. of Biological and Argicultural Engineering

1995-08-01T23:59:59.000Z

129

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 11 VIII. Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . 12 IX. Hazardous Waste: Hazardous Chemicals Data . . . . . . . . . . . . . . . . . . 51 Appendix B: Means of Lab Waste Disposal . . . . . . . . . . . . . . . . . 53 Appendix C: Where to put specific wastes . . . . . . . . . . . . . . . . . . 54 Appendix D

Elowitz, Michael

130

Carbons for lithium ion cells prepared using sepiolite as an inorganic template.  

DOE Green Energy (OSTI)

Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

Sandi, G.

1998-12-09T23:59:59.000Z

131

Biomethylation of inorganic arsenic by the rat and some laboratory animals  

SciTech Connect

This article concerns the distribution (in the liver, kidney and blood) and excretion (in the urine, feces and bile) of arsenic metabolites such as dimethylated, monomethylated and inorganic arsenic in rats following a single oral and intravenous (iv) administration of arsenic acid. This paper also describes studies on the species difference in the arsenic methylation between the rats and some other laboratory animals as mice, hamsters, rabbits and cats.

Odanaka, Y.; Matano, O.; Goto, S.

1980-03-01T23:59:59.000Z

132

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

133

Siphons in Chemical Reaction Networks  

E-Print Network (OSTI)

credited. Siphons in Chemical Reaction Networks Referencesfor a class of nonlinear chemical equations. SIAM J. Appl.to persistence analysis in chemical reaction networks. In:

Shiu, Anne; Sturmfels, Bernd

2010-01-01T23:59:59.000Z

134

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.Łd. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

135

Chemical exchange program analysis.  

SciTech Connect

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

136

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network (OSTI)

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

137

Chemical Structure and Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

138

ENHANCED CHEMICAL CLEANING CORROSION TESTING  

Enhanced Chemical Cleaning Corrosion Testing 3 Background: Enhanced Chemical Cleaning Process Treatment Tank Deposition Tank 3000 gpm Mixers Oxalic ...

139

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

140

Chemical Testing of Textiles  

Science Conference Proceedings (OSTI)

Chemical Testing of Textiles is edited by Qinguo Fan and covers more subjects than the title implies. These subjects include fiber and yarn identification, ...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

142

Apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

143

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

144

Chemical Name Search  

Science Conference Proceedings (OSTI)

... Enter a chemical species name or pattern: (eg, methane, *2-hexene); Select the desired units for thermodynamic data: SI calorie-based; ...

2013-07-15T23:59:59.000Z

145

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

146

Brookhaven Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Physics While the field of physics generally strives to find compact and universal explanations for how the components of our universe interact, chemistry is traditionally...

147

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

148

Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network  

SciTech Connect

We have developed armored single-enzyme nanoparticles (SENs), which dramatically stabilize a protease (a-chymotrypsin, CT) by surrounding each enzyme molecule with a porous composite organic/inorganic shell of less than a few nanometers thick. The armored enzymes show no decrease in CT activity at 30C for four days while free CT activity is rapidly reduced by orders of magnitude. The armored shell around CT is sufficiently thin and porous that it does not place any serious mass-transfer limitation on substrates. This unique approach will have a great impact in using enzymes in various fields.

Kim, Jungbae; Grate, Jay W.

2003-09-01T23:59:59.000Z

149

Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report  

Science Conference Proceedings (OSTI)

Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

Sheng Wu

2012-08-03T23:59:59.000Z

150

Enhanced Chemical Cleaning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap Sludge Washing Evap Feed/Drop Tank 8 Wt% Oxalic Acid Neutralization Tank Solids Liquid High oxalate concentration Negligible oxalate concentration * Oxalates from chemical cleaning impact salt processing * A process change was needed Evaporator Saltstone Vaults DWPF Filled Canisters 5 Vision * Eliminate the impacts to the Tank Farm

151

Modelling the chemical evolution  

E-Print Network (OSTI)

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.

Hensler, Gerhard

2010-01-01T23:59:59.000Z

152

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

153

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

154

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

E-Print Network (OSTI)

2), forms the ubiquitous oil source matrix in shales. Thus~Oil Shale Retort and Process Water s Inorganic Arsenic and Organoarsenic compounds were purchased from commercial sources

Fish, Richard H.

2013-01-01T23:59:59.000Z

155

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

156

THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS  

SciTech Connect

Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

2011-08-04T23:59:59.000Z

157

Conducting Polymer-Inorganic\tNanoparticle (CPIN) Nanoarrays for Battery Applications - Final Technical Report  

DOE Green Energy (OSTI)

Our objective was to develop new, self-assembling conducting polymer-inorganic nanoparticle nanoarrays (CPIN nanoarrays) comprised of nanoparticles of inorganic Li+ insertion compounds that are “wired” together with oligomeric chains of derivatives of polythiophene. Using these nanoarrays, we developed an understanding of the relationship between structure and electrochemical function for nanostructured materials. Such nanoarrays are expected to have extremely high specific energy and specific power for battery applications due to the unique structural characteristics that derive from the nanoarray. Under this award we developed several synthetic approaches to producing manganese dioxide nanoparticles (NPs). We also developed a layer-by-layer approach for immobilizing these NPs so they could be examined electrochemically. We also developed new synthetic procedures for encapsulating manganese dioxide nanoparticles within spheres of polyethylenedioxythiophene (PEDOT), a conducting polymer with excellent charge-discharge stability. These have a unique manganese dioxide core-PEDOT shell structure. We examined the structures of these systems using transmission electron microscopy, various scanning probe microscopies, and electrochemical measurements. Various technical reports have been submitted that describe the work, including conference presentations, publications and patent applications. These reports are available through http://www.osti.gov, the DOE Energy Link System.

Buttry, Daniel A.

2006-06-27T23:59:59.000Z

158

Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures  

DOE Green Energy (OSTI)

Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

2005-07-27T23:59:59.000Z

159

ESS 2012 Peer Review - Organic and Inorganic Solid Electrolytes for Li-ion Batteries - Nader Hagh, NEI Corporation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organic and Inorganic Solid Electrolytes for Li-ion Batteries Organic and Inorganic Solid Electrolytes for Li-ion Batteries Background & Objectives * Lithium ion batteries widely used in consumer applications Solvent leakage and flammability of conventional liquid electrolytes * Current solid state electrolytes suffer from low ionic conductivity, inferior rate capability, and interfacial instability * Objective of the program is to develop solid state organic and inorganic electrolyte that has enhanced ionic conductivity * PEO based polymer electrolyte has poor room ionic conductivity due to crystallinity * The current program develops a PEO based hybrid copolymer that disrupts crystallization and at the same time provides mechanical integrity Abstract: The use of a solid polymer electrolyte instead of the conventional liquid or gel electrolyte can drastically improve the safety

160

Surface Chemical Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

162

Effects of composted dairy manure on soil chemical properties and forage yield and nutritive value of coastal Bermudagrass [Cynodon dactylon (L.) Pers.  

E-Print Network (OSTI)

Research was conducted to compare the effects of composted dairy manure and raw dairy manure alone, or in combination with supplemental inorganic fertilizer, on soil chemical properties and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield and nutritive value. Composted dairy manure was surface applied at rates of 14 (125 kg N ha-1), 29 (250 kg N ha-1) and 57 (500 kg N ha-1) Mg dry matter (DM) ha-1, and raw dairy manure was surface applied at a rate of 54 (420 kg N ha-1) Mg DM ha-1 to established bermudagrass. Selected compost and manure plots received supplemental inorganic N at rates of 56, 84 and 112 kg ha-1 cutting-1 or 112 kg ha-1 cutting-1 of supplemental N with supplemental inorganic phosphorus or potassium at rates of 112 kg P2O5 ha-1 yr-1 and 112 kg K2O ha-1 cutting-1, respectively. Composted dairy manure (29 and 57 Mg DM ha-1) or raw manure alone increased cumulative forage yields compared to the untreated check in both years of the study, but were less than those obtained using only inorganic fertilizer. Application of 56 kg N ha-1 cutting-1 or more of supplemental N to compost (29 and 57 Mg DM ha-1) or iv manure produced forage yields that were equal to or greater than those obtained using inorganic fertilizer alone. However, increasing compost rate did not increase tissue N concentrations regardless of supplemental inorganic N rate. Yield and tissue K concentrations were increased in the second growing season when supplemental inorganic K was applied to 29 Mg ha-1 of compost or 54 Mg ha-1 of raw dairy manure. No yield response was observed when supplemental inorganic P was applied to compost or manure. Soil pH and concentrations of NH4, NO3, K, Ca, Mg and Mn were increased by application of compost or manure. Soil P concentrations in the 0 to 5-cm zone exceeded 200 mg kg-1 when compost was applied at the high rate. Dairy manure compost was an effective nutrient source for bermudagrass hay production, but will require the use of supplemental N and, in some cases, K to achieve yields comparable to inorganic fertilizer.

Helton, Thomas J.

2004-12-01T23:59:59.000Z

163

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

towards shop operations. H-1 Chemic_l Hygiene and Safety ,of this section, any chemic:ads per kflop'am of body welshtUNSUPPORTED CHEMIC. -M. VITON NITrlI.E NATI'R.4I. BUTYL

Ricks Editor, R.

2009-01-01T23:59:59.000Z

164

Yellow phosphorus process to convert toxic chemicals to non-toxic products  

DOE Patents (OSTI)

The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

Chang, S.G.

1994-07-26T23:59:59.000Z

165

Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.  

DOE Green Energy (OSTI)

Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti-reflection coating for multicrystalline Si solar cells. An important component of this project is the collaboration with Dr. Dave Ginley's group at NREL. The NREL efforts, which are funded by NREL's LDRD program, focus on measuring device performance, external quantum efficiency, photoconductance through highly specialized non-contact time-resolved microwave conductivity (TRMC) measurements, and vapor phase deposition of oxide materials. The close collaboration with NREL enables us to enter this competitive field in such short time. Joint publications and presentations have resulted from this fruitful collaboration. To this date, 5 referred journal papers have resulted from this project, with 2 more in preparation. Several invited talks and numerous contributed presentations in international conferences are also noted. Sandia has gained the reputation of being one of forefront research groups on nanostructured hybrid solar cells.

Hsu, Julia, W. P.

2008-09-01T23:59:59.000Z

166

Fuels and chemicals made from solar energy. Options for the 1990's and beyond  

SciTech Connect

The concept and feasibility of using solar thermal systems to produce gaseous and liquid fuels and feedstocks from non-renewable resources such as coal, lignite, and peat and from renewable resources such as water and waste organic materials are discussed. Some of the commercially important reactions now being considered as candidates for solar thermal technology are mentioned including synthesis gas production, shale oil processing, decomposition of water, ammonia production, styrene manufacture, and inorganic chemicals processes. DOE research programs in this area are briefly discussed. (WHK)

1980-08-01T23:59:59.000Z

167

Fuels and chemicals made from solar energy. Options for the 1990's and beyond  

DOE Green Energy (OSTI)

The concept and feasibility of using solar thermal systems to produce gaseous and liquid fuels and feedstocks from non-renewable resources such as coal, lignite, and peat and from renewable resources such as water and waste organic materials are discussed. Some of the commercially important reactions now being considered as candidates for solar thermal technology are mentioned including synthesis gas production, shale oil processing, decomposition of water, ammonia production, styrene manufacture, and inorganic chemicals processes. DOE research programs in this area are briefly discussed. (WHK)

Not Available

1980-08-01T23:59:59.000Z

168

Energy considerations for steam plasma gasification of black liquor and chemical recovery  

Science Conference Proceedings (OSTI)

This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which bums the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

Grandy, J.D.; Kong, P.C.

1995-10-01T23:59:59.000Z

169

Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer  

Science Conference Proceedings (OSTI)

Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

2009-11-27T23:59:59.000Z

170

NEC Hazardous classification and compliance regarding the surface moisture monitor measurement system  

SciTech Connect

The National Electrical Code, NFPA 70, and National Fire Protection Association requirements for use of Surface Moisture Monitor Systems in classified locations are discussed. The design and configuration of the surface moisture monitor are analyzed with respect to how they comply with requirements of the National Electrical Code requirements, articles 500-504.

Bussell, J.H., WHC

1996-06-12T23:59:59.000Z

171

NEC's Itanium prototype server (see Figure 1), code-named AzusA after a river  

E-Print Network (OSTI)

aimed at reliability, availability, and serviceability. These features include cell hot- plug capability 200 ns for a local memory access or local CPU cache hit, and less than 300 ns for a remote (other cell. Availability As in PCI cards, a cell in a partitioned con- figuration can be hot swapped while other domains

Skadron, Kevin

172

Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers  

DOE Patents (OSTI)

Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

Alivisatos, A. Paul (Berkeley, CA); Colvin, Vicki L. (Berkeley, CA)

1998-01-01T23:59:59.000Z

173

Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers  

Science Conference Proceedings (OSTI)

Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

Alivisatos, A.P.; Colvin, V.L.

1998-05-12T23:59:59.000Z

174

"All-Inorganic, Efficient Photovoltaic Solid State Devices Utilizing Semiconducting Colloidal Nanocrystal Quantum Dots"  

DOE Green Energy (OSTI)

We demonstrated robust colloidal quantum dot (QD) photovoltaics with high internal quantum efficiencies. In our structures, device durability is derived from use of all-inorganic atmospherically-stable semiconducting metal-oxide films together with QD photoreceptors. We have shown that both QD and metal-oxide semiconducting films and contacts are amenable to room temperature processing under minimal vacuum conditions, enabling large area processing of PV structures of high internal efficiency. We generated the state of the art devices with power conversion efficiency of more than 4%, and have shown that efficiencies as high as 9% are achievable in the near-term, and as high as 17% in the long-term.

Vladimir Bulovic and Moungi Bawendi

2011-09-30T23:59:59.000Z

175

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

176

Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation  

Science Conference Proceedings (OSTI)

This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

Harwood, B.J.

1993-01-01T23:59:59.000Z

177

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

178

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

179

Chemical Cleaning Program Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Program Review Neil Davis Deputy Program Manager Waste Removal & Tank Closure July 29, 2009 SRR-STI-2009-00464 2 Contents Regulatory drivers Process overview Preliminary results Lessons learned Path forward 3 Regulatory Drivers The Federal Facilities Agreement establishes milestones for the removal of bulk waste and closure of each non-compliant tank Per the Dispute Resolution: - "DOE shall complete operational closure of Tanks 19 and 18 by 12/31/2012" - "DOE shall complete operational closure of 4 tanks by 9/30/2015" SRR intention to close 4 tanks by 9/30/2010, or as soon as possible Tanks 5 & 6 will be 2 of the 4 tanks 4 Tank Closure Process Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus

180

Chemical Label Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Label Information Chemical Label Information Chemical Name CAS No. NFPA 704 Label Data Hazard Information Health Fire Reactivity Other acetone 67641 1 3 0 Eye, skin and mucous membrane irritatiion. Central nervous system depression. chloroform 67663 2 0 0 CAR [1] and TERAT [2] Liver and kidney disorders. Eye and skin irritation. Central nervous system depression. Cardiac arrythmia. ethanol 64175 0 3 0 Skin and eye irritation. ethyl alcohol 64175 0 3 0 Skin and eye irritation. hydrofluoric acid 7664393 4 0 0 Acute [3] - Skin contact can lead to bone damage. Skin, eye and mucous membrane irritation. hydrogen peroxide (35 to 52%) 7722841 2 0 1 OX Very irritating to the skin, eye and respiratory tract. hydrogen peroxide (> 52%) 7722841 2 0 3 OX Extremely irritating to the skin, eye and respiratory tract.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

182

Physical and Chemical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

183

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

184

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

185

Work Practices for Chemical Fumehoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Practices for Chemical Fumehoods Practices for Chemical Fumehoods (Reviewed May 16, 2011) Always use a chemical fumehood when working with toxic and/or volatile chemicals, not on an open bench. Chemical fumehoods are designed to provide protection for the user from chemical and radiological contaminants. However, they do not absolutely eliminate exposure, even under ideal conditions. Careless work practices can result in considerable exposure to users who may believe they are protected. To optimize the performance of the chemical hood, adhere to the following work practices: 1. Ensure that your chemical hood has a current inspection sticker (dated within the last year). The face velocity should be between 80 and 120 linear feet per minute (lfpm). 2. Verify that the chemical hood is drawing air.

186

CSD: Research Programs: Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

187

TABLE OF CONTENTS I. PHYSICAL & CHEMICAL ...  

Science Conference Proceedings (OSTI)

Page 1. Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division ...

2001-06-12T23:59:59.000Z

188

Chemical Engineering & Processing Humidity Information at ...  

Science Conference Proceedings (OSTI)

NIST Home > Chemical Engineering & Processing Humidity Information at NIST. Chemical Engineering & Processing Humidity Information at NIST. ...

2010-09-24T23:59:59.000Z

189

Chemical Sciences Division: Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

INTRODUCTION INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD Directory A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Rebecca Abergel CSD Project Scientist; The Glenn T. Seaborg Center. Musahid Ahmed CSD Staff Scientist, Chemical Physics Program/Chemical Dynamics Beamline Publications Richard A. Andersen Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, The Glenn T. Seaborg Center Publications John Arnold Professor of Chemistry, UC Berkeley; CSD Faculty Scientist, Catalytic Science Program Publications B Ali Belkacem CSD Deputy and Senior Staff Scientist; Atomic, Molecular and Optical Sciences Program Leader

190

Review of Wildfire Effects on Chemical Water Quality  

SciTech Connect

The Cerro Grande Fire of May 2000 burned almost 43,000 acres of forested land within the Pajarito Plateau watershed in northern New Mexico. Runoff events after the fire were monitored and sampled by Los Alamos National Laboratory. Changes in the composition of runoff water were noted when compared to runoff water composition of the previous 20 years. In order to understand the chemical water quality changes noted in runoff water after the Cerro Grande Fire, a summary of the reported effects of fire on runoff water chemistry and on soils that contribute to runoff water chemistry was compiled. The focus of this report is chemical water quality, so it does not address changes in sediment transport or water quantity associated with fires. Within the general inorganic parameters, increases of dissolved calcium, magnesium, nitrogen, phosphorus, and potassium and pH in runoff water have been observed as a result of fire. However, the dissolved sodium, carbon, and sulfate have been observed to increase and decrease as a result of fire. Metals have been much less studied, but manganese, copper, zinc, and cesium-137 have been observed to increase as a result of fire.

Kelly Bitner; Bruce Gallaher; Ken Mullen

2001-05-01T23:59:59.000Z

191

Resistance to Chemicals  

Science Conference Proceedings (OSTI)

Table 14   Corrosion of lead in chemical process fluids...� � 76.2 3 Tallow � � 304.8 12 Olive � � 76.2 3 Cod liver � � 152.4 6 Neatsfoot � � 279.4 11 Fish � � 279.4 11 Vegetable � � 584.2 23 Peanut � � 457.2 18 Sulfonation with

192

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

193

Chemical composition of melanin  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical composition of melanin Chemical composition of melanin Name: Peggy M Siemers Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: What is the chemical composition of Melanin by specific amino acids, or the DNA code for melanin? Replies: This is a good question! The answer is somewhat complex and I'm sure I don't have all the details but here goes... First, there is not a specific DNA code for melanin because like many biomolecules, it is not the result of a single gene product. People that are deficient in melanin are oculo/dermal albinos and I believe there have been seven different types of mutations. These different mutations reflect the multiple steps required to produce melanin. The original building block for melanin is tyrosine, one of the amino acids. This amino acid is modified by enzymes to produce the building block (monomer) for melanin synthesis by a process called polymerization that is also controlled by an enzyme. The polymers ,I believe, can attain diff3erent lengths and they can also form aggregates of different sizes alone and in combination with other molecules such as proteins. This is in part responsible for differences in coloration seen within and between individuals. NEWTON RULES

194

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit opera- tions, thermodynamics, kinetics variables and random functions. Application to chemical engineering problems, including process design concepts of chemical kinetics and chemi- cal reactor design. Prerequisite: MATH 245. coUrSeS of in

Wang, Hai

195

Ordered Layered Organic-Inorganic of 4-Chlorophenoxyacetate-Zinc Layered Hydroxide Nanohybrid  

Science Conference Proceedings (OSTI)

Ordered layered organic-inorganic nanostructure composed of zinc layered hydroxide-4-chlorophenoxy acetate (ZLH-4CPA) was prepared by reaction of an organic anion, 4-chlorophenoxy acetate (4CPA) with ZnO under aqueous environment. The concentration of 4CPA was found to be a controlling factor in determining the formation of phase pure, well ordered nanolayered hybrid material. At lower concentration of 4CPA (0.05 M), a mixed phase was observed in which ZnO co-existed with the nanohybrid. At 0.01 M, a pure phase is obtained with high crystallinity but a well ordered nanolayered structure is lacking. A pure phase, well ordered nanolayered hybrid can be clearly observed at 0.2 M 4CPA. ZnO shows well defined grain structure of various sizes at nanometer scale range. Direct reaction between ZnO and 4CPA under aqueous environment resulted in the formation of 4CPA-ZLH nanohybrid with flake-like fibrous structure. On heating at 500 deg. C for 5 h under atmospheric condition, the nanohybrid was transformed back to well defined grain structure, as previously observed for the starting materials, ZnO. This shows that the nanohybrid has ''memory effect'' property. Well ordered nanolayered hybrid with up to 5 harmonics, from which the average basal spacing of 19.03 A of the material was deduced, showing long range order of the layer packing.

Hussein, Mohd Zobir [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Nazarudin, Nor Farhana binti [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sarijo, Siti Halimah [Faculty of Applied Science, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor (Malaysia); Yarmo, Mohd Ambar [Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2011-03-30T23:59:59.000Z

196

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods  

Science Conference Proceedings (OSTI)

The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

Not Available

1993-08-01T23:59:59.000Z

197

Information extraction from chemical patents  

E-Print Network (OSTI)

........................................................................................................................................ vii Glossary .................................................................................................................................................. ix 1. Introduction... .................................................................... 211 Figure 6-2: Diagrammatic illustration of PatentEye Repository RDF .................................................. 212 ix Glossary API Application Programming Interface CAS Chemical Abstracts Service ChEBI Chemical Entities...

Jessop, David M

2011-03-15T23:59:59.000Z

198

Devices for collecting chemical compounds  

SciTech Connect

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

199

Chemical Informatics Research - Staff Directory  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Chemical Informatics Research Group. William E. Wallace III (Group Leader) Laurell R. Phillips (Office ...

2013-08-29T23:59:59.000Z

200

Chemical Transformations of Nanostructured Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Solution-based Processing for Ceramic Materials. Presentation Title, Chemical ...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemical Sciences Division - Staff Directory  

Science Conference Proceedings (OSTI)

Chemical Sciences Division. Carlos A. Gonzalez (Division Chief) Carol A. Driver (Office Manager) Division Office Staff Directory. ...

2013-08-15T23:59:59.000Z

202

Argonne Chemical Sciences & Engineering - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

203

LLNL Chemical Kinetics Modeling Group  

DOE Green Energy (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

204

Experimental Datasets from Chemical Thermodynamics  

E-Print Network (OSTI)

Mar 29, 2005 ... Optimization Online. Experimental Datasets from Chemical Thermodynamics. Evgenii Rudnyi (Evgenii ***at*** Rudnyi.Ru). Abstract: I have ...

205

Leaching of Inorganic Constituents From Coal Combustion By-Products Under Field and Laboratory Conditions: Volume 1  

Science Conference Proceedings (OSTI)

Over the last two decades, EPRI has sponsored research to develop technical insights into leaching and attenuation processes and the migration of inorganic waste constituents under actual disposal conditions. This report provides an in-depth analysis of leaching data collected from several EPRI field and laboratory studies. These studies can help utilities accurately assess risks from leachate release and migration and determine the need for engineering controls to protect the environment in the vicinity...

1998-12-01T23:59:59.000Z

206

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

Malyshev, V A

2011-01-01T23:59:59.000Z

207

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

V. A. Malyshev

2011-12-08T23:59:59.000Z

208

AGRI-SCIENCE CHEMICAL BIOLOGY  

E-Print Network (OSTI)

AGRI-SCIENCE CHEMICAL BIOLOGY NETWORK Vehicle for translation: Pioneering a cross-academic, -industry and -government network Chemical Biology Community Agri- Sciences Community Industry Policy makers), with multidisciplinary approaches being the drivers enabling this. Chemical Biology through physical science innovation

209

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

210

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

211

Chemical sensor system  

DOE Patents (OSTI)

An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

2002-01-01T23:59:59.000Z

212

Areawide chemical contamination  

SciTech Connect

Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

Miller, R.W.

1981-04-17T23:59:59.000Z

213

Chemical Reactions in DSMC  

Science Conference Proceedings (OSTI)

DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

Bird, G. A. [GAB Consulting Pty Ltd, 144/110 Sussex Street, Sydney NSW 2000 (Australia)

2011-05-20T23:59:59.000Z

214

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

215

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

216

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

217

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

218

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

219

Radiolabelling of chemicals. [Chemical additives used in geothermal operations  

DOE Green Energy (OSTI)

Labeling of chemical additives with radioactive isotopes can solve numerous problems in geothermal operations. The physical and chemical behavior of many chemicals slated for geothermal operations can be studied with the required detail at the extremely low concentration of the commercially available (non-labeled) compounds. The problems of labeling and the basics of these radioactively labeled chemicals are described in this report. Conclusions of this study are: (1) chemicals labeled with radioactive isotopes can be used to investigate the chemical and physical behavior of chemical additives used in geothermal operations. The high detection limits make this technology superior to conventional analytical and monitoring methods; (2) severe difficulties exist for utilizing of radioactively labeled chemicals in geothermal operations. The labeling itself can cause technical problems. Another host of problems is caused by the reluctance of chemical manufacturers to release the necessary proprietary information on their chemicals required for proper labeling; and (3) previous attempts to manufacture radioactively labeled flocculants and to utilize them in a geothermal operation were prematurely abandoned for a number of reasons.

Vetter, O.J.; Kandarpa, V.

1982-06-22T23:59:59.000Z

220

Interested Parties - Dow Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dow Chemical Interested Parties - Dow Chemical 06-10-10DowChemical.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - XtremePower Interested...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical Sciences Division: Introduction: Director's Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Overview Under Construction Ali Belkacem Chemical Sciences Division Director Chemical Sciences Division Research Affiliations Our four core programs-Chemical Physics; The...

222

Chemical Methods for Imaging Glycans during Development  

E-Print Network (OSTI)

Bertozzi, C. R. (2004) Chemical remodelling of cell surfacesand Bertozzi, C. R. (2006) Chemical technologies for probingcycloaddition reactions in chemical biology, Chem. Soc. Rev.

Dehnert, Karen Worthington

2011-01-01T23:59:59.000Z

223

Interested Parties - Eastman Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eastman Chemical Interested Parties - Eastman Chemical 06-22-10EastmanChemical.pdf More Documents & Publications Interested Parties - Clean Skies Interested Parties - Myriant...

224

On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds  

SciTech Connect

Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

2009-10-15T23:59:59.000Z

225

Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions  

E-Print Network (OSTI)

, the aerosolassociated water depends on the composition of the #12;3 particles, which is determined by gas in a three dimensional chemical transport model to understand the roles of ammonia chemistry and natural precursors among modeled aerosol species selfconsistently with ambient relative humidity and natural

Zender, Charles

226

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

227

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

228

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents  

Science Conference Proceedings (OSTI)

End-users utilize chemical search engines to search for chemical formulae and chemical names. Chemical search engines identify and index chemical formulae and chemical names appearing in text documents to support efficient search and retrieval in the ... Keywords: Chemical name, chemical formula, conditional random fields, entity extraction, hierarchical text segmentation, independent frequent subsequence, index pruning, query models, ranking, similarity search, support vector machines

Bingjun Sun; Prasenjit Mitra; C. Lee Giles; Karl T. Mueller

2011-04-01T23:59:59.000Z

229

Chemical and Paper Engineering Student Handbook  

E-Print Network (OSTI)

Chemical and Paper Engineering Student Handbook 2010-2011 #12;i Table of Contents 2010-2011 Letter-2011.......................................................................... 32 Chemical Engineering Major Curriculum .......................................... 2010.............................. Double Major: Chemical Engineering and Paper Science and Engineering......... 60 Chemical Engineering

Dollar, Anna

230

Trace-chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

A summary is presented of the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate, and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1982-10-01T23:59:59.000Z

231

Trace chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

This report summarizes the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1981-04-01T23:59:59.000Z

232

Mallinckrodt Chemical Co., Former Construction Worker Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Project Name: Building Trades...

233

Chemically-Functionalized Microcantilevers for Detection of ...  

Chemically-Functionalized Microcantilevers for Detection of Chemical, Biological, and Explosive Material Note: The technology described above is an ...

234

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Free ebook Handbook of Chemical and Biological Warfare Agent Decontamination pdf download.Handbook of Chemical and Biological Warfare Agent ...

235

Chemical Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable

236

Chemical Informatics Research Group Homepage  

Science Conference Proceedings (OSTI)

... variety of chemical and physical properties of gas, liquid, and ... Density Functional Tight Binding Methods—Density Functional Tight Binding (DFTB ...

2013-08-27T23:59:59.000Z

237

Portable Chemical Sensors for Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sensors for Environmental and State of Health Monitoring Emerging nano technologies are transforming microsensor research and development, a key enabler of Sandia's...

238

Chemical/Biochemical Microsensor Science  

Science Conference Proceedings (OSTI)

... (b) An example of the power of the Event ... stability, speed and reproducibility of sensing materials are critical to next-generation chemical sensing ...

2012-10-02T23:59:59.000Z

239

ITP Chemicals: Metal Dusting Phenomenon  

NLE Websites -- All DOE Office Websites (Extended Search)

IL DuPont Central Research Wilmington, DE Duraloy Technologies, Inc. Scottsdale, PA Exxon Chemical Company Baytown, TX Haynes International, Inc. Kokomo, IN Sandvik Steel...

240

FAQS Reference Guide- Chemical Processing  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CHEMICAL ENGINEERING DIVISION SUMMARY REPORT  

DOE Green Energy (OSTI)

Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants.

Lawroski, S.; Vogel, R. C.; Levenson, Milton; Munnecke, V. H.

1963-07-01T23:59:59.000Z

242

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

Science Conference Proceedings (OSTI)

A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

2013-08-14T23:59:59.000Z

243

Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation  

E-Print Network (OSTI)

The processes of development of nuclear weapons resulted in accumulation of thousands of curies of high-level radioactive waste. Liquid waste produced in the US has been stored in carbon steel tanks in highly alkaline (1-3 M NaOH, 6 M sodium salts) media for fifty years and leakage has occurred. One of the approaches to the solution of the problem of radioactive waste is to adsorb the nuclides on highly selective ion-exchange material, solidify in a glass matrix and dispose in a geological formation. The use of the ion-exchange technology is limited by the time of the sorbent-solution contact required to reduce the activity of the streams to acceptable levels. Inorganic ion-exchangers are promising materials due to their high radiation stability, extreme selectivity, and compatibility with the glass matrix. The contact time can be reduced by improving selectivities, kinetics, and capacities of the materials towards the target ions. This can be accomplished in part through understanding of the origin of ion-exchange selectivity. Crystalline zeotypes with minerals sitinakite (ideal formula Na2Ti2O3SiO4??2H2O) and pharmacosiderite (HM3(TO)4(GeO4)x(SiO4)3-x M = Cs+, Na+, K+, T=Nb5+, Ge4+, Ti4+) structures are excellent candidates for selectivity studies because of their ion-exchange properties tunable by alterations of synthetic procedures, and isomorphous framework substitution. The Nb-substitution in titanium sites reduces the framework charge, whereas Ge substitution decreases the unit cell size if in titanium sites and increases if it in silicon sites. The compounds were hydrothermally synthesized in Ti/Si, Ti/Nb/Si, Ti/Ge/Si forms and characterized by structural and ion-exchange studies. The 25% Nb substitution in titanosilicate sitinakite resulted in enhanced selectivity for cesium and additional bond formation of cesium within the channel. The selectivity for cesium in germanium substituted pharmacosiderite also was correlated with the coordination environment within the channel. In the advanced stages of this study semi-crystalline (sodium nonatitanate) and amorphous (monosodium titanate) materials also were considered because of their remarkable strontium selectivity. In situ X-ray diffraction techniques revealed that the sodium nonatitanate precedes the formation of the TS phase in hydrothermal synthesis. This knowledge allowed us to design and synthesize material for combined cesium and strontium removal.

Medvedev, Dmitry Gennadievich

2004-08-01T23:59:59.000Z

244

Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties  

Science Conference Proceedings (OSTI)

Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}Mo{sub 6}O{sub 19} 2DMF (1) and [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}W{sub 6}O{sub 19} 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations. Display Omitted

Nie Shanshan; Zhang Yaobin; Liu Bin; Li Zuoxi; Hu Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi'an 710069 (China); Xue Ganglin, E-mail: xglin707@163.co [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi'an 710069 (China); Fu Feng; Wang Jiwu [Department of Chemistry, Yanan University, Yan'an 716000 (China)

2010-12-15T23:59:59.000Z

245

A new local concept of chemical potential and chemical hardness  

E-Print Network (OSTI)

The definition of local hardness by the derivative of the chemical potential with respect to the electron density has raised several questions, and its applicability as the local counterpart of chemical hardness has proved to be limited to (globally) hard molecules. Here, we propose that instead of defining a local hardness from the chemical potential in the above way, first a local chemical potential should be defined from the ground-state energy by its derivative with respect to the electron density, from which then the corresponding local hardness can be gained just as the hardness is obtained from the chemical potential - namely, by a simple differentiation with respect to the electron number. In this way, one does not neglect potentially important terms in the local hardness expression.

Gal, Tamas

2011-01-01T23:59:59.000Z

246

Physical and chemical sensor technologies developed at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The increasing emphasis on envirorunental issues, waste reduction, and improved efficiency for industrial processes has mandated the development of new chemical and physical sensors for field or in-plant use. The Lawrence Livermore National Laboratory (LLNL) has developed a number of technologies for sensing physical and chemical properties. Table 1 gives some examples of several sensors. that have been developed recently for environmental, industrial, commercial or government applications. Physical sensors of pressure, temperature, acceleration, acoustic vibration spectra, and ionizing radiation have been developed. Sensors developed at LLNL for chemical species include inorganic solvents, heavy metal ions`, and gaseous atoms and compounds. Primary sensing technologies we have employed have been based on optical fibers, semiconductor optical or radiation detectors, electrochemical activity, micromachined electromechanical (MEMs) structures, or chemical separation technologies. The complexities of these sensor systems range from single detectors to more advanced micro-instruments on-a-chip. For many of the sensors we have developed the necessary intelligent electronic support systems for both local and remote sensing applications. Each of these sensor technologies are briefly described in the remaining sections of this paper.

Balch, J.W.; Ciarlo, D.; Folta, J.; Glass, R.; Hagans, K.; Milanovich, F.; Sheem, S.

1993-08-10T23:59:59.000Z

247

Enhancing chemical reactions  

SciTech Connect

Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

Morrey, John R. (Richland, WA)

1978-01-01T23:59:59.000Z

248

Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems  

DOE Green Energy (OSTI)

In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

Kong, Peter C. (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

249

Chemically capping copper with cobalt  

Science Conference Proceedings (OSTI)

Amorphous cobalt-phosphorus alloy is grown on SiO"2 and Cu by chemical vapor deposition from dicobaltoctacarbonyl and trimethylphosphine at 250^oC, 300^oC, and 350^oC. Film properties most relevant to adoption into back-end chip fabrication have been ... Keywords: Chemical vapor deposition, Cobalt alloys, Selective deposition

Lucas B. Henderson; John G. Ekerdt

2010-04-01T23:59:59.000Z

250

Discrete Thermodynamics of Chemical Equilibria  

E-Print Network (OSTI)

The paper sets forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTD), developed by the author during the last decade and spread over series of publications. Based on the linear equations of irreversible thermodynamics, De Donder's definition of the thermodynamic force, and the Le Chatelier principle, DTD brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces, acting against a chemical system. The basic expression of DTD is a logistic map that ties together energetic characteristics of the chemical transformation in the system, its deviation from true thermodynamic equilibrium, and the sum of thermodynamic forces, causing that deviation. System deviation from thermodynamic equilibrium is the major variable of the theory. Solutions to the basic map define the chemical system domain of states comprising bifurcation diagrams with four areas, from true thermodynamic equilibrium to chaos, having specific distinctive meaning for chemica...

Zilbergleyt, B

2008-01-01T23:59:59.000Z

251

Method of forming a chemical composition  

DOE Patents (OSTI)

A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-10-09T23:59:59.000Z

252

The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics  

E-Print Network (OSTI)

instruments applied to analysis of complex chemical mixturesrelies on chemical separation (by chromatography) into pureThe multiplexed chemical kinetic photoionization mass

Osborne, David L.

2009-01-01T23:59:59.000Z

253

Development of a chemical vision spectrometer to detect chemical agents.  

DOE Green Energy (OSTI)

This paper describes initial work in developing a no-moving-parts hyperspectral-imaging camera that provides both a thermal image and specific identification of chemical agents, even in the presence of nontoxic plumes. The camera uses enhanced stand-off chemical agent detector (ESCAD) technology based on a conventional thermal-imaging camera interfaced with an acousto-optical tunable filter (AOTF). The AOTF is programmed to allow selected spectral frequencies to reach the two dimensional array detector. These frequencies are combined to produce a spectrum that is used for identification. If a chemical agent is detected, pixels containing the agent-absorbing bands are given a colored hue to indicate the presence of the agent. In test runs, two thermal-imaging cameras were used with a specially designed vaporizer capable of controlled low-level (low ppm-m) dynamic chemical releases. The objective was to obtain baseline information about detection levels. Dynamic releases allowed for realistic detection scenarios such as low sky, grass, and wall structures, in addition to reproducible laboratory releases. Chemical releases consisted of dimethylmethylphosphonate (DMMP) and methanol. Initial results show that the combination of AOTF and thermal imaging will produce a chemical image of a plume that can be detected in the presence of interfering substances.

Demirgian, J.

1999-02-23T23:59:59.000Z

254

chemical (CHE) CHE overview programs available  

E-Print Network (OSTI)

. Enrollment by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statis- tics, random variables and random functions. Application to chemical, Fa) Basic concepts of chemical kinetics and chemical reactor design. Prerequisite: MATH 245. 443UnitOperationsofChemical

Wang, Hai

255

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

1993-07-06T23:59:59.000Z

256

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

1993-01-01T23:59:59.000Z

257

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

1996-01-01T23:59:59.000Z

258

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network (OSTI)

Source Hydrogen H2 storage Hydrogen Stored Energy Point-of-use Chemical hydrogen storage #12;5 ChemicalChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

259

Mass-sensitive chemical preconcentrator  

DOE Patents (OSTI)

A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

260

New Science for Chemicals Policy  

E-Print Network (OSTI)

of the State-of-the-Science of Endocrine Disruptors (WHO,461, 472 (2009). 17. NRC, Science and Decisions: AdvancingPOLICYFORUM SCIENCE AND REGULATION New Science for Chemicals

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Theoretical Studies in Chemical Kinetics  

NLE Websites -- All DOE Office Websites (Extended Search)

Theoretical Studies in Chemical Kinetics ^ ^ iCi| Theoretical Studies in Chemical Kinetics ^ ^ iCi| under AEC Contract A T (30-1)-3780 " â–  ' Annual Report (1970) Principal In-vestigator: Martin Karpins Institution: Harvard University The research performed under this contract can best be sunmarized under several headings. (a) Alkali-Halideg Alkali-Halide (MX^ M*X*) Exchange Reactions. This project is being continued. A careful study of certain

262

Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering  

E-Print Network (OSTI)

Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

263

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network (OSTI)

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Science the hydroxyl oxygen and alcoholic hydrogen stabilizes the transition state. Chemical & Engineering News ISSN 0009-2347 Copyright © 2010 American Chemical Society #12;

Truhlar, Donald G

264

Status of Chemical Freeze-Out  

E-Print Network (OSTI)

The status of the energy dependence of the chemical freeze-out temperature and chemical potential obtained in heavy ion collisions is presented. Recent proposals for chemical freeze-out conditions are compared.

J. Cleymans; H. Oeschler; K. Redlich; S. Wheaton

2006-07-14T23:59:59.000Z

265

CHEMICAL BIODYNAMICS DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

in Energy and the Chemical Sciences, Proc. 1st Karcherpp. 1-30. 15. M. Calvin, Chemical Carcinogenesis, frog.z ARTlFlCIAL PHOTOSYNTHESIS I CHEMICAL CARCINOGENESIS J. C.

Authors, Various

2011-01-01T23:59:59.000Z

266

CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM  

E-Print Network (OSTI)

U.S. Dept. of Energy. Chemical Marketing Reporter, JanuaryUniv. of Calif. Dept. of Chemical Engineering (March 1977).Ergun et aL, "Analysis of Chemical Coal Cleaning Processes,"

Authors, Various

2013-01-01T23:59:59.000Z

267

Tribo-Chemical Modeling of Copper CMP  

E-Print Network (OSTI)

TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,an integrated tribo-chemical model of copper CMP thatThe role of glycine in the chemical mechanical planarization

Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

2006-01-01T23:59:59.000Z

268

CHEMICAL ENGINEERING Fall 2013-Winter 2014  

E-Print Network (OSTI)

ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

California at Davis, University of

269

Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging  

E-Print Network (OSTI)

This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from VLT/UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr and Ba. We find the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However some alpha elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, Hyades and the HR1614 moving group to examine the uniqueness of the individual cluster abundance patterns, ie. chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures, and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.

G. M. De Silva; K. C. Freeman; M. Asplund; J. Bland-Hawthorn; M. S. Bessell; R. Collet

2006-11-28T23:59:59.000Z

270

CHEN 3600 Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4  

E-Print Network (OSTI)

CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE: "Engineering With Excel" Larsen Page 2 will be added using "cutting and pasting". #12;CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical

Clement, Prabhakar

271

Division of Chemical & Biological Sciences | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division of Chemical & Biological Sciences Division of Chemical & Biological Sciences Image Welcome Research teams in this Division conduct fundamental and applied studies of how...

272

Chemical Sciences, Geosciences, & Biosciences Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BES Chemical Sciences, Geosciences, and Biosciences Program SHARE BES Chemical Sciences, Geosciences, and Biosciences Program The Department of Energy's Office of Basic Energy...

273

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

with American Chemistry Council to develop a technology strategy. Council for Chemical Research Vision2020 partner. American Institute for Chemical Engineers Vision2020...

274

NRG Chemical Engineering | Open Energy Information  

Open Energy Info (EERE)

Chemical Engineering Jump to: navigation, search Name NRG Chemical Engineering Place United Kingdom Sector Biofuels Product UK-based firm which in May 2007 signed an agreement with...

275

Chemical Sciences Division: Introduction: Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Ultrafast X-Ray Science Laboratory ALS-MES Beamline Actinde Science Chemical Dynamics Beamline Centers Programs Chemical Physics The Glenn T. Seaborg Center...

276

Sandia Researchers Develop Promising Chemical Technology for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis...

277

Coal Direct Chemical Looping (CDCL) Process Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio...

278

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for...

279

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical...

280

Chemical Agent Decontamination Composition Comprising A ...  

U.S. Energy Information Administration (EIA)

Chemical warfare agents are stockpiled ... but also in today's climate of terrorist threats of WMD chemical attacks.Methods for decontamination of che ...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network (OSTI)

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor thermal imaging, chemical delivery and other new horizons. Finally, as part of this lecture, Lewis

282

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics...

283

ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program (CSEPP) Training The Oak Ridge Institute for Science and Education (ORISE) works closely with the Chemical Stockpile Emergency...

284

Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry  

Science Conference Proceedings (OSTI)

By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O, and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.

Hanamura, S.; Smith, B.W.; Winefordner, J.D.

1983-11-01T23:59:59.000Z

285

Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal  

SciTech Connect

An experimental investigation of the effects of pH and three inorganic salts (KCl, KI, and NaCl) on the adsorption isotherms of phenol (from a dilute aqueous solution) on activated charcoal was conducted. Each salt was studied at three different concentrations, i.e., 0.1, 0.01, and 0.005 M. The effect of pH (in the pH range 3 to 11) in the presence of KI, KCl, and NaCl was also investigated. The concentration of phenol in the aqueous systems studied ranged from 10 to 200 ppm. The temperature effect was also studied, and the resulting experimental equilibrium isotherms at 30, 40, and 55{degrees}C are well represented by Freundlich, Langmuir, and Redlich-Paterson isotherms. The relevant parameters for these isotherms are presented.

Halhouli, K.A.; Darwish, N.A.; Al-Dhoon, N.M. [Jordan Univ. of Science and Technology, Irbid (Jordan)

1995-10-01T23:59:59.000Z

286

Chemical Sciences Division: Research: Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

287

Chemical Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Science Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. Read more. Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty

288

Chemical Looping | Open Energy Information  

Open Energy Info (EERE)

Looping Looping Jump to: navigation, search Contents 1 Introduction 2 Process Description 3 Benefits 4 Oxygen Carriers 5 Multimedia 6 Patents 7 References 8 External Links Introduction Chemical looping or chemical looping combustion (CLC) is a novel technology that could provide the means to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel combustion where there is no direct contact between air and fuel.[1] Oxygen is extracted from air, then the oxygen is reacted with the hydrocarbon fuel producing an exhaust gas composed of carbon dioxide and water vapor.[2] The water vapor is condensed out of the gas resulting in near 100% carbon dioxide stream that could be sequestered in the ground.

289

Chemical Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Inventory Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257 CB1 L Yes 1 1 liters (l) Cynthia Patty 1,8-Octanedithiol SSRL 131 209 CA3 L No 1 5 grams (g) Schmidt 1-Chloronapthalene SSRL 131 209 CA3 L No 1 100 grams (g) Schmidt 1-Propanol LCLS 999 109 B1 L Yes 1 4 liters (l) Lisa Hammon

290

Chemical Hygiene and Safety Plan  

SciTech Connect

The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

Berkner, K.

1992-08-01T23:59:59.000Z

291

Chemical sciences, annual report 1993  

SciTech Connect

The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

1994-10-01T23:59:59.000Z

292

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan  

E-Print Network (OSTI)

in their laboratory research or other work procedures prior to conducting work; 5. Utilizing appropriate measures. The UC-system wide SDS library has the capability of developing new SDSs based on the known chemical, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes

El Zarki, Magda

293

Microreactor for fast chemical kinetics  

E-Print Network (OSTI)

The chemical reaction process in a T-shaped microchannel is studied experimentally through the reaction of Ca++ with a fluorescent tracer, Calcium-green. For thin channels (10 um), diffusion of species is found to behave in a way independent of the thickness direction. In such a situation, simulations of a two-dimensional reaction-diffusion model agree remarkably well with the experimental measurements. The comparison of experiments and simulations is used to measure the chemical kinetic constant, which we find to be k=3.2 x 10^5 dm^3/(mol s). Applications of the analysis to faster reactions and to micro-titration are also discussed.

Baroud, C N; Menetrier, L; Tabeling, P; Baroud, Charles N.; Okkels, Fridolin; Menetrier, Laure; Tabeling, Patrick

2003-01-01T23:59:59.000Z

294

Method of producing a chemical hydride  

DOE Patents (OSTI)

A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-11-13T23:59:59.000Z

295

Missouri Department of Transportation, Chemical Laboratory  

Science Conference Proceedings (OSTI)

Missouri Department of Transportation, Chemical Laboratory. NVLAP Lab Code: 200544-0. Address and Contact Information: ...

2014-01-03T23:59:59.000Z

296

Chemical agent decontamination composition comprising a ...  

U.S. Energy Information Administration (EIA)

Title: Chemical agent decontamination composition comprising a perfluorinated alkyl bromide Date: 05/13/2008

297

The Mork Family Department of Chemical  

E-Print Network (OSTI)

CHE The Mork Family Department of Chemical Engineering and Materials Science #12;Chemical engineers design, control and optimize large-scale chemical, physiochemical and biochemical processes in automotive and space-related industries to materials used in the biomedical and electronics elds. Chemical

Rohs, Remo

298

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

Oliver, Douglas L.

299

CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs using chemicals are required by Cal-OSHA to have a written safety plan (CHP) in place for chemical

Bigelow, Stephen

300

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

Oliver, Douglas L.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

Kim, Duck O.

302

Chemical Exergy of Canola Biomass Components  

Science Conference Proceedings (OSTI)

... LS Karpushenkova Chemical Faculty, Belarusian State University, Minsk, Belarus Thermodynamic properties of canola biomass components: seeds ...

2006-07-20T23:59:59.000Z

303

Homeland Security Chemical/Biological/Radiological/Nuclear ...  

Science Conference Proceedings (OSTI)

... Information at NIST. Homeland Security Chemical/Biological/Radiological/ Nuclear/Explosives (CBRNE) Information at NIST. ...

2010-09-24T23:59:59.000Z

304

TSCA and the regulation of renewable chemicals  

Science Conference Proceedings (OSTI)

Biobased chemicals represent a multi-billion pound chemical business, and their share of the global chemical industry is expected to grow from 2% to 22% by 2025 TSCA and the regulation of renewable chemicals Publications aocs articles book books c

305

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

306

Definition: Chemical energy | Open Energy Information  

Open Energy Info (EERE)

energy energy Energy stored in chemical bonds between atoms within molecules. When a chemical reaction occurs, the chemical energy within a molecule can increase or that energy can be released into its surroundings as another form of energy (e.g., heat or light). Fuel combustion is example of the conversion of chemical energy to another form of energy.[1][2] View on Wikipedia Wikipedia Definition In chemistry, Chemical energy is the potential of a chemical substance to undergo a transformation through a chemical reaction or, to transform other chemical substances. Examples include batteries and light bulbs and cells etc. Breaking or making of chemical bonds involves energy, which may be either absorbed or evolved from a chemical system Energy that can be released (or absorbed) because of a reaction between a set of

307

Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic Spring  

E-Print Network (OSTI)

This study focuses on the analysis of atmospheric particles sampled from two different field campaigns: the field study at a cattle feeding facility in the summer from 2005 to 2008 and the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in 2008. A ground site field study at a representative large cattle feeding facility in the Texas Panhandle was conducted to characterize the particle size distributions, hygroscopicity, and chemical composition of agricultural aerosols. Here, a first comprehensive dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total and gaseous ammonia were measured at the same field in 2007 and 2008. Measurements such as these provide a means to determine whether the fugitive dust emitted from a typical large feedlot represents a health concern for employees of the feeding operation and the nearby community. Detailed chemical composition of aircraft-sampled particles collected during ISDAC was studied. Filter samples were collected under a variety of conditions in and out of mixed phase and ice clouds in the Arctic. Specifically, particles were sampled from a mixed-phase cloud during a period of observed high concentrations of ice nuclei (IN), a biomass plume, and under relatively clean ambient conditions. Composition of particles was studied on a particle-by-particle basis using several microspectroscopy techniques. Based on the elemental composition analysis, more magnesium was found in Arctic cloud residues relative to ambient air. Likewise, based on the carbon speciation analysis, high IN samples contained coated inorganics, carbonate, and black or brown carbon particles. In the samples collected during a flight through a biomass burning plume, water-soluble organic carbon was the dominant overall composition. Due to their hygroscopic nature, these organics may preferably act as cloud condensation nuclei (CCN) rather than IN. Other ambient samples contained relatively higher fractions of organic and inorganic mixtures and less purely water-soluble organics than found in the biomass particles. The most likely source of inorganics would be sea salt. When present, sea salt may further enhance ice nucleation.

Moon, Seong-Gi

2010-05-01T23:59:59.000Z

308

Apparatus and methods for detecting chemical permeation  

DOE Patents (OSTI)

Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

Vo-Dinh, Tuan (Knoxville, TN)

1994-01-01T23:59:59.000Z

309

Asteroseismology of chemically peculiar stars  

E-Print Network (OSTI)

Pulsational variability is observed in several types of main sequence stars with anomalous chemical abundances. In this contribution I summarize the relationship between pulsations and chemical peculiarities, giving special emphasis to rapid oscillations in magnetic Ap stars. These magneto-acoustic pulsators provide unique opportunities to study the interaction of pulsations, chemical inhomogeneities, and strong magnetic fields. Time-series monitoring of rapidly oscillating Ap stars using high-resolution spectrometers at large telescopes and ultra-precise space photometry has led to a number of important breakthroughs in our understanding of these interesting objects. Interpretation of the roAp frequency spectra has allowed constraining fundamental stellar parameters and probing poorly known properties of the stellar interiors. At the same time, investigation of the pulsational wave propagation in chemically stratified atmospheres of roAp stars has been used as a novel asteroseismic tool to study pulsations as a function of atmospheric height and to map in detail the horizontal structure of the magnetically-distorted p-modes.

O. Kochukhov

2008-12-01T23:59:59.000Z

310

Chemical Engineering and Materials Science  

E-Print Network (OSTI)

from vegetable oil. Earn a degree in chemical engineering, and you could enjoy a career working to commercialize new ideas, technologies and products. Students learn to solve problems and bring inventions through tissue engineering of large vessels and heart valves, or inventing clean-burning alternative fuel

Chinnam, Ratna Babu

311

Chemicals  

DOE Green Energy (OSTI)

Yeasts were engineered to increase rates for fermentation of xylose (a common biomass derived sugar) to lactic acid or ethanol.

Suominen, Pirkko; Glassner, David; Kean, Robert

2005-01-14T23:59:59.000Z

312

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network (OSTI)

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

313

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that  

E-Print Network (OSTI)

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that previously contained chemicals (hazardous or non-hazardous) are collected by CWS for recycling. Bottles should be dry and empty without chemical residue. Rinse and collect rinsate in chemical

Ungerleider, Leslie G.

314

CHEMICAL ENGINEERING AT McGILL Bachelor of Engineering in Chemical Engineering  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AT McGILL Bachelor of Engineering in Chemical Engineering What is chemical engineering? Chemical engineers design processes and systems that produce everything from plastics and paper to pharmaceuticals, processed foods and advanced materials.What a chemist might produce in a test tube, chemical

Barthelat, Francois

315

Chemical Spills In the event of a spill involving hazardous chemicals  

E-Print Network (OSTI)

Chemical Spills In the event of a spill involving hazardous chemicals: 1. Keep a safe distance from. From a safe distance, try to gather as much information on the spilled chemical as possible. If the chemical name can be found, look up its MSDS and determine the PPE required. If the chemical is very

de Lijser, Peter

316

OSHA List of Hazardous Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA List of Hazardous Chemicals OSHA List of Hazardous Chemicals ACETALDEHYDE ACETAMIDE ACETIC ACID ACETIC ANHYDRIDE ACETONE ACETONItr ILE ACETYLAMINOFLUORENE, 2- ACETYLENE ACETYLENE DICHLORIDE ACETYLENE TETRABROMIDE ACETYLSALICYLIC ACID (ASPIRIN) ACROLEIN ACRYLAMIDE ACRYLIC ACID ACRYLONITRILE ACTINOMYCIN D ADRIAMYCIN AFLATOXINS ALDRIN ALLYL ALCOHOL ALLYL CHLORIDE ALLYL GLYCIDYL ETHER (AGE) ALLYL PROPYL DISULFIDE ALUMINA ALUMINUM, METAL DUST, AS AL ALUMINUM, PYRO POWDERS, AS AL ALUMINUM, SOLUBLE SALTS, AS AL ALUMINUM, WELDING FUMES, AS AL ALUMINUM, ALKYLS, NOT OTHERWISE CLASSIFIED, AS AL ALUMINUM OXIDE, AS AL AMINOANTHRAQUINONE (AAQ), AMINOAZOTOLUENE, O- AMINOBIPHENYL, 4- AMINOETHANOL, 2- AMINO-2-METHYLANTHRAQUINONE, 1- AMINO-5-(5-NITRO-2-FURYL)- -1, 3,4-THIADIADIAZOLE, 2- AMINOPYRIDINE, 2- AMINO-1,2,4-TRIAZOLE, 3-

317

Geometric description of chemical reactions  

E-Print Network (OSTI)

We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

Hernando Quevedo; Diego Tapias

2013-01-02T23:59:59.000Z

318

Platts 2nd Annual Renewable Chemicals Conference  

Gasoline and Diesel Fuel Update (EIA)

Sugars, Renewable Chemicals & Fuels Sugars, Renewable Chemicals & Fuels US EIA AEO 2013 Biofuels Worshop Washington, DC March 2013 1 * PROMOTUM is a management consulting firm focused on the chemicals, fuels and materials industries. We help clients analyze markets and technology, develop strategy, and conduct business development. 2 1. Comparison of the first wave of Biotechnology with today's wave of Industrial Biotechnology 2. Where are we status of: C-Sugars, Renewable Chemicals & Advanced Biofuels 3. Derivates as chemical building blocks - butanol an example 3 Sugar, Fuel & Chemical Agenda - Where are we? 4 Aggregate Biotechnology Industry Performance - The First 30 Years 5 "There is little doubt that, since the invention of genetic

319

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

320

Passive in-situ chemical sensor  

DOE Patents (OSTI)

A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

Morrell, Jonathan S. (Farragut, TN); Ripley, Edward B. (Knoxville, TN)

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemical logging of geothermal wells  

DOE Patents (OSTI)

The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

322

Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF{sub m}-RF{sub n} (m < n {<=} 4) systems  

Science Conference Proceedings (OSTI)

The manifestation of gross nonstoichiometry in MF{sub m}-RF{sub n} systems (m Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state ({approx}200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences (m {ne} n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF{sub 2}) and tysonite (LaF{sub 3}). Systems of fluorides of 27 elements (M{sup 1+} = Na, K; M{sup 2+} = Ca, Sr, Ba, Cd, Pb; R{sup 3+} = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R{sup 4+} = Zr, Hf, Th, U) are selected; nonstoichiometric M{sub 1-x}R{sub x}F{sub m(1-x)+nx} phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF{sub 2} - RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.

Sobolev, B. P., E-mail: sobolevb@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2012-05-15T23:59:59.000Z

323

Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996  

SciTech Connect

The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

1997-06-01T23:59:59.000Z

324

Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge  

SciTech Connect

We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles.

Gilles, Mary K; Moffet, R.C.; Henn, T.; Laskin, A.

2011-01-20T23:59:59.000Z

325

Searching for the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Searching for the Solar System's Chemical Recipe Searching for the Solar System's Chemical Recipe Print Wednesday, 20 February 2013 00:00 The ratio of isotopes in elements like...

326

Air Products Chemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Air Products Chemicals Inc Air Products Chemicals Inc Jump to: navigation, search Name Air Products & Chemicals Inc Place Allentown, Pennsylvania Zip 18195 Sector Hydro, Hydrogen, Services Product A global supplier of merchant hydrogen with a portfolio of products, services and solutions providing gases, performance materials and chemical intermediates. References Air Products & Chemicals Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Air Products & Chemicals Inc is a company located in Allentown, Pennsylvania . References ↑ "Air Products & Chemicals Inc" Retrieved from "http://en.openei.org/w/index.php?title=Air_Products_Chemicals_Inc&oldid=341937

327

Argonne Chemical Sciences & Engineering - People - Catalysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Engineering Shabbir Ahmed, Chemical Engineer and Group Leader phone: 630252-4553, fax: 630972-4553, ahmeds@anl.gov Ph.D., Chemical Engineering, University of Nebraska...

328

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network (OSTI)

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

329

Northwest National Laboratory's Chemical Imaging Initiative is...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated. CHEMICAL IMAgINg Main particle Pt (110) Pt (111) Pt (pores) g-Al 2 O 3 pores gamma-alumina particles contain pores and have a corrugated surface according to a chemical...

330

Thermodynamically predicted oscillations in closed chemical systems  

E-Print Network (OSTI)

All known up to now models of chemical oscillations are based exclusively on kinetic considerations. The chemical gross-process equation is split usually by elementary steps, each step is supplied by an arrow and a differential equation, joint solution to such a construction under certain, often ad hoc chosen conditions and with ad hoc numerical coefficients leads to chemical oscillations. Kinetic perception of chemical oscillations reigns without exclusions. However, as it was recently shown by the author for the laser and for the electrochemical systems, chemical oscillations follow also from solutions to the basic expressions of discrete thermodynamics of chemical equilibria. Graphically those solutions are various fork bifurcation diagrams, and, in certain types of chemical systems, oscillations are well pronounced in the bistable bifurcation areas. In this work we describe a general thermodynamic approach to chemical oscillations as opposite to kinetic models, and depict some of their new features like s...

Zilbergleyt, B

2010-01-01T23:59:59.000Z

331

Nanomechanical Sensor Detects and Identifies Chemical Analytes  

ORNL researchers developed a cost-efficient nanomechanical sensor that candetect chemicals adsorbed to a surface and then quickly analyze and identifythose chemicals. The device is a significant improvement over current detectiontechnologies, which ...

332

Amazing variational approach to chemical reactions  

E-Print Network (OSTI)

In this letter we analyse an amazing variational approach to chemical reactions. Our results clearly show that the variational expressions are unsuitable for the analysis of empirical data obtained from chemical reactions.

Fernández, Francisco M

2009-01-01T23:59:59.000Z

333

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series X-ray Imaging at the Nanoscale Presented by Ian Mc and exquisite sensitivity to elemental, chemical and magnetic states in buried structures. The advent

334

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series Advancing Methods for Labeling, Staining, Imaging is to understand how the interplay of structural, chemical and electrical signals in and between cells of nervous

335

Future scenarios for green chemical supply chains  

E-Print Network (OSTI)

We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

336

Chemical Free Water Analysis with Nanoelectrode Arrays ...  

Technology Marketing Summary. Electrochemical analysis is a highly sensitive, chemically selective method for identifying and quantifying many ...

337

Applied Chemicals and Materials Staff Directory  

Science Conference Proceedings (OSTI)

Applied Chemicals and Materials Staff Directory. ... accept either a name, organizational name, or ... MML Organization. Contact. Material Measurement ...

2012-10-12T23:59:59.000Z

338

3D Chemical Imaging at the Nanoscale  

Science Conference Proceedings (OSTI)

... will provide a quantitative understanding of the distribution of chemical ... Tomography for Projections with an Arbitrary Transmission Function with an ...

2010-12-13T23:59:59.000Z

339

The Dow Chemical Company - NA System House ...  

Science Conference Proceedings (OSTI)

The Dow Chemical Company - NA System House - Wilmington. NVLAP Lab Code: 100210-0. Address and Contact Information: ...

2013-09-27T23:59:59.000Z

340

Method for Reducing Surface Electromigration Through Chemical ...  

Method for Reducing Surface Electromigration Through Chemical Impurity Optimization Note: The technology described above is an early stage ...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical Sciences and Engineering - Nuclear and Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Equipment Design * Members * Overview * Chemical Process Models * Chemistry at Interfaces Nuclear & Environmental Processes Home Process Simulation and Equipment...

342

Nanomechanical Sensor Detects and Identifies Chemical Analytes  

for ensuring safety in pharmaceutical, transportation, and other sectors. ... process, without resorting to chemical cleaning techniques after each thermal cycle

343

Argonne Chemical Sciences & Engineering - Institute for Atom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

344

Argonne Chemical Sciences & Engineering - Site Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Laboratory Awards Catalysis and Energy Conversion Center for Electrochemical Energy Storage Ceramic Electrochemistry Chemical Dynamics Contact Us Electrochemical...

345

Argonne Chemical Sciences & Engineering - Facilities - Actinide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical...

346

Argonne Chemical Sciences & Engineering - News & Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical...

347

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF POLYSILICON  

E-Print Network (OSTI)

THEORY The mass transport processes in low pressure chemical vapor deposition (LPCVD) are similar to those occuring in catalytic reactors

Gieske, R.J.

2011-01-01T23:59:59.000Z

348

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle * Overview * Fissile Material * Chemical Process Models * Chemistry at Interfaces * Improved Safeguards Nuclear & Environmental Processes Home Closing the...

349

Chemical Warfare Agent Decontamination Foaming Composition And ...  

U.S. Energy Information Administration (EIA)

Field of the InventionThe present invention relates to foaming chemical warfare agent decontamination compositions. More particularly, ...

350

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Description. Chemical and biological warfare agents are threats to the military and civilians alike in both terrorist and conventional warfare ...

351

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Handbook of Chemical and Biological Warfare Agent Decontamination: George O. Bizzigolli, Richard P. Rhoads, Stephen J. Lee: 9781906799069: Books - ...

352

Survey of renewable chemicals produced from ...  

RESEARCH Open Access Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment Patanjali Varanasi1,2, ...

353

Batteryless Chemical Detection - Energy Innovation Portal  

Ultrasensitive detection of low-concentration gas leaks (pipeline protection) Military, particularly on the battlefield (chemical and biological ...

354

Argonne Chemical Sciences & Engineering -Electrochemical Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Battery Testing * Members * Contact * Publications * Overview * EADL EES Home Electrochemical...

355

Argonne Chemical Sciences & Engineering - Publications - Catalysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical...

356

Argonne Chemical Sciences & Engineering - People - Catalysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical...

357

Argonne Chemical Sciences & Engineering - People - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical...

358

Argonne Chemical Sciences & Engineering - Catalysis & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Homogeneous Catalysis * Members * Contact * Publications * Research Projects...

359

Sandia National Laboratories Chemical Free Water Analysis ...  

Information Technology Solutions BENEFITS Eliminates need of lab chemical additives Real-time, on-site test results Reduced costs

360

Chemical foaming of water-bearing explosives  

SciTech Connect

A process is described for preparing foamed semi-solid colloidal dispersions of water-bearing blasting agents, especially water gels or thickened water-bearing explosives, and emulsion-type blasting agents. It consists of mixing inorganic oxidizing salt, fuel, and water. The improvement consists of separately incorporating into the mix each component of a 2-component foaming agent composition: (1) a hydrazine or derivative and (2) an oxidizing agent that aids in decomposing the hydrazine or derivative to produce gas. This foams and sensitizes the blasting agent. When thickener is added to the mix, the thickener should be nonoxidizable in the mix during preparation of the blasting agent. (20 claims)

Chrisp, J.D.

1972-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

362

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series Presented by Kannan M. Krishnan, Ph.D. Departments. Central to this work are innovations in chemical synthesis of nanoparticles, their size-dependent magnetic and technological interest, that may provide opportunities for future collaborative research in chemical imaging

363

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network (OSTI)

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

364

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325

Lee, Kelvin H.

365

CHEMICAL ENGINEERING SCHOOL OF ENGINEERING & APPLIED SCIENCE  

E-Print Network (OSTI)

30 CHEMICAL ENGINEERING SCHOOL OF ENGINEERING & APPLIED SCIENCE MIAMI UNIVERSITY 2005-2006 The program leads to the degree, Bachelor of Science in Applied Science, with a major in Chemical Engineering The chemical engineering students learn to apply the concepts of chemistry, biochemistry and biological science

Dollar, Anna

366

Chemical Spill Response Procedure Initial Response  

E-Print Network (OSTI)

Chemical Spill Response Procedure Initial Response 1. Advise lab occupants of the spill such as quantity spilled and chemical name. Risk Assessment 3. Conduct an initial risk assessment to determine if to the chemical spill. This link can be found at the bottom of the Campus Security homepage, http

367

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction to Chemical Engineering 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering

Lee, Kelvin H.

368

How is Chemical Inventory Information Used?  

E-Print Network (OSTI)

How is Chemical Inventory Information Used? June 2, 2010 https://medmeeting.stanford.edu/healthsafety-group/ 1-866-642-1665 Participant passcode is 111483 #12;Agenda · Introductions · Chemical Inventory roster Maintain Training records Chemical inventory Life Safety Box updates Complete Self

Ford, James

369

Chemical Hygiene Plan UNIVERSITY OF CALIFORNIA, IRVINE  

E-Print Network (OSTI)

Chemical Hygiene Plan For UNIVERSITY OF CALIFORNIA, IRVINE The Henry Samueli School of Engineering INTEGRATED NANOSYSTEMS RESEARCH FACILITY 1 #12;Table of Contents List of Abbreviations 1.0 Chemical Hygiene Plan for the INRF Research Laboratory 1.1 Facility Description 1.2 Introduction to the Chemical Hygiene

Burke, Peter

370

Chemical Engineering 2013-2014 Catalog  

E-Print Network (OSTI)

Chemical Engineering 2013-2014 Catalog 129 Total Credits First Year Semester 1 Semester 2 4 Math Lab I) 5 Phys 221 (Classical Physics I) 3 Ch E 160 (Chemical Engr Problems) 3 SSH Elective 1 Lib 160 II) 3 Chem 331 (Organic Chemistry I) 3 Chem 325 (Chemical Thermodynamics) 1 ChE 202 (ChE Engr Seminar

Lin, Zhiqun

371

Chemical Innovation in Drug Dr Matthew Fuchter  

E-Print Network (OSTI)

Chemical Innovation in Drug Discovery Dr Matthew Fuchter Lecturer in Synthetic and Medicinal&D Spending and Output #12;Chemical Innovation Impact Discovery Development Basic research: years 0-3 Pre 3, File DRUG Chemical start point Hit to lead Preclinical Assessment Synthetic Chemistry Chemistry

372

Genotoxicity of complex chemical mixtures  

E-Print Network (OSTI)

Complex chemical mixtures are ubiquitous in the environment. Humans are frequently exposed to these mixtures; therefore, it is important to understand potential interactions of chemical mixtures. Mixture interactions may influence the absorption, distribution, metabolism or excretion of the components of a complex mixture. The research conducted for this dissertation has coupled chemical fractionation with in vitro and in vivo bioassays to assess the potential carcinogenic risk of complex mixtures. A non-aqueous phase liquid from a wood treatment plant was separated into acid (AF), base (BF) and neutral fractions (NF). The NF was further enriched using column chromatography to produce a polychlorinated dinbenzo-p-dioxin (PCDD) and a polycyclic aromatic hydrocarbon (PAH) fraction. The genotoxicity of these mixtures were assessed via analytical quantification, in vitro (Salmonella microsome and E. coli prophage induction) and in vivo (32P-postlabeling) bioassays. The NF was further tested to measure bulky DNA adducts and induction of tumor formation. The AF contained the highest level of pentachlorophenol and the highest concentration of total PAHs. Although the carcinogenic PAHs were highest in the PCDD fraction, the highest concentrations of benzo(a)pyrene (BAP), indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene were detected in the PAH fraction. A positive genotoxic response in Salmonella was induced by the crude extract, the PAH and BF, whereas the AF and BF induced a positive response in the E. coli assay. In vivo, the PAH fraction induced the highest DNA adduct frequencies in the lung. The NF, reconstituted mixture (RM) (which includes equivalent concentrations of seven carcinogenic PAHs in the NF), BAP and the NF amended with BAP (NF+BAP) were all tested in an infant mouse model. At the highest dose, after a 24 hr exposure, NF+BAP had the highest total DNA adducts measured in liver which was three to seven times higher than with other treatments. Adduct levels were comparable to the control after 280 days. The highest incidence of tumors was observed in the liver. At the high dose, NF+BAP elicited the highest incidence of tumors. The results of this research confirm previous studies and indicate that the carcinogenic potential of PAH mixtures may be greater than predicted by chemical analysis.

Phillips, Tracie Denise

2006-12-01T23:59:59.000Z

373

MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury  

Science Conference Proceedings (OSTI)

Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg{sup 2+}), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg{sup 2+} through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR{sup -} rats were injected intravenously with a non-nephrotoxic dose of HgCl{sub 2} (0.5 {mu}mol/kg) or CH{sub 3}HgCl (5 mg/kg), containing [{sup 203}Hg], in the presence or absence of cysteine (Cys; 1.25 {mu}mol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [{sup 203}Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg{sup 2+} and methylmercury (CH{sub 3}Hg{sup +}) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR{sup -} rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR{sup -} rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg{sup 2+} and CH{sub 3}Hg{sup +} are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney.

Bridges, Christy C., E-mail: Bridges_cc@mercer.edu; Joshee, Lucy; Zalups, Rudolfs K.

2011-02-15T23:59:59.000Z

374

Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH  

E-Print Network (OSTI)

The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26uC), ii) at three temperature conditions (26u, 29uC, and 33uC) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33uC). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33uC, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33uC) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33uC) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26uC, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and

Claire Godinot; Fanny Houlbrčque; Renaud Grover; Christine Ferrier-pagčs

2011-01-01T23:59:59.000Z

375

Chemical engineers design, control and optimize large-scale chemical, physicochemical and  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statis- tics, random variables and random functions. Application to chemical engineering of chemical kinetics and chemical reactor design. Prerequisite: MATH 245. 443 Viscous Flow (3, Sp

Wang, Hai

376

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael Nilsson)  

E-Print Network (OSTI)

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction the fundamental understanding of the chemical interactions and physical processes is required. Topics include

Mease, Kenneth D.

377

ChemiCal engineering The Department of Chemical Engineering's Graduate Program  

E-Print Network (OSTI)

ChemiCal engineering researCh The Department of Chemical Engineering's Graduate Program at Texas, and Rheology · Computational Methods in Chemical Engineering · Process Control and Optimization graduate. Master of Science in Chemical Engineering A written thesis and a minimum of 24 hours of graduate

Gelfond, Michael

378

IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE BASINS?  

E-Print Network (OSTI)

IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE Road, Shanghai 200092 China; Tel: 86-21-6598 9130; Fax: 86-21-6598 6278 ABSTRACT. The chemical as the most important carrier of terrigenous materials into the sea. The chemical index of alteration (CIA

Yang, Shouye

379

Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under  

E-Print Network (OSTI)

Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under mass. The model includes both sediment transport and chemical denudation. A simplified two-phase model is developed; the two phases are a chemically immobile phase, which has far lower solubility than the bulk soil

380

Chemical Hygiene Plan The purpose of the Chemical Hygiene Plan (CHP) is to outline laboratory work  

E-Print Network (OSTI)

Chemical Hygiene Plan I. Policy The purpose of the Chemical Hygiene Plan (CHP) is to outline community are protected from health hazards associated with chemicals with which they work. II. Authority The Chemical Hygiene Plan, required to comply with provisions of CCR Title 8 §5191 et al: A. Standard Operating

de Lijser, Peter

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BS in CHEMICAL ENGINEERING (392150) MAP Sheet Department of Chemical Engineering  

E-Print Network (OSTI)

BS in CHEMICAL ENGINEERING (392150) MAP Sheet Department of Chemical Engineering For students preprofessional courses: Ch En 170 Introduction to Chemical Engineering Ch En 191 Preprofessional Seminar Ch En 263 Computational Tools for Chem Engineers Ch En 273 Chemical Process Principles EC En 301 Elements

Olsen Jr., Dan R.

382

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson)Nilsson)  

E-Print Network (OSTI)

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction the fundamental understanding of the chemical interactions and physical processes is required. Topics include

Mease, Kenneth D.

383

Chemical Request Form (Request to bring/ use a new chemical in the Microfab)  

E-Print Network (OSTI)

Chemical Request Form (Request to bring/ use a new chemical in the Microfab) Name: Phone #:Email: PI Name: PI Phone #: The Microfab Laboratory does not permit anyone to bring or use chemicals in the Microfab area without prior approval by the Microfab Staff. This applies to all chemical containing

Provancher, William

384

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste  

E-Print Network (OSTI)

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead a material must be considered a hazardous chemical waste by using the Radiological-Chemical

Ford, James

385

Prepared by Eastman Chemical Company  

E-Print Network (OSTI)

Products Liquid Phase Conversion Company, L.P., nor any of their subcontractors nor the U.S. Department of Energy, nor any person acting on behalf of either: (A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein does not necessarily state or reflect those of the U.S. Department of Energy. The Liquid Phase Methanol (LPMEOH™) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration

For The

2003-01-01T23:59:59.000Z

386

Chemical Looping for Combustion and Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

387

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

388

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

Chemical Industries Chemical Industries Jump to: navigation, search Name Sanyo Chemical Industries Place Tokyo, Japan Zip 103-0023 Product String representation "Sanyo is a petr ... uction process." is too long. References Sanyo Chemical Industries[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanyo Chemical Industries is a company located in Tokyo, Japan . References ↑ "Sanyo Chemical Industries" Retrieved from "http://en.openei.org/w/index.php?title=Sanyo_Chemical_Industries&oldid=350614" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

389

Atlanta Chemical Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name Atlanta Chemical Engineering LLC Place Marietta, Georgia Zip 30064 Country United States Sector Biomass Year founded 2008 Company Type For Profit Company Ownership Private Small Business Yes References Atlanta Chemical Engineering LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Atlanta Chemical Engineering LLC is a company based in Marietta, Georgia. References ↑ "Atlanta Chemical Engineering LLC" Retrieved from "http://en.openei.org/w/index.php?title=Atlanta_Chemical_Engineering_LLC&oldid=699086"

390

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

391

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

392

Reflectance based optical fiber chemical sensor  

DOE Patents (OSTI)

A thin film chemical sensor undergoes changes in reflective optical properties when exposed to a chemical species. A thin metal film is deposited at the end of an optical fiber, and exposure of the thin film to the chemical species causes changes in the effective thickness of the thin film, thereby changing its reflective properties. A chemical detection system based on the thin film sensor includes a light source and an optical divider for dividing light from the light source into a first and second light path. The first light path leads to circuitry for providing a reference signal. The thin film chemical sensor receives light from the second light path, and a photoelectric detector detects light reflected from the chemical sensor and provides an electrical signal representative of the reflected light. Circuitry is provided for comparing the reference signal with the reflected light signal, thereby providing a measurement signal indicative of the presence of the chemical species. 5 figs.

Butler, M.A.; Pfeifer, K.B.; Ricco, A.J.

1988-10-18T23:59:59.000Z

393

Fixed Points for Stochastic Open Chemical Systems  

E-Print Network (OSTI)

In the first part of this paper we give a short review of the hierarchy of stochastic models, related to physical chemistry. In the basement of this hierarchy there are two models --- stochastic chemical kinetics and the Kac model for Boltzman equation. Classical chemical kinetics and chemical thermodynamics are obtained as some scaling limits in the models, introduced below. In the second part of this paper we specify some simple class of open chemical reaction systems, where one can still prove the existence of attracting fixed points. For example, Michaelis\\tire Menten kinetics belongs to this class. At the end we present a simplest possible model of the biological network. It is a network of networks (of closed chemical reaction systems, called compartments), so that the only source of nonreversibility is the matter exchange (transport) with the environment and between the compartments. Keywords: chemical kinetics, chemical thermodynamics, Kac model, mathematical biology

Malyshev, V A

2011-01-01T23:59:59.000Z

394

Fixed Points for Stochastic Open Chemical Systems  

E-Print Network (OSTI)

In the first part of this paper we give a short review of the hierarchy of stochastic models, related to physical chemistry. In the basement of this hierarchy there are two models --- stochastic chemical kinetics and the Kac model for Boltzman equation. Classical chemical kinetics and chemical thermodynamics are obtained as some scaling limits in the models, introduced below. In the second part of this paper we specify some simple class of open chemical reaction systems, where one can still prove the existence of attracting fixed points. For example, Michaelis\\tire Menten kinetics belongs to this class. At the end we present a simplest possible model of the biological network. It is a network of networks (of closed chemical reaction systems, called compartments), so that the only source of nonreversibility is the matter exchange (transport) with the environment and between the compartments. Keywords: chemical kinetics, chemical thermodynamics, Kac model, mathematical biology

V. A. Malyshev

2011-12-16T23:59:59.000Z

395

Microsoft Word - 2.9 Chemical Owners 0913.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Owners Chemical Owners AFRD Line Management personnel who authorize the use of chemicals in their group's work retain responsibility for ensuring that the chemicals are properly inventoried, labeled, stored, used, and disposed. They may choose to remain Chemical Owners as described in the LBNL Chemical Hygiene and Safety Plan and manage the chemicals themselves, or delegate chemical management tasks to appropriately trained AFRD or matrixed personnel who have knowledge of the chemicals' hazards, controls, and procedures for using and storing them safely. The chemical inventory for each AFRD work area must be maintained on the Chemical Management System. When chemical management tasks are delegated, the AFRD Line Management personnel must also

396

Nuclear energy field fascinates David Parkinson, chemical engineer  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

397

Spatial chemical distance based on atomic property fields  

E-Print Network (OSTI)

009-9316-x Spatial chemical distance based on atomicSimilarity of compound chemical structures often leads tonot always true, as distinct chemical scaffolds can exhibit

Grigoryan, A. V.; Kufareva, I.; Totrov, M.; Abagyan, R. A.

2010-01-01T23:59:59.000Z

398

Microsoft Word - Chemical Security Assessment Tool.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Security Analysis Chemical Security Assessment Tool In support of chemical security regulation the Chemical Security Assessment Tool (CSAT) is the Department of...

399

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron  

E-Print Network (OSTI)

novel measurements of chemical dynamics for clusters, Chemical Dynamics, Molecular Energetics, and Kinetics at theUniversity of California Chemical Sciences Division,

Leone, Stephen R.

2010-01-01T23:59:59.000Z

400

Molecular restrictions for human eye irritation by chemical vapors  

E-Print Network (OSTI)

and reactive airborne chemicals. Pharmacol. Toxicol. 1998;WL. Chemesthesis: The Common Chemical Sense. In: Finger TE,MH. Quantification of chemical vapors in chemosensory

Cometto-Muniz, J. Enrique; Cain, William S.; Abraham, Michael H.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dissection of Plant Defense Mechanisms Using Chemical and Molecular Genomics  

E-Print Network (OSTI)

of auxins by a chemical genomics approach." Journal ofadvances in chemical genomics." Current Medicinal Chemistrymolecular and chemical genomics." Phytopathology 97(7): S58-

Rodriguez-Salus, Melinda Sue

2012-01-01T23:59:59.000Z

402

Chemical heat pump and chemical energy storage system  

DOE Patents (OSTI)

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

403

Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e.g., radium and thorium) were measured at back-ground levels and were eliminated from further consideration. Chemical contaminants identified in wells at the chemical plant area and ordnance works area include nitroaromatic compounds, metals, and inorganic anions. Trichloroethylene (TCE) and 1,2-dichloroethylene (1,2 -DCE) have been detected recently in a few wells near the raffinate pits at the chemical plant.

NONE

1999-07-14T23:59:59.000Z

404

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-11-24T23:59:59.000Z

405

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

1987-01-01T23:59:59.000Z

406

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

1987-01-01T23:59:59.000Z

407

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-06-23T23:59:59.000Z

408

Inorganic Materials Group  

Science Conference Proceedings (OSTI)

... experimental and computational materials science research. This work will help the US construction industry be competitive in advanced concrete ...

2011-11-08T23:59:59.000Z

409

Printed inorganic transistors  

E-Print Network (OSTI)

Forty years of exponential growth of semiconductor technology have been predicated on the miniaturization of the transistors that comprise integrated circuits. While complexity has greatly increased within a given area of ...

Ridley, Brent (Brent Alan), 1974-

2003-01-01T23:59:59.000Z

410

TANK 40 FINAL SLUDGE BATCH 8 CHEMICAL CHARACTERIZATION RESULTS  

SciTech Connect

A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon? vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

Bannochie, C.

2013-09-19T23:59:59.000Z

411

Tank 40 Final SB7b Chemical Characterization Results  

SciTech Connect

A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon? vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.

Bannochie, C. J.

2012-11-06T23:59:59.000Z

412

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies CD-ROMs Publications The following publications are available for download as Adobe PDF documents. Download Acrobat Reader. Chemicals Annual Report (PDF 509 KB) This report provides a summary of activities and R&D projects in fiscal year 2004. Order the Annual Report from the ITP Clearinghouse at 1-800-862-2086. Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. Chemical Bandwidth Study Analyzes Energy Savings Opportunities ITP's Chemicals portfolio works with the chemical industry to develop energy-efficient technologies. Read this report (PDF 1.16 MB)

413

Coal Direct Chemical Looping (CDCL) Process Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Chemical Looping (CDCL) Retrofit to Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio State University Columbus, OH 43210 Award #: DE-NT0005289 PI: Liang-Shih Fan Presenter: Samuel Bayham Department of Chemical and Biomolecular Engineering The Ohio State University 2013 NETL CO2 Capture Technology Meeting July 11, 2013 Pittsburgh, PA Clean Coal Research Laboratory at The Ohio State University Sub-Pilot Scale Unit 250kW th Pilot Unit (Wilsonville, Alabama) Syngas Chemical Looping Coal-Direct Chemical Looping Cold Flow Model Sub-Pilot Scale Unit HPHT Slurry Bubble Column 120kW th Demonstration Unit Calcium Looping Process CCR Process Sub-Pilot Unit F-T Process

414

New Thermodynamic Paradigm of Chemical Equilibria  

E-Print Network (OSTI)

The paper presents new thermodynamic paradigm of chemical equilibrium, setting forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTd). Along with previous results by the author during the last decade, this work contains also some new developments of DTd. Based on the Onsager's constitutive equations, reformulated by the author thermodynamic affinity and reaction extent, and Le Chatelier's principle, DTd brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces (TdF), acting against a chemical system. Basic expression of DTd is the chemical system logistic map of thermodynamic states that ties together energetic characteristics of chemical reaction, occurring in the system, the system shift from "true" thermodynamic equilibrium (TdE), and causing that shift external thermodynamic forces. Solutions to the basic map are pitchfork bifurcation diagrams in coordinates "shift from TdE - growth factor (or TdF)"; points, corresponding to the ...

Zilbergleyt, B

2011-01-01T23:59:59.000Z

415

Modular Chemical Descriptor Language (MCDL): Stereochemical modules  

Science Conference Proceedings (OSTI)

In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

Gakh, Andrei A [ORNL; Burnett, Michael N [ORNL; Trepalin, Sergei V. [Institute Physiologically Active Compouds, Russian Academy of Sciences, Moscow; Yarkov, Alexander V [Institute Physiologically Active Compouds, Russian Academy of Sciences, Moscow

2011-01-01T23:59:59.000Z

416

Electrostatic thin film chemical and biological sensor  

DOE Patents (OSTI)

A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

2010-01-19T23:59:59.000Z

417

QCD Phase Diagram with Imaginary Chemical Potential  

E-Print Network (OSTI)

We report our recent results on the QCD phase diagram obtained from the lattice QCD simulation. The location of the phase boundary between hadronic and QGP phases in the two-flavor QCD phase diagram is investigated. The imaginary chemical potential approach is employed, which is based on Monte Carlo simulations of the QCD with imaginary chemical potential and analytic continuation to the real chemical potential region.

Nagata, Keitaro

2011-01-01T23:59:59.000Z

418

Chemical kinetics models for semiconductor processing  

SciTech Connect

Chemical reactions in the gas-phase and on surfaces are important in the deposition and etching of materials for microelectronic applications. A general software framework for describing homogeneous and heterogeneous reaction kinetics utilizing the Chemkin suite of codes is presented. Experimental, theoretical and modeling approaches to developing chemical reaction mechanisms are discussed. A number of TCAD application modules for simulating the chemically reacting flow in deposition and etching reactors have been developed and are also described.

Coltrin, M.E.; Creighton, J.R. [Sandia National Labs., Albuquerque, NM (United States); Meeks, E.; Grcar, J.F.; Houf, W.G. [Sandia National Labs., Livermore, CA (United States); Kee, R.J. [Colorado School of Mines, Golden, CO (United States)

1997-12-31T23:59:59.000Z

419

Chemical Management (Vol. 2 of 3)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a fully documented process to identify, in a timely manner, chemicals appropriate for reuse, recycle, or disposal. The CSLM program should ensure compliance with all applicable...

420

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Energy.gov (U.S. Department of Energy (DOE))

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemical Sciences Division: News & Events: Announcements  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab chemical scientist Kenneth Raymond and colleagues at the University of Mississippi Medical Center the Fred Hutchinson Cancer Research Center, uncovered the trick while...

422

Argonne Chemical Sciences & Engineering - Fundamental Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

* Chemical Dynamics * Chemical Dynamics * Solar Conversion Fundamental Interactions flame photosynthesis icon Chemical Dynamics Work focuses on theoretical and experimental investigation of the thermochemistry, dynamics, and kinetics of chemcial reactions in the gas phase, with a particular emphasis on reactions that are important to understanding combusion. Solar Conversion Work focuses on developing a fundamental understanding of structure-function relationships in biological photosynthesis and establishing principles for the design of biomimetic systems for solar energy conversion. Current funding for this work comes primarily from the Department of Energy Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divisions. April 2011

423

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

Contact Us CHEMICAL MANUFACTURING Letters of IntentAgreements Work Plans GHG Information Energy Footprints Industry Analysis Briefs Resources & Links Industry Associations...

424

building chemical ontology for Semantic Web using ...  

Science Conference Proceedings (OSTI)

... Blundell et al., 2006; Drews, 2000), chemical, agricultural and biofuel re- search. ... that bind to the active site of HIV protease – an AIDS drug target. ...

2011-11-10T23:59:59.000Z

425

Integrated Chemical, Thermal, Mechanical and Hydrological Modeling...  

Open Energy Info (EERE)

489,476 1,602,500 Retrieved from "http:en.openei.orgwindex.php?titleIntegratedChemical,Thermal,MechanicalandHydrologicalModeling&oldid313283" Category:...

426

Standoff Detection of Chemicals Using Rydberg Fingerprint ...  

applied for non-intrusive detection of combustion intermediates. The technique can be applied to detection of chemical vapors as well as residues on ...

427

Chemical Sciences Division: Introduction: CSD Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Contacts Chemical Sciences Division Office Location: Building 70A, Room 3307 Telephone: (510) 486-7422 Fax: (510) 486-6033 Mailing Address: Lawrence Berkeley National...

428

High Resolution Chemical and Mechanical Characterization of ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Resolution Chemical and Mechanical Characterization of Energy Related Materials. Author(s), Michel L Trudeau, Lisa Rodrigue, René ...

429

Argonne Chemical Sciences & Engineering - News & Highlights ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ten Network. The search for the "ANSER" to solar energy Vilas Pol Nov. 29. American Chemical Society. Upcycling' Plastic Bags Crain's Cleveland Business Oct. 27. Crain's...

430

Microbend fiber-optic chemical sensor  

DOE Patents (OSTI)

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

431

Corrosion Experiences in the Chemical Process Industry  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Under extremely dynamic and technological conditions, every chemical company must remain able to counteract the challenges of the new ...

432

Nanomechanical Sensor Detects and Identifies Chemical Analytes  

ORNL 2010-G00612/jcn UT-B ID 200802066 Nanomechanical Sensor Detects and Identifies Chemical Analytes Technology Summary ORNL researchers developed a ...

433

Argonne Chemical Sciences & Engineering - Fundamental Interactions...  

NLE Websites -- All DOE Office Websites (Extended Search)

effort is to develop new theoretical and computational approaches for understanding chemical processes, and to implement these approaches in modeling the complex chemistry of...

434

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

99Mo99mTc. Process Simulation and Equipment Design Application of integrated chemical engineering and separations chemistry to develop, model, design, and demonstrate...

435

Physical and Chemical Heterogeneity of Carbon Fibre  

Science Conference Proceedings (OSTI)

This paper utilises a range of physical and chemical techniques to characterise both polyacrylonitrile and pitch based carbon fibre and highlights the ...

436

Useful and Undesirable Chemical Reactions during Detonation ...  

Science Conference Proceedings (OSTI)

In our work, we consider chemical changes in the sprayed materials induced by reducing or oxidizing species in the detonation products and interactions ...

437

Hobart named American Chemical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Hobart named ACS Fellow Hobart named American Chemical Society Fellow The ACS Fellows program began in 2008 to recognize and honor members for outstanding achievements in and...

438

Chemical Imaging Analysis of Flame Synthesized Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; 2 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 3...

439

Argonne Chemical Sciences & Engineering - 2003 Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

American Glovebox Society, Arthur Frigo Collaboration Success Award, Council for Chemical Research, Michael Kaminski Outstanding Mentor Award, U.S. Department of Energy, Sean...

440

Argonne Chemical Sciences & Engineering - 2008 Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Awards Robert E. Wilson Award, American Institute of Chemical Engineers, Nuclear Engineering Division, Ralph Leonard President's Achievement Award, American Scientific...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemically-Assisted Pulsed Laser-Ramjet  

SciTech Connect

A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu [Department of Aeronautics and Astronautics, Tokai University, Hiratsuka, Kanagawa, 259-1292 (Japan)

2010-10-13T23:59:59.000Z

442

Former Worker Medical Screening Program - Mallinckrodt Chemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mallinckrodt Chemical Co. Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE...

443

Method and apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong; Peter C. (Idaho Falls, ID), Herring; J. Stephen (Idaho Falls, ID), Grandy; Jon D. (Idaho Falls, ID)

2007-12-04T23:59:59.000Z

444

NIST - Physical and Chemical Properties Division - Technical ...  

Science Conference Proceedings (OSTI)

... 1. The NIST WebBook - NIST Chemical Reference Data for ... The NIST Mass Spectral Database: Extending the ... of fluids and fluid mixtures, including ...

445

Chemical Sciences Division: National Facilities & Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley National Facilities and Centers Chemical...

446

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

447

Laser Ablation Technology for Chemical Analysis : Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of gray dots transitioning to a line art drawing of a cityscape and residential houses. Laser Ablation Technology for Chemical Analysis Analyzing materials to determine their...

448

Chemical damage due to drilling operations  

DOE Green Energy (OSTI)

The drilling of geothermal wells can result in near wellbore damage of both the injection wells and production wells if proper precautions are not taken. Very little specific information on the chemical causes for drilling damage that can directly be applied to the drilling of a geothermal well in a given situation is available in the literature. As part of the present work, the sparse literature references related to the chemical aspects of drilling damage are reviewed. The various sources of chemically induced drilling damages that are related to drilling operations are summarized. Various means of minimizing these chemical damages during and after the drilling of a geothermal well are suggested also.

Vetter, O.J.; Kandarpa, V.

1982-07-14T23:59:59.000Z

449

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's Advanced Fuel Cycle Research and Development Program. More Closing the nuclear fuel cycle Recycling long-lived fissile materials as fuel Developing chemical process models...

450

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Loyola University Design of liquid-liquid extraction systems for actinide and fission product separations Nuclear fuel and target dissolution Chemical processes for...

451

Hobart named American Chemical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

for Economic Co-operation and Development Nuclear Energy Database under "Chemical Thermodynamics of Americium." He also serves as chair-elect of the Division of Nuclear Chemistry...

452

Chemical Warfare Agent Decontamination Solution - Patent 5859064  

U.S. Energy Information Administration (EIA)

... and softens and removes paint.A need exists for a chemical warfare agent decontamination solution which is noncorrosive, nontoxic, nonflammable, ...

453

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Chemical and biological warfare agents are continuing threats to the military on the battlefield as well as to civilians in the form of terrorist ...

454

Bookonline - Handbook of Chemical and Biological Warfare ...  

U.S. Energy Information Administration (EIA)

Handbook of Chemical and Biological Warfare Agent Decontamination I found this book here - AZBookFinder.com It's a simple and faster way to find a ...

455

Toxic Chemical Agent Decontamination Emulsions, Their ...  

U.S. Energy Information Administration (EIA)

This invention is related to decontaminating agents and amethod for the decontamination of ... which have been contaminated with toxic chemical agents ...

456

Handbook of chemical and biological warfare agent ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Handbook of chemical and biological warfare agent decontamination. [George O Bizzigotti; et al] -- "A one-stop reference ...

457

Sponsors Reception for the American Chemical Society ...  

Science Conference Proceedings (OSTI)

... on long-term basic research industry needs ... uses federal-industry-university partnerships to ... including chemicals; electronics; energy, power, and ...

2010-10-05T23:59:59.000Z

458

Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

459

Chemical and Microstructural Effects in Electrode Polarization  

DOE Green Energy (OSTI)

This presentation discusses the chemical and microstructural effects in electrode polarization and a relative comparison of contributions of the various polarizations in anode-supported cells.

Virkar, A.; Armstrong, T.; Radhakrishman, R.; Ramanan, G.; Zhao, F.; Singhal, S.

2005-01-28T23:59:59.000Z

460

Argonne Chemical Sciences & Engineering - People - Distinguished...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago Area of interest: solar photochemical energy conversion in photosynthesis Chemical Sciences and Engineering Division Argonne Distinguished Fellows Larry...

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

3-02 King Alternative Chemical Cleaning  

Hanford white paper and simulant testing. 21 SRNL-STI-2010-00725 Reports SRNL - Environmental and Chemical Process Technology Systems Engineering Evaluation - Martino ...

462

PNNL: Chemical & Materials Sciences - Fundamental & Computational...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Journal Cover Gallery CMSD Job Openings Links Seminar Series Frontiers in Geochemistry Frontiers in Catalysis Science and Engineering Frontiers in Chemical Physics &...

463

ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

464

UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan  

E-Print Network (OSTI)

UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan UCR CHEMISTRY DEPARTMENT CHEMICAL HYGIENE PLAN.................................... 4 Responsibilities of All Personnel Who Handle Hazardous Chemicals

Reed, Christopher A.

465

Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection  

SciTech Connect

Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

PHELAN, JAMES M.

2002-05-01T23:59:59.000Z

466

2005 Chemical Reactions at Surfaces  

SciTech Connect

The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

Cynthia M. Friend

2006-03-14T23:59:59.000Z

467

Chemical evolution with radial mixing  

E-Print Network (OSTI)

Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and alpha elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva-Copenhagen survey (GCS) of the solar neighbourhood, and an acceptable fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age-metallicity plane although this plane was not used in the fitting process. Although this model's star-formation rate is monotonic declining, its disc naturally splits into an alpha-enhanced thick disc and a normal thin disc. In particular the model's distribution of stars in the ([O/Fe],[Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc's ridge line is entirely due to stellar migration and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywoo...

Schoenrich, Ralph

2008-01-01T23:59:59.000Z

468

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network (OSTI)

Reactive chemicals are presented widely in the chemical and petrochemical process industry. Their chemical reactivity hazards have posed a significant challenge to the industries of manufacturing, storage and transportation. The accidents due to reactive chemicals have caused tremendous loss of properties and lives, and damages to the environment. In this research, three classes of reactive chemicals (unsaturated hydrocarbons, self-reacting chemicals, energetic materials) were evaluated through theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization, and oxidation, is investigated by computational chemistry methods and empirical thermodynamic–energy correlation. Density functional and ab initio methods are used to search the initial thermal decomposition steps of HA, including unimolecular and bimolecular pathways. In addition, solvent effects are also examined using water cluster methods and Polarizable Continuum Models (PCM) for aqueous solution of HA. The thermal stability of a basic energetic material, Nitroethane, is investigated through both theoretical and experimental methods. Density functional methods are employed to explore the initial decomposition pathways, followed by developing detailed reaction networks. Experiments with a batch reactor and in situ GC are designed to analyze the distribution of reaction products and verify reaction mechanisms. Overall kinetic model is also built from calorimetric experiments using an Automated Pressure Tracking Adiabatic Calorimeter (APTAC). Finally, a general evaluation approach is developed for a wide range of reactive chemicals. An index of thermal risk is proposed as a preliminary risk assessment to screen reactive chemicals. Correlations are also developed between reactivity parameters, such as onset temperature, activation energy, and adiabatic time to maximum rate based on a limited number, 37 sets, of Differential Scanning Calorimeter (DSC) data. The research shows broad applications in developing reaction mechanisms at the molecular level. The methodology of reaction modeling in combination with molecular modeling can also be used to study other reactive chemical systems.

Wang, Qingsheng

2010-08-01T23:59:59.000Z

469

Content and chemical form of mercury and selenium in Lake Ontario salmon and trout  

SciTech Connect

The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On a molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.

Cappon, C.J.

1984-01-01T23:59:59.000Z

470

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

471

Conditions driving chemical freeze-out  

E-Print Network (OSTI)

We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.

A. Tawfik

2004-10-28T23:59:59.000Z

472

Chemical Biodynamics Division. Annual report 1979  

DOE Green Energy (OSTI)

The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

Not Available

1980-08-01T23:59:59.000Z

473

Impact Statement Tens of thousands of chemicals  

E-Print Network (OSTI)

are currently in commerce, and hundreds more are introduced every year. Because there are so many chemicals—and since traditional chemical toxicity tests using animals are expensive and time consuming—only a small fraction of chemicals have been fully assessed for potential risk. In 2007, EPA scientists began working on ToxCast, a research project that identifies and prioritizes potentially toxic chemicals using rapid, automated tests called highthroughput screening (HTS) assays. ToxCast is currently assessing over 2,000 chemicals from a broad range of sources, including pesticides, industrial and consumer products, food additives, and failed drugs that were never released to the market. Figure 1. The technologies included in ToxCast use non-animal tests called in vitro assays to help understand what might happen when a human is exposed to a chemical. However, it is difficult to determine the relevance of in vitro data when predicting toxicity from realworld exposures. This study focuses on discovering what level of human exposure is required to result in the internal concentrations that caused effects in in vitro tests. To provide insights into this question, this study made experimental measurements and calculated relevant human exposures for 239 of the 309 ToxCast Phase I chemicals. This study indicates that understanding relevant exposure conditions is important when using HTS in vitro data to prioritize chemicals for further testing and risk management.

unknown authors

2011-01-01T23:59:59.000Z

474

Chemicals for Plant Disease Control at Home  

E-Print Network (OSTI)

This publication helps retailers and consumers identify products that control plant diseases. To clear up confusion about the names of the chemicals, the publication cross-references their common names with their chemical terms. It also lists the products commonly available in Texas retail stores and the companies that sell fungicides in small packages for homeowners.

Ong, Kevin

2007-10-30T23:59:59.000Z

475

Alumni & Industry Magazine Chemical Engineering & Applied Chemistry  

E-Print Network (OSTI)

updated on your professional news, post discussions and share job opportunities. Joining our group is easy faculty and their students work in the conversion of biomass to fuels and chemicals in partnership in its implementation. Biofuels--and more broadly chemicals derived from biomass--are surely going

Prodiæ, Aleksandar

476

Chemical Safety Vulnerability Working Group Report  

SciTech Connect

This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

1994-09-01T23:59:59.000Z

477

GULF OF MEXICO PHYSICAL AND CHEMICAL DATA  

E-Print Network (OSTI)

-^ ^ / GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Marine Biological Laboratory, Commissioner GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Compiled by Albert Collier Fishery OF THE GULF OF MEXICO By Kenneth H. Driimmond and George B. Austin, Jr. Department of Oceanography The A. & M

478

Department of Chemical and Petroleum Engineering  

E-Print Network (OSTI)

World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed ­ Oil & Gas Engineering General Department Information ­ Faculty & Student Numbers ­ Scholarships, Labs of Chemical & Petroleum Engineering 4 Our Programs Chemical Engineering Biomedical Specialization Oil and Gas

Calgary, University of

479

Chemical engineers design, control and optimize large-scale chemical, physicochemical and  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit operations, ther-mo-dynamics, kinetics by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering

Wang, Hai

480

Safety Topic Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical  

E-Print Network (OSTI)

Safety Topic ­ Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical vapors and gases. A face velocity of 100 feet per minute (fpm) provides efficient vapor capture the better. (T) (F) A chemical hood can be used for storage of volatile, flammable, or odiferous materials

Cohen, Robert E.

Note: This page contains sample records for the topic "inorganic chemicals nec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Searching for the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Searching for the Solar System's Searching for the Solar System's Chemical Recipe Searching for the Solar System's Chemical Recipe Print Wednesday, 20 February 2013 00:00 The ratio of isotopes in elements like oxygen, sulfur, and nitrogen were once thought to be much the same everywhere, determined only by their different masses. Then isotope ratios in meteorites, interplanetary dust and gas, and the sun itself were found to differ from those on Earth. Planetary researchers like UC San Diego's Mark Thiemens and his colleagues, working with Musa Ahmed of the Chemical Sciences Division, are now using the Chemical Dynamics Beamline at the Advanced Light Source to study these "mass-independent" effects and their origins in the chemical processes of the early solar system.

482

Aerogel composites using chemical vapor infiltration  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerogel composites using chemical vapor infiltration Aerogel composites using chemical vapor infiltration Title Aerogel composites using chemical vapor infiltration Publication Type Journal Article Year of Publication 1995 Authors Hunt, Arlon J., Michael R. Ayers, and Wanqing Cao Journal Journal of Non-Crystalline Solids Volume 185 Pagination 227-232 Abstract A new method to produce novel composite materials based on the use of aerogels as a starting material is described. Using chemical vapor infiltration, a variety of solid materials were thermally deposited into the open pore structure of aerogel. The resulting materials possess new and unusual properties including photoluminescence, magnetism and altered optical properties. An important characteristic of this preparation process is the very small size of the deposits that gives rise to new behaviors. Silicon deposits exhibit photoluminescence, indicating quantum confinement. Two or more phases may be deposited simultaneously and one or both chemically or thermally reacted to produce new structures.

483

Definition: Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Logging Logging Jump to: navigation, search Dictionary.png Chemical Logging Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.[1] References ↑ http://www.osti.gov/bridge/servlets/purl/6076582-xtVTIk/6076582.pdf Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Chemical_Logging&oldid=600357" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

484

Critical adsorption at chemically structured substrates  

E-Print Network (OSTI)

We consider binary liquid mixtures near their critical consolute points and exposed to geometrically flat but chemically structured substrates. The chemical contrast between the various substrate structures amounts to opposite local preferences for the two species of the binary liquid mixtures. Order parameters profiles are calculated for a chemical step, for a single chemical stripe, and for a periodic stripe pattern. The order parameter distributions exhibit frustration across the chemical steps which heals upon approaching the bulk. The corresponding spatial variation of the order parameter and its dependence on temperature are governed by universal scaling functions which we calculate within mean field theory. These scaling functions also determine the universal behavior of the excess adsorption relative to suitably chosen reference systems.

Monika Sprenger; Frank Schlesener; S. Dietrich

2005-01-25T23:59:59.000Z

485

Chemical kinetic modelling of hydrocarbon ignition  

DOE Green Energy (OSTI)

Chemical kinetic modeling of hydrocarbon ignition is discussed with reference to a range of experimental configurations, including shock tubes, detonations, pulse combustors, static reactors, stirred reactors and internal combustion engines. Important conditions of temperature, pressure or other factors are examined to determine the main chemical reaction sequences responsible for chain branching and ignition, and kinetic factors which can alter the rate of ignition are identified. Hydrocarbon ignition usually involves complex interactions between physical and chemical factors, and it therefore is a suitable and often productive subject for computer simulations. In most of the studies to be discussed below, the focus of the attention is placed on the chemical features of the system. The other physical parts of each application are generally included in the form of initial or boundary conditions to the chemical kinetic parts of the problem, as appropriate for each type of application being addressed.

Westbrook, C.K.; Pitz, W.J.; Curran, H.J.; Gaffuri, P.; Marinov, N.M.

1995-08-25T23:59:59.000Z

486

Chemical evolution with radial mixing  

E-Print Network (OSTI)

Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and alpha elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva-Copenhagen survey (GCS) of the solar neighbourhood, and a good fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age-metallicity plane although this plane was not used in the fitting process. Although this model's star-formation rate is monotonic declining, its disc naturally splits into an alpha-enhanced thick disc and a normal thin disc. In particular the model's distribution of stars in the ([O/Fe],[Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc's ridge line is entirely due to stellar migration and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar populations with high sigma_z from inner regions of the disc to the solar neighbourhood provides a natural explanation of why measurements yield a steeper increase of sigma_z with age than predicted by theory. The metallicity gradient in the ISM is predicted to be steeper than in earlier models, but appears to be in good agreement with data for both our Galaxy and external galaxies. The models are inconsistent with a cutoff in the star-formation rate at low gas surface densities. The absolute magnitude of the disc is given as a function of time in several photometric bands, and radial colour profiles are plotted for representative times.

Ralph Schoenrich; James Binney

2008-09-17T23:59:59.000Z

487

Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications  

E-Print Network (OSTI)

The objective of this study is to synthesize nanomaterials by mixing molten salt (alkali nitrate salt eutectics) with inorganic nanoparticles. The thermo-physical properties of the synthesized nanomaterials were characterized experimentally. Experimental results allude to the existence of a distinct compressed phase even for the solid phase (i.e., in the nanocomposite samples). For example, the specific heat capacity of the nanocomposites was observed to be enhanced after melting and re-solidification - immediately after their synthesis; than those of the nanocomposites that were not subjected to melting and re-solidification. This shows that melting and re-solidification induced molecular reordering (i.e., formation of a compressed phase on the nanoparticle surface) even in the solid phase - leading to enhancement in the specific heat capacity. Numerical models (using analytical and computational approaches) were developed to simulate the fundamental transport mechanisms and the energy storage mechanisms responsible for the observed enhancements in the thermo-physical properties. In this study, a simple analytical model was proposed for predicting the specific heat capacity of nanoparticle suspensions in a solvent. The model explores the effect of the compressed phase – that is induced from the solvent molecules - at the interface with individual nanoparticles in the mixture. The results from the numerical simulations indicate that depending on the properties and morphology of the compressed phase – it can cause significant enhancement in the specific heat capacity of nanofluids and nanocomposites. The interfacial thermal resistance (also known as Kapitza resistance, or “Rk”) between a nanoparticle and the surrounding solvent molecules (for these molten salt based nanomaterials) is estimated using Molecular Dynamics (MD) simulations. This exercise is relevant for the design optimization of nanomaterials (nanoparticle size, shape, material, concentration, etc.). The design trade-off is between maximizing the thermal conductivity of the nanomaterial (which typically occurs for nanoparticle size varying between ~ 20-30nm) and maximizing the specific heat capacity (which typically occurs for nanoparticle size less than 5nm), while simultaneously minimizing the viscosity of the nanofluid. The specific heat capacity of nitrate salt-based nanomaterials was measured both for the nanocomposites (solid phase) and nanofluids (liquid phase). The neat salt sample was composed of a mixture of KNO3: NaNO3 (60:40 molar ratio). The enhancement of specific heat capacity of the nanomaterials obtained from the salt samples was found to be very sensitive to minor variations in the synthesis protocol. The measurements for the variation of the specific heat capacity with the mass concentration of nanoparticles were compared to the predictions from the analytical model. Materials characterization was performed using electron microscopy techniques (SEM and TEM). The rheological behavior of nanofluids can be non-Newtonian (e.g., shear thinning) even at very low mass concentrations of nanoparticles, while (in contrast) the pure undoped (neat) molten salt may be a Newtonian fluid. Such viscosity enhancements and change in rheological properties of nanofluids can be detrimental to the operational efficiencies for thermal management as well as energy storage applications (which can effectively lead to higher costs for energy conversion). Hence, the rheological behavior of the nanofluid samples was measured experimentally and compared to that of the neat solvent (pure molten salt eutectic). The viscosity measurements were performed for the nitrate based molten salt samples as a function of temperature, shear rate and the mass concentration of the nanoparticles. The experimental measurements for the rheological behavior were compared with analytical models proposed in the literature. The results from the analytical and computational investigations as well as the experimental measurements performed in this proposed study – were used to formul

Jung, Seunghwan

2012-05-01T23:59:59.000Z

488

Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998  

SciTech Connect

The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

R. C. Bartholomay; B. V. Twining (USGS); L. J. Campbell (Idaho Department of Water Resources)

1999-06-01T23:59:59.000Z

489

Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response  

Science Conference Proceedings (OSTI)

Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

2013-01-01T23:59:59.000Z

490

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

491

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

492

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

493

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

494

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

495

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

496

Shanghai TL Chemical Company | Open Energy Information  

Open Energy Info (EERE)

TL Chemical Company TL Chemical Company Jump to: navigation, search Name Shanghai TL Chemical Company Place Shanghai, China Zip 200240 Product Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical materials in Zn-Air fuel cell, Polymer additives, Fine chemicals,Chemical laboratory and Industry automation solutions. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Platform Chemicals from an Oilseed Biorefinery  

Science Conference Proceedings (OSTI)

The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

Tupy, Mike; Schrodi Yann

2006-11-06T23:59:59.000Z

498

Storage and Proper Segregation of Chemical Classes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proper Segregation of Chemical Classes Proper Segregation of Chemical Classes Partial List of Incompatible chemicals (Toxic Hazards) Substances in the left hand column should be stored and handled so that they cannot possibly accidentally contact corresponding substances in the center column, because toxic materials (right hand column) would be produced. Arsenical Materials Any Reducing Agent Arsine Azides Acids Hydrogen Azide Cyanides Acids Hydrogen Cyanide Hypochlorites Acids Chlorine or Hypochlorous Acid Nitrates Sulfuric Acid Nitrogen Dioxide Nitric acid Copper, Brass, Heavy Metals Nitrogen Dioxide Nitrites Acids Nitrous Fumes Phosphorus Caustic Alkalies/ Reducers Phosphine Selenides Reducers Hydrogen Selenide Sulfides Acids Hydrogen Sulfide Tellurides Reducers Hydrogen Telluride

499

Licenses Available in Chemicals | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemicals Chemicals SHARE Chemicals 199800555 Imprinting Method for Selective Mesoporous Sorbents 200000806 Flow Cytometry Using Electroosmotically Induced Pressures 200000812 Method for Sequencing Nucleic Acids 200000815 Standoff Tissue-Based Biosensors 200000845 Positron Lifetime System for dc Positron Beams 200000869 Metallization of Bacterial Cellulose for Electrical and Electronic Device Manufacture 200000884 Method of Restoring Sight to Blind Persons 200100899 Catalyst- Induced Growth of Carbon Nanotubes on Tips of Cantilevers and Nanowires 200100918 Cell Transport, Lysis and Analysis on Microfluidic Devices 200100947 Boron Loaded Scintillator 200100948 Precursor Soot Synthesis of Fullerenes and Nanotubes without Carbonaceous Soot 200100968 Melt-spun Carbon Fiber Precursors Containing Lignin

500

Manager, International Chemical Threat Reduction Department, Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

International Chemical Threat Reduction Department, Sandia International Chemical Threat Reduction Department, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Nancy Jackson Manager, International Chemical Threat Reduction Department, Sandia National Laboratories