National Library of Energy BETA

Sample records for innovative small modular

  1. Cost-Shared Development of Innovative Small Modular Reactor Designs...

    Office of Environmental Management (EM)

    Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing ...

  2. Energy Department Announces New Investment in Innovative Small Modular Reactor

    Broader source: Energy.gov [DOE]

    The Energy Department tannounced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors in the United States.

  3. Department of Energy Continues Commitment to the Development of Innovative Small Modular Reactors

    Broader source: Energy.gov [DOE]

    Department of Energy announces agreement to support possible siting of an innovative small modular reactor project at the Idaho National Laboratory site.

  4. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  5. Small Modular Biomass Systems

    SciTech Connect (OSTI)

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  6. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smr Small Modular Reactors The Savannah River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the Savannah River Site facility and jump start development of the U.S. Energy Freedom CenterTM. Currently, all large commercial power reactors in the United States and most in the rest of the world are based on "light water" designs - that is, they use uranium fuel and ordinary

  7. Energy Department Announces New Investment in Innovative Small...

    Office of Environmental Management (EM)

    Investment in Innovative Small Modular Reactor Energy Department Announces New Investment in Innovative Small Modular Reactor December 12, 2013 - 4:04pm Addthis NEWS MEDIA CONTACT ...

  8. Small Modular Reactors Presentation to Secretary of Energy Advisory...

    Energy Savers [EERE]

    DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to ... and demonstration of innovative reactor technologies and concepts ...

  9. Electricity Generating Portfolios with Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the ...

  10. Small Modular Reactors (SMRs) | Department of Energy

    Energy Savers [EERE]

    Reactor Technologies Small Modular Reactors (SMRs) Small Modular Reactors (SMRs) ... to the NRC by late-2016 Complete reactor module final design by mid-2019 For more ...

  11. Small modular reactors (SMRs) such...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small modular reactors (SMRs) such as the one illustrated in Figure 1 are being considered by the commercial nuclear power industry as an option for more distributed generation and...

  12. Small Modular Nuclear Reactors: Parametric Modeling of Integrated...

    Office of Environmental Management (EM)

    Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ... Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ...

  13. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  14. Small Modular Reactors: Institutional Assessment

    SciTech Connect (OSTI)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  15. Modular Countermine Payload for Small Robots (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Modular Countermine Payload for Small Robots Citation Details In-Document Search Title: Modular Countermine Payload for Small Robots Payloads for small robotic platforms have ...

  16. Modular Countermine Payload for Small Robots (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Modular Countermine Payload for Small Robots Citation Details In-Document Search Title: Modular Countermine Payload for Small Robots You are accessing a document from the ...

  17. Energy Department Announces New Funding Opportunity for Innovative Small

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular Reactors | Department of Energy Funding Opportunity for Innovative Small Modular Reactors Energy Department Announces New Funding Opportunity for Innovative Small Modular Reactors March 11, 2013 - 2:45pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to speed the transition to more sustainable sources of energy, the Energy Department today issued a new funding opportunity announcement to help U.S. industry

  18. Small modular reactors (SMRs) such as the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small modular reactors (SMRs) such as the one illustrated in Figure 1 are being considered by the commercial nuclear power industry as an option for more distributed generation and for replace- ment of older fossil fuel generating facilities. SMRs are more compact than operating pressurized water reactors (PWRs), producing from 50 MWe to 200 MWe as compared to 1000 MWe or higher for their full-sized cousins, and are offered as "expandable" units; that is, their modular design allows

  19. Small Modular Reactor Report (SEAB) | Department of Energy

    Energy Savers [EERE]

    Modular Reactor Report (SEAB) Small Modular Reactor Report (SEAB) In his April 3, 2012, Memorandum to Secretary of Energy Advisory Board (SEAB) Chairman William Perry, Secretary of ...

  20. Benefits of Small Modular Reactors (SMRs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Small Modular Reactors (SMRs) Benefits of Small Modular Reactors (SMRs) Small modular reactors offer a lower initial capital investment, greater scalability, and siting flexibility for locations unable to accommodate more traditional larger reactors. They also have the potential for enhanced safety and security compared to earlier designs. Modularity: The term "modular" in the context of SMRs refers to the ability to fabricate major components of the nuclear steam supply

  1. MSR Innovations Modular Solar Roofing | Open Energy Information

    Open Energy Info (EERE)

    search Name: MSR Innovations (Modular Solar Roofing) Place: Burnaby, British Columbia, Canada Zip: V5J 5H8 Product: British Columbia-based PV roofing systems maker. Coordinates:...

  2. Assessment of Small Modular Reactor Suitability for Use On or...

    Office of Environmental Management (EM)

    Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600 Assessment of Small Modular Reactor Suitability for Use On or Near Air Force ...

  3. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  4. SEAB Subcommittee on Small Modular Reactors (SMR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEAB Subcommittee on Small Modular Reactors (SMR) Draft 4 - 10/15 November 2, 2012 In his April 3, 2012, Memorandum to Secretary of Energy Advisory Board (SEAB) Chairman William Perry, Secretary of Energy Steven Chu charged: "The broad purpose of the SEAB subcommittee on SMRs is to advise the Secretary on ways to advance this technology to achieve a global leadership role in civil nuclear technology for the United States, and ways for DOE to accelerate that role." In the context of the

  5. Small Business Innovation Research Opportunity | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research Opportunity Small Business Innovation Research Opportunity Small business innovations in geothermal technologies are reducing the cost and risk ...

  6. Small Modular Reactors Presentation to Secretary of Energy Advisory Board -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Assistant Secretary John Kelly | Department of Energy Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a fleet of SMRs in the United States SMR Program is a new program for FY 2011 Structured

  7. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise

  8. Small Modular Reactors, National Security and Clean Energy: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Modular Reactors, National Security and Clean Energy: A U.S. National Strategy Dr. ... driven, but unsuccessful Global Nuclear Energy Partnership and suggest how that ...

  9. Advanced Small Modular Reactor Economics Model Development (Technical...

    Office of Scientific and Technical Information (OSTI)

    Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and ...

  10. Evaluation of Potential Locations for Siting Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals Population Sensitivity Evaluation of Two Candidate Locations ...

  11. Small Business Innovation Research and Small Business Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business ...

  12. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  13. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect (OSTI)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  14. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  15. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  16. Eligibility for a Small Business Innovation Research and Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research Eligibility for a Small Business Innovation Research and Small Business Technology Transfer Program Grant Eligibility for a Small Business ...

  17. Small Business Innovation Research and Small Business Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower Small Business Innovation Research and Small Business Technology Transfer Programs: ...

  18. Funding Phases for Small Business Innovation Research and Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phases for Small Business Innovation Research and Small Business Technology Transfer Programs Funding Phases for Small Business Innovation Research and Small Business Technology ...

  19. Small Business Innovation Research (SBIR) and Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the ...

  20. Evaluation of Potential Locations for Siting Small Modular Reactors near

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Clusters to Support Federal Clean Energy Goals | Department of Energy Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals This report investigates three additional federal energy clusters for favorability for siting an SMR: the Florida Panhandle, South-Central Texas, and

  1. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  2. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  3. Photovoltaic Research and Development - Small Innovative Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) ...

  4. Small Business Innovation Research | Department of Energy

    Energy Savers [EERE]

    Transfer (STTR) | Department of Energy Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the Department's Small Business Innovation Research and Small Business Technology Transfer programs, presented at an Historically Black College and University meeting. Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) (188.18 KB) More

  5. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  6. Eligibility for a Small Business Innovation Research and Small Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Program Grant | Department of Energy Small Business Innovation Research » Eligibility for a Small Business Innovation Research and Small Business Technology Transfer Program Grant Eligibility for a Small Business Innovation Research and Small Business Technology Transfer Program Grant Small businesses interested in applying for an Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR)

  7. Small Business Innovation Research (SBIR) and Small Business Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer (STTR) | Department of Energy Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the Department's Small Business Innovation Research and Small Business Technology Transfer programs, presented at an Historically Black College and University meeting. Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) (188.18 KB) More

  8. Small Modular Reactors - Key to Future Nuclear Power

    Broader source: Energy.gov (indexed) [DOE]

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. 1,2 Robert Rosner ... b,c Wind (On-shore) 90 9 Solar PV 180 18 Solar Thermal 250 25 Biomass 90-180 9-18 a. ...

  9. Small Business Innovation Research (SBIR) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research (SBIR) Small Business Innovation Research (SBIR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. ...

  10. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    SciTech Connect (OSTI)

    John Reardon; Art Lilley

    2004-06-15

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  11. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs: Wind | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses

  12. Advancing Small Modular Reactors: How We're Supporting Next-Gen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

  13. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  14. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  15. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's support for the next-generation nuclear energy technology -- small modular reactors.

  16. Funding Phases for Small Business Innovation Research and Small Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Programs | Department of Energy Phases for Small Business Innovation Research and Small Business Technology Transfer Programs Funding Phases for Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants follow a funding ladder similar to that of clean energy technology investors. Phase I funding

  17. Funding Topics for Small Business Innovation Research and Small Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Programs | Department of Energy Topics for Small Business Innovation Research and Small Business Technology Transfer Programs Funding Topics for Small Business Innovation Research and Small Business Technology Transfer Programs Each year, the Office of Energy Efficiency and Renewable Energy's (EERE's) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issue Funding Opportunity Announcements (FOAs), which invite established or

  18. Funding Schedule for Small Business Innovation Research and Small...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy (EERE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants is provided below. The grants follow a funding ladder similar...

  19. Small Business Innovation Research and Small Business Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy ... solutions for energy-saving homes, buildings, and ...

  20. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  1. Small modular reactor (SMR) development plan in Korea

    SciTech Connect (OSTI)

    Shin, Yong-Hoon Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon

    2015-04-29

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  2. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  3. Small Modular Reactors, National Security and Clean Energy: A U.S. National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy | Princeton Plasma Physics Lab December 12, 2012, 4:15pm MBG Auditorium Small Modular Reactors, National Security and Clean Energy: A U.S. National Strategy Dr. Victor H. Reis U.S. Department of Energy Presentation: File MS PowerPoint presentation (PPTX) Secretary Chu and President Obama have suggested that the United States' Sputnik-to-Apollo program could be a strategic model for innovation and developing clean energy in the United States. I'll use that model to analyze the

  4. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  5. On Enhancing Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. However, the economics of AdvSMRs suffer from the loss of economy-of-scale for both construction and operation. The controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance (O&M) costs. These expenses could potentially be managed through optimized scheduling of O&M activities for components, reactor modules, power blocks, and the full plant. Accurate, real-time risk assessment with integrated health monitoring of key active components can support scheduling of both online and offline inspection and maintenance activities.

  6. DOE's Innovative Small Business Vouchers Pilot Selects 33 Small

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses for Lab Collaboration | Department of Energy DOE's Innovative Small Business Vouchers Pilot Selects 33 Small Businesses for Lab Collaboration DOE's Innovative Small Business Vouchers Pilot Selects 33 Small Businesses for Lab Collaboration March 10, 2016 - 12:00pm Addthis The U.S. Department of Energy (DOE) today announced that 33 small businesses have been selected to work directly with DOE national labs to accelerate the transformation toward a clean energy economy. The selected

  7. DOE's Innovative Small Business Vouchers Pilot Selects 33 Small

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses for Lab Collaboration | Department of Energy DOE's Innovative Small Business Vouchers Pilot Selects 33 Small Businesses for Lab Collaboration DOE's Innovative Small Business Vouchers Pilot Selects 33 Small Businesses for Lab Collaboration March 10, 2016 - 1:04pm Addthis News release from the Office of Energy Efficiency and Renewable Energy The U.S. Department of Energy (DOE) today announced that 33 small businesses have been selected to work directly with DOE national labs to

  8. Business Case for Small Modular Reactors Report on Findings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Business Case for Small Modular Reactors Report on Findings Business Case for Small Modular Reactors Report on Findings This study assesses the market for SMRs and develops a business case to identify incentives, policies, and programs that can be effectively implemented and have significant impact on the commercialization of SMRs. Business Case for Small Modular Reactors Report on Findings to the U.S. Department of Energy (666.81 KB) More Documents & Publications A Strategic

  9. An Overview of the DOE's Small Business Innovation Research ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs An Overview of the DOE's Small Business Innovation ...

  10. Schedule and Information for Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schedule and Information for Small Business Innovation Research and Small Business Technology Transfer Program Applicants Schedule and Information for Small Business Innovation ...

  11. Small Business Innovation Research and Small Business Technology Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Market » Small Business Innovation Research and Small Business Technology Transfer Small Business Innovation Research and Small Business Technology Transfer Tau Science Corporation Tau Science Corporation Tau Science Corporation have developed technology that revolutionizes PV characterization by bringing the most fundamental measure of a solar cell performance--spectral response--to application areas which are impractical or unobtainable using existing

  12. Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall

  13. Small Modular Reactors- Key to Future Nuclear Power Generation in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. University of Chicago, Energy Policy Institute at Chicago

  14. Advancing Small Modular Reactors: How We're Supporting Next-Gen...

    Energy Savers [EERE]

    reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor ...

  15. First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors

    Broader source: Energy.gov [DOE]

    The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration’s commitment to advancing U...

  16. Obama Administration Announces $450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors

    Broader source: Energy.gov [DOE]

    The White House announced new funding to advance the development of American-made small modular reactors (SMRs), an important element of the President’s energy strategy.

  17. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  18. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; Arcak, Murat; Keasling, Jay D.; Rao, Christopher V.

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  19. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  20. How to Apply for a Small Business Innovation Research and Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research How to Apply for a Small Business Innovation Research and Small Business Technology Transfer Program Grant How to Apply for a Small Business ...

  1. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV

  2. Small Business Innovation Research Announces $1.15 Million to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research Announces 1.15 Million to Expand Under-Utilized Geothermal Markets Small Business Innovation Research Announces 1.15 Million to Expand ...

  3. Small Business Vouchers Pilot Connects Innovators with Labs ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Vouchers Pilot Connects Innovators with Labs Small Business Vouchers Pilot Connects Innovators with Labs Addthis Description This video features an introduction to ...

  4. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 (Phase I Release 2) Grant | Department of Energy Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant November 26, 2012 - 2:11pm Addthis Funding: $150,000 (Phase I) and $1M (Phase II) for each awardee Open Date: 11/26/2012 Close Date: 02/05/2013 Funding Organization: Geothermal Technologies Office Funding Number: SBIR and STTR 2013

  5. FY17 Small Business Innovation Research and Small Business Technology

    Office of Environmental Management (EM)

    Transfer (SBIR/STTR) Phase I Release 1 | Department of Energy Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 FY17 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 August 15, 2016 - 1:56pm Addthis Funding: Up to $29 million ($150,000-$225,000 per phase I project) Open Date: August 15, 2016 Close Date: October 17, 2016 Funding Organization: U.S. Department of Energy Funding Number:

  6. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license

  7. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  8. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  9. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  10. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D; Holcomb, David Eugene; Wood, Richard Thomas

    2012-10-01

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  11. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect (OSTI)

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  12. Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment- Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment - Volume 2 August 2013

  13. Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment- Volume 1

    Broader source: Energy.gov [DOE]

    Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment - Volume 1 August 2013

  14. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T

    2011-01-01

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  15. Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department and its Savannah River Site (SRS) announced today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina.

  16. Small Business Innovation Research Projects to Make a Big Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is receiving Small Business Innovation Research program funding for ... economy by bringing innovative, cost-effective products and solutions that lower carbon emissions and improve ...

  17. Energy Department Announces New Investment in U.S. Small Modular Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Commercialization | Department of Energy Investment in U.S. Small Modular Reactor Design and Commercialization Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization November 20, 2012 - 2:48pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project

  18. Selection Process and Notification for Small Business Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selection Process and Notification for Small Business Innovation Research and Small Business Technology Transfer Awards Selection Process and Notification for Small Business ...

  19. Ten New Mexico small businesses recognized at Innovation Celebration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses ... laboratories to the state of New Mexico and small business owners," said David Pesiri. ...

  20. Small Business Innovation Research/Small Business Technology Transfer

    Office of Science (SC) Website

    Meeting August, 9-10, 2016 | U.S. DOE Office of Science (SC) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  1. Small Business Innovation Research Workshop starts September 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Small Business | Department of Energy Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of

  2. Small Business Innovation Research (SBIR) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research (SBIR) Small Business Innovation Research (SBIR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development budgets set aside a small fraction of their funding to be competitively awarded to small businesses. The small businesses that win awards through these programs are encouraged to commercialize the technology and they retain the rights to

  3. Photovoltaic Research and Development - Small Innovative Projects in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar (PVRD-SIPS) | Department of Energy Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) Photovoltaic Research and Development – Small Innovative Projects in Solar (PVRD-SIPS) Small Innovative Projects in Solar (SIPS) is a part of the Photovoltaic Research and Development (PVRD) funding program, which is focused on improving the power conversion efficiency,

  4. How to Apply for a Small Business Innovation Research and Small Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Program Grant | Department of Energy Small Business Innovation Research » How to Apply for a Small Business Innovation Research and Small Business Technology Transfer Program Grant How to Apply for a Small Business Innovation Research and Small Business Technology Transfer Program Grant Once you have determined your eligibility for a Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research/Small Business Technology Transfer funding

  5. Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals

    Broader source: Energy.gov [DOE]

    Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals ORNL/LTR-2014/155 April 2014

  6. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  7. Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business

    Broader source: Energy.gov [DOE]

    With the support of $850,000 in Phase I and II Small Business Innovation Research (SBIR) grants from the Department in 2002 and 2003, Wind Tower Systems was able to complete the final engineering design for the 100 meter wind turbine tower that GE now plans to market.

  8. Energy Department Awards $116 Million to Small Businesses for Innovative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research | Department of Energy 116 Million to Small Businesses for Innovative Research Energy Department Awards $116 Million to Small Businesses for Innovative Research July 31, 2006 - 4:46pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded $116 million in grants to small businesses for innovative research that will help meet the department's diverse energy, environmental, science and national security missions. The awards were made under the department's Small

  9. Obama Administration Announces $450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors

    Broader source: Energy.gov [DOE]

    Today, as President Obama went to Ohio State University to discuss the all-out, all-of-the-above strategy for American energy, the White House announced new funding to advance the development of American-made small modular reactors (SMRs).

  10. Scientists Sentenced To Prison For Defrauding The Small Business Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Program | Department of Energy Scientists Sentenced To Prison For Defrauding The Small Business Innovation Research Program Scientists Sentenced To Prison For Defrauding The Small Business Innovation Research Program Scientists Sentenced To Prison For Defrauding The Small Business Innovation Research Program (24.3 KB) More Documents & Publications Former Russian Nuclear Energy Official Sentenced to Four Years in Prison for Money Laundering Conspiracy Semiannual Report to

  11. Deadline Approaching for Small Business Innovation Research Opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Deadline Approaching for Small Business Innovation Research Opportunity Deadline Approaching for Small Business Innovation Research Opportunity January 19, 2012 - 12:34pm Addthis Our Office of Energy Efficiency and Renewable Energy has posted the following announcement about the approaching deadline for the SBIR and STTR awards - Deadline Approaching for Small Business Innovation Research Opportunity January 19, 2012 The application deadline is nearing for phase I

  12. The Small Modular Liquid Metal Cooled Reactor: A New Approach to Proliferation Risk Management

    SciTech Connect (OSTI)

    Smith, C F; Crawford, D; Cappiello, M; Minato, A; Herczeg, J W

    2003-11-12

    There is an ongoing need to supply energy to small markets and remote locations with limited fossil fuel infrastructures. The Small, Modular, Liquid-Metal-Cooled Reactor, also referred to as SSTAR (Small, Secure, Transportable, Autonomous Reactor), can provide reliable and cost-effective electricity, heat, fresh water, and potentially hydrogen transportation fuels for these markets. An evaluation of a variety of reactor designs indicates that SSTAR, with its secure, long-life core, has many advantages for deployment into a variety of national and international markets. In this paper, we describe the SSTAR concept and its approach to safety, security, environmental and non-proliferation. The system would be design-certified using a new license-by-test approach, and demonstrated for commercial deployment anywhere in the world. The project addresses a technology development need (i.e., a small secure modular system for remote sites) that is not otherwise addressed in other currently planned research programs.

  13. How to Apply for a Small Business Innovation Research and Small...

    Broader source: Energy.gov (indexed) [DOE]

    and Renewable Energy (EERE) Small Business Innovation ResearchSmall Business Technology Transfer funding opportunity, two steps must be completed to successfully submit an...

  14. Small Business Innovation Research Grant Helps Propel Innovative...

    Energy Savers [EERE]

    The innovative design of the taller wind turbine towers offer greater power potential ... final engineering design for the 100 meter wind turbine tower that GE now plans to market. ...

  15. Requirements for Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. aSMRs are conceived for applications in remote locations and for diverse missions that include providing process or district heating, water desalination, and hydrogen production. Several challenges exist with respect to cost-effective operations and maintenance (O&M) of aSMRs, including the impacts of aggressive operating environments and modularity, and limiting these costs and staffing needs will be essential to ensuring the economic feasibility of aSMR deployment. In this regard, prognostic health management (PHM) systems have the potential to play a vital role in supporting the deployment of aSMR systems. This paper identifies requirements and technical gaps associated with implementation of PHM systems for passive aSMR components.

  16. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect (OSTI)

    Belles, R. J.; Omitaomu, O. A.

    2014-08-01

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  17. Ten New Mexico small businesses recognized at Innovation Celebration April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses recognized at Innovation Celebration April 3 Small businesses participating in projects using the technical expertise and assistance of Los Alamos and Sandia are being recognized. March 26, 2014 Molly Cernicek of SportXast Molly Cernicek of SportXast Contact Steve Sandoval Communications Office (505) 665-9206 Email "The technical expertise Los Alamos and Sandia principal investigators provide to

  18. Progress Towards Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Pardini, Allan F.; Suter, Jonathan D.; Prowant, Matthew S.

    2014-08-01

    Sustainable nuclear power to promote energy security and to reduce greenhouse gas emissions are two key national energy priorities. The development of deployable small modular reactors (SMRs) is expected to support these objectives by developing technologies that improve the reliability, sustain safety, and improve affordability of new reactors. Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Prognostic health management (PHM) systems can benefit both the safety and economics of deploying AdvSMRs and can play an essential role in managing the inspection and maintenance of passive components in AdvSMR systems. This paper describes progress on development of a prototypic PHM system for AdvSMR passive components, with thermal creep chosen as the target degradation mechanism.

  19. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Mendez, Carmen Margarita

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS

  20. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  1. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  2. Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy Small Business and Innovation Research/Small Business Technology Transfer programs, other federal agencies also provide funding through their own programs.

  3. Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower

    Broader source: Energy.gov [DOE]

    Small Business Innovation Research and Small Business Technology Transfer are U.S. Government programs in which federal agencies with large research and development budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology.

  4. The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs DOE/IG-0876 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 6, 2012 MEMORANDUM FOR SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs" INTRODUCTION AND

  5. Small Caliber Guided Bullet - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mimicking Nature's Catalysts | Department of Energy Small Businesses Selected for Research Awards in New Topic Focused on Mimicking Nature's Catalysts Small Businesses Selected for Research Awards in New Topic Focused on Mimicking Nature's Catalysts August 23, 2016 - 9:59am Addthis Atomically precise catalysts can have a rigid shape which mimics the best catalysts found in nature (enzymes) and create a selective “pocket” into which the chemical reactants fit. Atomically precise

  6. Small Business Innovation Research Award Success Story: Proton Energy Systems

    SciTech Connect (OSTI)

    2011-04-01

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  7. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  8. Funding Topics for Small Business Innovation Research and Small...

    Energy Savers [EERE]

    (FOAs), which invite established or new small businesses to apply for SBIRSTTR grants within specific topics that advance the missions of its individual technology offices. ...

  9. Small Business Innovation Research (SBIR) and Small Business...

    Office of Science (SC) Website

    SBIR Online Learning Center External link The DOE SBIR Online Learning web site Available to help Small Businesses understand SBIRSTTR eligibility requirements, program ...

  10. Feasibility study on nuclear core design for soluble boron free small modular reactor

    SciTech Connect (OSTI)

    Rabir, Mohamad Hairie Hah, Chang Joo; Ju, Cho Sung

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  11. Small Business Innovation Research and Small Business Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Independent Market Research Program Researching, identifying, and evaluating, high-quality, top-performing, and competitively-priced small business suppliers for NNSA programs is the function of this tool. Once a program requirement is identified, an independent research task is activated to locate top-of-the-line small businesses with capabilities in the specific performance areas. Generally, four steps are taken before the final research results are

  12. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  13. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  14. A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

    2012-09-01

    During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

  15. Demonstration of a Small Modular BioPower System Using Poultry Litter

    SciTech Connect (OSTI)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  16. Small Business Vouchers Pilot Connects Innovators with Labs

    Broader source: Energy.gov [DOE]

    This video features an introduction to the Office of Energy Efficiency and Renewable Energy’s (EERE’s) Small Business Vouchers Pilot, a program providing up to $20 million in vouchers, so clean energy innovators can request technical assistance from the national labs.

  17. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  18. Safeguards and Security by Design (SSBD) for Small Modular Reactors (SMRs) through a Common Global Approach

    SciTech Connect (OSTI)

    Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad; Pshakin, Gennady

    2015-02-23

    Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fully integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may

  19. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.C.

    2012-01-13

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  20. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  1. Schedule and Information for Small Business Innovation Research and Small Business Technology Transfer Program Applicants

    Broader source: Energy.gov [DOE]

    The funding and award schedule for upcoming Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants is provided below. The grants follow a funding ladder similar to that of clean energy technology investors.

  2. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  3. Small Business Innovation Research. Abstracts of Phase I awards, 1999

    SciTech Connect (OSTI)

    1999-12-01

    This booklet presents technical abstracts of Phase I awards made in Fiscal Year (FY) 1999 under the DOE Small Business Innovation Research (SBIR) program. SBIR research explores innovative concepts in important technological and scientific areas that can lead to valuable new technology and products. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications, as described by the awardee, are given after each abstract. Individuals and organizations, including venture capital and larger industrial firms, with an interest in the research described in any of the abstracts are encouraged to contact the appropriate small business directly.

  4. Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations Innovations Los Alamos protects the innovations of its scientists and engineers by using patent applications and software copyrights. v Innovations The expertise, capabilities, and facilities at Los Alamos enable us to provide a full suite of services that caters to countering explosive threats. Capabilities include synthesis, formulation, small-scale safety, testing, performance testing, pre- and post-blast forensics, trace detection and standoff, bulk detection at standoff, blast

  5. An Overview of the DOE's Small Business Innovation Research (SBIR) and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Technology Transfer (STTR) Programs | Department of Energy An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs overview of SBIR and STTR An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology TRansfer (STTR) Programs (1.75 MB) More Documents &

  6. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, R. J. [ORNL; Mays, G. T. [ORNL; Omitaomu, O. A. [ORNL; Poore, W. P. [ORNL

    2013-12-30

    Beginning in late 2008, Oak Ridge National Laboratory (ORNL) responded to ongoing internal and external studies addressing key questions related to our national electrical energy supply. This effort has led to the development and refinement of Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE), a tool to support power plant siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of geographic information systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The basic premise requires the development of exclusionary, avoidance, and suitability criteria for evaluating sites for a given siting application, such as siting small modular reactors (SMRs). For specific applications of the tool, it is necessary to develop site selection and evaluation criteria (SSEC) that encompass a number of key benchmarks that essentially form the site environmental characterization for that application. These SSEC might include population density, seismic activity, proximity to water sources, proximity to hazardous facilities, avoidance of protected lands and floodplains, susceptibility to landslide hazards, and others.

  7. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  8. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  9. Selection Process and Notification for Small Business Innovation Research and Small Business Technology Transfer Awards

    Broader source: Energy.gov [DOE]

    Once you apply for a U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research Program (SBIR) grant, the selection process begins, which includes an initial review, technical merit review, discussions, and notifications.

  10. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  11. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    SciTech Connect (OSTI)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  12. Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis

    SciTech Connect (OSTI)

    Lauren M. Boldon; Piyush Sabharwall

    2014-08-01

    Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity

  13. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    SciTech Connect (OSTI)

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each

  14. Westinghouse Small Modular Reactor passive safety system response to postulated events

    SciTech Connect (OSTI)

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. The integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to

  15. Small Business Innovation Research: Abstracts of Phase 1 awards, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-31

    The Small Business Innovation Research (SBIR) program enables DOE to obtain effective, innovative solutions to important problems through the private sector, which has a commercial incentive to pursue the resulting technology and bring it to the marketplace. The growing number of awardees, many of them started in business in response to SBIR solicitations, is becoming a significant resource for the solution of high risk, high technology problems for the Department. As detailed here, this publication describes the technical efforts for SBIR Phase 1 awards in 1994. It is intended for the educated layman, and may be of particular interest to potential investors who wish to get in on the ground floor of exciting opportunities. Contained in this booklet are abstracts of the Phase 1 awards made in FY 1994 under the DOE SBIR program. The 212 Phase 1 projects described here were selected in a highly competitive process from a total of 2,276 grant applications received in response to the 1994 DOE annual SBIR Solicitation. The selections for awards were made on scientific and technical merit, as judged against the specific criteria listed in the Solicitation. Conclusions were reached on the basis of detailed reports returned by reviewers drawn from DOE laboratories, universities, private industry, and government. (Any discrepancies noted in prior DOE releases naming the firms selected for awards are due either to the firm changing its name after the award selection or to the firm not proceeding to a signed grant.) It is expected that between one-third and one-half of the Phase 1 projects will be continued into Phase 2. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications are given after each abstract. Individuals and organizations with an interest in the research described are encouraged to contact the appropriate small business directly.

  16. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    SciTech Connect (OSTI)

    Greene, Sherrell R; Gehin, Jess C; Holcomb, David Eugene; Carbajo, Juan J; Ilas, Dan; Cisneros, Anselmo T; Varma, Venugopal Koikal; Corwin, William R; Wilson, Dane F; Yoder Jr, Graydon L; Qualls, A L; Peretz, Fred J; Flanagan, George F; Clayton, Dwight A; Bradley, Eric Craig; Bell, Gary L; Hunn, John D; Pappano, Peter J; Cetiner, Sacit M

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  17. Small Business Innovation Research Announces $1.15 Million to Expand Under-Utilized Geothermal Markets

    Broader source: Energy.gov [DOE]

    US Energy Department will issue a funding opportunity for $1.15 million to encourage small business innovation in under-utilized geothermal markets.

  18. Funding for Small Business Innovation Research in Energy Efficiency and Renewable Energy

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $9 million available this year to fund approximately 50 small businesses to advance innovative energy efficiency and renewable energy technologies. This...

  19. Energy Department Invests $17 Million in Small Businesses to Accelerate Clean Energy Innovation

    Broader source: Energy.gov [DOE]

    The Energy Department awarded $17 million through the Small Business Innovation Research (SBIR) program to develop clean energy technologies with a strong potential for commercialization and job creation.

  20. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    Fuel Cell Technologies Publication and Product Library (EERE)

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business I

  1. SIPS: A small modular process unit for the in-tank pretreatment of high-level wastes

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31

    As a result of the U.S. weapons production program, there are now hundreds of large tanks containing highly radioactive wastes. Safe disposal of these wastes requires their processing and separations into a small volume of highly radioactive waste (HLW) and a much larger volume of low-level waste (LLW). The HLW waste would then be vitrified and transported to a geologic repository. To date, the principal approach proposed for the separation envisions a large, centralized process facility. The small in-tank processing system (SIPS) is a proposed new, small modular concept for the in-tank processing and separation of wastes into HLW and LLW output streams suitable for vitrification. Instead of pumping the retrieved tank wastes as a solid/liquid slurry over long distances to a centralized process facility, SIPS would employ a small process module, typically {approximately}1 m in diameter and 4 m long, which would be inserted into the tank. Over a period of {approx} 6 months, the module would process the solid/liquid materials in the tank, producing separated liquid HLW and liquid LLW output streams that are pumped away in two small-diameter ({approx}3-cm outside diameter) pipes. The SIPS module would be serviced by five auxiliary small pipes - a water feed pipe, a water feed pipe containing micron-size ferromagnetic particles, a nitric acid ({approx}3 M) feed pipe, and input/out pipes to hydraulically load/unload ion exchange beads.

  2. Small Business Innovation Research (SBIR) Award Success Story...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelCell Energy Inc., in collaboration with Sustainable Innovations LLC, develops highly efficient solid state electrochemical hydrogen compressor FuelCell Energy Inc. manufactures ...

  3. Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Nationwide Begin Work on Cutting-Edge Innovative Research Projects Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research Projects February 21, 2012 - 12:18pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that with support from the Department of Energy, 142 small businesses around the nation are starting work this week on 180 innovative research projects ranging from designing better wind turbines to developing a

  4. Small Business Innovation Research (SBIR) Award Success Story: FuelCell Energy Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  5. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    SciTech Connect (OSTI)

    2011-08-31

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  6. Small, modular, low-cost coal-fired power plants for the international market

    SciTech Connect (OSTI)

    Zauderer, B.; Frain, B.; Borck, B.; Baldwin, A.L.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  7. DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  8. DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

  9. DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  10. GTO providing $1.5 million to help small businesses innovate...

    Broader source: Energy.gov (indexed) [DOE]

    providing 1.5 million to help small businesses innovate geothermal technology On Thursday, July 9, 2015, the White House announced that the U.S. Department of Energy will provide...

  11. Energy Department Invests $17 Million in Small Businesses to Accelerate Clean Energy Innovation

    Broader source: Energy.gov [DOE]

    Building on President Obama’s Climate Action Plan to continue U.S. leadership in clean energy innovation, the Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) today awarded $17 million in Small Business Innovation Research (SBIR) projects to help small businesses in 13 states develop prototype technologies that could improve manufacturing energy efficiency, reduce the cost of installing clean energy projects, and generate electricity from renewable energy sources.

  12. Deadline Approaching for Small Business Innovation Research Opportunit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... John Hale III, Director of DOE's Office of Small and Disadvantaged Business Utilization (r) at the Small Business Forum & Expo, Tampa, FL, on July 12, 2014 Aerodyne Research Inc. ...

  13. Small Business Innovation Research (SBIR) Award Success Story...

    Broader source: Energy.gov (indexed) [DOE]

    FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In ... Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly ...

  14. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy; Copinger, Donald A; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  15. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    SciTech Connect (OSTI)

    Welch, Gregory C; Perez, Louis A.; Hoven, Corey V.; Zhang, Yuan; Dang, Xuan-Dung; Sharenko, Alexander; Toney, Michael F.; Kramer, Edward J.; Nguyen, Thuc-Quyen; Bazan, Guillermo C.

    2011-01-01

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  16. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-12-01

    This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

  17. Small Wind Innovation Zone Program and Model Ordinance

    Broader source: Energy.gov [DOE]

    Under this program, small wind is considered to be any turbine with a rated capacity of 100 kilowatts (kW) or less. The model ordinance requirements include, but are not limited to:

  18. Small Business Innovation Research Award Success Story: Proton Energy Systems

    Fuel Cell Technologies Publication and Product Library (EERE)

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Departmen

  19. How the Recovery Act is Affecting Small Business Innovation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    businesses creating nearly two out of every three net new jobs, you probably have a friend, neighbor or family member who makes their livelihood by working for a small business. ...

  20. Small Business Innovation Research (SBIR) Award Success Story: Proton Energy Systems

    Broader source: Energy.gov [DOE]

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  1. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect (OSTI)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  2. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect (OSTI)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  3. Innovation

    Broader source: Energy.gov (indexed) [DOE]

    5. Build Data.Gov as a Platform Tools At Our Disposal Open Innovation Data Liquidity FBI SCARS & TATTOOS APP Innovation Ecosystem Building Capacity A Final Word Well, three ...

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  6. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop ... Solid State Vehicular Generators and HVAC Development An Innovative Pressure Sensor ...

  7. Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Creating the Next Generation of Government * Make Government Stronger - Transparency * Make Government More Efficient - Participation * Stimulate Economic Growth- Collaboration challenges Solutions * Government as a Platform * Provide services directly to the citizen wherever and whenever * Enabled by Technology Impact - Transparency Impact - Participation Impact - collaboration Tools At Our Disposal Open Government Open Government QuickTime(tm) and a decompressor are needed to see

  8. Innovation

    Broader source: Energy.gov [DOE]

    In 1945, Vannevar Bush began the innovation conversation by writing Science: The Endless Frontier. In that report Bush said that "New products and new processes do not appear full-grown [they]…are painstakingly developed by research in the purest realms of science." With those words The Endless Frontier launched a national conversation linking science to the nation's manufacturing industry and thence to our country's economic prosperity and national security.

  9. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current

  10. GTO providing $1.5 million to help small businesses innovate geothermal technology

    Broader source: Energy.gov [DOE]

    On Thursday, July 9, 2015, the White House announced that the U.S. Department of Energy will provide $20 million in vouchers to help small businesses work with national laboratories on clean energy investments. Of the five national labs participating in the pilot, Lawrence Berkeley and Sandia National Laboratories will be the lead laboratories for the Geothermal Technologies Office, with $1.5 million to support collaborative research, development, and technical assistance for small businesses in the geothermal industry. With the help of the Geothermal Technologies Office, the labs will assist small businesses in developing technologies to improve the geothermal industry in many different ways, from implementing enhanced geothermal system technologies to improving low-temperature and co-production applications. These vouchers are modeled on successful state programs that have allowed collaboration between businesses and national laboratories to bring innovative technologies to market in a range of industries, including solar energy, automotive, and vaccine production. New collaboration projects that these vouchers enable will help accelerate the expansion of geothermal energy capacity in the United States and keep us leading the world in geothermal technology. For more information about the vouchers pilot, read the Office of Energy Efficiency and Renewable Energy Blog post.

  11. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  12. Energy Department Announces New Funding Opportunity for Innovative...

    Energy Savers [EERE]

    is focused on furthering small modular reactor efficiency, operations and design. "As ... The Energy Department will solicit proposals for cost-shared small modular reactor ...

  13. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  14. Modular shield

    DOE Patents [OSTI]

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  15. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  16. Small Business Innovation Research Projects to Make a Big Impact on Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Energy Department announces funding for 14 projects that are bringing innovative, cost-effective products and solutions that lower carbon emissions and improve the environment to the marketplace.

  17. Modular robot

    DOE Patents [OSTI]

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  18. Modular robot

    DOE Patents [OSTI]

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  19. Portable modular detection system

    DOE Patents [OSTI]

    Brennan, James S. (Rodeo, CA); Singh, Anup (Danville, CA); Throckmorton, Daniel J. (Tracy, CA); Stamps, James F. (Livermore, CA)

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  20. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  1. Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines

    SciTech Connect (OSTI)

    Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

    2004-11-16

    In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

  2. Small Buildings and Small Portfolios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    programs for small building energy efficiency (NRELANL) 8 Cooperative Agreements In 2013, DOE funded six cooperative agreements that explore innovative models for engaging small ...

  3. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  4. Modular optical detector system

    DOE Patents [OSTI]

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  5. Symmetric modular torsatron

    DOE Patents [OSTI]

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  6. Energy Department Announces Small Modular Reactor Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site (SRS) announced today three public-private partnerships to develop deployment plans ... nuclear expertise to support potential private sector development, testing and licensing ...

  7. Economic Aspects of Small Modular Reactors

    Broader source: Energy.gov [DOE]

    The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation...

  8. FORTRAN Extensions for Modular Parallel Processing

    Energy Science and Technology Software Center (OSTI)

    1996-01-12

    FORTRAN M is a small set of extensions to FORTRAN that supports a modular approach to the construction of sequential and parallel programs. FORTRAN M programs use channels to plug together processes which may be written in FORTRAN M or FORTRAN 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used.

  9. Small Particles in Cirrus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Technologies » Small Modular Reactors (SMRs) Small Modular Reactors (SMRs) NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved Small Modular Reactors (SMRs) are nuclear power plants that are smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). These smaller, compact designs are factory-fabricated reactors that can be transported by truck or rail to a nuclear

  10. Robotic hand with modular extensions

    DOE Patents [OSTI]

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  11. Modular Wind | Open Energy Information

    Open Energy Info (EERE)

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  12. Modular radiochemistry synthesis system

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  13. Modular radiochemistry synthesis system

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  14. Modular error embedding

    DOE Patents [OSTI]

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  15. Modular Isotopic Thermoelectric Generator

    SciTech Connect (OSTI)

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  16. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  17. Small Business Innovation Research / Small Business Technology...

    Office of Science (SC) Website

    (FOA) found under the SBIRSTTR web page "Funding Opportunities". http:... For more general information on DOE SBIRSTTR visit the Office of Science SBIRSTTR web ...

  18. Multidimensional bioseparation with modular microfluidics (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Multidimensional bioseparation with modular microfluidics Citation Details In-Document Search Title: Multidimensional bioseparation with modular microfluidics A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is

  19. TEPP Training - Modular Emergency Response Radiological Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  20. Manufacturing serendipity: Chicago Innovation Exchange enhancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they had amassed some 300 employees. "We funded our startup with a small business innovation research grant and learned and adapted along the way until our small business...

  1. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  2. Multidimensional bioseparation with modular microfluidics

    DOE Patents [OSTI]

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  3. Evaluation of Proposed Hampton Roads Area Sites for Using Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Identification of Selected Areas to Support ...

  4. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Assistance Program to recognize outstanding companies at Innovation Celebration April 6, 2010 LOS ALAMOS, New Mexico, April 6, 2010-The New Mexico Small Business ...

  5. Chain Reaction Innovations: Innovation Applicant Information | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Innovation Applicant Information Information for Innovation Applicants in the Chain Reaction Innovations program PDF icon CRI_innovation_applicant_info

  6. Modular Electromechanical Batteries for Storage of Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Modular ... stabilize the rotating flywheel system, eliminating the need for complicated ...

  7. WEBINAR: MODULAR CHEMICAL PROCESS INTENSIFICATION INSTITUTE FOR...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy will conduct an informational webinar for the Modular Chemical Process Intensification Institute for Clean ...

  8. Multidimensional bioseparation with modular microfluidics Chirica...

    Office of Scientific and Technical Information (OSTI)

    Multidimensional bioseparation with modular microfluidics Chirica, Gabriela S.; Renzi, Ronald F. A multidimensional chemical separation and analysis system is described including a...

  9. All Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 Years of Innovations » All Innovations All Innovations Since 1943, some of the world's smartest and most passionate technical people have accomplished the difficult, the unexpected, and what sometimes seems impossible at Los Alamos. 70 YEARS OF INNOVATIONS 1940s 1943 WAR-ENDING INVENTIONS The Laboratory was created with one crucial objective: gather the world's brightest scientific minds to design and build a weapon that would help to end World War II. Fight power with power xx Essential for

  10. Small Business Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy participates in DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. SBIR and STTR are U.S. government programs in...

  11. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  12. Deploying Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Deploying Innovation With an integrated portfolio of R&D work, we leverage partnerships with top-tier industry, other federal agencies, and universities to build the best teams and ensure we are working on the most challenging problems relevant to the Laboratory's mission. Contact Richard P. Feynman Center for Innovation (505) 665-9090 Email The Feynman Center is a steward of the Laboratory's Intellectual Property (inventions and software). As competitors in a modern R&D

  13. Innovation Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovating for Nuclear Energy Innovating for Nuclear Energy March 9, 2015 - 11:02am Addthis Innovating for Nuclear Energy Nuclear energy is an important part of our nation's energy landscape. It provides extremely efficient, clean, reliable, and secure energy. In fact, over the last two decades, nuclear energy has provided nearly 20 percent of our electricity and is the largest contributor of non-greenhouse gas-emitting electricity in the United States. Today, the landscape is changing. Although

  14. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect (OSTI)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  15. Innovation Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sinha and team win Richard P. Feynman Innovation Prize September 23, 2014 Swept Frequency Acoustic Interferometry, the base technology behind the R&D 100 Award-winning Safire(tm) oil field sensor technology, was named by the Richard P. Feynman Center for Innovation as the most innovative technology coming out of the Laboratory this year. Dipen Sinha and a team of researchers received the award last week during the Feynman Center's annual OutSTANDING InnOVATION celebration, which honors the

  16. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  17. Modular Ocean Instrumentation System (MOIS) CAD Models

    SciTech Connect (OSTI)

    Nelson, Eric

    2015-12-03

    SolidWorks models of the Modular Ocean Instrumentation System (MOIS) data acquisition system components in it's subsea enclosure. The zip file contains all the components necessary for the assembly.

  18. Nuclear Innovation Workshops Report

    SciTech Connect (OSTI)

    Jackson, John Howard; Allen, Todd Randall; Hildebrandt, Philip Clay; Baker, Suzanne Hobbs

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  19. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office September 27, 2014 Dickson Ozokwelu, Technology Manager Presentation Outline 1. What is Process Intensification? 2. DOE's !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced

  20. FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Small Business Innovative Research (SBIR) Small Business Technology Transfer (STTR). ... NE will factor such considerations into decisions related to the timing and scale of award ...

  1. Human-System Interfaces (HSIs) in Small Modular Reactors (SMRs)

    SciTech Connect (OSTI)

    Jacques V Hugo

    2014-10-01

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclear industry.

  2. Small modular biopower initiative Phase 1 feasibility studies executive summaries

    SciTech Connect (OSTI)

    Bain, R.

    2000-03-06

    The Phase 1 objective is a feasibility study that includes a market assessment, resource assessment, preliminary system design, and assessment of relevant environmental and safety considerations, and evaluation of financial and cost issues, and a preliminary business plan and commercialization strategy. Each participating company will share at least 20% of the cost of the first phase.

  3. AUDIT REPORT The Department of Energy's Small Modular Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In November 2012, the Department selected the Babcock & Wilcox mPower, Inc. (mPower) team for the first award and committed 150 million. In December 2013, the Department selected ...

  4. Advanced Small Modular Reactor Economics Status Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Harrison, Thomas J. 1 + Show Author Affiliations Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Publication Date: 2014-10-01 OSTI Identifier: 1185730 ...

  5. Status Report on Modeling and Analysis of Small Modular Reactor...

    Office of Scientific and Technical Information (OSTI)

    The model is based on the G4-ECONS calculation tool developed for the Generation IV International Forum (GIF). Authors: Harrison, Thomas J 1 ; Hale, Richard Edward 1 ; Moses, ...

  6. Small Modular Nuclear Reactors: Parametric Modeling of Integrated...

    Office of Environmental Management (EM)

    Reactor Vessel Manufacturing Within a Factory Environment - Volume 1 This study focused on the learning process for the factory built components of the Integrated Reactor ...

  7. Energy Innovations DOE Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovations DOE Meeting Energy Innovations DOE Meeting Leo Breton, representing Energy Innovations of Washington, DC, a small company engaged in improving the energy efficiency of appliances, automobiles, and HVAC systems, requested a meeting with DOE regarding residential cooktop and range efficiency standards and related test procedures. Energy Innovations DOE Meeting_July 16 2014 (174.34 KB) More Documents & Publications ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC

  8. Innovations - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0031.JPG Innovations Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  9. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  10. Development and Optimization of Modular Hybrid Plasma Reactor...

    Office of Scientific and Technical Information (OSTI)

    Optimization of Modular Hybrid Plasma Reactor N A 36 MATERIALS SCIENCE INL developed a bench-scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system...