Sample records for innovative power systems

  1. Innovative Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to:Power Systems Jump

  2. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01T23:59:59.000Z

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  3. Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems

    Broader source: Energy.gov [DOE]

    Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy.

  4. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  5. Wind Power in Norway -Innovation strategy -

    E-Print Network [OSTI]

    MĂĽller, Ralf R.

    Wind Power in Norway - Innovation strategy - Liana MĂĽller #12;2 Introduction The existing energy and, at the same time, not to irreversibly damage the life on Earth. The use of waterpower, wind power, the growth of the wind power industry in Norway. In the sequel, a brief history of wind power energy

  6. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

  7. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31T23:59:59.000Z

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  8. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

  9. Basement Insulation Systems - Building America Top Innovation...

    Energy Savers [EERE]

    Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation...

  10. Managing Knowledge for Innovations in Wind Power Industry.

    E-Print Network [OSTI]

    Karatas, Bora

    2010-01-01T23:59:59.000Z

    ?? On one side Innovation, innovation systems and knowledge management are two topics have been discussed so much by scholars before. The advantages gained through… (more)

  11. F1-CN64/GP-2 DEVELOPMENT OF INNOVATIVE FUELLING SYSTEMS

    E-Print Network [OSTI]

    F1-CN64/GP-2 DEVELOPMENT OF INNOVATIVE FUELLING SYSTEMS FOR FUSION ENERGY SCIENCE M. J. Gouge,1 D Development of Innovative Fuelling Systems for Fusion Energy Science Abstract The development of innovative's) complex fuelling needs. For ITER [1] and fusion power plants, the fuelling system has to provide deuterium

  12. Alum Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.

  13. Auxiliary power unit offers powerful savings: Inventions and innovation success story fact sheet

    SciTech Connect (OSTI)

    NONE

    2000-06-19T23:59:59.000Z

    This is a fact sheet written for the Inventions and Innovation Program about a new auxiliary power unit for use in the long-haul trucking industry.

  14. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Energy Savers [EERE]

    Colorado Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support...

  15. A Systems Biology Approach to Infectious Disease Research: Innovating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm. A Systems Biology Approach to Infectious Disease Research: Innovating the...

  16. Next Generation Power Electronics National Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    devoted to wide bandgap power electronics. It will create, showcase, and deploy new power electronic capabilities, products, and processes that can impact commercial...

  17. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to jumpstart the next generation of smaller, faster, cheaper and more efficient power electronics for personal devices, electric vehicles, renewable power interconnection,...

  18. Next Generation Power Electronics National Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

  19. The Innovation Innovation

    E-Print Network [OSTI]

    Read, Dwight W; van der Leeuw, Sander E; Lane, David

    2009-01-01T23:59:59.000Z

    K. N. (2002). Social intelligence, innovation, and enhancedPerspectives in Innovation and Social Change, MethodosThe Innovation Innovation Any social system must combine (1)

  20. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  1. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  2. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  3. Understanding energy technology developments from an innovation system perspective

    E-Print Network [OSTI]

    Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark for discussing the framework conditions for transition to sustainable energy technologies and strengths

  4. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2010-01-01T23:59:59.000Z

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  5. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  6. IGUS Innovative Technische Systeme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative Technische Systeme

  7. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

  8. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  9. Applying Innovation System Concept in Agricultural Research for...

    Open Energy Info (EERE)

    The R&D system should think in terms of contributing to innovation. The Improving Productivity & Market Success of Ethiopian Farmers (IPMS) project is fully cognizant of this...

  10. Quality Management System Guidelines - Building America Top Innovation...

    Energy Savers [EERE]

    (PHI) created custom quality management system guidelines for the design and construction of high performance homes, earning a 2013 Top Innovation award for their efforts....

  11. Innovation

    Energy Savers [EERE]

    Innovation Creating the Next Generation of Government * Make Government Stronger - Transparency * Make Government More Efficient - Participation * Stimulate Economic Growth-...

  12. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  13. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01T23:59:59.000Z

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  14. Innovative production system goes in off Ivory Coast

    SciTech Connect (OSTI)

    Childers, M. [Oceaneering Production Systems, Houston, TX (United States); Barnes, J. [Paragon Engineering Services Inc., Houston, TX (United States)]|[UMC Petroleum Corp., Houston, TX (United States)

    1995-07-17T23:59:59.000Z

    The phased field development of the Lion and Panthere fields, offshore the Ivory Coast, includes a small floating production, storage, and offloading (FPSO) tanker with minimal processing capability as an early oil production system (EPS). For the long-term production scheme, the FPSO will be replaced by a converted jack up mobile offshore production system (MOPS) with full process equipment. The development also includes guyed-caisson well platforms, pipeline export for natural gas to fuel an onshore power plant, and a floating storage and offloading (FSO) tanker for oil export. Pipeline export for oil is a future possibility. This array of innovative strategies and techniques seldom has been brought together in a single project. The paper describes the development plan, early oil, jack up MOPS, and transport and installation.

  15. Innovative Systems for Solar Air Conditioning of Buildings

    E-Print Network [OSTI]

    Kessling, W.; Peltzer, M.

    2004-01-01T23:59:59.000Z

    for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

  16. Innovation system dynamics and sustainable development Challenges for policy

    E-Print Network [OSTI]

    Innovation system dynamics and sustainable development ­ Challenges for policy Paper in progress Innovation, Sustainability and Policy Conference, 23-25 May 2004 Kloster Seeon, Germany Dr. Maj Munch, while market development perspectives are neglected. The NIS perspective forwarded in this paper has

  17. in this issue 1 Systems Innovation at EMC

    E-Print Network [OSTI]

    Gabrieli, John

    in this issue 1 Systems Innovation at EMC 2 Welcome Letter 3 SDM Diagnostics Project 4 Product Conference 21 New SDM Codirectors 22 Recruiting SDM Grads 24 Calendar SDM helps EMC build bridge to innovation As a company founded in Massachusetts, EMC has long-standing partnerships with universities

  18. Power Systems Control Architecture

    SciTech Connect (OSTI)

    James Davidson

    2005-01-01T23:59:59.000Z

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  19. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16T23:59:59.000Z

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  20. Wind power generating system

    SciTech Connect (OSTI)

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12T23:59:59.000Z

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  1. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  2. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  3. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  4. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    SciTech Connect (OSTI)

    Qiu, Songgang

    2013-05-15T23:59:59.000Z

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  5. Innovation Systems as Patent Networks: The Netherlands, India and Nanotech

    E-Print Network [OSTI]

    Dolfsma, Wilfred

    2011-01-01T23:59:59.000Z

    Research in the domain of 'Innovation Studies' has been claimed to allow for the study of how technology will develop in the future. Some suggest that the National and Sectoral Innovation Systems literature has become bogged down, however, into case studies of how specific institutions affect innovation in a specific country. A useful notion for policy makers in particular, Balzat & Hanusch (2004) argued that there is a need for NIS studies to develop complementary and also quantitative methods in order to generate new insights that are comparable across national borders. We use data for patents granted by the World Intellectual Property Organization (WIPO) to map innovation systems. Groupings of patents into primary and secondary classes (co-classification) can be used as relational indicators. Knowledge from one class may be more easily used in another class when a co-classification relation exists. Using social network analysis, we map the co-classification of patents among classes and thus indicate wh...

  6. Innovative Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to: navigation,

  7. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  8. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  9. Tokamak power systems studies, FY 1985

    SciTech Connect (OSTI)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01T23:59:59.000Z

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  10. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01T23:59:59.000Z

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  11. Innovative heat removal structure for power devices -the drift region integrated microchannel cooler

    E-Print Network [OSTI]

    Boyer, Edmond

    Innovative heat removal structure for power devices - the drift region integrated microchannel is approved to be a compact and high-performance solution to deal with the thermal requirements of power devices and modules. This is due to the large heat exchange surface, the high heat transfer coefficient

  12. Aerosol Remote Sealing System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol Remote Sealing

  13. Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems Power

  14. Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.Double |Department of Energy Innovations

  15. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  16. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01T23:59:59.000Z

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  17. Business Process driven solutions for innovative enterprise information systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Business Process driven solutions for innovative enterprise information systems F. Taglino, M. In particular, it will be argued about business process driven approach to information systems development and overcome current limits. Business process driven approach to IS development is here characterized by: (i

  18. Innovative Faade Systems for Low-energy Commercial Buildings

    E-Print Network [OSTI]

    Innovative Façade Systems for Low-energy Commercial Buildings Eleanor Lee, Stephen Selkowitz abstract Glazing and façade systems have very large impacts on all aspects of commercial building for commercial buildings to significantly reduce energy and demand, helping to move us toward our goal of net

  19. Innovation

    Broader source: Energy.gov [DOE]

    In 1945, Vannevar Bush began the innovation conversation by writing Science: The Endless Frontier. In that report Bush said that "New products and new processes do not appear full-grown [they]…are painstakingly developed by research in the purest realms of science." With those words The Endless Frontier launched a national conversation linking science to the nation's manufacturing industry and thence to our country's economic prosperity and national security.

  20. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  1. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  2. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  3. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    1.18: Largest PV Power Plants……………………………………………………32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

  4. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  5. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  6. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  7. Patent systems for encouraging innovation: Lessons from economic analysis1

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Patent systems for encouraging innovation: Lessons from economic analysis1 David ENCAOUA (EUREQua version submitted October 2003) Abstract Economic theory views patents as policy instruments aimed. First, patents may not be the most effective means of protection for inventors to recover R

  8. REVIEW ARTICLE Transforum system innovation towards sustainable food.

    E-Print Network [OSTI]

    Boyer, Edmond

    REVIEW ARTICLE Transforum system innovation towards sustainable food. A review Arnout R. H. Fischer in the agri-food sector are needed to create a sustainable food supply. Sustainable food supply requires evolutionary rather than revolutionary changes to reshaping institutions. Measuring sustainability is possible

  9. Southwestern Power System Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Evaluate Our Site PleaseŹ

  10. Beacon Power - Challenges and Opportunities for an Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    by moment. This challenge is growing more important as we rely on more wind and solar power, which can fluctuate when the wind stops blowing or a cloud rolls over. Even a small...

  11. Main Injector power distribution system

    SciTech Connect (OSTI)

    Cezary Jach and Daniel Wolff

    2002-06-03T23:59:59.000Z

    The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

  12. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  13. The Drivetrain of Sustainability Powering innovation in Clean teCh

    E-Print Network [OSTI]

    California at Davis, University of

    The Drivetrain of Sustainability Powering innovation in Clean teCh iNSiDe: BUSiNeSS OF HeALTH CARe energy use, generation and storage, as well as other necessities of life, environmentally responsible of Management, I hope to participate in what many expect to be the next big chapter of the California Dream

  14. HOUSEHOLD SOLAR POWER SYSTEM.

    E-Print Network [OSTI]

    Jiang, He

    2014-01-01T23:59:59.000Z

    ?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power… (more)

  15. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

  16. Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode...

    Broader source: Energy.gov (indexed) [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy...

  17. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  18. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  19. Power transaction issues in deregulated power systems

    E-Print Network [OSTI]

    Roycourt, Henrik

    2000-01-01T23:59:59.000Z

    numbers Slack Bus IVI, 0 P;, Q; Gen. Bus Q 0 2, 3, 4, . . . , l+NPV Load Bus Pu Qi 2+NPV, 3+NPV, . . . , N Using the Kirchhoff's current law at a given node, the real and reactive power balance equations are written at each bus of the system: n P... ~ 822 821 827 9!, '7 Fig. 4. IEEE 30 bus system. 11 Figure 5 shows the bus dialog box for bus 13, where a 10MW increase in real power generation is entered. 1 IOIOOO 1QOtKMCO QOQINIO QOXCOO O'I OOXI -0 DDDOCO tg. . us ata. Step 1. Let us...

  20. NREL: Innovation Impact - Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy Systems Integration Menu

  1. Innovative gas energy systems for use with passive solar residences

    SciTech Connect (OSTI)

    Hartman, D.; Kosar, D.

    1983-06-01T23:59:59.000Z

    The GRI asked Booz, Allen, and Hamilton to analyze the integration of passive solar with gas-fired energy systems for heating and cooling homes. Direct gain, trombe wall, thermosiphon and thermal roof storage heating systems were studied. Solar load control, evaporative cooling, earth coupling, and night radiation cooling systems were investigated. The drawbacks of conventional gas backup systems are discussed. Innovative passive/gas combinations are recommended. These include multizone gas furnace, decentralized gas space heater, gas desiccant dehumidifier, and gas dehumidifier for basement drying. The multizone furnace saves $1500, and is recommended for Pilot Version development.

  2. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  3. Decentralized Power Systems (DPS) 2012 20. September 2012

    E-Print Network [OSTI]

    Paderborn, Universität

    Decentralized Power Systems (DPS) 2012 20. September 2012 Universität Paderborn L 2 aktuellen Rahmenbedingungen Das MESUS-Konzept - Eine innovative Lösung zur Elektrifizierung.-pol. Tobias Klaus ISC Konstanz M.Sc. Mariam Khattabi Fraunhofer IWES Dipl.-Ing. Adil Ezzahraoui Uni Kassel

  4. Powerful New Enzyme for Transforming Biomass - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Loan Program

  5. Wall System Innovations: Familiar Materials, Better Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartmentDepartment of Energy Wall System

  6. Innovative technology summary report: Transportable vitrification system

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  7. Laser spark distribution and ignition system - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced...

  8. Innovation, Work Organisation and Systems of Social Protection1 Edward Lorenz

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Innovation, Work Organisation and Systems of Social Protection1 Edward Lorenz University of Nice-CNRS and University of Aalborg 1. Introduction Much of the core research on the determinants of innovation and expertise of scientists and engineers with third-level education. In research on national innovation systems

  9. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09T23:59:59.000Z

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  10. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  11. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCycles |PerovskitesSystem

  12. Simultaneous distribution of AC and DC power - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethod forAThiolsSynthesisElectricity

  13. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01T23:59:59.000Z

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  14. HeatProbe: a Thermal-based Power Meter System for Tracking Per-user Power Consumption

    E-Print Network [OSTI]

    Chu, Hao-hua

    HeatProbe: a Thermal-based Power Meter System for Tracking Per-user Power Consumption Nan-Chen Chen Technology Innovation, Academic Sinica2 {b97006, b96118, b95701241}@csie.ntu.edu.tw, cwyou@citi.sinica.edu.tw, hchu@csie.ntu.edu.tw, mschen@citi.sinica.edu.tw Abstract. This paper proposes HeatProbe, a per

  15. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  16. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    17 1.2.4 Reverse Osmosis…………………………………………………19 1.345 Chapter 2: Reverse Osmosis System…………………………………………………….46 2.1 Reverse Osmosis System Set Up…………………………………………….46 2.2

  18. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities will seek to reduce capital expenditures associated with installing andor upgrading peaking generation capacity and transmission and distribution system expansion....

  19. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    PEC and PV system. The energy and area requirements for arequires the least energy and area. A MED desalination plantcompare the energy consumption and area of devices needed,

  20. An evaluation of some innovative fragmentation systems for oil shale

    SciTech Connect (OSTI)

    Hieta, M.; Hustrulid, W.A. (Western Research Inst., Laramie, WY (United States))

    1991-06-01T23:59:59.000Z

    This report describes a large-scale underground mining method, large-hole stoping, using some innovative fragmentation systems (buffer blasting, continuous loading/hauling, and mechanical miners for development). This study includes a literature review and an experimental study of one of the key design factors--buffer blasting. The purpose of the buffer-blasting experiments is to examine the swell that is necessary to achieve satisfactory fragmentation results. The study also includes a technical and economic evaluation of the new mining method compared with conventional room and pillar mining. The purpose of this study is to examine innovative methods that exist today and may provide a more efficient mining system than that currently used. Note that this is a conceptual study, and that the mining for the two mine designs were compared using a daily production rate of 75,000 tones per day. This amount was chosen because it is the maximum amount possible for a rubber-tired room and pillar operation with only a one-shaft complex.

  1. December 2005 Higher Education Systems and Industrial Innovation1

    E-Print Network [OSTI]

    Boyer, Edmond

    , Aix-en-Provence, France Article published in: Innovation; the European journal of social science, published in "Innovation / the European journal of social science research 19, 1 (2006) 79-93" DOI : 10 of knowledge and information between them and thereby spur on industrial innovation. In the social sciences

  2. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    and Judkoff, R. 2002. IEA HVAC BESTEST volume 1, Technicaland Judkoff, R. 2004. IEA HVAC BESTEST volume 2, TechnicalOF INNOVATIVE INTEGRATED HVAC SYSTEMS IN BUILDINGS Marija

  3. Integration of wind power in deregulated power systems.

    E-Print Network [OSTI]

    Scorah, Hugh

    2010-01-01T23:59:59.000Z

    ??This thesis investigates the impact of integrating wind power into deregulated power systems. It includes a discussion of the history of deregulation and the development… (more)

  4. Novette pulse-power-system description

    SciTech Connect (OSTI)

    Gritton, D.G.; Christie, D.J.; Holloway, R.W.; Merritt, B.T.; Oicles, J.A.; Whitham, K.; Wilcox, R.B.

    1983-01-01T23:59:59.000Z

    This paper is a summary of the pulse power systems for Novette; the flashlamp power system, the pulsers for the various optical shutters and the pulse power control system.

  5. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    SciTech Connect (OSTI)

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01T23:59:59.000Z

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  6. Mobile integrated temporary utility system. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

  7. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  8. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  9. Solar thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1980-01-01T23:59:59.000Z

    A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

  10. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    Act (1978) Energy security Act & Crude Oil Windfall Profitsthe Oil Endgame: Innovation for Profits, Jobs, and Security.their oil reserves will enhance the energy security of

  11. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    Act (1978) Energy security Act & Crude Oil Windfall Profitsthe Oil Endgame: Innovation for Profits, Jobs, and Security.their oil reserves will enhance the energy security of

  12. Innovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and institutional settings. Recycling Waste Heat--a Key to Improving the Efficiency of Energy Supply In an eraInnovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII August 29-September 3, 2004 Denver, Colorado #12;Innovative On-site Integrated Energy System Tested Jeanette B. Berry

  13. 2-D linear motion system. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately 600 m{sup 2}, the Wall Walker would cost less than the baseline. Using the Wall Walker 2-D LMS, ALARA exposure and worker safety is improved, and there is potential for increased productivity. This innovative technology performed better than the baseline by providing real-time monitoring of the tool or instrument position. Also, the Wall Walker 2-D LMS can traverse any two-dimensional path at constant speeds of up to 18.3 linear meters per minute (60 linear feet per minute). The survey production rate for the innovative technology was about 0.6 m{sup 2}/min (6 ft{sup 2}/min); the baseline production rate was approximately 0.3 m{sup 2}/min (3 ft{sup 2}/min), using the same surveying instrument and maximum scanning rate.

  14. Transformer modeling in power systems

    SciTech Connect (OSTI)

    Ma, J.; Dawalibi, F.P. [Safe Engineering Services and Technologies Ltd., Montreal, Quebec (Canada)

    1999-11-01T23:59:59.000Z

    A practical and accurate method of modeling various transformers in power systems using a general circuit model approach is described in this paper. The advantage of the new approach is that it can model transformers along with a complex circuit network, while avoiding the use of symmetrical components, unlike other approaches. The transformer modeling technique introduced in this paper is very useful to accurately determine fault current distribution in a power system and electromagnetic interference on pipelines and communication lines installed in a right-of-way consisting of transmission lines operating at different voltages.

  15. OE Power Systems Engineering Research & Development Program Partnershi...

    Broader source: Energy.gov (indexed) [DOE]

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  16. Territoire, bien-tre et inclusion sociale, Confrences cadres LE SYSTEME REGIONAL D'INNOVATION

    E-Print Network [OSTI]

    Boyer, Edmond

    Territoire, bien-être et inclusion sociale, Conférences cadres 26 LE SYSTEME REGIONAL D'INNOVATION la période fordiste, l'innovation y est analysée comme le résultat d'un produit social et)" #12;Territoire, bien-être et inclusion sociale, Conférences cadres 27 Le système régional d'innovation

  17. 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION

    E-Print Network [OSTI]

    Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

  18. 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every

  19. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13T23:59:59.000Z

    This document catalogs the characteristics of current and potential future DC products and power systems.

  20. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department are needed to determine the location of these on-chip power supplies and decoupling capacitors. In this paper, the optimal location of the power supplies and decoupling capacitors is determined for different size

  1. Advanced Power and Energy Program, 2011 1/10 Green Innovation Panel

    E-Print Network [OSTI]

    Loudon, Catherine

    power generation and storage · Photovoltaic/wind/fuel cells, battery storage (recycled vehicle batteries Distribution System 3. Distribution Circuit Constraint Management Using Energy Storage 4. Enhanced Volt?), thermal storage, communicating/dispatchable power, ... · Plug-in vehicle charging and fueling

  2. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  3. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

    2013-01-23T23:59:59.000Z

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  4. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect (OSTI)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A. [Nuclear Regulatory Commission, Washington, DC (United States). Associate Directorate for Advanced Reactors and License Renewal

    1994-02-01T23:59:59.000Z

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  5. Geek-Up[09.03.10] -- Innovative Silicon Wafers, Real-Time Power...

    Broader source: Energy.gov (indexed) [DOE]

    difference. We buy power to decrease the system load or sell to increase it. Or, the hydro operator can increase or decrease generation at the dams." Learn how BPA's real-time...

  6. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  7. Intelligent wind power prediction systems final report

    E-Print Network [OSTI]

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  8. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  9. Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates the central themes of this book-

    E-Print Network [OSTI]

    Kammen, Daniel M.

    109 7 Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates of ignoring the social, political, and environmental dimensions of innovation - than nuclear power. Once widely seen as an energy source of almost unlimited potential, nuclear power is today expanding in just

  10. Enabling Exponential Innovation via Open Source

    E-Print Network [OSTI]

    Scacchi, Walt

    -technical innovations #12;Power law distribution #12;OSSD Projects as innovation engines Social/technical innovations OSSD projects exhibit sustained exponential growth via social and technical innovations ExponentialEnabling Exponential Innovation via Open Source Software Development Walt Scacchi Institute

  11. DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

  12. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  13. Uninterruptible power supply (UPS) systems

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  14. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  15. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  16. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    ScienceCinema (OSTI)

    None Available

    2012-03-21T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  17. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    SciTech Connect (OSTI)

    None Available

    2012-02-28T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  18. Wind Power Systems 1.0 Overview

    E-Print Network [OSTI]

    Ding, Yu

    Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

  19. 2007 NET SYSTEM POWER REPORT STAFFREPORT

    E-Print Network [OSTI]

    -2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

  20. Options for Affordable Fission Surface Power Systems

    SciTech Connect (OSTI)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise [NASA Marshall Space Flight Center, VP31, MSFC, AL 35812 (United States)

    2006-07-01T23:59:59.000Z

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  1. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    DeVille, Lee

    to the computation of long-term power system state statistics; and to short-term probabilistic dynamic performance/reliability of renewable re- sources such as wind energy conversion systems (WECS) and photovoltaic energy conversion

  2. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    M. Maniyar

    2004-06-22T23:59:59.000Z

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  3. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect (OSTI)

    Ray, C.; Huang, Z.

    2007-01-01T23:59:59.000Z

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  4. Power Charging and Supply System for Electric Vehicles - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,Reactor Decommissioning Click here

  5. Hybrid power management system and method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter SituationHybridVehicles and Fuels

  6. System seismic analysis of an innovative primary system for a large pool type LMFBR plant

    SciTech Connect (OSTI)

    Pan, Y.C.; Wu, T.S.; Cha, B.K.; Burelbach, J.; Seidensticker, R.

    1984-01-01T23:59:59.000Z

    The system seismic analysis of an innovative primary system for a large pool type liquid metal fast breeder reactor (LMFBR) plant is presented. In this primary system, the reactor core is supported in a way which differs significantly from that used in previous designs. The analytical model developed for this study is a three-dimensional finite element model including one-half of the primary system cut along the plane of symmetry. The model includes the deck and deck mounted components,the reactor vessel, the core support structure, the core barrel, the radial neutron shield, the redan, and the conical support skirt. The sodium contained in the primary system is treated as a lumped mass appropriately distributed among various components. The significant seismic behavior as well as the advantages of this primary system design are discussed in detail.

  7. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    Accelerating the transformation of power systems Ancillary Services Peer Exchange with India- to-peer consultation. The 21st Century Power Partnership aims to accelerate the global transformation consultative support Accelerating the transformation of power systems NREL/FS-6A20-61811 · May 2014 15013

  8. Integrated Retail & Wholesale Power System Operation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Integrated Retail & Wholesale Power System Operation with Smart-Grid Functionality PIs: Dionysios Retail/Wholesale Power System Operation with Smart-Grid Functionality Project PIs: Dionysios Aliprantis (open-source release): AMES Wholesale Power Market Testbed (ISU) + GridLAB-D distribution platform (DOE

  9. Nova power systems: status and operating experience

    SciTech Connect (OSTI)

    Whitham, K.; Merritt, B.T.; Gritton, D.G.; Smart, A.J.; Holloway, R.W.; Oicles, J.A.

    1983-11-28T23:59:59.000Z

    This paper describes the pulse power systems that are used in these lasers; the status and the operating experiences. The pulsed power system for the Nova Laser is comprised of several distinct technology areas. The large capacitor banks for driving flashlamps that excite the laser glass is one area, the fast pulsers that drive pockels cell shutters is another area, and the contol system for the pulsed power is a third. This paper discusses the capacitor banks and control systems.

  10. Improved refractories for IGCC power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennet, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01T23:59:59.000Z

    Certain advantages make coal gasification a key element in the US Department of Energy's Vision 21 power system. However, issues of reliability and gasifier operation economics need to be resolved before gasification is widely adopted by the power generation industry.

  11. Power system with an integrated lubrication circuit

    DOE Patents [OSTI]

    Hoff, Brian D. (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL); Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Lane, William H. (Chillicothe, IL)

    2009-11-10T23:59:59.000Z

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  12. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  13. Topological solvability and index characterizations for a common DAE power system model

    E-Print Network [OSTI]

    Trenn, Stephan

    framework). The power *This work was supported by Innovation Center Applied System Mod- eling 1 Tjorben B. Gross is with the Fraunhofer Institute for Industrial Mathematics (ITWM), 67663 Kaiserslautern, Germany tjorben.gross@itwm.fraunhofer.de 2Stephan Trenn is with the Department of Mathematics, Kaiser- slautern

  14. Topological solvability and index characterizations for a common DAE power system model

    E-Print Network [OSTI]

    Trenn, Stephan

    framework). The power *This work was supported by Innovation Center Applied System Mod- eling 1 Tjorben B. Gross is with the Fraunhofer Institute for Industrial Mathematics (ITWM), 67663 Kaiserslautern, Germany tjorben.gross@itwm.fraunhofer.de 2Stephan Trenn is with the Department of Mathematics, University

  15. Methods and Systems for the Production of Hydrogen - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portal

  16. The effect of high penetration of wind power on primary frequency control of power systems.

    E-Print Network [OSTI]

    Motamed, Bardia

    2013-01-01T23:59:59.000Z

    ??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

  17. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    -connected variable renewable energy (primarily, wind and solar). All power systems have some inherent level to achieve. Both wind and solar generation output vary significantly over the course of hours to days with wind energy in the system. Solar energy will cause qualitatively similar impacts on the power system

  18. INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

    E-Print Network [OSTI]

    is to improve the operation and sizing, the electrical and economic output of photovoltaic power systems#12;INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME TASK 2 ­ Performance, Reliability and Analysis of Photovoltaic Systems THE AVAILABILITY OF IRRADIATION DATA Report IEA-PVPS T2

  19. Flexibility in 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O'Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  20. Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the February 12, 2015, Building America webinar, High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies.

  1. 0 INNOVATE> SPRING 2007 Innovating Healing,

    E-Print Network [OSTI]

    Lin, Zhiqun

    stem cells along engineered pathways; polymer-based systems for vaccine delivery with the potential, then, are the stories of three young chemical engineers--and three innovations that can give hope0 INNOVATE> SPRING 2007 Innovating Healing, #12;SPRING 2007>INNOVATE Engineering Hope N THE SUMMER

  2. A fast global optimization approach to VAR planning for the large scale electric power systems

    SciTech Connect (OSTI)

    Liu, C.W.; Jwo, W.S.; Liu, C.C. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Electrical Engineering; Hsiao, Y.T. [Tamkang Univ., Taipei (Taiwan, Province of China). Dept. of Electrical Engineering

    1997-02-01T23:59:59.000Z

    In this paper, an innovative fast global optimization technique, Hybrid Partial Gradient Descent/Simulated Annealing (HPGDSA), for optimal VAR planning is presented. The HPGDSA is introduced to search the global optimal solution considering both quality and speed at the same time. The basic idea of the HPGDSA is that partial gradient descent and simulated annealing alternate with each other such that it reduces the CPU time of the conventional Simulated Annealing (SA) method while retaining the main characteristics of SA, i.e., the ability to get the global optimal solution. The HPGDSA was applied to a practical power system, Taiwan Power System (Tai-Power System), with satisfactory results.

  3. Optimization Online - Stochastic Optimization for Power System ...

    E-Print Network [OSTI]

    Ludwig Kuznia

    2011-02-17T23:59:59.000Z

    Feb 17, 2011 ... Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas. Ludwig Kuznia(lkuznia ***at*** mail.usf.edu)

  4. Developing Secure Power Systems Professional Competence: Alignment...

    Broader source: Energy.gov (indexed) [DOE]

    workforce development resources that can aid in the accelerating need for Secure Power Systems Professionals, while at the same time identifying capabilities and competencies to...

  5. Neutral Beam Power System for TPX

    SciTech Connect (OSTI)

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01T23:59:59.000Z

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  6. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  7. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  8. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  10. Comparing rig power transmission systems

    SciTech Connect (OSTI)

    Gutsche, W.; Noevig, T.

    1989-04-01T23:59:59.000Z

    Installed power on drilling rigs has increased steadily since the inception of rotary drilling technology as a result of technical advances and the need to penetrate deeper horizons. Higher power levels for the pumps, rotary table and drawworks are also required for drilling deep wells within an economically reasonable period. Power initially available on a rig had been about 35 kW on average, whereas power values on modern rigs drilling ultra-deep wells are on the order of several thousand kW. The installed power values on modern drilling rigs, subdivided with respect to depth range, are shown. After safety, economic factors are of paramount importance to rig operators. Among these, which include low acquisition cost, long service life and ease of maintenance, a particularly decisive factor is high efficiency.

  11. Electronic power conditioning for dynamic power conversion in high-power space systems

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01T23:59:59.000Z

    require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

  12. Modeling for ship power system emulation

    E-Print Network [OSTI]

    Leghorn, Jeremy T. (Jeremy Thomas)

    2009-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system ...

  13. Consumers Power, Inc.- Solar Energy System Rebate

    Broader source: Energy.gov [DOE]

    Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

  14. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  15. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  16. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22T23:59:59.000Z

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  17. Visualizing Power System Operationsin an Open Market

    E-Print Network [OSTI]

    Gross, George

    Visualizing Power System Operationsin an Open Market ThomasJ. Overbye',George Gross',Mark J power producers, financial traders, brokers/marketers, and public policy makers) into the industry. The package differs from an operator training simulator (OTS), which is used in many energy management systems

  18. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect (OSTI)

    Anderson, Bruce

    2013-12-31T23:59:59.000Z

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  19. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  20. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect (OSTI)

    Nozari, F.; Patel, H.S.

    1988-04-01T23:59:59.000Z

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  1. Heatpipe space power and propulsion systems

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01T23:59:59.000Z

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.

  2. Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources

    Broader source: Energy.gov [DOE]

    The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security.

  3. Microfluid Innovations AssayMarkTM Programmable Assay System IMPACT STATEMENT

    E-Print Network [OSTI]

    Ginzel, Matthew

    Microfluid Innovations AssayMarkTM Programmable Assay System NEED IMPACT STATEMENT INITIATIVE-on-a-Chip (LoC) designs. Developing new microfluidic assays or scaling existing assays to microfluidic scale at microfluidic-scale offers significant benefits over traditional bench- scale assays, ranging from lower sample

  4. Boundary spanning, knowledge dynamics and emerging innovation systems early lessons from nanotechnology

    E-Print Network [OSTI]

    nanotechnology DIME Workshop "Industrial innovation dynamics and knowledge characteristics, exploring systems. Using nanotechnology as a case the paper focuses on analysing boundary spanning effects to capture possible changes in the knowledge base and search modes related to the rise of nanotechnology

  5. Doublet III neutral beam power system

    SciTech Connect (OSTI)

    Nerem, A.; Beal, J.W.; Colleraine, A.P.; LeVine, F.H.; Pipkins, J.F.; Remsen, D.B. Jr.; Tooker, J.F.; Varga, H.J.; Franck, J.V.

    1981-01-01T23:59:59.000Z

    The Doublet III neutral beam power system supplies pulsed power to the neutral beam injectors for plasma heating experiments on the Doublet III tokamak. The power supply system is connected to an ion source where the power is converted to an 80 kV, 80A, 0.5 sec beam of hydrogen ions at maximum power output. These energetic ions undergo partial neutralization via charge exchange in the beamline. The energetic neutral hydrogen atoms pass through the Doublet III toroidal and poloidal magnet fields and deposit their energy in the confined plasma. The unneutralized ions are deflected into a water-cooled dump. The entire system is interfaced through the neutral beam computer instrumentation and control system.

  6. Co-simulation of innovative integrated HVAC systems in buildings

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    Developing an Integrated Building Design Tool by Couplingdesign energy ecient building systems in this complex setting, integrated

  7. Multi-Megawatt Power System Trade Study

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  8. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    None

    2010-02-28T23:59:59.000Z

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  9. Case Study of an Innovative HVAC System with Integral Dehumidifier

    E-Print Network [OSTI]

    Shirey, D. B.; Raustad, R. A.

    prototype air conditioning/dehumidification system was initiated and focused on integrating a standalone room air dehumidifier and a conventional residential air handler into a single package. Potential benefits of the integrated system include lower... and construction of the prototype unit and the laboratory and field tests that were performed to evaluate the performance of the prototype system. Further details are available in the final task report (Raustad et al. 2007). PROTOTYPE CONSTRUCTION...

  10. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27T23:59:59.000Z

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  11. Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).

    E-Print Network [OSTI]

    Gasti, Maria

    2013-01-01T23:59:59.000Z

    ?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

  12. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

  13. Wind for Schools Project Power System Brief

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  14. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  15. Adaptive excitation control in power systems

    E-Print Network [OSTI]

    Chiu, Pei-Chen

    2006-08-16T23:59:59.000Z

    This thesis presents an adaptive excitation controller of power systems. The control law is derived by using model reference adaptive control (MRAC) or adaptive pole placement control (APPC) and an equilibrium tracking mechanism is implemented...

  16. The Brazilian Pension System from an innovative perspective

    E-Print Network [OSTI]

    Bottino, Felipe

    2012-01-01T23:59:59.000Z

    The demographic changes and the growth in expenses of the social security make the current pension system in Brazil unsustainable, creating opportunities for the complementary fund industry. This work discusses the current ...

  17. Architectural innovation, functional emergence diversification in engineering systems

    E-Print Network [OSTI]

    Osorio Urzúa, Carlos A. (Carlos Alberto), 1968-

    2007-01-01T23:59:59.000Z

    The evolution of the architecture of long-lived complex socio-technical systems have important consequences and can happen in unexpected ways. This dissertation explores this question through the study of the architectural ...

  18. A Systems Biology Approach to Infectious Disease Research: Innovating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paradigm. Citation: Aderem A, JN Adkins, C Ansong, J Galagan, S Kaiser, MJ Korth, GL Law, JE McDermott, S Proll, C Rosenberger, G Schoolnik, and MG Katze.2011."A Systems...

  19. Small Business Innovation Research Award Success Story: Proton Energy Systems

    Fuel Cell Technologies Publication and Product Library (EERE)

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Departmen

  20. Design of innovative dynamic systems for seismic response mitigation

    E-Print Network [OSTI]

    Seymour, Douglas (Douglas Benjamin)

    2012-01-01T23:59:59.000Z

    Rocking wall systems consist of shear walls, laterally connected to a building, that are moment-released in their strong plane. Their purpose is to mitigate seismic structural response by constraining a building primarily ...

  1. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >

  2. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1984-11-27T23:59:59.000Z

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  3. Direct current power transmission systems

    SciTech Connect (OSTI)

    Padiyar, K.R.

    1991-01-01T23:59:59.000Z

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  4. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  5. Subtask 3.12 - Small Power Systems

    SciTech Connect (OSTI)

    Sprynczynatyk, C.; Schmidt, L.; Kurz, M.D.; Mann, M.D.; Kjelden, M.

    1997-08-01T23:59:59.000Z

    The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy and Environmental Research Center (EERC) with the latest advancements in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s). FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year's activities began with the process of selecting one design for targeted development. A case study was performed to determine if the combination of water and waste treatment with power generation could improve the economics over a stand-alone power generation system.

  6. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

  7. Space Power System Modeling with EBAL

    SciTech Connect (OSTI)

    Zillmer, Andrew; Hanks, David; Wen-Hsiung 'Tony' Tu [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue MC LA 13, PO Box 7922, Canoga Park, CA 91309 (United States)

    2006-07-01T23:59:59.000Z

    Pratt and Whitney Rocket dyne's Engine Balance (EBAL) thermal/fluid system code has been expanded to model nuclear power closed Brayton cycle (CBC) power conversion systems. EBAL was originally developed to perform design analysis of hypersonic vehicle propellant and thermal management systems analysis. Later, it was adapted to rocket engine cycles. The new version of EBAL includes detailed, physics-based models of all key CBC system components. Some component examples are turbo-alternators, heat exchangers, heat pipe radiators, and liquid metal pumps. A liquid metal cooled reactor is included and a gas cooled reactor model is in work. Both thermodynamic and structural analyses are performed for each component. EBAL performs steady-state design analysis with optimization as well as off-design performance analysis. Design optimization is performed both at the component level by the component models and on the system level with a global optimizer. The user has the option to manually drive the optimization process or run parametric analysis to better understand system trade-off. Although recent EBAL developments have focused on a CBC conversion system, the code is easily extendible to other power conversion cycles. This new, more powerful version of EBAL allows for rapid design analysis and optimization of space power systems. A notional example of EBAL's capabilities is included. (authors)

  8. Solar Power Systems Web Monitoring

    E-Print Network [OSTI]

    Kumar, Bimal Aklesh

    2011-01-01T23:59:59.000Z

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  9. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    E-Print Network [OSTI]

    Khadkikar, Vinod

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

  10. KTH Innovative Centre for Embedded Systems 3rd Annual Conference

    E-Print Network [OSTI]

    Haviland, David

    by oil, coal and gas. Technology-wise, many solutions are already available, but hard to implement the huge potential of embedded systems to energy related stakeholders in a contextual and informative way in a developed country, reliable and relatively cheap provision of energy, including electricity, is the norm

  11. The Technology & Innovation Centre

    E-Print Network [OSTI]

    Mottram, Nigel

    The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

  12. Superconductivity for electric power systems: Program overview

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  13. Micro Hydro-Diesel Hybrid Power System

    E-Print Network [OSTI]

    Dhanalakshmi R; Palaniswami S

    This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

  14. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  15. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting aLianhe WindInformation Systems

  16. Scalable and Energy Efficient Computer Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof EnergySawteeth

  17. Scalable, Efficient Solid Waste Burner System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof EnergySawteethBiomass

  18. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

    2013-12-30T23:59:59.000Z

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  19. Center for Power Electronics Systems CENTER PROGRAM SNAPSHOT

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Research OVERVIEW: Engineered Systems Integrated Motor Drive Systems Power Distribution Systems Sustainable for Power Electron- ics Systems (CPES) are working to make electric power processing more efficient and more electricity to the next step and develop power processing systems of the highest value to society. A SYSTEMS

  20. Innovative Applications of O.R. Scheduling electric power production at a wind farm

    E-Print Network [OSTI]

    Kusiak, Andrew

    of Business, Nanjing University, 22 Hankou Road, Nanjing 210093, China a r t i c l e i n f o Article history the interest in clean energy technologies. Technological maturity, safety, and cost competitiveness have made on determining the power generation schedule of a wind farm integrated with other power plants, such as coal

  1. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

  2. Development of an Advanced Combined Heat and Power (CHP) System...

    Broader source: Energy.gov (indexed) [DOE]

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

  3. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

  4. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  5. Demonstration of a Variable Phase Turbine Power System for Low...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

  6. Electricity storage for short term power system service (Smart...

    Open Energy Info (EERE)

    Electricity storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service...

  7. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability...

  8. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Energy Savers [EERE]

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in...

  9. SciTech Connect: Nuclear power reactor instrumentation systems...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  10. Systems for Electrical Power from Coproduced and Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources...

  11. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24T23:59:59.000Z

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  12. Naturalistic Decision Making For Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2009-06-23T23:59:59.000Z

    Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operator conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.

  13. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  14. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01T23:59:59.000Z

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  15. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  16. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27T23:59:59.000Z

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  17. Centralized and Decentralized Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach@howard.edu, 202-806-5350 Power Systems Engineering Research Center The Power Systems Engineering Research Center

  18. Issues in microwave power systems engineering

    SciTech Connect (OSTI)

    Dickinson, R.M. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1996-12-31T23:59:59.000Z

    The key issues in microwave power system engineering are beam safety, frequency allocation, and affordability. These major issues are presented, discussed, and suggestions for resolving them are offered. The issue of beam safety can be captured in the phrase ``Fear of Frying.`` Can a properly engineered beamed power safety system allay the public perception of microwave radiation dangers? Openness, visibility, and education may be keys to resolving this issue satisfactorily. ``Not in my Spectrum`` is a phrase that is frequently encountered in connection with the issue of where can the microwave power beam frequency be located. International cooperation may provide a part of the solution to this issue. ``Wow, that much?`` is a phrase encountered when dealing with the issue of economic affordability of large beamed power systems. A phased engineering approach for multiple uses even during construction is presented to aid in garnering revenue during the system build phase. Also, dual mode dc-RF converters are encouraged for bi-directional power flow utility and economies of scale in production.

  19. High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*

    E-Print Network [OSTI]

    Boyer, Edmond

    High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble wind power using a kite-based system, and the proposed structures *Corresponding author Mariam.AHMED@g2

  20. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  1. Power System Equipment Module Test Project

    SciTech Connect (OSTI)

    Schilling, J.R.

    1980-12-01T23:59:59.000Z

    The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

  2. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, Michael G.; Poston, David I.; Emrich, William J. Jr. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-15T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998.

  3. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); Emrich, W.J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-01T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998. {copyright} {ital 1998 American Institute of Physics.}

  4. Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    locational marginal prices. A power system stabilizer (PSS) is then introduced in the test system, locational marginal prices, power system stabilizer, voltage stability. I. INTRODUCTION THE deregulation1 Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

  5. Strategic planning for power system restorations

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Van Hententyck, Pascal [BROWN UNIV.; Coffrin, Carleton [BROWN UNIV.

    2010-10-12T23:59:59.000Z

    This paper considers the power system restoration planning problem (PSRPP) for disaster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex stochastic optimization problems that combine resource allocation, warehouse location, and vehicle routing considerations. Furthermore, electrical power systems are complex systems whose behavior can only be determined by physics simulations. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This work is three fold: (1) it formalizes the specification of PSRPPs; (2) introduces a simple optimization-simulation hybridization necessary for solving PSRPPs; and (3) presents a complete restoration algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. This paper studied a novel problem in the field of humanitarian logistics, the Power System Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post disaster power system recovery. The paper proposed a multi-stage stochastic hybrid optimization algorithm that yields high quality solutions to real-world benchmarks provided by Los Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including MIP, constraint programming, and large neighborhood search, to exploit the structure of each individual optimization subproblem. The experimental results on hurricane disaster benchmarks indicate that the algorithm is practical from a computational standpoint and produce significant improvements over existing relief delivery procedures.

  6. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29T23:59:59.000Z

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  7. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19T23:59:59.000Z

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  8. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  9. Incorporating HVDC's into monitoring and power system analysis

    E-Print Network [OSTI]

    Krishnaswamy, Vikram

    2002-01-01T23:59:59.000Z

    This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power...

  10. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28T23:59:59.000Z

    Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  11. Stimulating Energy Technology Innovation

    E-Print Network [OSTI]

    Moniz, Ernest J.

    The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

  12. Overview of M-C Power`s MCFC power generation system

    SciTech Connect (OSTI)

    Benjamin, T.G.; Woods, R.R.

    1993-11-01T23:59:59.000Z

    The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

  13. Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

  14. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  15. Crowd-Powered Systems Michael Scott Bernstein

    E-Print Network [OSTI]

    Pratt, Vaughan

    Crowd-Powered Systems by Michael Scott Bernstein S.M., Massachusetts Institute of Technology, 2008 Scott Bernstein Submitted to the Department of Electrical Engineering and Computer Science on May 23 and Rob Miller, always willing to listen to crazy ideas; · Terry Winograd, Scott Klemmer, Bj¨orn Hartmann

  16. TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    , generator capability curves, maximum loadability, voltage stability, electrical energy markets, reactive- active power in electric power systems. Although there are other important reactive power sourcesTO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on Maximum

  17. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  18. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  19. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Powerful trends in technology, policy environments, financing, and business models are driving change in power sectors globally. In light of these trends, the question is no longer whether power systems will be transformed, but rather how these transformations will occur. Power Systems of the Future, a thought leadership report from the 21st Century Power Partnership, explores these pathways explores actions that policymakers and regulators can take to encourage desired power system outcomes.

  20. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01T23:59:59.000Z

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  1. Power Optimization and Management in Embedded Systems1 Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Power Optimization and Management in Embedded Systems1 Massoud Pedram University of Southern under contract number DAAB07-00-C-L516. Abstract Power-efficient design requires reducing power on the system performance and quality of service (QoS). Power-aware high-level language compilers, dynamic power

  2. Saft Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaft Power Systems Jump to: navigation,

  3. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  4. Probing Signal Design for Power System Identification

    SciTech Connect (OSTI)

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31T23:59:59.000Z

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  5. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  6. Naturalistic Decision Making for Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2010-02-01T23:59:59.000Z

    Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This study applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.

  7. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  8. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  9. the 4th Power Electronics, Drive Systems & Technologies Conference, PEDSTC 2013 Simultaneous Sensing cum Actuating DC Motor

    E-Print Network [OSTI]

    Boyer, Edmond

    in this field have led to innovations in medical equipment, wind generation, aircraft systems, and numerous

  10. Balancing of Wind Power - Optimization of power systems which include wind power systems.

    E-Print Network [OSTI]

    Ülker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

  11. A new power combining and outphasing modulation system for high-efficiency power amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  12. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  13. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  14. Power system identification toolbox: Phase two progress

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1994-08-01T23:59:59.000Z

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  15. Computing GIC in large power systems

    SciTech Connect (OSTI)

    Prabhakara, F.S. (Power Technologies, Inc., Schenectady, NY (United States)); Ponder, J.Z.; Towle, J.N.

    1992-01-01T23:59:59.000Z

    On March 13, 1989, a severe geomagnetic disturbance affected power and communications systems in the North American continent. Since the geomagnetic disturbance, several other disturbances have occurred. The Pennsylvania, New Jersey, and Maryland (PJM) Interconnection system, its member companies, and some of the neighboring utilities experienced the geomagnetic induced current (GIC) effects on March 13, 1989, as well as during the subsequent geomagnetic disturbances. As a result, considerable effort is being focused on measurement, analysis, and mitigation of GIC in the PJM system. Some of the analytical and computational work completed so far is summarized in this article.

  16. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect (OSTI)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01T23:59:59.000Z

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  17. Department of Energy to Invest $60 Million to Develop Innovative...

    Office of Environmental Management (EM)

    60 Million to Develop Innovative Concentrating Solar Power Technologies Department of Energy to Invest 60 Million to Develop Innovative Concentrating Solar Power Technologies...

  18. Design of a new VHF RF power amplifier system for LANSCE

    SciTech Connect (OSTI)

    Lyles, John T M [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A major upgrade is replacing much of the 40 year-old proton drift tube linac RF system with new components at the Los Alamos Neutron Science Center (LANSCE). When installed, the new system will reduce the total number of electron power tubes from twenty-four to eight in the RF powerplant. A new 200 MHz high power cavity amplifier has being developed at LANSCE. This 3.2 MW final power amplifier (FPA) uses a Thales TH628 Diacrode{reg_sign}, a state-of-the-art tetrode that eliminates the large anode modulator of the triode-based FPA that has been in use for four decades. Drive power for the FPA is provided by a new tetrode intermediate power amplifier (and a solid-state driver stage). The new system has sufficient duty-factor capability to allow LANSCE to return to 1 MW beam operation. Prototype RF power amplifiers have been designed, fabricated, and assembled, and are being tested. High voltage DC power became available through innovative re-engineering of an installed system. Details of the electrical and mechanical design of the FPA and ancillary systems are discussed.

  19. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  20. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Water Power...

  1. Future Power Systems 20: The Smart Enterprise, its Objective...

    Broader source: Energy.gov (indexed) [DOE]

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. More Documents & Publications Future Power...

  2. A Solar Power System for High Altitude Airships.

    E-Print Network [OSTI]

    Mei, Qiang

    2011-01-01T23:59:59.000Z

    ??This research is intended to produce a power system suitable for an aerostat operating at 67,500 ft and powered only by solar energy. A battery… (more)

  3. Power Systems Engineering Research Center Dennis Ray Ward Jewell

    E-Print Network [OSTI]

    Power Systems Engineering Research Center Dennis Ray Ward Jewell Executive Director, Power Systems-Learjet Fellow Madison, WI 53706-1691 Director, Power Quality Laboratory djray@engr.wisc.edu Wichita State an overview of the Power Systems Engineering Research Center (PSERC), a National Science Foundation Industry

  4. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper The New Electric Power Business-tuned, economically efficient, and technically-reliable electric power system. The creation of new information system is outmoded and unprepared for the challenges of the new electric power business. A result

  5. Direct conversion nuclear reactor space power systems

    SciTech Connect (OSTI)

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01T23:59:59.000Z

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  6. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  7. Sun powers Libya cathodic-protection system

    SciTech Connect (OSTI)

    Currer, G.W.

    1982-03-22T23:59:59.000Z

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  8. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    Liberzon, Daniel

    Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

  9. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01T23:59:59.000Z

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  10. Excise Tax Exemption for Solar- or Wind-Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  11. Operating the Irish Power System with Increased Levels of Wind Power

    E-Print Network [OSTI]

    Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member-- This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    @et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

  13. E-Print Network 3.0 - autonomous power systems Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Search Powered by Explorit Topic List Advanced Search Sample search results for: autonomous power systems...

  14. E-Print Network 3.0 - autonomous power system Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system Search Powered by Explorit Topic List Advanced Search Sample search results for: autonomous power system...

  15. System Study: Emergency Power System 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. A statistically significant increasing trend was identified for unreliability (8 hour model) as a function of fiscal year. No statistically significant decreasing trend was identified in the EPS results.

  16. Energy management system functions in deregulated power systems

    E-Print Network [OSTI]

    Magnago, Fernando Hugo

    1997-01-01T23:59:59.000Z

    covariance matrix 8: E(uwr) = 8 = 0 0 . . cr This means that the measurement errors are independent with variances o;. As mentioned before, measurements are composed of power injections, power flows, and voltages. Vector h(z, ) represents the non linear..., nonetheless LAV reject INJ 4 if this injection measurement contains a bad data with 5 incident flows measurements. For INJ 10 in the 30-bus system, the cut oR' value is 16. 01 and again 24 Table II. IEEE 57-bus system: Variation of PS for INJ 13...

  17. Ris-R-1256(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    Risø-R-1256(EN) Isolated Systems with Wind Power Main Report Per Lundsager, Henrik Bindner, Niels 2001 #12;Abstract It is generally expected that wind power could contribute significantly for such applications of wind power has not yet materialised in any substantial scale. Wind power in isolated power

  18. The Power Systems Development Facility -- Current status

    SciTech Connect (OSTI)

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01T23:59:59.000Z

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  19. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01T23:59:59.000Z

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  20. ECE 461/2: Power Systems I Calculus and algebra

    E-Print Network [OSTI]

    Schumacher, Russ

    in a complex industrial load -Lab Experience with Power Electronic Motor Drives- Understands electric- or better Fields Power System Analysis Three-phase circuits Concepts: - Single and three phase electric with associated power Electronics drives Applications: - Employing PSSE to calculate power system flow, stability

  1. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  2. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01T23:59:59.000Z

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  3. Load frequency control of interconnected power systems with system constraints

    E-Print Network [OSTI]

    Choudhury, Md Ershadul H

    1993-01-01T23:59:59.000Z

    Responses D. Generating Unit Characteristics E. The State Variable Representation of the Dynamic F. LFC System Data . 1. Power System Data 2. Controller Gains 3. The Reheat-turbine Prime-Mover Data Model . 6 7 8 10 11 12 15 15 18 23 23 25... 56 25 LFC system response with VSS control. Area 1 fails to respond for a load change of APnr ? 0, 01 p. u. 57 26 LFC system response with conventional controL Area 1 fails to respond for the same load disturbance as in Fig. 26. . . 58 27...

  4. Adaptive Power Control for Single and Multiuser Opportunistic Systems

    E-Print Network [OSTI]

    Nam, Sung Sik

    2010-07-14T23:59:59.000Z

    In this dissertation, adaptive power control for single and multiuser opportunistic systems is investigated. First, a new adaptive power-controlled diversity combining scheme for single user systems is proposed, upon which is extended...

  5. Analyses of power system vulnerability and total transfer capability

    E-Print Network [OSTI]

    Yu, Xingbin

    2006-04-12T23:59:59.000Z

    companies and the ISOs. An uninterrupted and high quality power is required for the sustainable development of a technological society. Power system blackouts generally result from cascading outages. Protection system hidden failures remain dormant when...

  6. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  7. Hydrogen storage of energy for small power supply systems

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2005-01-01T23:59:59.000Z

    Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

  8. Performance tuned radioisotope thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E.; Morgan, M.D.; Saban, S.B. [EDTEK, Inc., 7082 South 220th Street, Kent, Washington 98032-1910 (United States)

    1998-01-01T23:59:59.000Z

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1{percent} efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The baseline design, centered around components and measured parametric data developed by EDTEK, Inc., promised an overall thermal-to-electric system output of 23 W at a conversion efficiency of 19{percent}, 1.92 kg system weight, and a specific power of 13.3 W/kg. The improved design reported herein promises up to 37.6 W at 30.1{percent} efficiency, 1.5 kg system weight, up to 25 W/kg specific power, a six-fold reduction in thermal radiator size over the baseline design, as well as a lower isotope temperature for greater safety. The six-fold reduction in thermal radiator size removes one of the greatest obstacles to applying RTPV in space missions. {copyright} {ital 1998 American Institute of Physics.}

  9. GT-MHR power conversion system: Design status and technical issues

    SciTech Connect (OSTI)

    Etzel, K.; Baccaglini, G.; Schwartz, A. [General Atomics, San Diego, CA (United States); Hillman, S.; Mathis, D. [AlliedSignal Aerospace, Tempe, AZ (United States)

    1994-12-01T23:59:59.000Z

    The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world`s first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout.

  10. Power Systems Development Facility. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  11. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect (OSTI)

    Jeremy Westwood

    2010-04-01T23:59:59.000Z

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  12. 1/30/2014 Pennsylvania Frack Innovative Wind Turbine Smaller Than a PennyCould Power Your Smartphone http://pennsylvaniafrack.com/2014/01/13/innovative-wind-turbine-smaller-than-a-penny-could-power-your-smartphone/ 1/2

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    1/30/2014 Pennsylvania Frack» Innovative Wind Turbine Smaller Than a PennyCould Power Your Before the First Snow Kindle Version Available Contributors Berks Gas Truth EcoWatch No Fracking Way Page Recent Posts New Study Shows Proximity to Fracking Sites Increases Risk of Birth Defects EPA

  13. Transient modeling of thermionic space nuclear power systems

    E-Print Network [OSTI]

    Berge, Francoise M

    1991-01-01T23:59:59.000Z

    elements convert the thermal power generated by the core into electrical power to be supplied to the load. Some recent designs ol' space nuclear reactors investi- gate single loop systems operating with direct in-core thermionic conversion. CENTAR... CHAPTER I INTRODUCTION . Objectives and Methodology . . Thesis Organization Literature Review II CENTAR SIMULATION CODE FOR SPACE NUCLEAR POWER SYSTEMS III TOPAZ II SPACE NUCLEAR POWER SYSTEM. . . . . System Layout. Nuclear Core...

  14. VRB Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergyVRB Power Systems

  15. Sandia National Laboratories: Improved Power System Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle TechnologiesImproved Power System Operations

  16. Coal pulverizing systems for power generation

    SciTech Connect (OSTI)

    Sligar, J.

    1993-12-31T23:59:59.000Z

    The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

  17. Ris-R-1257(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    Risø-R-1257(EN) Isolated Systems with Wind Power An Implementation Guideline Niels-Erik Clausen energy in isolated communities. So far most studies of isolated systems with wind power have been case studies of isolated systems with wind power have mostly been case- oriented. Thus it has been difficult

  18. GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

  19. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  20. Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming

    E-Print Network [OSTI]

    Kwatny, Harry G.

    Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming Harry G. Kwatny' power systems using a logical specification to define the transition dynamics of the discrete subsystem following component failure(s) is a central goal of power system management including electric shipboard

  1. Center for Power Electronics Systems 2014 ANNUAL REPORT

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Systems at Virginia Tech is a research center dedicated to improving electrical power pro- cessing- orative research and education for creating advanced electric power processing systems of the highestCenter for Power Electronics Systems 2014 ANNUAL REPORT VIRGINIA TECH · BLACKSBURG, VIRGINIA #12

  2. The Application of Robust Optimization in Power Systems

    E-Print Network [OSTI]

    Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The.Hedman@asu.edu Power Systems Engineering Research Center The Power Systems Engineering Research Center (PSERC) is a multi-university Center con- ducting research on challenges facing the electric power industry

  3. Flexibility in 21st Century Power Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). Sources of flexibility exist--and can be enhanced--across all of the physical and institutional elements of the power system, including system operations and markets, demand side resources and storage; generation; and transmission networks. Accessing flexibility requires significant planning to optimize investments and ensure that both short- and long-time power system requirements are met.

  4. Distributed Robust Power System State Estimation

    E-Print Network [OSTI]

    Kekatos, Vassilis

    2012-01-01T23:59:59.000Z

    Deregulation of energy markets, penetration of renewables, advanced metering capabilities, and the urge for situational awareness, all call for system-wide power system state estimation (PSSE). Implementing a centralized estimator though is practically infeasible due to the complexity scale of an interconnection, the communication bottleneck in real-time monitoring, regional disclosure policies, and reliability issues. In this context, distributed PSSE methods are treated here under a unified and systematic framework. A novel algorithm is developed based on the alternating direction method of multipliers. It leverages existing PSSE solvers, respects privacy policies, exhibits low communication load, and its convergence to the centralized estimates is guaranteed even in the absence of local observability. Beyond the conventional least-squares based PSSE, the decentralized framework accommodates a robust state estimator. By exploiting interesting links to the compressive sampling advances, the latter jointly es...

  5. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    at its maximum power output for the given solar conditions.Solar Electric Incentive Programs. [38] Module power outputs,power output (a) and voltages (b) of PV modules satisfying the Guidelines for California’s Solar

  6. Direct current uninterruptible power supply method and system

    DOE Patents [OSTI]

    Sinha, Gautam

    2003-12-02T23:59:59.000Z

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  7. Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power

    E-Print Network [OSTI]

    Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

  8. LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS AND SIMULATION

    E-Print Network [OSTI]

    Boyer, Edmond

    LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS by simulation. 1. INTRODUCTION The variety and the wide spread use of power electronic devices in the power networks is due to their diverse and multiple functions: compensation, protection and interface

  9. Essential Power Systems Workshop - OEM Perspective

    SciTech Connect (OSTI)

    Bill Gouse

    2001-12-12T23:59:59.000Z

    In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronically monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.

  10. PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

  11. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper What is Reactive Power? Peter W-Champaign September 16, 2003 Engineering talk Reactive power is a quantity that is normally only defined time). In that sense, these are pulsating quantities. Because of this, the power being transmitted down

  12. SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, FEBRUARY 2002 1 Human Factors Aspects of Power System

    E-Print Network [OSTI]

    either as numerical fields on one-line diagrams, or by tabular list displays. Additionally, in a utility with human factors aspects of utilizing color contours to visualize electric power system bus voltage the needs of a vertically integrated utility, with restructuring they are increasingly inadequate

  13. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  14. Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities in a case-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities are positively related to new business development, whereas rule-reuse design-renewal design capabilities in a case- control study of historical new business developments. Authors: Pascal Le

  15. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

    SciTech Connect (OSTI)

    Ni, Y.X. [Tsinghua Univ., Beijing (China)] [Tsinghua Univ., Beijing (China); Vittal, V.; Kliemann, W.; Fouad, A.A. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States)

    1996-11-01T23:59:59.000Z

    In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

  16. Control system and method for a universal power conditioning system

    SciTech Connect (OSTI)

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02T23:59:59.000Z

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  17. Prefire identification for pulse power systems

    DOE Patents [OSTI]

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  18. Prefire identification for pulse-power systems

    DOE Patents [OSTI]

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  19. System-Wide Emissions Implications of Increased Wind Power Penetration

    E-Print Network [OSTI]

    Kemner, Ken

    and ramifications of wind power providing 20% of U.S. electricity by 2030.1 Wind energy is advantageous becauseSystem-Wide Emissions Implications of Increased Wind Power Penetration Lauren Valentino,, Viviana of incorporating wind energy into the electric power system. We present a detailed emissions analysis based

  20. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  1. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

  2. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper Power System Operations of Illinois at Urbana-Champaign September 10, 2003 Before the August 14th 2003 blackout most people gave little thought to the source of the power that comes out of the electric outlet. And why should they

  3. Phasor Measurement Unit Data in Power System State Estimation

    E-Print Network [OSTI]

    by supervisory control and data acquisition (SCADA) devices. The incorporation of PMU measurementsPhasor Measurement Unit Data in Power System State Estimation Intermediate Project Report Power Center since 1996 PSERC #12;Power Systems Engineering Research Center Phasor Measurement Unit Data

  4. Options for Bulgaria power system extension planning

    SciTech Connect (OSTI)

    Vassilev, C.; Christov, C.

    1998-07-01T23:59:59.000Z

    Under the existing transition to market economy in Bulgaria, the planning of development of electricity generation is among the priorities of the national policy of restructuring and renovation of electricity system in the country. Optimal plans for development of the generation capacity are worked out by means of optimization procedure part of ENPEP package (ELECTRIC module) based on the dynamic programming technique. The optimal plans study three main strategies for development of energy capacities, which have to do with the priority of some type of natural resources--Coal, Natural Gas and Nuclear Energy. The Hydro Power Plant construction and loading schedule for each scenario is different and it harmonized with the maneuverability of other capacities. Coal scenario emphasizes the opportunities for the maximizing of local coal mining, substitution of black coal (energy and coke) import by mining of local coal fields and implementation of efficient and environmentally sound technologies when constructing new thermal power plants. Gas scenario envisages natural gas consumption within the limit of existing capacities of the national and transit pipelines. In this connection, the share of the new generating capacities using combined cycle increases their share. Nuclear scenario assumes increased share of the nuclear units at the expense of local coal mining and natural gas. This is due to the rehabilitation of 1,000 MW units in NPP Kozloduy, completion of a 1,000 MW unit in new NPP and construction of 1--2 new units 600 MW after 2010. The data obtained outlines the perspectives for development of energy generation capacities in Bulgaria for the period 2000--2020, tendencies in the generation structure and the share of each different type of generation units in the structure of electricity generation system. Output information serves as a sound base for conclusions on the advantages and disadvantages of the three strategies.

  5. Advanced Recyclable Media System{reg_sign}. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory East`s (ANL) Chicago Pile-5 (CP-5) Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved deactivation and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. This report describes a demonstration of the Advanced Recyclable Media System{reg_sign} technology which was employed by Surface Technology Systems, Inc. to remove coatings from a concrete floor. This demonstration is part of the CP-5 LSDP sponsored by the US Department of Energy (DOE) Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA). The Advanced Recyclable Media System{reg_sign} (ARMS) technology is an open blast technology which uses a soft recyclable media. The patented ARMS Engineered Blast Media consists of a fiber-reinforced polymer matrix which can be manufactured in various grades of abrasiveness. The fiber media can be remade and/or reused up to 20 times and can clean almost any surface (e.g., metal, wood, concrete, lead) and geometry including corners and the inside of air ducts.

  6. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  7. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Cooling Heat and Power (CCHP) systems are being installed atand heating loads. These CCHP systems can also act as backupgenerators. In all cases the CCHP systems are rated at a

  8. Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage...

    Broader source: Energy.gov (indexed) [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage Princeton Power Systems (TRL 5 6...

  9. Power system design for the CSUN CubeSat.

    E-Print Network [OSTI]

    Keyawa, Matthew

    2015-01-01T23:59:59.000Z

    ??The California State University of Northridge CubeSat, code named CSUNSat, will test a new low-temperature capable, battery/ultra capacitor power system with a low voltage/low power… (more)

  10. Conic optimization of electric power systems

    E-Print Network [OSTI]

    Taylor, Joshua Adam

    2011-01-01T23:59:59.000Z

    The electric power grid is recognized as an essential modern infrastructure that poses numerous canonical design and operational problems. Perhaps most critically, the inherently large scale of the power grid and similar ...

  11. Outphase power amplifiers in OFDM systems

    E-Print Network [OSTI]

    Ph?m, Anh D., 1974-

    2006-01-01T23:59:59.000Z

    A trade-off between linearity and efficiency exists in conventional power amplifiers. The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for linear ...

  12. Advance Three Phase Power Factor Correction Schemes for Utility Interface of Power Electronic Systems

    E-Print Network [OSTI]

    Albader, Mesaad

    2014-07-30T23:59:59.000Z

    systems, battery chargers and data centers etc. Also, high voltage DC (HVDC) systems employ rectifiers to convert ac input to DC output. HVDC is one example of the application of AC/DC conversion, in power system also, grid tie of two different power...

  13. Fuzzy modelling of power system optimal load flow

    SciTech Connect (OSTI)

    Miranda, V.; Saraiva, J.T. (FEUP, DEEC, Faculdade de Engenharia da Univ. do Porto, INESC, Inst. de Engenharia de Sistemas e Computadores, Lg de Mompilher 4000 Porto (PT))

    1992-05-01T23:59:59.000Z

    In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modeled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

  14. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution...

  15. Flex power perspectives of indirect power system control through dynamic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdfFiskdale,Five447753°, -84.1124406°power

  16. Innovative . Flexible . RegionalInnovative . Flexible . Regional Health Care

    E-Print Network [OSTI]

    Shihadeh, Alan

    Executive Master in Innovative . Flexible . RegionalInnovative . Flexible . Regional Health Care Learning Outcomes Health Systems, Policy and Reform - Communicating with Policy Makers - Evidence - Human Resources Management - Data and Decision Making Executive Master in Health Care Leadership (EMHCL

  17. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01T23:59:59.000Z

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  18. IEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power Management

    E-Print Network [OSTI]

    Giannakis, Georgios

    response, and electric vehicles. Advances in photovoltaic (PV) inverters offer new opportunitiesIEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power are being challenged by reverse power flows and voltage fluctuations due to renewable generation, demand

  19. An investigation of simple nonsmooth power system models

    SciTech Connect (OSTI)

    Mantri, R.; Venkatasubramanian, V.; Saberi, A. [Washington State Univ., Pullman, WA (United States)

    1994-12-31T23:59:59.000Z

    Recently new notions of solutions and equilibrium points have been proposed for analyzing nonsmooth system descriptions. This paper observes certain new phenomena in simple nonsmooth power system models presenting a preliminary analysis. The results include an investigation of new Hopf-like bifurcations related to the birth of limit cycles in two dimensional non-Lipschitzian power system models.

  20. Design of power systems for extensible surface mobility systems on the Moon and Mars

    E-Print Network [OSTI]

    Hong, SeungBum, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This thesis presents the power system model description and sample studies for extensible surface mobility systems on the Moon and Mars. The mathematical model of power systems for planetary vehicles was developed in order ...

  1. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect (OSTI)

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11T23:59:59.000Z

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  2. IPS- Industrial Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative TechnischeIM2IPS-

  3. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

    2011-08-02T23:59:59.000Z

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  4. New Advanced System Utilizes Industrial Waste Heat to Power Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

  5. Combined Heat and Power System Enables 100% Reliability at Leading...

    Broader source: Energy.gov (indexed) [DOE]

    Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal...

  6. Combined Heat and Power System Achieves Millions in Cost Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

  7. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Germany Coordinates...

  8. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop Practical...

  9. Visualization of Electric Power System Information: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Visualization of Electric Power System Information. The workshop was held on September 11, 2012 on NREL's campus in Golden, Colorado.

  10. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Norway) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Norway Coordinates...

  11. An integrated optimal design method for utility power distribution systems.

    E-Print Network [OSTI]

    Fehr, Ralph E

    2005-01-01T23:59:59.000Z

    ??This dissertation presents a comprehensive and integrated design methodology to optimize both the electrical and the economic performance of a utility power distribution system. The… (more)

  12. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  13. GCTool: Design, Analyze and Compare Fuel Cell Systems and Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GCTool: Design, Analyze and Compare Fuel Cell Systems and Power Plants GCTool allows you to design, analyze, and compare different fuel cell configurations, including automotive,...

  14. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  15. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  16. The system architecting process for a solar power satellite concept.

    E-Print Network [OSTI]

    Bidwell, Joseph Grady

    2006-01-01T23:59:59.000Z

    ??This thesis discusses the system architecting process for a Solar Power Satellite (SPS) concept.The heuristic approach allows a spectrum of concepts to be narrowed to… (more)

  17. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    I. , and M Sagrillo, 2010 Wind Generator buyer's guide. HomePower magazine’s 2010 Wind Generator Buyer’s guide compares

  19. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  20. The influence of higher education on the national innovation system in Portugal

    E-Print Network [OSTI]

    Ringo, John Decker

    2009-01-01T23:59:59.000Z

    Many economists agree that countries wishing to develop their national economies should focus on increasing their innovation output. In recent years, the Portuguese government has pursued this goal, taking strides to improve ...

  1. The core and the periphery in distributed and self-organizing innovation systems

    E-Print Network [OSTI]

    Lakhani, Karim R. (Karim Raziabdullah), 1970-

    2006-01-01T23:59:59.000Z

    The Internet has enabled the large-scale mobilization of individuals to self-organize and innovate outside of formal organizations. My dissertation consists of three studies examining the functioning of such self-organizing ...

  2. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12T23:59:59.000Z

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  3. THE JET PULSE POWER SUPPLY SYSTEM J. B. HICKS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    between the two major components of the power supply (flywheel-generator-convertors (FGC) and transformer between the two possible components of the power supply, i. e. flywheel. generator-convertors and transformer-controlled-convertors. The proposed JET power supply system is described, together with an outline

  4. Optimal PMU Placement Evaluation for Power System Dynamic State Estimation

    SciTech Connect (OSTI)

    Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu

    2010-10-10T23:59:59.000Z

    Abstract - The synchronized phaor measurements unit (PMU), developed in the 1980s, is concidered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be usefule for dynamic, state estimation of power the power grid.

  5. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  6. Refractory metal alloys and composites for space power systems

    SciTech Connect (OSTI)

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-09-01T23:59:59.000Z

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900`s and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed.

  7. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect (OSTI)

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States)] [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States); Lit, Peter [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)] [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)

    2013-07-01T23:59:59.000Z

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were calculated. From the scanning data, locations with observed Cs-137 ratios exceeding six standard deviations above the mean ratio were mapped in high resolution [2]. Field teams returned to those locations to collect static count measurements using the same detection systems. Soil surface samples were collected at 30 locations and analyzed for Cs-137. An exponential correlation was identified between Cs-137 concentrations in surface soil and field-scanned Cs-137 ratios. The data indicate field minimum detectable concentration (MDC) of Cs-137 at 0.02 Bq/g (0.5 pCi/g) or lower depending on contaminant distribution in soil. (authors)

  8. An Integrated Security-constrained Model-based Dynamic Power Management Approach for Isolated Microgrid Power Systems

    E-Print Network [OSTI]

    Mashayekh, Salman

    2013-11-22T23:59:59.000Z

    Prime Mover and Control GeneratorExcitation System and Control Shaft Power Field Current Voltage Speed / Power Speed Generating Unit Controls – Unit 1 Reactive Power and Voltage Control HVDC Transmission and Associated Controls System Generation...

  9. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] Emrich, William J., Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-01T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}

  10. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Emrich, William J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-22T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  11. A Power Control System for a Paper Mill

    E-Print Network [OSTI]

    Richter, G. H.; Keenon, D.

    1979-01-01T23:59:59.000Z

    This paper describes the Power Demand Control System installed at the Lufkin Mill of Southland Division, St. Regis Paper Company. The system is based around a microprocessor unit that automatically changes the output of the generators to maintain a...

  12. Designing Optimal Heat and Power Systems for Industrial Processes

    E-Print Network [OSTI]

    Rutkowski, M. A.; Witherell, W. D.

    Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

  13. Photovoltaic-powered desalination system for remote Australian communities 

    E-Print Network [OSTI]

    Richards, B.S.; Schäfer, Andrea

    2003-01-01T23:59:59.000Z

    This paper reports on the design and successful field testing of a photovoltaic (PV)-powered desalination system. The system described here is intended for use in remote areas of the Australian outback, where fresh water is extremely limited...

  14. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

  15. STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS

    E-Print Network [OSTI]

    STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS F.L. Alvarado1 J of generators and network interconnections. This paper examines questions of stability in such coupled systems

  16. Shipboard condition based maintenance and integrated power system initiatives

    E-Print Network [OSTI]

    Barber, Darrin E. (Darrin Eugene)

    2011-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on developing and implementing a robust integrated power system aboard future combatants, there has been an ever increasing effort to guarantee an electrical distribution system that ...

  17. Design of control for efficiency of AUV power systems

    E-Print Network [OSTI]

    Ware, Laura M. (Laura Marie)

    2012-01-01T23:59:59.000Z

    The MIT Rapid Development Group designed and built an internal combustion hybrid recharging system for the REMUS 600 Autonomous Underwater Vehicle (AUV) in collaboration with the MIT Lincoln Laboratory. This power system ...

  18. Green Scheduling: Scheduling of Control Systems for Peak Power Reduction

    E-Print Network [OSTI]

    Pappas, George J.

    approach to fine-grained coordination of energy demand by scheduling energy consuming control systems of the system variables only, control system execution (i.e. when energy is supplied to the system-Scheduling; Energy Systems; Peak Power Reduction; Load Balancing; I. INTRODUCTION During a major sporting event

  19. Prognostic Control and Load Survivability in Shipboard Power Systems

    E-Print Network [OSTI]

    Thomas, Laurence J.

    2011-02-22T23:59:59.000Z

    ...............................................................................................9? 2.5? Reliability Centered Maintenance ........................................................10? 2.6? Power Distribution System Reliability .................................................13? 2.7? Summary... centered maintenance (RCM), and power distribution system reliability techniques are principles are mentioned as well. In chapter III, the modeling principles of structure functions and survivability are stated. The 3 problem formulation is also...

  20. Power System Security in Market Clearing and Dispatch Mechanisms

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    congestion" levels, which have a direct effect on market transactions and energy prices. Thus, when result in curtailment of power transactions and increased prices for most market participants. System1 Power System Security in Market Clearing and Dispatch Mechanisms Claudio A. Ca~nizares, Senior

  1. Reliability assessment of electrical power systems using genetic algorithms

    E-Print Network [OSTI]

    Samaan, Nader Amin Aziz

    2004-11-15T23:59:59.000Z

    of the dissertation, a GA based method for state sampling of composite generation-transmission power systems is introduced. Binary encoded GA is used as a state sampling tool for the composite power system network states. A linearized optimization load flow model...

  2. IBM Research -Ireland Polynomial Optimisation in Power Systems

    E-Print Network [OSTI]

    energy production: 17314000 MWh in 2009 · Production costs at $30 per MWh: $519B/year · Now: 80.9 %, fromIBM Research - Ireland Polynomial Optimisation in Power Systems at IBM Research Jakub Marecek Relaxations 4 Extensions #12;IBM Research - Ireland Optimisation in Power Systems: Motivation · World gross

  3. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  4. ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS

    E-Print Network [OSTI]

    and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

  5. iPower: An Energy Conservation System for

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    iPower: An Energy Conservation System for Intelligent Buildings by Wireless Sensor Networks Lun. Exploiting the context-aware capability of WSN to achieve energy conservation in intelligent buildings is an attractive direction. We thus propose an iPower (intelligent and personalized energy-conservation system

  6. A New Methodology for Aircraft HVDC Power Systems design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Methodology for Aircraft HVDC Power Systems design D. Hernández, M. Sautreuil, N. Retière, D-mail: olivier.sename@gipsa-lab.inpg.fr Abstract ­ A new methodology for aircraft HVDC power systems design

  7. The dynamics of power system markets Fernando L. Alvarado

    E-Print Network [OSTI]

    The dynamics of power system markets Fernando L. Alvarado Department of Electrical and Computer describing the marketplace. Dynamic market equations provide additional insights into the behavior studies the impact of various policies on the dynamic behavior of power system markets. The impact

  8. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01T23:59:59.000Z

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  9. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  10. Thermoacoustic power systems for space applications

    SciTech Connect (OSTI)

    Backhaus, S. N. (Scott N.); Tward, E. (Emanual); Pedach, M. (Michael)

    2001-01-01T23:59:59.000Z

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  11. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01T23:59:59.000Z

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  12. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC solar-powered DC air-conditioning heat pump produced byRoom Air Conditioners Geothermal Heat Pumps Lighting-efficiency of an air source electric heat-pump water heater

  13. Promethean Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,ProgressiveandPromethean Power

  14. Innovative Design Concept for the New Bangkok International Airport, NBIA

    E-Print Network [OSTI]

    Kessling, W.; Holst, S.; Schuler, M.

    2004-01-01T23:59:59.000Z

    using photovoltaic modules covering a surface area of 55,000 m? for the immediate generation of electric power in combination with an electrically powered compression chiller system was compared to other concepts under the aspect of economy. Fig. 17... to costs for environmentally friendly systems, optimized innovative concepts using thermal solar collectors should be given preference over systems using photovoltaics technology. DESIGN - TEAM Architects: Murphy / Jahn Architects, Chicago Project...

  15. Business interruption and loss of assets risk assessment in support of the design of an innovative Concentrating Solar Power plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Concentrating Solar Power plant Andrea Amato2 , Michele Compare1 , Maurizio Gallisto2 , Augusto Maccari2 , Mauro Power (CSP) plants are a promising technology of renewable energy production, as witnessed investments in these environmentally sustainable power plants. This work presents and applies a methodology

  16. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31T23:59:59.000Z

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  17. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21T23:59:59.000Z

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  18. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  19. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01T23:59:59.000Z

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  20. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect (OSTI)

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

    2010-07-15T23:59:59.000Z

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  1. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01T23:59:59.000Z

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

  2. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11T23:59:59.000Z

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  3. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, Neil Richard (Niskayuna, NY); King, Robert Dean (Schenectady, NY); Schwartz, James Edward (Slingerlands, NY)

    1999-01-01T23:59:59.000Z

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  4. Technology and Innovation in the Service Economyin the Service Economy

    E-Print Network [OSTI]

    Gabrieli, John

    Natural & Biological Systems Engineered Systems #12;The Industrial Revolution A technology and science based revolution #12;Innovations in the Industrial Economy Over past two centuries we have achieved Technologies Digital technologies are to the 21st century as steam power was to the Industrial Revolution 8

  5. Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems

    E-Print Network [OSTI]

    Parvania, Masood; Koutsandria, Georgia; Muthukumar, Vishak; Peisert, Sean; McParland, Chuck; Scaglione, Anna

    2014-01-01T23:59:59.000Z

    Security protocols against cyber attacks in the distributioncyber security weak- ness and system fragility of power distribution

  6. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    46 Table 22. Lead-acid battery models used in residential PVSolar [51] Because PV systems with battery backup includeno Battery Backup Typical Operation: Residential PV systems

  7. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01T23:59:59.000Z

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  8. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  9. Power Systems Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > PowerFederal

  10. Method and system to provide thermal power for a power plant

    SciTech Connect (OSTI)

    Ostlie, L.D.

    1987-11-17T23:59:59.000Z

    A method for providing thermal power to generate electricity in a power plant is described comprising: delivering substantially uncut and untrimmed whole trees into a combustion chamber; burning the substantially whole trees in the combustion chamber to generate heat; and absorbing the heat of combustion of the trees in a device for providing power to an electrical power generator. A system for providing power to an electrical generating power plant is described comprising: means for defining a combustion chamber within which substantially uncut and untrimmed whole trees are received for burning; conveyor means for delivering the substantially whole trees for combustion into the combustion chamber; and heat absorbing means for absorbing the heat of combustion of the substantially whole trees, the heat absorbing means being adapted to be operatively connected to means for converting the absorbed heat into electrical power.

  11. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

    2001-11-01T23:59:59.000Z

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

  12. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11T23:59:59.000Z

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  13. Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first

    E-Print Network [OSTI]

    Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration Hannele Holttinen1.holttinen@vtt.fi Abstract: An international forum for exchange of knowledge of power system impacts of wind power has been

  14. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28T23:59:59.000Z

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  15. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  16. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13T23:59:59.000Z

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. Power Parks System Simulation Sandia National Laboratories

    E-Print Network [OSTI]

    at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load of a renewable energy source. Generation by photovoltaic collectors or wind turbines can be combined with energy storage technologies. Power parks provide an excellent opportunity for using hydrogen technologies

  18. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

  19. 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT

    E-Print Network [OSTI]

    hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

  20. Power Systems Analysis ELEN4511 Spring 2013

    E-Print Network [OSTI]

    Lavaei, Javad

    be harnessed for real-time communications at all sub- networks of the power grid, i.e. generation, transmission and distribution networks. Introduction The Northeast blackout of 1965 was a significant disruption in the supply, New Hampshire, Rhode Island, Vermont, New York, and New Jersey in the United States. Over 30 million

  1. A. Pourmovahed1 Power Systems Research Department,

    E-Print Network [OSTI]

    Bahrami, Majid

    - wheel. A Rexroth variable-displacement pump/motor in com- bination with two foam-filled Parker piston in the accumulators when they were being charged. Ball valve No. 1 and an orifice isolated the power supply from is given by Baum (1987). The rest of the circuit consisted of two ball valves and a 38- liter (10-gallon

  2. Fuel cell systems for personal and portable power applications

    SciTech Connect (OSTI)

    Fateen, S. A. (Shaheerah A.)

    2001-01-01T23:59:59.000Z

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  3. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage Control in Distribution

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage) problem associated with reactive power and voltage control in distribution systems to minimize daily--Distribution systems, reactive power control, voltage control, optimal switching operations, mixed integer nonlinear

  5. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  6. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01T23:59:59.000Z

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  7. Operational results from the Saudi Solar Village Photovoltaic power system

    SciTech Connect (OSTI)

    Huraib, F.; Al-Sani, A.; Khoshami, B.H.

    1982-08-01T23:59:59.000Z

    The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

  8. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the

    E-Print Network [OSTI]

    Bak, Claus Leth

    the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms

  9. Power Quality/Harmonic Detection: Harmonic Control in Electric Power Systems for the Telecommunications Industry

    E-Print Network [OSTI]

    Felkner, L. J.; Waggoner, R. M.

    The control of harmonics in power systems continues to be a major concern in the telecommunications industry. AC/DC telecommunication conversion equipment has rarely been thought of as playing a major role in the harmonic interaction problem. Yet...

  10. HEMP emergency planning and operating procedures for electric power systems

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

    1991-01-01T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  11. International Conference of Modeling and Simulation -MOSIM'10 -May 10-12, 2010 -Hammamet -Tunisia "Evaluation and optimization of innovative production systems of goods and services"

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - Tunisia "Evaluation and optimization of innovative production systems of goods and services" STOCHASTIC.maza@ensem.inpl-nancy.fr ABSTRACT: The productivity and quality requirements have conducted the manufacturing systems to be more systems is of a major importance, since they impact directly on system's productivity and safety. The aim

  12. R&D ERL: High power RF systems

    SciTech Connect (OSTI)

    Zaltsman, A.

    2010-01-15T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  13. High power RF systems for the BNL ERL project

    SciTech Connect (OSTI)

    Zaltsman, A.; Lambiase, R.

    2011-03-28T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  14. TWRS privatization phase 1 electrical power system

    SciTech Connect (OSTI)

    Singh, G.

    1997-05-30T23:59:59.000Z

    This document includes Conceptual Design Report (CDR) for a new 11 km (7 miles) 230 kV transmission line and a new 40 MVA substation (A6) which will be located east of Grout Facility in 200E Area tank farm. This substation will provide electrical power up to 20 MW each for two private contractor facilities for immobilization and disposal of low activity waste (LAW).

  15. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30T23:59:59.000Z

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  16. PowerGenix Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCube Pvt Ltd

  17. Princeton Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, New Jersey: EnergyPrinceton

  18. INI Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmapsGEOTHERMALINI Power

  19. PowerSystemsSimulation NSERC Industrial Research Chair in

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    an offshore wind power plant to an onshore grid. To develop a PSCAD/EMTDC simulation model of an offshore WPPPowerSystemsSimulation NSERC Industrial Research Chair in Legends: 1. Without negative sequence, Aalborg Univ. and Univ. of Manitoba, email:skc@et.aau.dk A 400MW offshore wind power plant has been

  20. Human Factors Aspects of Power System Flow Animation

    E-Print Network [OSTI]

    into utility control centers. For example, [1] and [2] describe the on-line usage of animated flows, voltageHuman Factors Aspects of Power System Flow Animation Douglas A. Wiegmann, Gavin R. Essenberg flow information, including transmission line MW flow and power transfer distribution factor (PTDF

  1. Concentrated Solar Power Generation Systems: The SAIC Dish

    E-Print Network [OSTI]

    Hemmers, Oliver

    Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

  2. Efficient Low Complexity Power Allocation Policies for Wireless Communication Systems

    E-Print Network [OSTI]

    Sharma, Vinod

    . Other benefits will be smaller diesel generators and batteries with longer life time. Thus, one of the primary challenges for Next Generation Networks (NGN) is to reduce energy consumption. In a BS the powerEfficient Low Complexity Power Allocation Policies for Wireless Communication Systems Guaranteeing

  3. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper Monitoring and Control of Power level control centers. However, there is little standardization of the monitoring process and data to the control center operators and security coordinators, or to the computers that can detect anomalous patterns

  4. Impact of Natural Gas Infrastructure on Electric Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

  5. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  6. POWER SCHEDULING IN A HYDROTHERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO­THERMAL SYSTEM UNDER UNCERTAINTY C.C. Carře 1 , M.P. Nowak 2 , W. R in the complex­ ity of the traditional power optimization mod­ els. The remedy we propose is decomposition which­storage hydro plants and delivery con­ tracts and describe an optimization model for its least­cost operation

  7. Power Systems Development Facility: Design, Construction, and Commissioning Status

    SciTech Connect (OSTI)

    Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

    1996-12-31T23:59:59.000Z

    This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

  8. A solar photovoltaic power system for use in Antarctica

    SciTech Connect (OSTI)

    Kohout, L.L.; Merolla, A.; Colozza, A.

    1993-12-01T23:59:59.000Z

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  9. Refractory metal alloys and composites for space nuclear power systems

    SciTech Connect (OSTI)

    Titran, R.H.; Stephens, J.R.; Petrasek, D.W.

    1988-01-01T23:59:59.000Z

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wire for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites will be discussed. 20 refs., 27 figs., 1 tab.

  10. Virginia Tech Selected to Continue Development of Innovative...

    Office of Environmental Management (EM)

    Virginia Tech Selected to Continue Development of Innovative Building Automation System Virginia Tech Selected to Continue Development of Innovative Building Automation System...

  11. Dynamic Power Optimization Targeting User Delays in Interactive Systems

    E-Print Network [OSTI]

    Zhong, Lin

    }@princeton.edu Abstract-- Power has become a major concern for mobile computing systems such as laptops and handhelds, on which a significant fraction of software usage is interactive instead of compute-intensive. For interactive systems, an analysis shows that over 90% of system energy and time is spent waiting for user input

  12. Centralized and Distributed Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U.S. Department of Energy Robert Saint National Rural Electric Cooperative Association PSERC Publication 12-08 June 2012 #12;For

  13. Fuel Cell Power Systems Analysis Patrick DavisPatrick Davis

    E-Print Network [OSTI]

    Power Systems · Balance-of-plant (compressors, humidifiers, heat exchangers, sensors, controls) · Cost hydrogen 500020001000HoursDurability 45125325$/kWCost 325250140W/LPower density Operating on Tier 2 · Fuel Cell Vehicle Systems Analysis · Cost Analyses of Fuel Cell Stacks/ Systems · DFMA Cost Estimates

  14. Load Response Fundamentally Matches Power System Reliability Requirements

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL] [ORNL

    2007-01-01T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system. Loads are frequently barred from providing the highest value and most critical reliability services; regulation and spinning reserve. Advances in communications and control technology now make it possible for some loads to provide both of these services. The limited storage incorporated in some loads better matches their response capabilities to the fast reliability-service markets than to the hourly energy markets. Responsive loads are frequently significantly faster and more accurate than generators, increasing power system reliability. Incorporating fast load response into microgrids further extends the reliability response capabilities that can be offered to the interconnected power system. The paper discusses the desired reliability responses, why this matches some loads' capabilities, what the advantages are for the power system, implications for communications and monitoring requirements, and how this resource can be exploited.

  15. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01T23:59:59.000Z

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  16. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been...

  17. Power System Online Stability Assessment using Synchrophasor Data Mining

    E-Print Network [OSTI]

    Zheng, Ce

    2013-04-30T23:59:59.000Z

    Traditional power system stability assessment based on full model computation shows its drawbacks in real-time applications where fast variations are present at both demand side and supply side. This work presents the use of data mining techniques...

  18. Advances in electric power systems : robustness, adaptability, and fairness

    E-Print Network [OSTI]

    Sun, Xu Andy

    2011-01-01T23:59:59.000Z

    The electricity industry has been experiencing fundamental changes over the past decade. Two of the arguably most significant driving forces are the integration of renewable energy resources into the electric power system ...

  19. Modeling the Effect of Hurricanes on Power Distribution Systems

    E-Print Network [OSTI]

    Chanda, Suraj

    2012-10-19T23:59:59.000Z

    There are many calamitous events such as earthquakes, hurricanes, tsunamis etc. that occur suddenly and cause great loss of life, damage, or hardship. Hurricanes cause significant damage to power distribution systems, resulting in prolonged customer...

  20. Magnet power system for the Microwave Tokamak Experiment (MTX)

    SciTech Connect (OSTI)

    Jackson, M.C.; Musslewhite, R.C.

    1987-10-07T23:59:59.000Z

    The system configuration, layout, and general philosophy for the MTX magnet power system is described. The vast majority of the magnet power equipment was quite successfully used on the ALCATOR-C experiment at the Massachusetts Institute of Technology. The AC power for the magnet system at MIT was obtained from a 225MVA alternator. The power for the system at LLNL is obtained directly from the local utility's 230 kV line. This installation, therefore, necessitates the addition of a great deal of equipment in ranges from new switchgear in the substation to using existing switchgear obtained from MIT as contractors for intershop electrical isolation as well as safety isolation for personnel entry into the experimental area. Additionally, some discussion is made of the unique layout of this facility and the tradeoffs made to accommodate them. 2 refs., 6 figs.

  1. Genetic Algorithm Based Damage Control For Shipboard Power Systems

    E-Print Network [OSTI]

    Amba, Tushar

    2010-07-14T23:59:59.000Z

    Power system level. The proposed method used a constrained binary genetic algorithm to find an optimal network configuration. An optimal network configuration is a configuration which restores all of the de-energized loads that are possible...

  2. Decomposition algorithms for multi-area power system analysis

    E-Print Network [OSTI]

    Min, Liang

    2007-09-17T23:59:59.000Z

    . This dissertation investigates decomposition algorithms for multi-area power system transfer capability analysis and economic dispatch analysis. All of the proposed algorithms assume that areas do not share their network operating and economic information among...

  3. auxiliary power systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 388 On the problem of reliable stabilization for large power systems...

  4. MSE Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill <MN OfficeMSE Power

  5. Ballard Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:PalabrasBadema JumpBallard Power

  6. Power Systems Technician | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >Technician

  7. Hex Power System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new page Jump| Open EnergyHex Power

  8. Proe Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformationInformationOpenProe Power

  9. Ionic Power Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewable Energy6.3091865°,Power IncIonic

  10. NREL: Concentrating Solar Power Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePower 1000-MWSystems

  11. Power system design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePower plant

  12. Power systems | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePower plantsystems

  13. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to: navigation,SercelOregon.Jadoo Power

  14. Bifurcation Analysis of Various Power System Models

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    generator and transmission system. Di erent modeling levels with their respective di erential-algebraic equa, the generation or system loading levels are used as bifurcation parameters, which are varied slowly, moving erent induction motor load models are considered. The loads were modeled as constant, linear

  15. Success for Strathclyde in Innovation Competition Two major power companies partnered by the University of Strathclyde have

    E-Print Network [OSTI]

    Mottram, Nigel

    to these major projects. "They build on a significant body of smart grid research work underway at Strathclyde and testing of new solutions for the integration of low carbon technologies. "It is encouraging that the Power

  16. ASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM-OF-SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe stateASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant

  17. Wind Farm Diversification and Its Impact on Power System Reliability

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12T23:59:59.000Z

    WIND FARM DIVERSIFICATION AND ITS IMPACT ON POWER SYSTEM RELIABILITY A Thesis by YANNICK DEGEILH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 2009 Major Subject: Electrical Engineering WIND FARM DIVERSIFICATION AND ITS IMPACT ON POWER SYSTEM RELIABILITY A Thesis by YANNICK DEGEILH Submitted to the Office of Graduate Studies of Texas A...

  18. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

  19. Power system requirements and selection for the space exploration initiative

    SciTech Connect (OSTI)

    Biringer, K.L. (Sandia National Labs., Albuquerque, NM (United States)); Bartine, D.E. (Oak Ridge National Lab., TN (United States)); Buden, D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Foreman, J. (Naval Research Lab., Washington, DC (United States)); Harrison, S. (Strategic Defense Initiative Organization, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs.

  20. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    combined heat and power systems. ASME Conference Proceedingsfor combined heat and power applications. ASME ConferenceRankine combined heat and power technology. ASME Conference