Powered by Deep Web Technologies
Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

2

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

3

Innovations in Nuclear Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

4

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

5

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2013 Consolidated Innovative Nuclear Research FOA FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

6

Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

2002-09-17T23:59:59.000Z

7

Small Business Innovation Research (SBIR)  

Energy.gov (U.S. Department of Energy (DOE))

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development budgets set aside...

8

Innovations in Nuclear Infrastructure and Education  

Science Conference Proceedings (OSTI)

The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

John Bernard

2010-12-13T23:59:59.000Z

9

ACI/NBB Glycerine Innovation Research Award  

Science Conference Proceedings (OSTI)

ACI/NBB Glycerine Innovation Research Award for research into new applications for glycerine with particular emphasis on commercial viability. ACI/NBB Glycerine Innovation Research Award Biofuels and Bioproducts and Biodiesel algae algal biobased Biodies

10

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

11

Los Alamos expertise integral to nuclear energy innovation hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy innovation hub Los Alamos expertise integral to nuclear energy innovation hub The information gained through this effort will help extend the life and improve the...

12

Seeding Innovation (2009) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Seeding Innovation (2009) | National Nuclear Security Administration Seeding Innovation (2009) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Seeding Innovation (2009) Seeding Innovation (2009) Seeding Innovation (2009) From: NNSANews Views: 110 0 ratings Time: 04:15 More in Science & Technology See video Facebook

13

INNOVATIONS IN NUCLEAR INFRASTRUCTURE AND EDUCATION (INIE) CONSORTIA - CURRENT STATUS  

SciTech Connect

This presentation discusses the current status of innovations in the Nuclear Infrastructure and Education (INIE) Consortia.

Fjeld, R.A.; Gutteridge, J.; Williamson, C.

2004-10-06T23:59:59.000Z

14

Innovation Impact: Breakthrough Research Results (Brochure)  

SciTech Connect

The Innovation Impact brochure captures key breakthrough results across NREL's primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies.

Not Available

2013-07-01T23:59:59.000Z

15

Advanced Research: Innovation Leading to Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Research: Innovation Leading to Research: Innovation Leading to Successes Exploring the "Grand Challenges" of Fossil Fuels December 2010 3 Exploring the "Grand Challenges" of Fossil Fuels NETL Advanced Research The Advanced Research (AR) Program within the Office of Coal and Power Systems of the National Energy Technology Laboratory (NETL), the research arm of the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), fosters the development of innovative, cost-effective technologies for improving the efficiency, reliability, and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental research into technology alternatives and applied research aimed at scale-up, deployment, and commercialization of the most promising technologies identified.

16

Program on Technology Innovation: Cladding and Structural Materials for Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

This EPRI technical update gives an overview of the initial work being done under a 3-year research program on cladding and structural materials for advanced nuclear energy systems. This research is part of EPRI's Program on Technology Innovation.

2008-12-23T23:59:59.000Z

17

Accelerating Innovation: How Nuclear Physics Benefits Us All  

DOE R&D Accomplishments (OSTI)

Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

2011-00-00T23:59:59.000Z

18

Small Business Innovation Research Program  

Science Conference Proceedings (OSTI)

... from federal R&D; to use small business to meet federal research and development (R&D) needs; to stimulate small business ...

2013-07-24T23:59:59.000Z

19

Energy Department Announces New Nuclear Energy Innovation Investments  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Nuclear Energy Innovation Investments Sixteen Awards to Advance Cross-cutting R&D, Train Next Generation of Industry Leaders WASHINGTON -...

20

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative nuclear fuels: results and strategy  

SciTech Connect

To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

Stan, Marius [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

22

Applying Innovation System Concept in Agricultural Research for  

Open Energy Info (EERE)

Applying Innovation System Concept in Agricultural Research for Applying Innovation System Concept in Agricultural Research for Development: A learning module Jump to: navigation, search Tool Summary Name: Applying Innovation System Concept in Agricultural Research for Development: A learning module Agency/Company /Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics: Policies/deployment programs Resource Type: Training materials Website: mahider.ilri.org/bitstream/10568/167/1/Innovation_System_Agric_LM.pdf Applying Innovation System Concept in Agricultural Research for Development: A learning module Screenshot References: Applying Innovation System Concept in Agricultural Research for Development: A learning module[1] Preface "Sustained agricultural growth requires, among others, increased

23

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

24

Celebrating Innovation with National Nuclear Science Week | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week January 25, 2012 - 2:54pm Addthis Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Kate Bannan Communications and Outreach Specialist How can I participate?

25

(Nuclear theory). [Research in nuclear physics  

SciTech Connect

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

26

Small Business Innovation Research (SBIR) and Small Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Small Business Technology Transfer programs, presented at an Historically Black College and University meeting. Small Business Innovation Research (SBIR) and Small...

27

NETL: Advanced Research - Sensors & Controls Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Controls Sensors & Controls Advanced Research Sensors & Controls Innovations OSU's O2 Sensor Ohio State University's reference-free potentiometric oxygen sensor capable of withstanding temperatures of 800 °C. Novel Sensors and Advanced Process Control Novel Sensors and Advanced Process Control are key enabling technologies for advanced near zero emission power systems. NETL's Advanced Research Program is leading the effort to develop sensing and control technologies and methods to achieve seamless, integrated, automated, optimized, and intelligent power systems. Today, the performance of advanced power systems is limited by the lack of sensors and controls capable of withstanding high temperature and pressure conditions. Harsh environments are inherent to new systems that aim to

28

NNSA to bring together researchers to discuss discovery and innovation at  

National Nuclear Security Administration (NNSA)

to bring together researchers to discuss discovery and innovation at to bring together researchers to discuss discovery and innovation at LDRD Symposium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA to bring together researchers to discuss ... NNSA to bring together researchers to discuss discovery and innovation at LDRD Symposium

29

NNSA to bring together researchers to discuss discovery and innovation at  

NLE Websites -- All DOE Office Websites (Extended Search)

to bring together researchers to discuss discovery and innovation at to bring together researchers to discuss discovery and innovation at LDRD Symposium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA to bring together researchers to discuss ... NNSA to bring together researchers to discuss discovery and innovation at LDRD Symposium

30

Renzo Tomellini, EC Directorate General for Research and innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Critical Materials, ChairsAnimateurs: Jeff Skeer, DOE Office of Policy and International Affairs and Renzo Tomellini, EC Directorate General for Research and Innovation...

31

Applying Innovation System Concept in Agricultural Research for...  

Open Energy Info (EERE)

and impact orientation need to be integrated into the agricultural research process. The R&D system should think in terms of contributing to innovation. The Improving Productivity...

32

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

33

Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report  

SciTech Connect

This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle quality qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

2006-02-28T23:59:59.000Z

34

For Researchers: Berkeley Lab Innovation Grants 2013  

Berkeley Lab Innovation Grants 2014 Call for Proposals. September 9, 2013. FROM: Horst Simon, Deputy Director. I am pleased to announce a funding opportunity for ...

35

For Researchers: Berkeley Lab Innovation Grants 2013  

Berkeley Lab Innovation Grants 2013 Call for Proposals. August 31, 2012. FROM: Horst Simon, Deputy Director. I am pleased to announce two funding opportunities for ...

36

Deadline Approaching for Small Business Innovation Research Opportunity |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approaching for Small Business Innovation Research Approaching for Small Business Innovation Research Opportunity Deadline Approaching for Small Business Innovation Research Opportunity January 19, 2012 - 12:34pm Addthis Our Office of Energy Efficiency and Renewable Energy has posted the following announcement about the approaching deadline for the SBIR and STTR awards - Deadline Approaching for Small Business Innovation Research Opportunity January 19, 2012 The application deadline is nearing for phase I funding for the Department of Energy's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) awards, which help small businesses develop technologies with a strong potential for commercialization and job creation. The deadline for applications is January 31, 2012 at11:59 p.m.

37

Innovative cement helps DOE safeguard nuclear facilities | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative cement helps DOE safeguard nuclear facilities Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep Singh initially developed Ceramicrete®, a novel phosphate cement that stabilizes radioactive waste streams, they did not immediately recognize that with one or two extra ingredients, the cement could solve another problem in the nuclear complex. In the course of the development of the Ceramicrete technology, Wagh and Singh formed a multilayered collaboration among Argonne, the Russian Federal Nuclear Center (VNIIEF) in Sarov, Russia, and Ceradyne Boron Products LLC. This international scientific partnership created an unusually efficient nuclear shield that blocks the neutrons and gamma rays

38

EERE Small Business Innovation Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE Small Business Innovation Research EERE Small Business Innovation Research EERE Small Business Innovation Research Small business research has come a long way since 1982 when the Small Business Innovation Research and Small Business Technology Transfer Research Program (SBIR/STTR) first became law. With new approaches to research topics and new more flexible processes, Office of Energy Efficiency and Renewable Energy's (EERE's) SBIR/STTR program is leading the way. Since 2011, EERE has participated in a number of new solicitations involving dozens of new topics and subtopics that have resulted in awards to hundreds of new small business partners on projects well-aligned with our clean energy goals. Follow this page for EERE SBIR/STTR news, including funding opportunities and outreach activities. For more information about SBIR/STTR, visit the

39

Research Areas | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Validation Nuclear Systems Technology Reactor Technology Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards...

40

Nuclear Cargo Detector - Energy Innovation Portal  

Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled ...

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Funding for Small Business Innovation Research in Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for Small Business Innovation Research in Energy Efficiency Funding for Small Business Innovation Research in Energy Efficiency and Renewable Energy Funding for Small Business Innovation Research in Energy Efficiency and Renewable Energy April 10, 2012 - 9:06am Addthis Bill Valdez Bill Valdez Principal Deputy Director The Energy Department today announced up to $9 million available this year to fund approximately 50 small businesses to advance innovative energy efficiency and renewable energy technologies. This initiative will help small businesses with promising ideas that could improve manufacturing processes, boost the efficiency of buildings, reduce reliance on oil, and generate electricity from renewable sources to bring new clean energy solutions to market faster. This effort is part of the Obama Administration's strategy to drive innovative clean energy technologies

42

Innovative Software Tackles Nuclear Industry Challenges | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Tackles Nuclear Industry Challenges Software Tackles Nuclear Industry Challenges Innovative Software Tackles Nuclear Industry Challenges May 3, 2011 - 6:08pm Addthis Doug Kothe Director, Consortium for Advanced Simulation of Light Water Reactors Nearly a year ago, the Department of Energy selected a team lead by Oak Ridge National Laboratory to establish and operate the Consortium for Advanced Simulation of Light Water Reactors (CASL), an Energy Innovation Hub. Today, we mark an important milestone in that process with the dedication of our headquarters in Oak Ridge, Tennessee. It's the culmination of an exciting year in which we've brought together nuclear energy leaders from industry to academia to the national laboratories to work together on specific challenges whose solutions will help improve

43

Seeding Innovation (2009) | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 Earn 11 R&D 100 Awards Jul 2, 2013 US, International Partners Remove Last Remaining HEU from Vietnam, Set Nuclear Security Milestone View All > Timeline Curious about NNSA...

44

About EERE Small Business Innovation Research Diversity Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About EERE Small Business Innovation Research Diversity Initiative About EERE Small Business Innovation Research Diversity Initiative About EERE Small Business Innovation Research Diversity Initiative About EERE Small Business Innovation Research Diversity Initiative Why Focus on WOMEN- and MINORITIES- SBCs? EERE SBIR seeks to increase the diversity of our applicant pool in general. We focus on Women-Owned and Minority-Owned small business concerns (SBCs) because they are an excellent diversity indicator. The underserved community now comprises 2/3 of the population. In our initial outreach, however, we discovered low awareness of this program. It's almost as if EERE SBIR grants have been kept secret from many minority- and woman-owned SBCs. Thus, we are more actively encouraging such businesses to apply and move great ideas from cleantech and other cutting-edge industries into

45

Clean Tech SBIR: Small Business Innovation Research (SBIR) for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and woman-owned businesses? Could your firm use 1.1-1.7 million? Apply by December 16, 2013 More The federal government supports research at thousands of small innovative...

46

The impact of accounting for research and development on innovation  

E-Print Network (OSTI)

This paper examines whether a change in the accounting rule for research and development (R&D) cost is associated with changes in the innovation process. Specifically, I examine whether R&D expenditure, the number of patents ...

Li, Lei (Lynn Lei)

2012-01-01T23:59:59.000Z

47

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

48

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

49

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

50

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Innovative Solar Research Projects Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

51

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

52

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and...

53

Sandia National Laboratories: Small Business Innovative Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer (STTR) Overview Each year, 11 federal agencies must set aside a percentage of their budget, in recent years averaging more than 2 billion, to fund research...

54

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

55

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

56

Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business  

Energy.gov (U.S. Department of Energy (DOE))

With the support of $850,000 in Phase I and II Small Business Innovation Research (SBIR) grants from the Department in 2002 and 2003, Wind Tower Systems was able to complete the final engineering design for the 100 meter wind turbine tower that GE now plans to market.

57

International Nuclear Energy Research Initiative: Annual Report 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 International Nuclear Energy Research Initiative: Annual Report 2005 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses the key issues affecting the future of nuclear energy and its global deployment. I-NERI research is directed towards improving cost performance, increasing proliferation resistance, enhancing safety, and improving the waste management of future nuclear energy systems. This I-NERI 2005 Annual Report serves to inform interested parties about

58

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

59

Nuclear methods in environmental and energy research  

SciTech Connect

The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

Vogt, J.R. (ed.)

1977-01-01T23:59:59.000Z

60

Small Business Innovation Research. Abstracts of Phase I awards, 1999  

SciTech Connect

This booklet presents technical abstracts of Phase I awards made in Fiscal Year (FY) 1999 under the DOE Small Business Innovation Research (SBIR) program. SBIR research explores innovative concepts in important technological and scientific areas that can lead to valuable new technology and products. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications, as described by the awardee, are given after each abstract. Individuals and organizations, including venture capital and larger industrial firms, with an interest in the research described in any of the abstracts are encouraged to contact the appropriate small business directly.

None

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

62

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

63

International Nuclear Energy Research Initiative: Annual Report 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment. A link to the program can be found at the NE website. This I-NERI 2006 Annual Report serves to inform interested parties about the program's organization, progress of collaborative research projects undertaken since FY 2003, and future plans for the program. Following is an

64

Point of Contact: Doug Kothe CASL Director 865-241-9392 kothe@ornl.gov www.casl.gov A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors  

E-Print Network (OSTI)

Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors CASL became a DOE Energy Innovation energy, and national security; universities with preeminent nuclear engineering programs; and vendor,Tennessee Valley Authority [TVA], and Electric Power Research Institute). As laboratory leaders in science, nuclear

65

Small Business Innovation Research (SBIR) and Small Business Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » FY 2014 DOE SBIR/STTR Overview webinar Join DOE SBIR/STTR Programs Director, Manny Oliver as he provides an FY 2014 DOE SBIR/STTR Overview Javascript must be enabled to view embedded video. Play video Watch on YouTube External link

66

SunShot Initiative: Small Business Innovation Research and Small Business  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Business Innovation Small Business Innovation Research and Small Business Technology Transfer to someone by E-mail Share SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on Facebook Tweet about SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on Twitter Bookmark SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on Google Bookmark SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on Delicious Rank SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on Digg Find More places to share SunShot Initiative: Small Business Innovation Research and Small Business Technology Transfer on

67

Program on Technology Innovation: Nuclear Concrete Structures Aging Reference Manual  

Science Conference Proceedings (OSTI)

EPRI has been proactive in researching concrete degradation in nuclear plants in recent years, with a focus on anticipated future regulatory mandates regarding relicensing beyond 60 years operation (long-term operation). The comprehensive treatment of concrete degradation provided in this report will be used to guide research and development activities. EPRI is currently working to address such issues to benefit the industry and will continue to do so.

2011-10-14T23:59:59.000Z

68

Nuclear methods in environmental and energy research  

SciTech Connect

A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

Vogt, J R [ed.

1980-01-01T23:59:59.000Z

69

Research Highlights | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Awards News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 - In 2008, the totally unexpected discovery of a New class of superconductors, the iron pnictides, set off A Feverish international effort to understand them. Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 - The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. Light Water Reactor Fuel Cladding Research June 01, 2013 - ORNL is the focus point for Light Water Reactor (LWR)

70

Chemistry and Metallurgy Research Replacement - Nuclear Facility...  

National Nuclear Security Administration (NNSA)

Chemistry and Metallurgy Research Replacement - Nuclear Facility (CMRR-NF SEIS) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

71

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

72

Accelerating Innovation: How Nuclear Physics Benefits Us All  

Science Conference Proceedings (OSTI)

From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

Not Available

2011-01-01T23:59:59.000Z

73

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

74

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network (OSTI)

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

75

Clean Tech SBIR: Small Business Innovation Research (SBIR) for the Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech SBIR: Small Business Innovation Research (SBIR) for the Tech SBIR: Small Business Innovation Research (SBIR) for the Office of Energy Efficiency and Renewable Energy Clean Tech SBIR: Small Business Innovation Research (SBIR) for the Office of Energy Efficiency and Renewable Energy The best-kept funding secret for minority- and woman-owned businesses? Could your firm use $1.1-1.7 million? Apply by December 16, 2013! More The federal government supports research at thousands of small innovative businesses through the Small Business Innovation Research (SBIR) program. SBIR is a competitive program that links government agencies' needs and missions with funding for the development and commercialization of new ideas and innovative research by diverse small business. SBIR provides funding to small businesses using a funding ladder similar to

76

Small Business Innovation Research: Abstracts of Phase 1 awards, 1994  

SciTech Connect

The Small Business Innovation Research (SBIR) program enables DOE to obtain effective, innovative solutions to important problems through the private sector, which has a commercial incentive to pursue the resulting technology and bring it to the marketplace. The growing number of awardees, many of them started in business in response to SBIR solicitations, is becoming a significant resource for the solution of high risk, high technology problems for the Department. As detailed here, this publication describes the technical efforts for SBIR Phase 1 awards in 1994. It is intended for the educated layman, and may be of particular interest to potential investors who wish to get in on the ground floor of exciting opportunities. Contained in this booklet are abstracts of the Phase 1 awards made in FY 1994 under the DOE SBIR program. The 212 Phase 1 projects described here were selected in a highly competitive process from a total of 2,276 grant applications received in response to the 1994 DOE annual SBIR Solicitation. The selections for awards were made on scientific and technical merit, as judged against the specific criteria listed in the Solicitation. Conclusions were reached on the basis of detailed reports returned by reviewers drawn from DOE laboratories, universities, private industry, and government. (Any discrepancies noted in prior DOE releases naming the firms selected for awards are due either to the firm changing its name after the award selection or to the firm not proceeding to a signed grant.) It is expected that between one-third and one-half of the Phase 1 projects will be continued into Phase 2. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications are given after each abstract. Individuals and organizations with an interest in the research described are encouraged to contact the appropriate small business directly.

Not Available

1994-12-31T23:59:59.000Z

77

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

78

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

79

Research in theoretical nuclear physics  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

80

Innovations in Nuclear Infrastructure and Education From the SW Consortium  

SciTech Connect

This report describes the final expenditures for the INIE project during FY 08/09. (There were no expenditures during FY09/10 or during FY10/11.) To see the list of accomplishments done using the INIE funds, please see the reports included here. The last of the FY 07/08 funds were brought forward and used to complete two distance education modules teaching reactor experiments. These modules and parts from the modules are still being used and are being disseminated off-campus as a part of our distance education effort. The second largest expenditure was sending students to the ANS to present student papers on work that they had done the previous year underwritten by INIE funds. The remaining expenditures were IDC charges and minor travel expenses to give students a tour of a medical facility. Once again we wish to express of sincere appreciation of the INIE program and hope that the return on investment is appreciated by the DOE. Although INIE has come to a close, looking back at all the Consortium has accomplished is astounding. And, as was hoped, these funds have proved to be a springboard for continuing work, particularly at Texas A&M. With the resurgence of nuclear power, the utilities have realized that the nuclear workforce in the near future will be too small for the task of bringing dozens of new plants on line and have turned their attention to the URRs to help feed the workforce pipeline. The distance education modules developed at the A&M are soon to be broadcast throughout the country to help train a new generation of nuclear workers. Our students at the Nuclear Science Center at being snapped up by the nuclear power plants after graduating. Our research projects at A&M have all ended with new data, new ways of looking at old problems, and produced a covey of good students. I want to say 'Thanks' with utmost sincerity because without the INIE funds our efforts would yield a small fraction of the accomplishments you see in this report.

Warren Reece

2011-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Creating the Next Generation of Government * Make Government Stronger - Transparency * Make Government More Efficient - Participation * Stimulate Economic Growth- Collaboration challenges Solutions * Government as a Platform * Provide services directly to the citizen wherever and whenever * Enabled by Technology Impact - Transparency Impact - Participation Impact - collaboration Tools At Our Disposal Open Government Open Government QuickTime(tm) and a decompressor are needed to see this picture. 4. Data Communities 5. Reviewing Existing Agency Rules * Three grand challenges * 26 projects * One year to complete QuickTime(tm) and a decompressor are needed to see this picture. 1. Launch "We the People"

82

Research and Development | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Research and Development Home > About Us > Our Programs >...

83

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our...

84

Institutional Research & Development | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our...

85

Mitsuru Uesaka Nuclear Engineering Research Laboratory ,  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry Mitsuru Uesaka Nuclear Engineering Research Laboratory , University of Tokyo June 26, 2004...

86

CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors  

Science Conference Proceedings (OSTI)

An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

2011-07-01T23:59:59.000Z

87

A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm  

SciTech Connect

The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the pastincluding the intense focus on individual genes and proteins typical of molecular biologyhave not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

2011-02-01T23:59:59.000Z

88

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas.

Udagawa, T.

1991-10-01T23:59:59.000Z

89

Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Nuclear Energy Research Awards to 4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis $12 Million in Support to Be Provided for Innovative R&D Projects WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced 24 research awards totaling $12 million over three years to U.S. universities to engage students and professors in DOE's advanced nuclear energy research and development programs, including the Advanced Fuel Cycle Initiative, Generation IV Nuclear Energy Systems Initiative and Nuclear Hydrogen Initiative. "These awards support the department's advanced nuclear technology development efforts and foster the education and training of the next generation of scientists and engineers needed to move this vital industry

90

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

91

Program on Technology Innovation: Nuclear Power Generation Technologies  

Science Conference Proceedings (OSTI)

The United States and other countries are currently planning to expand their nuclear power electrical generation base in order to provide energy security and price stability while reducing greenhouse gas emissions. Since the existing fleet of nuclear plants was built during or before the 1970s, new plants will incorporate more advanced designs. This report documents the current status and potential for advanced nuclear power technology development and/or commercialization over the next 5 to 15 years.

2007-06-20T23:59:59.000Z

92

Research in Energy Innovation: the Need to Fill Gaps and Manage Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Energy Innovation: the Need to Fill Gaps and Manage Uncertainty Research in Energy Innovation: the Need to Fill Gaps and Manage Uncertainty Speaker(s): Laura Diaz Anadon Date: November 2, 2012 - 4:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser Innovation in energy technologies is necessary to confront profound challenges facing countries all over the world. Concerns regarding resource availability, the environment, health, national security, competitiveness, and access are driving government efforts to accelerate innovation in energy supply, end-use, and storage technologies. This talk will outline the tools available to governments to shape innovation in the energy sector and will discuss some of the most important knowledge gaps. It will then delve into recent research identifying the factors contributing to

93

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas.

Udagawa, Takeshi.

1990-10-01T23:59:59.000Z

94

The DNA of INNovATIoN The Impact of Pioneering Research  

E-Print Network (OSTI)

co-founded in 2008 to develop complex chip design tools. Roger explains that while current generation to interact with their devices using natural continuous speech. The technology is so sophisticated, Electrical Engineering and Computer Science has developed a basic demonstrator to prove their innovative

Paxton, Anthony T.

95

A Strategy for Nuclear Energy Research and Development  

Science Conference Proceedings (OSTI)

The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sectors dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energys share will require a coordinated research effortcombining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

Ralph G. Bennett

2008-12-01T23:59:59.000Z

96

Institutional Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

97

Thermomechanical analysis of innovative nuclear fuel pin designs  

E-Print Network (OSTI)

One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

Lerch Andrew (Andrew J.)

2010-01-01T23:59:59.000Z

98

Program on Technology Innovation: The Next Generation Nuclear Plant  

Science Conference Proceedings (OSTI)

This Technology Update documents the Next Generation Nuclear Plant (NGNP) project, which will demonstrate the design, licensing, construction, and operation of a new nuclear energy source using high-temperature gas-cooled reactor (HTGR) technology. This new non-emitting energy source is applicable to a broad range of uses, from generating electricity to providing high-temperature industrial process heat to producing hydrogen. The NGNP project is sponsored as part of the Energy Policy Act of 2005 and envi...

2008-12-15T23:59:59.000Z

99

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

100

Innovation Impact: Breakthrough Research Results (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

INNOVATION INNOVATION IMPACT Breakthrough Research Results NREL's campus in Golden, Colorado, is a model of sustainable energy and energy efficiency. INNOVATION IMPACT NREL has a rich history of scientific innovation and partnering with industry in research and development to bring new products and technologies into manufacturing production. In these pages we have captured key breakthrough results across our primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies. It is our hope that these examples convey the breadth of research at NREL. Under the stewardship of the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy (DOE), NREL is focused

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Materials Solutions for the Nuclear Renaissance  

Science Conference Proceedings (OSTI)

Nuclear reactors present a complex, challenging environment where innovations in materials ... Materials design for fast burner reactors and fusion research

102

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Philippine Nuclear Research Institute to Prevent Radiological Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

103

Innovations in the Use of Nuclear Energy for Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

J. Stephen Herring

2010-10-01T23:59:59.000Z

104

Biomedical Research Mentorship: The Young Investigators' Innovative High School Program  

E-Print Network (OSTI)

Hill V, Goodchild F. (1993) Apprentice Researchers at QUEST.Santa Barbara, the Apprentice Researchers at QUEST Program (Biotechnology Program, and the Apprentice Research at QUEST

Pham, Laura; Bragg, Richard; Uchio, Ken; Husted, Cynthia A. Ph.D.

2006-01-01T23:59:59.000Z

105

Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research Projects Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research Projects February 21, 2012 - 12:18pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that with support from the Department of Energy, 142 small businesses around the nation are starting work this week on 180 innovative research projects ranging from designing better wind turbines to developing a chemical-free approach to killing bacteria in power plant cooling water and from developing instruments to improve nanomaterials to making new coatings to improve the efficiency of gas turbines. These grants to small businesses - totaling $26.4 million - are developing new energy technologies that

106

ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES.  

SciTech Connect

The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities. While, there are distinctive elements in each approach, an analysis could be performed that utilizes aspects of each approach.

BARI,R.; ROGLANS,J.; DENNING,R.; MLADINEO,S.

2003-06-23T23:59:59.000Z

107

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

108

Review of the ISTC innovative nuclear programs (information review)  

Science Conference Proceedings (OSTI)

The information will be included in the review, with special attention on details of corresponding experimental programs: Novel reactor concepts, fit with GIF and INPRO: Supercritical Pressure Water aspects, Heavy metals (Lead, Lead-Bismuth) technology, HTGR critical modeling, engineering. Molten salts. Reactor data benchmarking, Accelerator Driven Systems (experimental modelling), Nuclear data measurements, Severe accident study (corium modelling, QUENCH, Chernobyl), Experimental Analysis of Hydraulically Induced Vibrations in Compact Curling Tube Steam Generators. (authors)

Tocheny, L. V. [ISTC - International Science and Technology Center, Moscow (Russian Federation)

2006-07-01T23:59:59.000Z

109

Small Business Innovation Research (SBIR) Hydrogen Program New Projects Awarded in FY 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program The Small Business Innovation Research (SBIR) program provides small businesses with opportunities to participate in DOE research activities by exploring new and innovative approaches to achieve research and development (R&D) objectives. The funds set aside for SBIR projects are used to support an annual competition for Phase I awards of up to $100,000 each for about nine months to explore the feasibility of innovative concepts. Phase II is the principal research or R&D effort, and these awards are up to $750,000 over a two-year period. Small Business Technology Transfer (STTR) projects include substantial (at least 30%) cooperative research collaboration between the small business and a non-profit

110

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

111

Innovative  

NLE Websites -- All DOE Office Websites (Extended Search)

and Novel Computational Impact on Theory and Experiment The INCITE program provides awards of time on the Oak Ridge and Argonne Leadership Computing Facility (LCF) high performance computer systems for researchers to pursue transformational advances in science and technology. If you answer yes to the following questions, INCITE may be right for you. To begin the process, submit an RFI: http://hpc.science.doe.gov/allocations/incite Is your science campaign outpacing the computing resources available to you? Do you have a long-term vision for your research campaign, over a period of years rather than months? Can you effectively use an INCITE-sized award, more than twenty million core-hours? INCITE INCITE issues an annual call for proposals of high-impact,

112

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectivethe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

113

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

114

Materials Research Needs for Near-Term Nuclear Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

115

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

116

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

117

THE LAUNDRY OF A NUCLEAR RESEARCH CENTRE  

SciTech Connect

The special demands on the laundry of a nuclear research center are described. By the example of cleaning and ironing in two days the radioactive contaminated work clothing of a staff of 1200 coworkers, a detailed plan is given for the construction of a serviceable laundry and an exact description of the flow sheet is added. (auth)

Meixner, A.

1962-09-01T23:59:59.000Z

118

Program on Technology Innovation: Advanced Light Source Research  

Science Conference Proceedings (OSTI)

The Advanced Light Source (ALITE) research program is aimed at breakthrough basic research to achieve approximately 150 to 200 lumens per watt for fluorescent light sources, and to increase high intensity discharge light source efficiency by up to 50%. This report describes work on high intensity discharge (HID) lamps. These commercially available lamps currently have efficacies up to 120 lumens per watt (LPW), and radiate approximately 36% of their energy in the visible spectrum and 53% in the infrared ...

2006-03-27T23:59:59.000Z

119

Safer nuclear reactors could result from Los Alamos research  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Releases News Releases - 2010 March Safer nuclear reactors could result from research Safer nuclear reactors could result from Los...

120

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

122

Research helps safeguard nuclear workers worldwide - Argonne's Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

Research helps safeguard nuclear workers Research helps safeguard nuclear workers worldwide About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

123

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

124

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

125

Background Long history of research and education in "nuclear  

E-Print Network (OSTI)

). #12;Master Programme in Nuclear Engineering · Coupling education ­ research (reactor physics#12;Background · Long history of research and education in "nuclear engineering" at Chalmers. · "Nuclear engineering" = multi-disciplinary research area. #12;Background Establishment of the Sustainable

Lemurell, Stefan

126

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

127

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

128

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (9) System Outline and Endurance Test of Low-Pressure Steam Injectors  

Science Conference Proceedings (OSTI)

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for 'Innovative Simplified Nuclear Power Plants' in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying 'High-Efficiency SI', which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program. (authors)

Shuichi Ohmori; Michitsugu Mori; Shoji Goto [Tokyo Electric Power Company (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Chikako Iwaki; Yutaka Asanuma [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

129

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

130

Research and Development | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

131

Research Reactor Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

132

Program on Technology Innovation: Comparative Radiological Risk Assessment of Advanced Nuclear Fuel Cycles  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is working to develop tools to support long-term strategic planning for research, development, and demonstration (RDD) of advanced nuclear fuel cycle technologies for electricity generation. The research described in this EPRI progress report supports the larger decision framework endeavor and intends to provide a standalone usable tool. Two strategic issues are addressed: radioactive and chemical waste management and safety (both radiological and chemical). U...

2012-05-21T23:59:59.000Z

133

Program on Technology Innovation: Summary of 2012 EPRI Nuclear Fuel Cycle Assessment Workshop  

Science Conference Proceedings (OSTI)

Government, industry, and academic stakeholders met at an EPRI-sponsored Nuclear Fuel Cycle Assessment Workshop, held July 2324, 2012, to exchange perspectives, plans, and insights concerning how fuel cycle technology options should be evaluated for the purposes of research, development, and demonstration (RD&D) as well as eventual deployment. The workshop reviewed efforts in the screening and assessment of advanced nuclear fuel cycle options for future energy systems and focused on the ...

2012-12-07T23:59:59.000Z

134

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

135

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

136

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

137

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

138

Office of Research, Development, Test, and Evaluation | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, Test, and Evaluation | National Nuclear Research, Development, Test, and Evaluation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation

139

Solar and nuclear energy expertise to be enhanced by research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

140

SRNL Project Supports Nuclear Energy Research  

will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Small Business Innovation Research (SBIR) Award Success Story: FuelCell Energy Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelCell Energy Inc., in collaboration FuelCell Energy Inc., in collaboration with Sustainable Innovations LLC, develops highly efficient solid state electrochemical hydrogen compressor FuelCell Energy Inc. manufactures stationary fuel cells for commercial and industrial applications as well as for government facilities and utilities. Based in Danbury, Connecticut, with more than thirty years of experience and roughly 440 employees, they are one of the world leaders in the manufacturing and commercialization of ultra-clean and efficient stationary fuel cells for electric power generation. Their manufacturing plant is located in Torrington, Connecticut and has a capacity of producing up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation Research (SBIR)

142

Summary, Long-Term Nuclear Technology Research and Development Plan  

Energy.gov (U.S. Department of Energy (DOE))

In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on...

143

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

Actinide Shock Physics Experimental Research | National Nuclear Actinide Shock Physics Experimental Research | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Jasper Joint Actinide Shock Physics Experimental Research Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

144

Laboratory Directed Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Laboratory Directed Research & Development | National Nuclear Security Laboratory Directed Research & Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Laboratory Directed Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

145

Collaborative research helps Alexis Kaplan pursue her interest in nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative research helps Alexis Kaplan pursue her interest in Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Nuclear Engineering graduate research assistant designs a prototype for a system that will measure the used fuel that comes out of nuclear reactors. August 22, 2013 Alexis Kaplan Alexis Kaplan, a graduate research assistant, relocates to the small town of Los Alamos to finish her PhD thesis research with the Safeguards Science and Technology group. Alexis and her team of nuclear, mechanical, and electrical engineers are designing and building a prototype for a system that will measure the used fuel that comes out of nuclear reactors. "I feel like I have 4 or 5 mentors. That is one of my favorite things

146

Strategic Nuclear Research Collaboration - FY99 Annual Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

T. J. Leahy

1999-07-01T23:59:59.000Z

147

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

148

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

149

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERIST...  

National Nuclear Security Administration (NNSA)

1 Session 12: Engineering and Criticality Experimental And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing 237 Np + 239 Pu(98%) in The Core...

150

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

151

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

152

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

153

Nuclear Safety Research and Development Committee Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

154

Institutional Research & Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development Institutional Research & Development...

155

Laboratory Directed Research & Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > Laboratory Directed Research &...

156

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

157

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

158

International Nuclear Energy Research Initiative 2010 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

159

FY 2014 Scientific Infrastructure Support for Consolidated Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientific Infrastructure Support for Consolidated Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. The development of nuclear energy-related infrastructure and basic capabilities in the research community is necessary to promote R&D that supports nuclear science and engineering (NS&E), DOE-NE's mission, and the Nation's nuclear energy challenges. Accordingly, DOE intends to

160

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics...

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

International Nuclear Energy Research Initiative: 2010 Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. U.S. researchers partner with international organizations,...

162

Institutional Research & Development Reports | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reports | National Nuclear Security Reports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

163

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

164

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

165

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

IEA. "Innovative Nuclear Reactor Development: OpportunitiesIEA. "Innovative Nuclear Reactor Development: OpportunitiesIEA. "Innovative Nuclear Reactor Development: Opportunities

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

166

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

167

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > National...

168

Submission House of Representatives Standing Committee on Industry, Science and Innovation Inquiry into Research Training and Research Workforce Issues in Australian Universities  

E-Print Network (OSTI)

The contribution that Australian universities make to research training in Australia a) Contribution of research training programs to Australias competitiveness in the areas of science, research and innovation Australian universities are clearly the primary research training platform in regards to science, research and innovation. Commonwealth research training scheme funding is accessed by The University of Notre Dame Australia (UNDA) to provide, primarily, relief from tuition fees for higher degree by research students. Only a very minimal amount of RTS funding is used to fund skills acquisition and professional development for research active staff and students at UNDA. Other programs within UNDA that are linked to RTS include a limited injection of funding into student research project costs and general research capacity building. UNDA has undergone a sustained growth in its research student population; our enrolled research students have increased seven-fold between 2002 and 2008. RTS funding has significantly supported this growth and, as a result, the capacity to support research in other ways has remained limited. One example of where the University has achieved success on a limited budget has been in the implementation of a Research Incentive Scheme that rewards research output and acts as a catalyst for future research initiatives. In the context of seeking to achieve excellence in niche research UNDA has expanded its research program in the

unknown authors

2008-01-01T23:59:59.000Z

169

Future challenges for nuclear data research in fission (u)  

Science Conference Proceedings (OSTI)

I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

Chadwick, Mark B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

170

Nuclear Instruments and Methods in Physics Research A 598 (2009  

NLE Websites -- All DOE Office Websites (Extended Search)

8,19; short X-ray pulse generation for light sources l'l|2-23 J. Shi et al. Nuclear lnstruments and Methods n Physics Research A 598 (2009) 388-393 '1.2. Emttance...

171

DOE, State of Idaho Sign Agreement on Nuclear Research  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE, State of Idaho Sign Agreement on Nuclear Research The State of Idaho and the U.S. Department of Energy signed an agreement on Jan. 6, 2011 that streamlines the process used by...

172

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories Award: Fellows of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

173

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

174

Institutional Research & Development News | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Development News Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

175

[The National Institute for Nano-Engineering : a public-private partnership for research, education, and innovation].  

Science Conference Proceedings (OSTI)

The National Institute for Nano-Engineering (NINE) is a government/university/industry collaboration formed to help develop the next generation of nano-engineering innovation leaders for the United States. NINE involves students in large scale multi-disciplinary research projects focused on developing nano-enabled solutions to important national problems. The NINE program is based on the growing understanding that science and engineering education and innovation can be strengthened by involvement of university students and faculty with the world-class capabilities and facilities of government laboratories supplemented by guidance and support from industry collaborators. A number of recent reports have highlighted global competitiveness issues that the Unites States faces in the coming decades. Technology innovation, the ability to progress from emerging technologies to products that change the way people live, is a key to global leadership and economic prosperity for nations and their people. One of the top technology and economic drivers for the coming decades will the spectrum of emerging capabilities that fall into the category of nanotechnologies. NINE was established as a national innovation hub in the exciting and rapidly developing field of nano-engineering. It is intended to be a model of a novel partnership between universities and companies throughout the nation and the Department of Energy, with Sandia National Laboratories as the host lab for NINE. Successful technology innovation requires the integration of technical research and development with additional expertise from other areas including manufacturing, business, marketing, intellectual property, and the interface between technology and society. NINE was created to address this need for a new integrated approach to science and engineering research, education and innovation in a way that takes advantage of the nation's investment in facilities and capabilities at the national laboratories.

Stinnett, Regan White

2010-10-01T23:59:59.000Z

176

Oak Ridge National Laboratory - Nuclear Science and Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

supercomputer research such as this simulation of a Westinghouse PWR900 pressurized water reactor core. Visualization by Tom Evans, ORNL Nuclear Energy Innovation Hub ORNL will...

177

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

178

A Conceptual Framework of Service Innovation and Its Implications for Future Research  

Science Conference Proceedings (OSTI)

The service sector is the most important and fastest growing business sector of developed countries nowadays. However, a lack of conceptual foundation for service science and service innovation is identified. This paper aims at closing this gap, indicating ... Keywords: Conceptual Framework, Service Innovation, Service Science, Service-dominant Logic

Sven Schwarz; Carolin Durst; Freimut Bodendorf

2012-07-01T23:59:59.000Z

179

All Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

70 Years of Innovations » 70 Years of Innovations » All Innovations /about/_assets/images/icon-about.jpg All Innovations Since 1943, some of the world's smartest and most passionate technical people have accomplished the difficult, the unexpected, and what sometimes seems impossible at Los Alamos *70 YEARS OF INNOVATIONS 1940s 1943 WAR-ENDING INVENTIONS The Laboratory was created with one crucial objective: gather the world's brightest scientific minds to design and build a weapon that would help to end World War II. Fight power with power xx Essential for obtaining data to design war-ending weapons, Los Alamos scientists constructed the first homogeneous liquid-fuel reactor fueled by enriched uranium, code-named Water Boiler, as a neutron source. Two more were built. These reactors led to pioneering research on radiation's effects.

180

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network (OSTI)

. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located satisfactory for safe operation, and AECL decided to decommission it in 1978. The nuclear fuel was removedSP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

182

Micromachine Artifact - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Nuclear Power Public Safety International Safeguards More Information Patent Pending on SD# 11173 Technology Status.

183

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-May 1, 2001, Crystal City Marriott, Arlington, Virginia 30-May 1, 2001, Crystal City Marriott, Arlington, Virginia NERAC members present: John Ahearne Benjamin F. Montoya Joseph Comfort Sekazi Mtingwa Michael L. Corradini Lura Powell Jose Luis Cortez Richard Reba Maureen S. Crandall Joy Rempe James Duderstadt (Chair) Allen Sessoms (Monday only) Marvin Fertel Daniel C. Sullivan (Monday only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas Dale Klein Joan Woodard Robert Long NERAC members absent: Thomas Cochran Linda C. Knight Allen Croff Warren F. Miller, Jr. J. Bennett Johnston C. Bruce Tarter Also present: Ralph Bennet, Director, Advanced Nuclear Energy, Idaho National Engineering and Environmental Laboratory Nancy Carder, NERAC Staff Yoon I. Chang, Associate Laboratory Director, Argonne National Laboratory

184

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

185

SNERDI Shanghai Nuclear Engineering Research and Design Institute | Open  

Open Energy Info (EERE)

SNERDI Shanghai Nuclear Engineering Research and Design Institute SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place Shanghai, China Product The Shanghai Nuclear Engineering Research and Design Institute was established on July 28th, 1970, as a key research and design institute under direct administration of China National Nuclear Corporation (CNNC). Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

International Nuclear Energy Research Initiative: 2011 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual 1 Annual Report International Nuclear Energy Research Initiative: 2011 Annual Report Fiscal year (FY) 2011 marks the ten-year anniversary of the founding of the International Nuclear Energy Research Initiative, or I-NERI. Designed to foster international partnerships that address key issues affecting the future global use of nuclear energy, I-NERI is perhaps even more relevant today than at its establishment. In the face of increasing energy demands coupled with clean energy imperatives, we must clear the hurdles to expanding the role of nuclear power in our energy portfolio. And in an increasingly global society, the importance of international cooperation in these efforts has escalated. For ten years, I-NERI has been a vehicle for establishing bilateral

187

Nuclear Power Plant Containment Pressure Boundary Research  

SciTech Connect

Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

1999-09-15T23:59:59.000Z

188

Nuclear materials research progress reports for 1979  

DOE Green Energy (OSTI)

Research is presented concerning iodide stress corrosion cracking of zircaloy, self-diffusion of oxygen in hypostoichiometric urania, surface chemistry of epitaxial silicon deposition by thermal cracking of silane, kinetics of laser pulse vaporization of UO/sub 2/, gas laser model for laser induced evaporation, solubility of hydrogen in uranium dioxide, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic hydrogen reduction of oxides, and thermal gradient brine-inclusion migration in salt. (FS)

Olander, D.R.

1979-12-01T23:59:59.000Z

189

Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

2000-05-05T23:59:59.000Z

190

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research 310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Summary This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at DOE's Hanford Site near Richland, Washington. This PEIS will analyze the potential environmental impacts of alternative ways to meet the projected irradiation needs for the next 35 years. Public Comment Opportunities

191

Nuclear materials research progress reports for 1977  

DOE Green Energy (OSTI)

Research is reported concerning radiation enhancement of stress corrosion cracking of Zircaloy, surface chemistry of epitaxial Si deposited by thermal cracking of silane, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic H and reduction of oxides, mass transfer and reduction of UO/sub 2/, kinetics of laser pulse vaporization of UO/sub 2/, retention and release of water by UO/sub 2/ pellets, and solubility of H in UO/sub 2/. (FS)

Olander, D.R.

1977-12-01T23:59:59.000Z

192

Primary Research on Financing Innovation for China Coal CDM Projects Development  

Science Conference Proceedings (OSTI)

This paper gives an update introduction about China coal CDM projects, financing problems in China coal CDM development was analysized and some innovation suggestions for China CDM projects was given. Finally some successful experience in India CDM financing ...

Xiangyang Xu

2009-12-01T23:59:59.000Z

193

Small Business Innovation Research Award Success Story: FuelCell Energy Inc.  

Fuel Cell Technologies Publication and Product Library (EERE)

This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business I

194

RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS  

DOE Green Energy (OSTI)

Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

Robert C. O'Brien

2001-09-01T23:59:59.000Z

195

Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research  

SciTech Connect

Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

2012-09-01T23:59:59.000Z

196

Executive Summary: Research in Nuclear PowerWorkshop on the Needs of the Next Generation of Nuclear Power Technology  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

A. David Rossin; Kunmo Chung; K. L. Peddicord

197

Program on Technology Innovation: Information Integration for Equipment Reliability at Nuclear Plants  

Science Conference Proceedings (OSTI)

This report investigates the status of information integration for equipment reliability (ER) at nuclear power plants. ER consists of a comprehensive set of processes that span the organization and require extensive data gathering, retrieval, and information integration. To assist nuclear operators, the Institute of Nuclear Power Operations (INPO) issued AP-913, Equipment Reliability Process Description, as a standard approach to implement effective ER processes among its members. Despite the success tha...

2009-04-30T23:59:59.000Z

198

TOPAS: An innovative proton Monte Carlo platform for research and clinical applications  

Science Conference Proceedings (OSTI)

Purpose: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. Methods: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. Results: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes. We have modeled proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and we have demonstrated dose calculation based on patient-specific CT data. Initial validation results show agreement with measured data and demonstrate the capabilities of TOPAS in simulating beam delivery in 3D and 4D. Conclusions: We have demonstrated TOPAS accuracy and usability in a variety of proton therapy setups. As we are preparing to make this tool freely available for researchers in medical physics, we anticipate widespread use of this tool in the growing proton therapy community.

Perl, J.; Shin, J.; Schuemann, J.; Faddegon, B.; Paganetti, H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

2012-11-15T23:59:59.000Z

199

Program on Technology Innovation: A Quantitative Radiological Risk Analysis of the U.S. Once-Through Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

EPRI is sponsoring the development of tools to support long-term strategic planning for research, development, and demonstration (RD&D) of nuclear fuel cycle technologies and options. This report describes progress and results to date on the development of a novel comparative risk assessment tool and its application to the baseline once-through nuclear fuel cycle (OTC) in its present incarnation in the United States. An updated detailed description of the U.S. OTC reveals far greater complexity ...

2013-05-30T23:59:59.000Z

200

Program on Technology Innovation: Controlled Recycling of Contaminated Materials for Nuclear Industry Uses  

Science Conference Proceedings (OSTI)

This report addresses opportunities to recycle materials in radioactive waste by decontamination and fabrication into new components for use in the nuclear industry. In particular, a novel approach called "controlled recycling" involves a procedure that controls the material during decontamination, metal processing and remanufacture into components for reuse in the nuclear industry.

2006-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Program on Technology Innovation: Nuclear Energy in a Carbon-Constrained World  

Science Conference Proceedings (OSTI)

This report explores the economic value of advanced nuclear reactor and fuel system technologies in addressing global warming in a carbon-constrained world. Under a range of reasonable assumptions, the projected value of advanced nuclear technology options is in the trillions of dollars even in scenarios that take into account competing technologies such as carbon capture and storage (CCS).

2005-12-14T23:59:59.000Z

202

CERNA WORKING PAPER SERIES What drives innovation in nuclear reactors technologies?  

E-Print Network (OSTI)

, rapidly shifted toward the development of nuclear reactor design technologies especially as NPPs designs evolved toward more standardized technologies (e.g., Light Water Reactors (LWRs)) by the late 1960s (OECD organizations is especially strong for nuclear reactors technology development (OECD/NEA, 2007). 19 Forward

Paris-Sud XI, Université de

203

Soliton-like waves of nuclear burning in the neutron multiplicating media : (theory and computational approach).  

E-Print Network (OSTI)

??The research project has dealt with a conceptual design of a model of an innovative inherently safe nuclear soliton-like fast reactor of Feoktistov type. The (more)

Byegunova, Olga

2009-01-01T23:59:59.000Z

204

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

205

Program on Technology Innovation: Advanced Nuclear Technology--Component Margins and Monitoring Database  

Science Conference Proceedings (OSTI)

The Advanced Nuclear Technology Margins and Monitoring Database, available to EPRI members, documents a consensus of experts on issues relating to equipment design margins and monitoring recommendations for large capital, balance-of-plant (BOP) components important to power production.

2008-04-21T23:59:59.000Z

206

Technology Innovation: Fiber Bragg Gratings for Pressure Monitoring in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

To create a reliable power generation network, emerging nuclear energy reactor designs require reliable pressure-measurement technology that is not presently available. Because of their operating conditions, pressure transducers currently used in the power generation industry offer a limited usable life. An improved transducer design would have the opportunity to improve maintenance efficiencies and reliability. The usable life of current pressure-measurement technology used for nuclear power plant appli...

2012-07-16T23:59:59.000Z

207

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

208

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

209

Nuclear decay data files of the Dosimetry Research Group  

Science Conference Proceedings (OSTI)

This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

1993-12-01T23:59:59.000Z

210

Safety Aspects of Nuclear Desalination with Innovative Systems; the EURODESAL Project  

SciTech Connect

The proposed paper reports the results of a preliminary investigation on safety impact deriving from the coupling of a desalination plant with a 600 MWe Passive Design PWR like the AP600 Nuclear Power Plant. This evaluation was performed in the frame of the EURODESAL Project of the 5. EURATOM Framework Programme. (authors)

Alessandroni, C.; Cinotti, L.; Mini, G. [Ansaldo Nucleare, C.so Perrone, 25 - Genova (Italy); Nisan, S. [CEA-CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)

2002-07-01T23:59:59.000Z

211

Program on Technology Innovation: Nuclear Power Emergency Power Alternative Technology Investigations  

Science Conference Proceedings (OSTI)

Strategies for the use of advanced electrical energy storage and generation technologies for providing direct current (dc) and alternating current (ac) emergency power for nuclear power plants were investigated and a screening evaluation of these technologies for use in these strategies was conducted. Potential near-term and longer term possibilities were considered in the screening of the technologies that ...

2013-11-13T23:59:59.000Z

212

Small Business Innovative Research (SBIR) Hydrogen Program New Projects Awarded in FY 2007, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2007 Annual Progress Report DOE Hydrogen Program The Small Business Innovation Research (SBIR) Program provides small businesses with opportunities to participate in DOE research activities by exploring new and innovative approaches to achieve R&D objectives. The funds set aside for SBIR projects are used to support an annual competition for Phase I awards of up to $100,000 each for about nine months to explore the feasibility of innovative concepts. Phase II is the principal research or R&D effort, and these awards are up to $750,000 over a two-year period. Small Business Technology Transfer (STTR) projects include substantial (at least 30%) cooperative research collaboration between the small business and a non-profit research institution. For more information about

213

X. Small Business Innovative Research (SBIR) Hydrogen Program New Projects Awarded in FY 2006, excerpt from DOE Hydrogen Program 2006 Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

61 61 FY 2006 Annual Progress Report DOE Hydrogen Program The Small Business Innovation Research (SBIR) program provides small businesses with opportunities to participate in DOE research activities by exploring new and innovative approaches to achieve R&D objectives. The funds set aside for SBIR projects are used to support an annual competition for Phase I awards of up to $100,000 each for about nine months to explore the feasibility of innovative concepts. Phase II is the principal research or R&D effort, and these awards are up to $750,000 over a two-year period. Small Business Technology Transfer (STTR) projects include substantial (at least 30%) cooperative research collaboration between the small business and a non- profit research institution.

214

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

215

Competition Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition Innovations Competition Innovations Through the years, innovations, advancements and research projects have resulted from competitions. From Challenge X 2007 Mississippi State University on the road during the on-road fuel economy event Forrest Jehlik, Lead Technical Coordinator, Advanced Vehicle Technology Competitions, and the University of Wisconsin-Madison preparing for an on-road vehicle emissions event. Pennsylvania State University racing through the cones of the autocross event. Left: Mississippi State University on the road during the on-road fuel economy event. Center: Forrest Jehlik and the University of Wisconsin-Madison preparing for an on-road fuel economy event. Right: Pennsylvania State University on the road during the on-road fuel economy event.

216

Program on Technology Innovation: EPRI Framework for Assessment of Nuclear Fuel Cycle Options  

Science Conference Proceedings (OSTI)

EPRI is building a suite of tools for assessing nuclear fuel cycle options based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. This report describes a decision-support framework for assembling and structuring information for transparent auditable assessments as well as knowledge capture and transfer.The EPRI framework comprises evaluation and analysis at strategic, tactical, and readiness levels in regard to transformational ...

2013-03-28T23:59:59.000Z

217

Program on Technology Innovation: Nuclear Hydrogen Assessment and Evaluation of SuperGrid Demonstration  

Science Conference Proceedings (OSTI)

The hydrogen economy is a response to concerns about greenhouse gas emissions and the national security consequences of over-reliance on foreign petroleum imports. Hydrogen can replace petroleum as a transportation fuel, yield nothing but water from the tailpipe, and can be produced with little to no greenhouse gas emissions. Nuclear power will play a key role in energizing a future hydrogen economy. A new generation of High Temperature Gas-cooled Reactors (HTGRs) is being developed that can generate el...

2007-12-13T23:59:59.000Z

218

Program on Technology Innovation: Security Technology Evaluation for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report provides a summary of the state-of-the-art technologies available for perimeter surveillance and intrusion detection systems. These technologies are applicable to the planning and implementation of security measures for the next generation of nuclear power plants. In the absence of intelligence information, the first indication of a potential attack would be from an intrusion into a facility. This intrusion would be detected by a properly designed and deployed perimeter security system. The a...

2007-10-22T23:59:59.000Z

219

Program on Technology Innovation: A Preliminary Study on Decision Support for the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

License renewals allow many nuclear plants to operate well beyond their originally planned lives. Several studies have encouraged these extensions from economic and environmental perspectives because continuous operation of these plants is more financially feasible than building new ones. The increasing customer demand for electricity can be met by this low-cost energy alternative to fossil fuels, which also reduces CO2. However, extended plant life also presents serious challenges.

2008-07-21T23:59:59.000Z

220

Hydrogen Detection in Nuclear Power Plants: Comparison of Potential, Existing, and Innovative Technologies  

Science Conference Proceedings (OSTI)

The ability to monitor hydrogen volumes accurately and quickly within containment environments at nuclear power plants is a critical capability, especially during accident conditions where hydrogen generation may be occurring within the reactor vessel. Since the initial installation of hydrogen monitoring systems in plants following the Three Mile Island accident in 1979, new technologies have been developed and offer performance advantages when compared with existing installed sensors. In addition ...

2013-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

> Thrust Areas Research Carbon Fiber and Composites Innovation in Carbon Fiber Production Oak Ridge National Laboratory's Low-Cost Carbon Fiber work is focused on reducing...

222

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

223

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

224

Innovation in Nuclear Technology for the Least Product Price and Cost  

SciTech Connect

In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

Duffey, Romney

2003-09-01T23:59:59.000Z

225

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

226

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

227

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors configurations will contribute to an improved design, safety, and operation of nuclear reactors. In relation

Lindken, Ralph

228

SUPPLEMENT ANALYSIS OF FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL TRANSPORTATION ALONG OTHER THAN~. PRESENTATIVE ROUTE FROM CONCORD NAVAL WEAPO~~ STATION TO IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LADORA TORY Introduction The Department of Energy is planning to transport foreign research reactor spent nuclear fuel by rail from the Concord Naval Weapons Station (CNWS), Concord, California, to the Idaho National Engineering and Environmental Laboratory (INEEL). The environmental analysis supporting the decision to transport, by rail or truck, foreign research reactor spent nuclear fuel from CNWS to the INEEL is contained in +he Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliftration Policy Concerning Foreign Research Reactor

229

Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center  

SciTech Connect

This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

Brown, G.Z.

1990-01-01T23:59:59.000Z

230

Hydrogen Research and Development Initiative - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Research and Development Initiative Hydrogen Research and Development Initiative International Safety Projects Overview Hydrogen as an Energy Carrier Global access to energy and fresh water International cooperation on safety of nuclear plants Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs The Use of Hydrogen as an Energy Carrier Bookmark and Share President Bush initiated a major program to accelerate the development of a national hydrogen economy. The goal is to reverse America's growing dependence on foreign oil by developing science and technology for commercially viable fuel cells that use hydrogen to power cars, trucks, homes, and businesses without directly emitting pollution or greenhouse

231

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

232

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

233

Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Innovation View a slideshow from the 2013 ARPA-E Summit Technology Showcase, including a Tesla Model S electric sedan. | Photo by Sarah Gerrity, Energy Department. View a slideshow from the 2013 ARPA-E Summit Technology Showcase, including a Tesla Model S electric sedan. | Photo by Sarah Gerrity, Energy Department. As a science agency, the Energy Department plays an important role in the innovation economy. The Department catalyzes the transformative growth of basic applied scientific research, the discovery and development of new clean energy technologies and prioritizes scientific innovation as a cornerstone of US economic prosperity.

234

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEs Office of Advanced Scientific Computing Research (ASCR) and DOEs Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCs continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called case studies, of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

235

Report, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safeguards and nonproliferation, environmental management and waste cleanup, and Navy nuclear propulsion systems development resides outside the Office of Nuclear Energy, Science...

236

The Mars Gravity Biosatellite as an innovative partial gravity research platform  

E-Print Network (OSTI)

The Mars Gravity Biosatellite is an unprecedented independent spaceflight platform for gravitational biology research. With a projected first launch after 2010, the low Earth orbit satellite will support a cohort of fifteen ...

Fulford-Jones, Thaddeus R. F

2008-01-01T23:59:59.000Z

237

Program on Technology Innovation: Assessment of Needs for Concrete Research in the Energy Industry  

Science Conference Proceedings (OSTI)

The objective of this report is to compile information on issues pertaining to the degradation of concrete structures in the energy industry and to provide guidance in areas where research and development efforts might be needed. The state of these structures, known as concrete degradation, the life management approach, and challenges with new structures are discussed. In each case, a set of suggestions for further research is proposed. Finally, a set of recommendations for the overall needs of short-, m...

2010-12-20T23:59:59.000Z

238

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Funding for 71 University-Led Nuclear Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 1:49pm Addthis U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in addressing the global climate

239

Appendix B to the Minutes for the Nuclear Energy Research Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix B to the Minutes for the Nuclear Energy Research Advisory Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon-usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by terrorists to develop and deliver a crude nuclear explosive device, or by a hostile proliferant state to develop more sophisticated nuclear weapons. This is not the time for the United States to be launching an international research effort to develop

240

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Announces Funding for 71 University-Led Nuclear Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heat transfer research in General Electric, 1910-1960; Examples of the product-driven innovation cycle  

SciTech Connect

General Electric has a long and varied history of doing research on heat transfer, and using the results in its products and processes. Lessons it has learned during the half-century from 1910 to 1950 suggest a need for revision in the standard models used by economists to describe the way industry generates new technology and uses it to achieve innovations. The generation of new technology or the better use of old technology begins, not with a demand from the marketplace or a push from research, but from consideration of an already existing product. Problems or opportunities involving that product drive engineers or scientists to search for new knowledge. That knowledge proves useful in the development of a product, perhaps the one that initiated the search for knowledge, or perhaps a very different one. The important point is that however esoteric or mundane is the research in the middle of the cycle, the beginning and end are always products (or the processes used to make products), not scientists' ideas or customers demands.

Wise, G. (General Electric R and D Center, Schenectady, NY (US))

1991-01-01T23:59:59.000Z

242

Program on Technology Innovation: Very High Efficiency Photovoltaics Research, 2009 Update  

Science Conference Proceedings (OSTI)

This is the second interim annual summary report on the collaborative activities of CNRS and EDF RD to advance the state of high-efficiency photovoltaics (PV). This activity is principally concerned with basic research to enhance longer-term prospects of very high efficiency PV, but it also includes possible nearer-term outcomes of improved conversion efficiency for existing technologies.

2010-02-19T23:59:59.000Z

243

Program on Technology Innovation: An Energy/Water Sustainability Research Program for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report presents a research plan, based on business and economic as well as technical considerations, that would create and test new technology and science to overcome present and future constraints on thermoelectric generation resulting from limited freshwater availability. The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2007-07-19T23:59:59.000Z

244

Bibliography of reports on research sponsored by the NRC Office of Nuclear Regulatory Research, November 1975--June 1976  

SciTech Connect

A bibliography of 152 reports published by contractors of the NRC Office of Nuclear Regulatory Research during the period November 1975 through June 1976 is presented along with abstracts from the Nuclear Safety Information Center computer file. The bibliography has been sorted into the subject categories used by NRC to organize the research program. Within the subject categories, the reports are sorted by contractor organization and then chronologically. A brief description of the NRC research program precedes the bibliography.

Buchanan, J.R.

1976-09-30T23:59:59.000Z

245

Call for Proposals for SystemsX.ch Projects In the Messages on Education, Research and Innovation for 2008-2011 and 2012, the Fed-  

E-Print Network (OSTI)

of the SystemsX.ch initiative. The Mes- sage on Education, Research and Innovation for 2013-2016 envisages- view, for the period of 2013-2016. Teams of scientists from all SystemsX.ch partner institu- tions ................................................................................................12 3.1.10 Annual Scientific and Financial Reporting

Glinz, Martin

246

Program on Technology Innovation: Very High Efficiency Photovoltaics Research at IRDEP  

Science Conference Proceedings (OSTI)

This is an interim report on the collaborative activities of Centre National de la Recherche Scientifique (CNRS) and Electricit de France (EDF) R&D to advance the state of high-efficiency photovoltaics (PV). These efforts are principally concerned with basic research to enhance the longer-term prospects of very high-efficiency PV, but they may also produce nearer-term outcomes in the shape of improved conversion efficiency for existing technologies.

2009-03-31T23:59:59.000Z

247

Program on Technology Innovation: Biotechnology Research and Development Opportunities in the Electricity Enterprise  

Science Conference Proceedings (OSTI)

Advances over the past 20 years in biotechnology have led to important contributions in health care, production of food and fiber, industrial and manufacturing performance, ecosystem service enhancements, and pollution prevention, control, and remediation. While the electricity enterprise is currently underrepresented in the biotechnology sector in terms of research, there is a current move to apply plant and industrial biotechnologies to the energy sector because of the enormous market potential in spec...

2007-06-29T23:59:59.000Z

248

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Million for 42 University-Led Nuclear 8 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

249

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$38 Million for 42 University-Led Nuclear $38 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:05pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

250

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

251

Atomic and nuclear research with accelerators. Interim progress report, 1 October 1972--1 October 1973  

SciTech Connect

Research on ion-atom collisions and heavy-ion nuclear reactions is summarized. A list of publications is included. (JFP)

1973-10-01T23:59:59.000Z

252

Report of the Infrastructure Task Force of the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Infrastructure Task Force of the Nuclear Energy of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D) laboratories. This activity was assigned to a five-member Infrastructure Task Force (ITF). After receiving extensive written materials from DOE, the Idaho Nuclear Engineering and Environmental Laboratory (INEEL) and Argonne National Laboratory-West (ANL-W), on November 6-8, 2002 the ITF visited the Idaho site and received briefings and tours of the INEEL and ANL-W facilities.

253

Location, Decentralization, and Knowledge Sources for Innovation  

Science Conference Proceedings (OSTI)

When firms seek to innovate, they must decide where to locate their innovation activity. This location choice requires firms to make a simultaneous choice about the organizational structure of innovation activity: almost by definition, multiple locations ... Keywords: decentralization, imitative innovation, new-to-the-market innovation, research and development

Aija Leiponen; Constance E. Helfat

2011-05-01T23:59:59.000Z

254

President's Energy Budget Invests in Innovation, Clean Energy, and National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Budget Invests in Innovation, Clean Energy, and Energy Budget Invests in Innovation, Clean Energy, and National Security Priorities President's Energy Budget Invests in Innovation, Clean Energy, and National Security Priorities February 1, 2010 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today detailed President Barack Obama's $28.4 billion Fiscal Year 2011 budget request for the Department of Energy, highlighting the Administration's commitment to create jobs with the development of a clean energy economy, invest in advanced science, research and innovation, maintain a strong nuclear deterrent and secure nuclear materials both at home and abroad, and improve energy efficiency to help curb greenhouse gas emissions that contribute to climate change. The FY 2011 budget request also places an emphasis on DOE

255

Program on Technology Innovation: Coastal Halogen Atmospheric Research on Mercury Deposition (CHARMeD)  

Science Conference Proceedings (OSTI)

Determining mercurys atmospheric transformation reactions is essential for atmospheric deposition models that are used for regulatory purposes. It is the oxidation of inorganic elemental Hg (Hg0) to its water-soluble ionic form (Hg2+) that determines the rate of Hg deposited in waterways. Substantial research has been done in the past on atmospheric Hg transformation reactions with ozone (O3) and the hydroxyl radical (OH), but O3 and OH may not be capable of fully causing mercurys observed oxidation an...

2009-08-11T23:59:59.000Z

256

Nuclear Safety Research and Development Status Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSR&D STATUS WORKSHOP SUMMARIES Caroline Garzon Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team...

257

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

258

Research of IPE Solution Applied to EPR Nuclear Power Project  

Science Conference Proceedings (OSTI)

A nuclear power company is currently in the process of constructing the advanced 3rd generation of EPR Nuclear Power Plant, and its corresponding information system is an overall integrated information management system based on the new concept design. ... Keywords: digital nuclear power plant, IPE solutions, comprehensive application

Daqiao Wang; Fangneng Hu; Yi Luo; Yi Ma

2012-07-01T23:59:59.000Z

259

CERN-INTC-2011-053/INTC-P-317 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disCERN-INTC-2011-053/INTC-P-317 06/10/2011 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal. N. Wolf8 , K. Zuber9 1Max Planck Institute for Nuclear Physics, Heidelberg, Germany 2GSI

260

Development of Technical Nuclear Forensics for Spent Research Reactor Fuel  

E-Print Network (OSTI)

Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct reactor parameters from a spent fuel sample using results from a radiochemical analysis. In the inverse analysis, a reactor physics code is used as a forward model. Verification and validation of different reactor physics codes was performed for usage in the inverse analysis. The verification and validation process consisted of two parts. The first is a variance analysis of Monte Carlo reactor physics burnup simulation results. The codes used in this work are MONTEBURNS and MCNPX/CINDER. Both utilize Monte Carlo transport calculations for reaction rate and flux results. Neither code has a variance analysis that will propagate through depletion steps, so a method to quantify and understand the variance propagation through these depletion calculations was developed. The second verification and validation process consisted of comparing reactor physics code output isotopic compositions to radiochemical analysis results. A sample from an Oak Ridge Research Reactor spent fuel assembly was acquired through a drilling process. This sample was then dissolved in nitric acid and diluted in three different quantities, creating three separate samples. A radiochemical analysis was completed and the results were compared to simulation outputs at different levels ofdetail. After establishing a forward model, an inverse analysis was developed to re-construct the burnup, initial uranium isotopic compositions, and cooling time of a research reactor spent fuel sample. A convergence acceleration technique was used that consisted of an analytical calculation to predict burnup, initial 235U, and 236U enrichments. The analytic calculation results may also be used stand alone or in a database search algorithm. In this work, a reactor physics code is used as a for- ward model with the analytic results as initial conditions in a numerical optimization algorithm. In the numerical analysis, the burnup and initial uranium isotopic com- positions are reconstructed until the iterative spent fuel characteristics converge with the measured data. Upon convergence of the samples burnup and initial uranium isotopic composition, the cooling time can be reconstructed. To reconstruct cooling time, the standard decay equation is inverted and solved for time. Two methods were developed. One method uses the converged burnup and initial uranium isotopic compositions along in a reactor depletion simulation. The second method uses an isotopic signature that does not decay out of its mass bin and has a simple production chain. An example would be 137Cs which decays into the stable 137Ba. Similar results are achieved with both methods, but extended shutdown time or time away from power results in over prediction of the cooling time. The over prediction of cooling time and comparison of different burnup reconstruction isotope results are indicator signatures of extended shutdown or time away from power. Due to dynamic operation in time and function, detailed power history reconstruction for research reactors is very challenging. Frequent variations in power, repeated variable shutdown time length, and experimentation history affect the spectrum an individual assembly is burned with such that full reactor parameter reconstruction is difficult. The results from this technical nuclear forensic analysis may be used with law enforcement, intelligence data, macroscopic and microscopic sample characteristics in a process called attribution to suggest or exclude possible sources of origin for a sample.

Sternat, Matthew 1982-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Visiting Researchers in FY2011 EuropeOceaniaMiddle  

E-Print Network (OSTI)

Laboratory Research Laboratory for Nuclear Reactors Imaging Science and Engineering Laboratory Frontier Bangladesh Mongolia Nepal Laos Pakistan 26 13 12 8 6 3 3 2 2 2 1 1 1 1 1 1 Affiliation North America for Nuclear Reactors Solutions Research Laboratory Quantum Nanoelectronics Research Center innovative Research

262

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

263

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesNP) Office of Advanced Scientific Computing Research (ASCR)

Gerber, Richard A.

2012-01-01T23:59:59.000Z

264

Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989  

SciTech Connect

This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

Weiss, A.J. (comp.)

1989-08-01T23:59:59.000Z

265

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

266

Plant Support Engineering: Degradation Research for Nuclear Service Level I Coatings  

Science Conference Proceedings (OSTI)

Nuclear power plants have experienced degradation of the protective coating systems (nuclear Service Level I coatings) inside reactor containment. The degradation is a matter of concern, but the history of degradation and its causes have not been thoroughly documented. In response, the Electric Power Research Institute (EPRI) and the Nuclear Utilities Coating Council (NUCC) began a research project designed to gain an understanding of the degradation and the potential influence of aging on the qualified ...

2007-09-24T23:59:59.000Z

267

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

268

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

269

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

National Nuclear Security Administration (NNSA)

rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information (including information...

270

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan. U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE

Gerber, Richard A.

2012-01-01T23:59:59.000Z

271

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

272

Summary, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and nonproliferation activities, environmental management and waste cleanup, and Navy nuclear propulsion systems development.1 The department has a lead role in insuring that...

273

Nuclear Energy Research and Development in the Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

used nuclear fuel disposition, effective utilization and deployment of advanced reactor concepts, and eventual development of a permanent geologic repository(s). This should...

274

The Department of Energy's Energy Innovation Hubs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report The Department of Energy's Energy Innovation Hubs OAS-M-13-08 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY ASSISTANT SECRETARY FOR NUCLEAR ENERGY ACTING DIRECTOR, OFFICE OF SCIENCE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Energy Innovation Hubs" BACKGROUND The Department of Energy's (Department) Energy Innovation Hubs (Hubs) initiative addresses research challenges with potentially high impact on our national energy security. Such

275

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

276

EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Urgent-Relief Acceptance of Foreign Research Reactor Spent 2: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel SUMMARY This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries. The spent fuel would be shipped across the ocean in spent fuel transportation casks from the country of origin to one or more United States eastern seaboard ports. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 22, 1994 EA-0912: Finding of No Significant Impact Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel April 22, 1994 EA-0912: Final Environmental Assessment Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

277

Accelerating Innovation Webinar Series - Energy Innovation Portal  

Accelerating Innovation Webinar Series. In partnership with the Battelle Commercialization Council, the Energy Innovation Portal is hosting an Accelerating Innovation ...

278

NREL: Innovation Spectrum Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Spectrum Innovation Spectrum Te xt version The scope of NREL's capabilities emulates the nature of the innovation process itself. Moving new technologies from initial concept to commercial application requires a breadth of expertise across the innovation spectrum, encompassing: Fundamental science Market-relevant research Systems integration Testing and validation Commercialization Deployment The NREL innovation spectrum is highly interactive within the laboratory and across other research institutions and private industry. NREL provides the scientific and analytical leadership to guide the innovation process, contributing knowledge and expertise at each stage. Innovation Success Stories Learn more about the spectrum of clean energy innovation and how NREL is creating a future of sustainable energy systems based on clean,

279

Office of Research and Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Jobs Working at NNSA Blog Office of Defense Science Office of Research and Development Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test,...

280

DOE Energy Innovation Hubs  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » DOE Energy Research » DOE Energy Innovation Hubs Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research DOE Energy Innovation Hubs Print Text Size: A A A RSS Feeds

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Applied nuclear data research and development. Progress report, January 1--March 31, 1976. [Activities of LASL Nuclear Data Group  

SciTech Connect

This report describes the activities of the Los Alamos Nuclear Data Group for the period January 1 to March 31, 1976. The following areas are discussed: Theory and evaluation of nuclear cross sections, including calculations of neutron cross sections; Nuclear cross-section processing, including developments concerning the computer codes used; Cross sections for HTGR safety research; Effect of dispersion matrix structure on a data adjustment and consistency analysis; Fission product and decay data studies; and Medium-energy library. 20 figures, 18 tables. (RWR)

Baxman, C.I.; Hale, G.M.; Young, P.G. (comps.)

1976-08-01T23:59:59.000Z

282

Summary of EPRI Research Applicable to Nuclear Accident Scenarios  

Science Conference Proceedings (OSTI)

The events at Fukushima Daiichi Nuclear Power Plant following the March 11, 2011, earthquake and the subsequent tsunami have heightened the need for widespread dissemination of information available within the nuclear industry that addresses subjects pertinent to the on-going situation at the plant. These subjects include, but are not necessarily limited to: Hydrogen generation Loss of off-site power Reactor core performance following a loss of coolant Iodine removal Emergency response planning Emergency...

2011-06-28T23:59:59.000Z

283

New Nuclear Energy Awards Give Students Hands-On Research Experience |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Energy Awards Give Students Hands-On Research New Nuclear Energy Awards Give Students Hands-On Research Experience New Nuclear Energy Awards Give Students Hands-On Research Experience September 28, 2012 - 9:33am Addthis Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bradley Williams Team Lead, Nuclear Energy University Programs What Colleges Received The Awards? Georgia Institute of Technology

284

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

285

Collective innovation  

E-Print Network (OSTI)

The ability to innovate sits at the heart of an organization's ability to succeed in a competitive environment. An organization can innovate by improving existing products, services, or processes or by generating new ...

Slawsby, Alex (Alex David)

2007-01-01T23:59:59.000Z

286

Discovery & Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Science The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {8C4B6798-0A4D-4B36-AF69-02F3EFA94CD1}http://science.energy.gov/discovery-and-innovation/stories/2013/127045/ Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex - arguably the most important bit of organic chemistry on the planet - in its complete

287

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

Lindken, Ralph

288

Nuclear excitations and reaction mechanisms. Progress report, November 1, 1975--October 31, 1976. [Summaries of research activities at Brown University  

SciTech Connect

Theoretical research on nuclear excitation and reaction mechanisms is summarized. A list of publications is included. (JFP)

1975-11-01T23:59:59.000Z

289

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ecosystem Development Initiative Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) The Regents of the University of California, UC San Diego Location: La Jolla, CA Project Title Regional Energy Innovation and Commercialization Proposed Action or Project Description The University of California San Diego and San Diego State University are partnering to address deficiencies in the process for translation of research discoveries to the private sector in the clean energy space in the greater San Diego region and accelerate the movement of clean energy innovation from the university laboratory into the marketplace. The Phase I objective for launching the Regional Energy Innovation Challenge includes tasks such as: 1) project management and planning (organizing advisory

290

Next Generation Nuclear Plant Materials Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

G. O. Hayner; E.L. Shaber

2004-09-01T23:59:59.000Z

291

Advanced Forms of Activated Carbon - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Similar applications exist in the environmental engineering, nuclear, military and extraction arenas. Benefits.

292

Energy Innovation Hubs on Capitol Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Bioenergy -Fossil --Oil --Natural Gas -Nuclear Energy Usage -Storage --Hydrogen & Fuel Cells -Transmission -Consumption -Smart Grid Science & Innovation -Science & Technology...

293

LANL highlights cutting-edge research at annual LDRD Day | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

cutting-edge research at annual LDRD Day | National Nuclear cutting-edge research at annual LDRD Day | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL highlights cutting-edge research at annual LDRD Day LANL highlights cutting-edge research at annual LDRD Day Posted By Office of Public Affairs Los Alamos National Laboratory recently showcased some of its cutting-edge

294

LANL highlights cutting-edge research at annual LDRD Day | National Nuclear  

National Nuclear Security Administration (NNSA)

cutting-edge research at annual LDRD Day | National Nuclear cutting-edge research at annual LDRD Day | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL highlights cutting-edge research at annual LDRD Day LANL highlights cutting-edge research at annual LDRD Day Posted By Office of Public Affairs Los Alamos National Laboratory recently showcased some of its cutting-edge

295

Energy Innovation Portal Post, Issue 5  

The Energy Innovation Portal has exciting new features to help you better locate and share U.S ... nuclear energy, Intelligent Grid technologies, wind ...

296

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

297

Distributed and Asynchronous Bees Algorithm Applied to Nuclear Fusion Research  

Science Conference Proceedings (OSTI)

Recently, there have been several developments in the scientific community to model and solve complex optimization problems by employing natural metaphors. In some cases, due to their distributed schema, these algorithms can be adapted to distributed ... Keywords: Metaheuristics, Distributed Computing, Nuclear Fusion

Antonio Gomez-Iglesias; Miguel A. Vega-Rodriguez; Francisco Castejon; Miguel Cardenas-Montes

2011-02-01T23:59:59.000Z

298

Reactor physics teaching and research in the Swiss nuclear engineering master  

Science Conference Proceedings (OSTI)

Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

Chawla, R. [Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

2012-07-01T23:59:59.000Z

299

It's not just about innovation  

Science Conference Proceedings (OSTI)

Last year, I was one of the reviewers of proposals to a newly created NIH program, the New Innovator Award. Its goal was to address a frequent criticism that peer review is biased against innovation and to fund exceptionally innovative, high impact research from new investigators. To encourage the submission of innovative ideas, preliminary data was not required. Nearly 2,200 applications were submitted, but only 30 awards were made, for a success rate of Edison said about genius is equally applicable to innovation; it, too, is mostly about perspiration.

Wiley, H. S.

2008-03-01T23:59:59.000Z

300

Research in the nuclear sciences: summaries of FY 1978  

SciTech Connect

Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category. (RWR)

1978-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Researcher, Los Alamos National Laboratory | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

302

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

303

Research Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Opportunities Research Opportunities Research Opportunities Research opportunities at Energy Department labs and facilities: Argonne Nuclear Science Educational Programs The mission of Innovate to Educate is to take a leadership role to champion Argonne's mission to transform scientific discovery into innovation, develop and enable education programs that reflect Argonne's strategic engineering, science, and computational initiatives, and to develop new educational programs based on transformative scientific discovery. Faculty and Student Teams Program The Faculty and Student Teams (FaST) Program is a cooperative effort between the Department of Energy (DOE) Office of Science and the National Science Foundation (NSF). Faculty from colleges and universities with limited research facilities, and from those institutions serving

304

Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative  

Science Conference Proceedings (OSTI)

NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

Hively, LM

2003-02-13T23:59:59.000Z

305

Innovation Celebration  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Celebration Innovation Celebration Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Innovation Celebration showcases economic development in Northern New Mexico Ten local businesses honored at the event. May 1, 2013 Chantal Lau of PediBioMetrix, LLC was one of those recogned at the Innovation Celebration Chantal Lau of PediBioMetrix, LLC was one of those recognized at the Innovation Celebration. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Last month 10 New Mexico businesses were recognized during the 12th annual Innovation Celebration in Albuquerque. The companies highlighted are involved in everything from helping with premature infants' feeding difficulties to separating water from natural gas pumped from wells. They

306

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

David Moore David Moore Researcher, Los Alamos National Laboratory David Moore David Moore Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering Profile: David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The committee selected Moore for "his inspirational technical leadership in the fields of shock physics and the science of explosives detection." Moore has worked to develop the next generation of scientists in this field by mentoring

307

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

308

2-1 Hirosawa, Wako, Saitama 351-0198 Japan TEL: 048-462-1481 FAX: 048-462-1220 (Office for Interdisciplinary Programs, RIKEN Research Cluster for Innovation)  

E-Print Network (OSTI)

for Interdisciplinary Programs, RIKEN Research Cluster for Innovation) Biomass Engineering Program, RIKEN Research cooperation in research. The Biomass Engineering Program collaborates with universities, private corporations Development p p p p ughout Asia and the rest of the world. RIKENRIKEN Biomass Engineering ProgramBiomass

Fukai, Tomoki

309

Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2007-09-25T23:59:59.000Z

310

Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring  

SciTech Connect

These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

2008-09-23T23:59:59.000Z

311

Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

2010-09-21T23:59:59.000Z

312

Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

2011-09-13T23:59:59.000Z

313

Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2006-09-19T23:59:59.000Z

314

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS  

E-Print Network (OSTI)

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS OF RECENT AND CURRENT RESEARCH--III Sponsored by the Education and Training Division Cosponsored by the Fusion Energy Division! emitted with various energies at different positions with respect to the crystal. These PXR have several

Danon, Yaron

315

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A Theory of neutron fluctuations in source-driven subcritical systems I. P&At*, Y. Yamane' Department of Reactor Ph>aics, Chalmers Unicrrsi[\\' oj Technolo~~~. S-41-7 96

Pázsit, Imre

316

Contacts - Energy Innovation Portal  

Bookmark Contacts - Energy Innovation Portal on Google; Bookmark Contacts - Energy Innovation Portal on Delicious; Rank Contacts - Energy Innovation ...

317

Workshop on the Role of the Nuclear Physics Research Community in Combating Terrorism: Scientific Posters  

DOE Data Explorer (OSTI)

This 2002 workshop brought together members of the nation's nuclear physics research community with expertise in nuclear physics, detector development, and accelerator development from DOE and NSF laboratories and universities, with terrorism experts from government agencies familiar with technologies, strategies and policy for the combat of terrorism. The focus of the workshop included conventional explosive and weapon detection and radiological and nuclear threats. Each of these topics included research for field applications, detector and accelerator research in transportation (air, surface, maritime), detector and accelerator research in laboratory forensic detection and preventive measures against clandestine activities [Copied, with editing, from http://www.sc.doe.gov/np/homeland/descript.html]. Of the 45 posters presented at the workshop, 35 have been made available in PDF format on this webpage. The 62 page report from the workshop is also available at http://www.sc.doe.gov/np/homeland/index.html.

318

Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program  

Science Conference Proceedings (OSTI)

This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is linked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from t...

2005-12-20T23:59:59.000Z

319

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

320

Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor; Chavez, Francesca C. [Editor

2001-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Jobs and Economic Competitiveness - Clean Energy Innovation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Innovation Analysis Clean Energy Innovation Analysis With increased global competition for market share in alternative energy, innovation in energy will be a major contributor to national economic competitiveness in the coming decades. NREL's innovation analysis focuses on understanding the innovation dynamics of clean energy technologies to inform research investment decisions and innovation and technology transfer policy. NREL's innovation analysis studies show that: Different energy technology areas exhibit unique patterns of invention and innovation. New empirical methods of estimating technical and commercial impact (based on analysis of patent citations and web presence) to better target research expenditures could augment the speed and scale of innovation and deployment of clean energy technologies

322

Exploding the Myths of UK Innovation Policy  

E-Print Network (OSTI)

Exploding the Myths of UK Innovation Policy: How `Soft Companies' and R&D Contracts for Customers Development Agency and Isaac Newton Trust ISACC NEWTON TRUST #12;Exploding the Myths of UK Innovation Policy research institutions, and government science and innovation policy. His research on the US Small Business

de Gispert, Adrià

323

Department of Energy Awards $3.8 Million in Funding to 38 U.S. Universities for Nuclear Research Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC - The U.S. Department of Energy (DOE) today strengthened its commitment to advancing nuclear power by awarding $100,000 to 38 universities to enhance nuclear research and development...

324

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum to ``Dead time and pileup in pulsed parametric  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum Erratum to ``Dead time Danon?, Bryndol Sones, Robert Block Department of Mechanical Aerospace and Nuclear Engineering

Danon, Yaron

325

Program on Technology Innovation: An Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components  

Science Conference Proceedings (OSTI)

This report documents the progress for 2005 on a new project to evaluate surface stress improvement methods to mitigate the initiation of PWSCC in Alloy 600 nuclear plant components. The first potential application for these various surface stress improvement technologies for SCC mitigation in PWR Alloy 600 components was identified as the bottom mounted nozzle (BMN). Mitigation will be demonstrated by creating both sufficient compressive surface stress and depth of the compressive stress on the ID and O...

2006-03-31T23:59:59.000Z

326

Program on Technology Innovation: Manufacture of Large Nuclear and Fossil Components Using Powder Metallurgy and Hot Isostatic Processing Technologies  

Science Conference Proceedings (OSTI)

An alternative manufacturing method, powder metallurgy coupled with hot isostatic processing (PM/HIP), is being explored for the manufacture of large, pressure-retaining components that will be required to meet the demanding needs of nuclear, fossil, combined cycle, ultra-supercritical, and oxy-combustion power applications over the next few decades. This report provides an in-depth review of the new manufacturing process, discusses why the PM/HIP technology is ripe for the power industry to consider, hi...

2012-05-10T23:59:59.000Z

327

Innovative Separations Technologies  

Science Conference Proceedings (OSTI)

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

328

Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base  

SciTech Connect

These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

2003-09-23T23:59:59.000Z

329

Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2005-09-20T23:59:59.000Z

330

Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring  

SciTech Connect

These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A. [Editor

2004-09-21T23:59:59.000Z

331

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

332

Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

2009-09-21T23:59:59.000Z

333

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

334

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

335

Building Technologies Office: Top Innovations 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Top Innovations 2012 to Top Innovations 2012 to someone by E-mail Share Building Technologies Office: Top Innovations 2012 on Facebook Tweet about Building Technologies Office: Top Innovations 2012 on Twitter Bookmark Building Technologies Office: Top Innovations 2012 on Google Bookmark Building Technologies Office: Top Innovations 2012 on Delicious Rank Building Technologies Office: Top Innovations 2012 on Digg Find More places to share Building Technologies Office: Top Innovations 2012 on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

336

Accelerating Innovation Webinar Series - Energy Innovation ...  

Accelerating Innovation Webinar Series. In partnership with the Battelle Commercialization Council, the Energy Innovation Portal is hosting an ...

337

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

338

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

339

Research and Development in Tritium Technology at the Institute of Radiochemistry, Nuclear Research Center Karlsruhe  

Science Conference Proceedings (OSTI)

Research and Development / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

Prof. Dr. H. J. Ache

340

Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99  

SciTech Connect

OAK B188 Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99.

Stanley E. Ritterbusch

2001-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

342

Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry  

E-Print Network (OSTI)

1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

343

UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report  

SciTech Connect

This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, Gâ??parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;â??}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâ??coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

B.M.K. Nefkens (Principal Investigator, ed.); J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin (ed.)

2011-05-18T23:59:59.000Z

344

Nuclear Instruments and Methods in Physics Research A 544 (2005) 225235 Neutralized transport experiment  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 544 (2005) 225­235 Neutralized transport. Good agreement has been observed with theory and experiment throughout the study. r 2005 Elsevier B a reactor chamber to an inertial confinement fusion (ICF) target. The present generation of indirect

Gilson, Erik

345

Program on Technology Innovation: Tradeoffs Between Once-Through Cooling and Closed-Cycle Cooling for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has been investigating a number of energy-related water topics that include the implications of retrofitting existing once-through generating stations with closed-cycle cooling, the cost and benefits of closed-cycle cooling, the impacts of impingement and entrainment, alternative fish protection technologies, water use in the electric power generation sector, and advanced power plant cooling technologies.

2012-06-29T23:59:59.000Z

346

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 22452248, AUGUST 1, 2000 Subsurface nuclear tests monitoring through the  

E-Print Network (OSTI)

nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS is based upon four waves will help check for underground, under­water and atmospheric nuclear tests. The fourth networkGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245­2248, AUGUST 1, 2000 Sub­surface nuclear

Hourdin, Chez Frédéric

347

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

Science Conference Proceedings (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

348

COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"  

SciTech Connect

Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

Shanahan, K.

2009-12-30T23:59:59.000Z

349

Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)  

Science Conference Proceedings (OSTI)

Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several grand challenges and use-inspired basic research needs recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Chu, Steven (DOE Secretary of Energy)

2011-05-25T23:59:59.000Z

350

Web Technologies for Open Innovation Darko Jesic  

E-Print Network (OSTI)

Web Technologies for Open Innovation Darko Jesic Université Paris-Dauphine, DRM, Mlab Place du for further implications of the Web in making the innovation happen. In this paper we present a research on the application of the Web technologies in the open innovation model. We analyze technologies for expert search

Paris-Sud XI, Université de

351

Generative mechanisms for innovation in information infrastructures  

Science Conference Proceedings (OSTI)

This paper investigates innovation in information infrastructures. The research question is, how can an information infrastructure provide generative mechanisms for innovation of ICT-based services? Building on a critical realist approach, the empirical ... Keywords: Case study, Generative mechanism, Information infrastructure, Innovation

Bendik Bygstad

2010-07-01T23:59:59.000Z

352

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

353

Nuclear Instruments and Methods in Physics Research A 582 (2007) 629637 Monte Carlo and analytical models of neutron detection with organic  

E-Print Network (OSTI)

unfolding, which have a variety of applications, including nuclear nonproliferation and homeland security materials in applications such as nuclear nonproliferation, homeland security, and basic physics research

Pázsit, Imre

354

DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUPPLEMENT ANALYSIS FOR THE FOREIGN SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2. Background .............................................................................................................................................. 1 3. The Proposed Action ...............................................................................................................................

355

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

1994-03-25T23:59:59.000Z

356

Program on Technology Innovation: Using Scenario Planning to Stress Test EPRIs Research and Development Portfolio  

Science Conference Proceedings (OSTI)

Working closely with electricity industry, public advisors, and the Electric Power Research Institute (EPRI) Board of Directors, EPRI has developed a research and development (R&D) roadmap for overarching strategic issues that offers both opportunities and challenges to the continued delivery of reliable, affordable, and environmentally responsible electricity. EPRI has subsequently identified key R&D challenges and action plans to respond to this roadmap.This report summarizes a ...

2013-05-14T23:59:59.000Z

357

Long Term Innovative Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Hydrogen and DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop Bryan Pivovar With Input/Feedback from Rod Borup (LANL), Debbie Myers (ANL), DOE and others as noted in presentation Lakewood, CO March 16, 2010 Long Term Innovative Technologies National Renewable Energy Laboratory Innovation for Our Energy Future Innovative/Long Term and RELEVANT Mission of DOE Mission of EERE (Applied Program) Mission of HFCT To enable the widespread commercialization of hydrogen and fuel cells in diverse sectors of the economy-with emphasis on applications that will most effectively strengthen the nation's energy security and improve our stewardship of the environment-through research, development, and demonstration of critical improvements in the technologies, and through diverse activities to overcome

358

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

359

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

360

Program on Technology Innovation: Validation of CLASSI and SASSI Codes to Treat Seismic Wave Incoherence in Soil-Structure Interacti on (SSI) Analysis of Nuclear Power Plant Structures  

Science Conference Proceedings (OSTI)

The New Plant Seismic Issues Resolution Program was initiated to address emerging seismic issues as they relate to the design of new nuclear power plants. Task S2.1 of the program is a multi-phase research project to assess the effects of seismic wave incoherence on the response of foundations and structures similar to those being considered for advanced reactor designs. The initial phases of this task focused on the objective of systematically studying seismic wave incoherence effects on structures/fo...

2007-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

362

Aging Management of Nuclear Power Plant Concrete Structures - Overview and Suggested Research Topics  

SciTech Connect

Nuclear power plant concrete structures are described and their operating experience noted. Primary considerations related to management of their aging are noted and an indication of their status provided: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, nondestructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Several activities are identified that provide background information and data on areas of concern with respect to nondestructive examination of nuclear power plant concrete structures: inspection of thick-walled, heavily-reinforced sections, basemats, and inaccessible areas of the containment metallic pressure boundary. Topics are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

Naus, Dan J [ORNL

2008-01-01T23:59:59.000Z

363

A monthly report on transportation research, education, and outreach activities at the University of Minnesota Green freight innovations ...... 2  

E-Print Network (OSTI)

. The second session looked at future approaches for transportation finance: Lee Munnich, director of the StateA monthly report on transportation research, education, and outreach activities at the University 4 CEO continued on page 4 Legislators attend transportation seminars CTS redesigns Web site

Minnesota, University of

364

Comparative Analysis of a Novel Approach to Economical Wind Energy Verterbi School of Engineering Research & Innovation Fund Final Report  

E-Print Network (OSTI)

1 Comparative Analysis of a Novel Approach to Economical Wind Energy Verterbi School of the research project: Conventional wind energy generation is obtained from "wind farms" that are in high-wind infrastructures. It was expected that the proposed approach would reduce the cost of wind energy generation

Rohs, Remo

365

NSTC Releases Planned Design for Manufacturing Innovation ...  

Science Conference Proceedings (OSTI)

... Innovation Institute in Youngstown, Ohioa pilot ... together 80 private companies, nine research ... of Defense, Education and Energy; the National ...

2013-01-24T23:59:59.000Z

366

Stories of Discovery & Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

stories/ The Office of stories/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {8C4B6798-0A4D-4B36-AF69-02F3EFA94CD1}http://science.energy.gov/discovery-and-innovation/stories/2013/127045/ Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex - arguably the most important bit of organic chemistry on the planet - in its complete

367

NREL: Innovation Spectrum - NREL Spectrum of Innovation Video (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Innovation Video (Text Version) Spectrum of Innovation Video (Text Version) Below is the text version of the NREL Spectrum of Innovation video. "...renewable energy is a national imperative..." "...This breakthrough technology will..." "...we are still looking for an innovative material that will..." "...we need a study to determine..." "...the right people need to work together..." "...competing priorities mean we cannot..." There are many voices calling for a future of abundant, clean energy. The choices are many...and the challenges are daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation, including Fundamental Science, Market-Relevant Research, Systems Integration, Testing and Validation, Commercialization, and

368

A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants while it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

Kercel, S.W.

1995-02-01T23:59:59.000Z

369

Data base on dose reduction research projects for nuclear power plants. Volume 5  

SciTech Connect

This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

1994-05-01T23:59:59.000Z

370

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

371

Nuclear safeguards research and development. Program status report, October 1980-January 1981  

Science Conference Proceedings (OSTI)

This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

Henry, C.N. (comp.)

1981-11-01T23:59:59.000Z

372

ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE NUCLEAR FUEL CYCLES RESEARCH AND DEVELOPMENT PROGRAMS  

SciTech Connect

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ?all things nuclear? as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scaletechnology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE?s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, A.; Marra, J.; Wilmarth, B.; Mcguire, P.; Wheeler, V.

2013-07-03T23:59:59.000Z

373

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

374

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

375

Audit Report - Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories, OAS-M-13-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperative Research and Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories OAS-M-13-02 March 2013 Department of Energy Washington, DC 20585 March 15, 2013 MEMO MEMORANDUM FOR THE ACTING ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories" BACKGROUND The dissemination of technology developed by the Department of Energy's national laboratories to the general science community and the public, is one of the Department's top priorities. In

376

Nuclear Energy University Program Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

377

Catalysis Center for Energy Innovation (CCEI): YouTube Channel for this Energy Frontier Research Center (EFRC)  

DOE Data Explorer (OSTI)

CCEI is among the 46 Energy Frontier Research Centers (EFRCs) funded by DOE and was established in the spring of 2009. CCEI is one of the very few externally funded centers on heterogeneous catalysis. CCEI leverages federal funding to enable technology transfer and commercialization through an industrial consortium. The center builds upon the long tradition of the Center for Catalytic Science and Technology (CCST) at the University of Delaware and extends its expertise within a virtual center among multiple partner institutions and national labs (University of Pennsylvania, Caltech, University of Minnesota, University of Massachusetts, Lehigh University, Brookhaven National Labs, University of North Carolina, and University of Southern California). CCEI provides an integrated approach to solving scientific and engineering problems that span across scales and disciplines, ranging from synthesis and characterization of novel catalysts to development and application of a multiscale modeling toolbox to reaction and reactor evaluation to technology transfer.[Copied with editing from http://www.youtube.com/catalysiscenter#p/u

378

Scientific Innovation Through Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

www.emsl.pnl.gov www.emsl.pnl.gov National asset for high- impact science As a national scientific user facility, EMSL provides scientific solutions to scientists from universities, industry, and government who seek out our unique capabilities and scientific expertise for their most challenging research objectives. At EMSL, we collaborate with these scientists-our users-to enable discovery and innovative solutions for the nation's energy, environmental, and national security problems. EMSL user projects by funding source in FY11. ACCELERATING INNOVATION ACROSS AMERICA PREPARING THE NEXT GENERATION User facilities provide training ground for educating next generation of scientists EMSL supports postdoctoral researchers, as well as graduate, undergraduate, and high school

379

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

380

The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial  

SciTech Connect

Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

2003-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I  

SciTech Connect

The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

Abdou, M.

1984-10-01T23:59:59.000Z

382

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

383

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

384

EERE Postdoctoral Research Awards: Postdoctoral Research Awards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Postdoctoral Research Awards: Investing in Innovative Clean Energy Technologies to someone by E-mail Share EERE Postdoctoral Research Awards: Postdoctoral Research Awards:...

385

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

386

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464469 Fusion neutron detector calibration using a table-top laser  

E-Print Network (OSTI)

BINP accelerator based epithermal neutron source V. Aleynik a , A. Burdakov a , V. Davydenko a , A Institute of Nuclear Physics,11 Lavrentiev avenue, 630090 Novosibirsk, Russia b Neurosurgery Center, 2a: Boron neutron capture therapy Epithermal neutron source Accelerator a b s t r a c t Innovative facility

Ditmire, Todd

387

Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin  

SciTech Connect

This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy`s Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006.

Matos, J.E.

1994-12-01T23:59:59.000Z

388

Top Innovations 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top Innovations 2012 Top Innovations 2012 Top Innovations 2012 On this page, you will find Building America's Top Innovations from 1995 through 2012, with links to a profile describing each innovation. Note that some categories may not have a top innovation each year. Flow chart graphic 1. Advanced Technologies and Practices Top Innovations in this category cover research in thermal enclosure improvements, HVAC components, ventilation and other health and safety issues. 1.1 Building Science Solutions Thermal Enclosure: Basement Insulation Systems Advanced Framing Systems and Packages Unvented, Conditioned Attics Unvented, Conditioned Crawlspaces High-R Walls Heating, Ventilation, and Air Conditioning: Integration of HVAC System Design with Simplified Duct Distribution Ducts in Conditioned Space

389

Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995  

SciTech Connect

Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

1995-12-31T23:59:59.000Z

390

Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education  

SciTech Connect

The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

Woodall, D.M.; Dolan, T.J.; Stephens, A.G. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

391

Innovation Ecosystem Initiative - Home - Energy Innovation Portal  

Innovation Ecosystem Initiative. In September 2010, the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) ...

392

About - Energy Innovation Portal  

About the Energy Innovation Portal. The Energy Innovation Portal is a one-stop resource for Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE ...

393

About - Energy Innovation Portal  

About the Energy Innovation Portal. The Energy Innovation Portal is a one-stop resource for Department of Energy (DOE) Energy Efficiency and Renewable ...

394

Renewable Energy Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy Innovations 4...

395

Innovations for a secure nation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for a Secure Nation Innovations for a Secure Nation /about/_assets/images/icon-70th.jpg Innovations for a Secure Nation LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. image description Plasma technology for textile finishing applications gets a boost from LANL APJeT received a $100,000 Venture Acceleration Fund award from LANS helping to complete design and engineering of a commercial-scale production unit. - 4/3/12 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells.

396

Preparing the EU Innovation Plan  

E-Print Network (OSTI)

With the continuing comparative growth of the Asian economies, ever more research will be carried out outside the European Union. Europe needs, therefore to consolidate the development of the knowledge-based society, fostering the European Research Area and launching a renewed effort on innovation. For these reasons the Spanish Presidency wants to promote the three Is that define our priorities: Integration, Involvement and Inclusion. By Integration we mean placing R&D and innovation policies at the centre of the European project and improving the ERA governance structures and synergies. By Involvement

unknown authors

2010-01-01T23:59:59.000Z

397

Research in theoretical nuclear physics. Progress report, November 1, 1989--September 1992  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

398

Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

1999-09-21T23:59:59.000Z

399

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

400

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top Innovations Advance High Performance Homes America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently awarded by selecting a category or award recipient below.

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Engineering Analysis - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis DEPARTMENTS Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Bookmark and Share The Engineering Analysis Department activities focus on development and application of new and innovative analysis methods for both nuclear and non-nuclear systems. The Department is organized into sections and groups for Engineering Simulations, Safety Analysis, Innovative Systems Development, Engineering Assessments, Plant Analysis & Control, Process

402

April 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

2 | National Nuclear Security Administration 2 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > April 2012 April 2012 NNSA Blog NNSA to bring together researchers to discuss discovery and innovation at LDRD Symposium Posted By Office of Public Affairs NNSA Blog "Discovery and Innovation for National Security" is the theme of the

403

Program on Technology Innovation: The Effects of High-Frequency Ground Motion on Structures, Components, and Equipment in Nuclear Po wer Plants  

Science Conference Proceedings (OSTI)

A current and significant area of uncertainty for nuclear siting approval in the Central and Eastern United States (CEUS) is resolution of an appropriate treatment of the high-frequency component of site-specific seismic design response spectra for many planned nuclear plants. Existing nuclear power plants have been designed using either the site-independent Regulatory Guide 1.60 design spectrum shape or other site-independent spectral shapes. More recent probabilistic hazard-based site-specific spectra ...

2007-06-29T23:59:59.000Z

404

Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research  

SciTech Connect

While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

Bentz, A

2008-07-31T23:59:59.000Z

405

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

Pond, R.B.; Matos, J.E.

1996-12-31T23:59:59.000Z

406

Plutonium less mysterious with nuclear magnetic resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance For more than 50 years, chemists and physicists have been searching for the plutonium-239 magnetic resonance signal. May 21, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

407

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Physics Related Brochures and Videos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Nuclear Physics Related Brochures and Videos Print Text Size: A A A RSS Feeds FeedbackShare Page Brochures Accelerating Innovation NP Highlights Image Accelerating Innovation (2011) .pdf file (1.2MB): How nuclear physics benefits us all

408

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

J. K. Wright; R. N. Wright

2010-07-01T23:59:59.000Z

409

Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy - Related Research and Development Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy- related research and development (R&D) projects.

410

Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

411

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

412

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11T23:59:59.000Z

413

Nuclear Science and Engineering - Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

414

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERISTICS OF ASSEMBLIES CONTAINING [237Np + 239Pu(98%)] IN TH  

National Nuclear Security Administration (NNSA)

And Calculated Researches of Nuclear-Physics Characteristics And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing [ 237 Np + 239 Pu(98%)] in The Core and Reflector of Natural Uranium V.I.Gavrilov, I.Yu.Drozdov, N.V.Zavialov, V.I.Il'in, A.A.Kajgorodov, M.I.Kuvshinov, A.V.Panin Russian Federal Nuclear Center All-Russia Scientific Research Institute of Experimental Physics Neptunium 237 seems to be a promising material as a core component of such systems as pulsed reactors [2] and cascade blankets for electronuclear facilities [1]. To realize calculated simulation of such facilities it is required to know neutron-physics data for the materials included. In this respect 237 Np is a little-studied material. Thus, the rated values of critical mass for a "bare" sphere of

415

Chemical Innovation in Drug Dr Matthew Fuchter  

E-Print Network (OSTI)

Chemical Innovation in Drug Discovery Dr Matthew Fuchter Lecturer in Synthetic and Medicinal&D Spending and Output #12;Chemical Innovation Impact Discovery Development Basic research: years 0-3 Pre 3, File DRUG Chemical start point Hit to lead Preclinical Assessment Synthetic Chemistry Chemistry

416

Program on Technology Innovation: Summary of 2013 EPRI Nuclear Fuel Cycle Assessment Workshop - Vanderbilt University, Nashville, Tennessee, July 23 24, 2013  

Science Conference Proceedings (OSTI)

Government, industry, and academic stakeholders assembled at the second EPRI Nuclear Fuel Cycle Assessment Workshophosted and co-organized by Vanderbilt University and held July 2324, 2013to review ongoing efforts and opportunities for improving sustainability of nuclear fuel cycle (NFC) assessment related knowledge and tools through expanded collaboration. The workshop emphasized three topics addressing the development, maintenance, and application ...

2013-11-26T23:59:59.000Z

417

Innovation-Driven Growth  

Science Conference Proceedings (OSTI)

... etc.); Continuous Improvement; E3 and environmental sustainable work; Innovation Engineering Management System; Strategic ...

2013-02-12T23:59:59.000Z

418

Events - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen ...

419

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

420

A Review of the Research on Response to Improvised Nuclear Device Events  

SciTech Connect

Following the events of September 11, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. Understanding the state of knowledge, identifying gaps, and making recommendations for how to fill those gaps, this paper will provide a framework under which past findings can be understood and future research can fit. The risk of an improvised nuclear device (IND) detonation may seem unlikely; and while this is hopefully true, due to its destructive capability, IND events must be prepared for. Many people still live under the Cold War mentality that if a city is attacked with a nuclear weapon, there is little chance of survival. This assumption, while perhaps true in the case of multiple, thermonuclear weapons exchanges, does not hold for the current threat. If a single IND were detonated in the United States, there would be many casualties at the point of impact; however, there would also be many survivors and the initial response by two major groups will mean the difference between life and death for many people. These groups are the first responders and the public. Understanding how these two groups prepare, react and interact will improve response to nuclear terrorism. Figure 1 provides a visualization of the response timeline of an IND event. For the purposes of this assessment, it is assumed that to accurately inform the public, three functions need to be fulfilled by response personnel, namely planning, developing situational awareness, and developing a public message. Planning varies widely from city to city, and to date no comprehensive study has been completed to assess how individual cities are progressing with preparation plans. Developing situational awareness about an IND detonation has been well researched over the years, yet it is far from fully understood. While messaging is an integral component to response, it is one that suffers from a dearth of knowledge. The public will have a certain level of education and preparation. After the detonation the public will respond naturally and upon receiving the responders message will react to the message and may modify their behavior accordingly. Reviewing the nodes under both headings, responders and public will help better prepare the country to meet the challenges of an IND attack.

Bentz, A; Buddemeier, B; Dombroski, M

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in Energy Technology Are "Winning the Future" Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in Energy Technology Are "Winning the Future" February 28, 2011 - 9:38am Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy President Obama has recently been talking about his plan to "Win the Future." Whether it's taking steps to reform our education system, rebuilding our infrastructure, or encouraging breakthroughs in technology, the phrase is about marshaling the country's best and brightest to solve today's problems. As the President put it, "To win the future, we have to out-innovate, out-educate and out-build the rest of the world, tapping

422

Whole-Organism Concentration Ratios for Plutonium in Wildlife from Past US Nuclear Research Data  

Science Conference Proceedings (OSTI)

Whole-organism concentration ratios (CR{sub wo-media}) for plutonium (Pu) in wildlife were calculated using data from the broad range of organism types and environmental settings of the US nuclear research program. Original sources included site-specific reports and scientific journal articles typically from 1960s to 80s research. Most of the calculated CR{sub wo-media} values are new to existing data sets, and, for some wildlife categories, serve to fill gaps or add to sparse data including those for terrestrial reptile; freshwater bird, crustacean and zooplankton; and marine crustacean and zooplankton. Ratios of Pu concentration in the whole-organism to that in specific tissues and organs are provided here for a range of freshwater and marine fish. The CR{sub wo-media} values in fish living in liquid discharge ponds were two orders of magnitude higher than those for similar species living in lakes receiving Pu from atmospheric fallout, suggesting the physico-chemical form of the source Pu can dominate over other factors related to transfer, such as organism size and feeding behavior. Small rodent data indicated one to two order of magnitude increases when carcass, pelt, and gastrointestinal tract were included together in the whole-organism calculation compared to that for carcass alone. Only 4% of Pu resided in the carcass of small rodents compared to 75% in the gastrointestinal tract and 21% in the pelt.

johansen, M.; Kamboj; Kuhne, W.

2012-07-26T23:59:59.000Z

423

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

Pond, R.B.; Matos, J.E.

1996-05-01T23:59:59.000Z

424

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP Home NP Home Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Accelerating Innovation .pdf file (1.2MB) Nuclear Physics supports the experimental and theoretical research needed to create a roadmap of matter that will help unlock the secrets of how the universe and everything in it is put together.Read More .pdf file (1.2MB) Accelerating Innovation What is Nuclear Physics? .pdf file (1.2MB) Nuclear physicists study the fundamental building blocks of matter, from

425

Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, October 1-December 31, 1983. Volume 3, No. 4  

Science Conference Proceedings (OSTI)

The projects reported are the following: High Temperature Reactor Research, SSC Development, Validation and Application, CRBR Balance of Plant Modeling, Thermal-Hydraulic Reactor Safety Experiments, Development of Plant Analyzer, Code Assessment and Application (Transient and LOCA Analyses), Thermal Reactor Code Development (RAMONA-3B), Calculational Quality Assurance in Support of PTS; Stress Corrosion Cracking of PWR Steam Generator Tubing, Bolting Failure Analysis, Probability Based Load Combinations for Design of Category I Structures, Mechanical Piping Benchmark Problems, Identification of Age-Related Failure Modes; Analysis of Human Error Data for Nuclear Power Plant Safety-Related Events, Human Factors in Nuclear Power Plant Safeguards, Emergency Action Levels, and Protective Action Decision Making.

Weiss, A.J. (comp.)

1984-05-01T23:59:59.000Z

426

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

427

Innovative Technologies, Innovative Diplomacy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technologies, Innovative Diplomacy Innovative Technologies, Innovative Diplomacy Innovative Technologies, Innovative Diplomacy April 30, 2012 - 3:26pm Addthis 1 of 5 U.S. Energy Department Secretary Steven Chu, along with other leading energy decision-makers from around the world, at the third Clean Energy Ministerial annual meeting in London. Image: Department of Energy and Climate Change. 2 of 5 Prime Minister David Cameron, Secretary of State Edward Davey, U.S. Energy Department Secretary Steven Chu and Minister of State Greg Barker at the third Clean Energy Ministerial event in London. Image: Department of Energy and Climate Change. 3 of 5 Energy Ministers from around the world at the third Clean Energy Ministerial event in London. Image: Department of Energy and Climate Change. 4 of 5 U.S. Department of Energy Secretary Steven Chu and Secretary of State

428

NREL Spectrum of Clean Energy Innovation (Brochure)  

DOE Green Energy (OSTI)

This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

Not Available

2011-09-01T23:59:59.000Z

429

Disruptive Innovation in Numerical Hydrodynamics  

Science Conference Proceedings (OSTI)

We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

Waltz, Jacob I. [Los Alamos National Laboratory

2012-09-06T23:59:59.000Z

430

Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project, April 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project May 2011 April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Table of Contents 1. Introduction ........................................................................................................................................... 1 2. Scope and Methodology ....................................................................................................................... 2

431

Program on Technology Innovation: Unleashing Innovation Workshop  

Science Conference Proceedings (OSTI)

EPRI conducted a 1189-day workshop, Unleashing Innovation, for 15 participants from nine utility organizations in Dallas, Texas, on February 2324, 2006. Participants discussed the various opportunities and challenges associated with managing innovation in the electric utility industry. Innovation was broadly defined as value arising from change and includes changes in technology and to the business model. In the facilitated workshop environment, participants exchanged experiences with various aspects of ...

2006-06-26T23:59:59.000Z

432

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

433

Launching professional services automation: Institutional entrepreneurship for information technology innovations  

Science Conference Proceedings (OSTI)

Why do some information technology innovations come to be adopted widely while others do not? One promising research stream has begun to investigate how institutional factors shape the diffusion of IT innovations. Here we examine how these institutional ... Keywords: Information technology innovation, Institutional entrepreneurship, Legitimation, Mobilization, Organizational community, Organizing vision, Technological momentum

Ping Wang; E. Burton Swanson

2007-01-01T23:59:59.000Z

434

Seminar on Uncertainty & Decision Making Ghent University and Belgian Nuclear Research Centre  

E-Print Network (OSTI)

Matemáticas, UCM "Soft Computing and Nuclear Reactor Control" ABSTRACT: The need for on-line reactor operator, as a means of expressing linguistic expressions mathematically, has been recently applied to nuclear reactor) for controlling the power level of a nuclear reactor, the study was intended to assess the applicability of fuzzy

Tradacete, Pedro

435

Nuclear Instruments and Methods in Physics Research A 564 (2006) 400404 Cross-section measurements for 239  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 564 (2006) 400­404 Cross-section measurements the feasibility of measuring neutron-induced fission cross-section on samples with 10 ng of fissile actinides that are available on ultra-small quantities. Furthermore, results on neutron-induced alpha emission show

Danon, Yaron

436

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494499 Micro-pocket fission detectors (MPFD) for  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494­499 Micro-pocket fission detectors (MPFD) for in-core neutron flux monitoring Douglas S. McGregor?, Martin F. Ohmes, Rylan E. Ortiz. The prototype devices have been coated with a natural uranyl- nitrate to provide a neutron reactive coating

Shultis, J. Kenneth

437

The Age of the Consumer-Innovator  

E-Print Network (OSTI)

Recent research shows that consumers collectively generate massive amounts of product innovation. These findings are a wake-up call for both companies and consumers and have significant implications for our understanding ...

von Hippel, Eric A

438

Spacing innovation and learning in design organizations  

E-Print Network (OSTI)

The main research question of this thesis is the following: What is the relationship between spaces and innovation in the context of design organizations such as IDEO, the MIT Media Lab and Design Continuum? This thesis ...

Garca Herrera, Cristbal, 1974-

2004-01-01T23:59:59.000Z

439

SLAC National Accelerator Laboratory - Innovative SIMES Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative SIMES Solar-Energy Technology Funded by DOE By Mike Ross July 18, 2012 The U.S. Department of Energy has awarded a research group at the Stanford Institute for Materials...

440

Nuclear Energy University Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585595 The RPI multiplicity detector response to g-ray cascades  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585­595 The RPI multiplicity's Republic of China b Department of Mechanical, Aerospace and Nuclear Engineering, Rensselear Polytechnic and the decay properties of the compound nuclear levels at excitations near the threshold for neutron emission

Danon, Yaron

442

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245-2248, AUGUST 1, 2000 Sub-surface nuclear tests monitoring through the  

E-Print Network (OSTI)

) which should detect nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS), hydroacoustic and infrasound waves will help check for underground, under-water and atmospheric nuclear testsGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245-2248, AUGUST 1, 2000 Sub-surface nuclear

Hourdin, Chez Frédéric

443

Safety-research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, October 1-December 31, 1982  

Science Conference Proceedings (OSTI)

The projects reported are the following: HTGR Safety Evaluation, SSC Development, Validation and Application, CRBR Balance of Plant Modeling, Thermal-Hydraulic Reactor Safety Experiments, LWR Plant Analyzer Development LWR Code Assessment and Application; Stress Corrosion Cracking of PWR Steam Generator Tubing, Bolting Failure Analysis, Probability Based Load Combinations for Design of Category I Structures, Mechanical Piping Benchmark Problems, Soil Structure Interaction; Human Error Data for Nuclear Power Plant Safety Related Events, Criteria for Human Engineering Regulatory Guides and Human Factors in Nuclear Power Plant Safeguards.

Bari, R.A.; Cerbone, R.J.; Ginsberg, T.

1983-03-01T23:59:59.000Z

444

Los Alamos National Laboratory to work on nuclear design, plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab to work on nuclear design, plutonium research Lab to work on nuclear design, plutonium research Los Alamos National Laboratory to work on nuclear design, plutonium research and development, and supercomputing LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. December 18, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

445

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

446

Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)  

Science Conference Proceedings (OSTI)

DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Todays high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

J. K. Wright

2008-04-01T23:59:59.000Z

447

Capabilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Waste Form and Repository Performance Modeling Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis System Process Monitoring,...

448

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

449

Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)  

Science Conference Proceedings (OSTI)

The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

2012-01-01T23:59:59.000Z

450

Building America Top Innovations 2013 Profile - Buried and Encapsulate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top Innovations 2013 Profile - Buried and Encapsulated Ducts CARB research shows HVAC ducts that are encapsulated in closed-cell spray foam and buried in blown insulation in...

451

New Ionic Liquids with Diverse Properties - Energy Innovation ...  

Hundreds of new ionic liquids can be synthesized using a method invented by ORNL researchers. This innovation makes it possible to produce ionic liqui ...

452

Energy Department Announces Launch of Energy Innovation Hub for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

since 2010. The other Energy Innovation Hubs are: The Joint Center for Artificial Photosynthesis, which focuses on advanced research to produce fuels directly from sunlight. The...

453

Towards a theory of service innovation : an inductive case study approach to evaluating the uniqueness of services  

E-Print Network (OSTI)

Much of the innovation literature focuses exclusively on product-oriented companies. While scholars have begun researching innovation in service companies, the field of service innovation remains undeveloped and relatively ...

Mansharamani, Vikram, 1974-

2005-01-01T23:59:59.000Z

454

Program on Technology Innovation: Response to the Center for Nuclear Waste Regulatory Analyses Review of EPRI Reports on Igneous Pro cesses at Yucca Mountain  

Science Conference Proceedings (OSTI)

EPRI's 2004 and 2005 technical reports (1008169 and 1011165) describe what might occur in the unlikely event of extrusive or intrusive igneous events at Yucca Mountain repository. The Center for Nuclear Waste Regulatory Analyses (CNWRA) reviewed these two reports in 2007. EPRI has evaluated this review; this report discusses and clarifies several salient points that EPRI believes were misinterpreted in the CNWRA review.

2007-09-27T23:59:59.000Z

455

Architecting and Innovating  

E-Print Network (OSTI)

Innovating is essential to sustained industrial growth and profitability. But experience amply demonstrates how difficult innovation is, especially for large companies. The synthesis of valued offerings by aligning customer ...

Campbell, Ronald B. Jr.

2004-04-14T23:59:59.000Z

456

Stimulating Energy Technology Innovation  

E-Print Network (OSTI)

The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

Moniz, Ernest J.

457

Energy Innovation Portal Post  

The Energy Innovation Portal has hit another ... from solar technologies to biofuels to wind energy and ... - National Aeronautics and Space ...

458

HCI and innovation  

Science Conference Proceedings (OSTI)

The user-centered design (UCD) process in HCI has recently been criticized for not delivering breakthrough innovations in technology. In this paper we consider this critique through a literature review and two case studies of innovation. Our conclusions ... Keywords: audiophotography, business factors, digital photography, family album, innovation

David M. Frohlich; Risto Sarvas

2011-05-01T23:59:59.000Z

459

Tracking Phonons in a Nuclear Fuel to 900C - Research Highlights...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking Phonons at ARCS Tracking Phonons in a Nuclear Fuel to 900C Scientific Contact: Judy Pang Technical Contact: Doug Abernathy March 2011, Written by Agatha Bardoel...

460

NREL: Technology Transfer - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Innovation Portal Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) NREL developed and manages the Energy Innovation Portal for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The portal provides streamlined searching and browsing of patents, patent applications, and marketing summaries for clean energy technologies available for licensing from DOE laboratories and participating research institutions. Visit the EERE Energy Innovation Portal. For more information about NREL's involvement with the portal, read NREL Helps DOE Promote Cutting-Edge Technology. Contact If you have any questions about the portal, contact Matthew Ringer,

Note: This page contains sample records for the topic "innovative nuclear research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Send Feedback - Energy Innovation Portal  

Bookmark Send Feedback - Energy Innovation Portal on Google; Bookmark Send Feedback - Energy Innovation Portal on Delicious; Rank Send Feedback ...

462

Browse Error - Energy Innovation Portal  

EERE Home | Programs & Offices | Consumer Information. Energy Innovation Portal Technologies. Search Help . Energy Innovation Portal. Home. Site ...

463

Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498  

Science Conference Proceedings (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2008-09-01T23:59:59.000Z