Powered by Deep Web Technologies
Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

2

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

3

Innovative Topics for Advanced Biofuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovative Topics for Advanced Biofuels Innovative Topics for Advanced Biofuels PNNL report-out presentation at the CTAB webinar on innovative topics for advanced biofuels....

4

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top Innovations Advance High Performance Homes America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently awarded by selecting a category or award recipient below.

5

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

6

NETL: Advanced Research - Sensors & Controls Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Controls Sensors & Controls Advanced Research Sensors & Controls Innovations OSU's O2 Sensor Ohio State University's reference-free potentiometric oxygen sensor capable of withstanding temperatures of 800 °C. Novel Sensors and Advanced Process Control Novel Sensors and Advanced Process Control are key enabling technologies for advanced near zero emission power systems. NETL's Advanced Research Program is leading the effort to develop sensing and control technologies and methods to achieve seamless, integrated, automated, optimized, and intelligent power systems. Today, the performance of advanced power systems is limited by the lack of sensors and controls capable of withstanding high temperature and pressure conditions. Harsh environments are inherent to new systems that aim to

7

Next Generation Advanced Framing - Building America Top Innovation...  

Energy Savers (EERE)

Next Generation Advanced Framing - Building America Top Innovation Next Generation Advanced Framing - Building America Top Innovation This photo shows advanced framing on a rim...

8

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

9

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

10

Advanced Research: Innovation Leading to Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Research: Innovation Leading to Research: Innovation Leading to Successes Exploring the "Grand Challenges" of Fossil Fuels December 2010 3 Exploring the "Grand Challenges" of Fossil Fuels NETL Advanced Research The Advanced Research (AR) Program within the Office of Coal and Power Systems of the National Energy Technology Laboratory (NETL), the research arm of the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), fosters the development of innovative, cost-effective technologies for improving the efficiency, reliability, and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental research into technology alternatives and applied research aimed at scale-up, deployment, and commercialization of the most promising technologies identified.

11

Sandia National Laboratories: Innovation for Green Advanced Transporta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation for Green Advanced Transportation Excellence ECIS and i-GATE: Innovation Hub Connects Clean Tech Small Business with Labs and State On February 20, 2013, in Partnership...

12

Energy Department Announces Awards to Projects Advancing Innovative Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards to Projects Advancing Innovative Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 1:00pm Addthis Washington, D.C. - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. The Energy Department's $7 million investment - leveraged with recipient cost-share to support approximately $9.4 million in total projects - will support the development and deployment of Carbon Capture, Utilization, and Storage (CCUS) by focusing on further improving the efficiency and reducing the costs

13

Energy Department Announces Awards to Projects Advancing Innovative Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards to Projects Advancing Innovative Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 11:37am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. The Energy Department's $7 million investment - leveraged with recipient cost-share to support approximately $9.4 million in total projects - will support the development and deployment of Carbon Capture, Utilization, and Storage (CCUS) by

14

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

15

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

16

Energy Department Announces $10 Million to Advance Innovative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces $10 Million to Advance Innovative, Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies December 6, 2013 - 1:48pm Addthis As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to reduce lighting energy use for American families and businesses by one half and enhance U.S. global competitiveness. Based on the Energy Department's recent report on the adoption of LEDs,

17

Energy Department Announces $10 Million to Advance Innovative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million to Advance Innovative, 0 Million to Advance Innovative, Energy-Saving Lighting Technologies Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies December 6, 2013 - 1:48pm Addthis As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to reduce lighting energy use for American families and businesses by one half and enhance U.S. global competitiveness. Based on the Energy Department's recent report on the adoption of LEDs,

18

Advanced Materials Manufacturing and Innovative Technologies...  

Energy Savers (EERE)

Inform Integrity Management Plans. - Opportunities: * Leverage advances in high-performance computing and improved understanding of materials performance at condition. *...

19

NETL: News Release - Projects Selected to Advance Innovative Materials for  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2010 14, 2010 Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Washington, D.C. - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent storage. An effective way to accelerate research is to use advances in materials simulations and high performance computing and communications to guide experiments. Concurrent with the continuing drive to reduce costs and design cycle time in the manufacture of power plant equipment is an increase in the need for more materials property data demonstrating sufficient performance.

20

Next Generation Advanced Framing- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Building America researchers garnered a Top Innovation award for research into simple, cost-effective ways to implement advanced framing techniques.

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Announces Nearly $120 Million to Advance Innovative Weatherization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Nearly $120 Million to Advance Innovative DOE Announces Nearly $120 Million to Advance Innovative Weatherization Projects, Highlights Progress in the Program Nationally DOE Announces Nearly $120 Million to Advance Innovative Weatherization Projects, Highlights Progress in the Program Nationally August 19, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu announced today award selections for approximately 120 organizations across the country that will receive nearly $120 million to drive innovation under the Department of Energy's Weatherization Assistance Program. These investments will enable successful weatherization agencies to expand their programs and will support new pilot projects to demonstrate innovative weatherization delivery and financial models and new technologies. Secretary Chu also

22

DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances Innovative CCS Polygeneration Plant Through NEPA Advances Innovative CCS Polygeneration Plant Through NEPA Process DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process July 9, 2012 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) and the California Energy Commission (CEC) are working together to advance an innovative carbon capture and storage (CCS) plant simultaneously through the federal National Environmental Policy Act (NEPA) review and a complementary California Energy Quality Act process. As part of the NEPA process, DOE and CEC will hold a public meeting on July 12, 2012, at the Elk Hills Elementary School at 501 Kern St. in Tupman, Calif., at 5 p.m PDT. This will be an opportunity for the public to offer their comments and view the project site in Elk Hills, Kern County, Calif.

23

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Energy.gov (U.S. Department of Energy (DOE))

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

24

Projects that Employ Innovative Technologies in Support of the Advanced Energy Initiative (2006)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Loan Guarantees For Projects That Employ Innovative Technologies In Support Of The Advanced Energy Initiative

25

Energy Department Announces New Innovative Projects to Develop Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Projects to Develop Innovative Projects to Develop Advanced Drop-in Biofuels for Military Jets and Ships Energy Department Announces New Innovative Projects to Develop Advanced Drop-in Biofuels for Military Jets and Ships April 22, 2013 - 9:55am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced nearly $18 million in four innovative pilot-scale biorefineries in California, Iowa and Washington that will test renewable biofuels as a domestic alternative to power our cars, trucks, and planes that meet military specifications for jet fuel and shipboard diesel. These projects build on the Obama Administration's broader efforts to advance biofuels technologies to continue to bring down costs, improve performance and identify effective,

26

Advanced Electrolyte Model - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Energy Storage Find More Like This Return to Search Advanced Electrolyte Model Idaho National Laboratory Contact INL About This Technology Publications: PDF Document...

27

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

28

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative High Energy Density Capacitor Design Offers Potential Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern,

29

FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost...  

Energy Savers (EERE)

FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of Capturing Carbon Emissions from Coal Fired Power Plants FE's Advanced Combustion R&D Seeks Innovative Ways to...

30

Institute for Advanced Composites Manufacturing Innovation |...  

Energy Savers (EERE)

with record-breaking fuel economy Lighter and longer wind turbine blades High pressure tanks for natural gas-fueled cars Lighter, more efficient industrial equipment In the wind...

31

Chapter 10 - Advances and Innovations in LNG Industry  

Science Journals Connector (OSTI)

Abstract There are increasing liquefied natural gas (LNG) demands from many parts of the world because LNG is now considered safe and is less polluting. The demands are to be met by an increase in new liquefaction plants that are based from the unconventional gas and new discoveries. The new liquefaction plants under consideration will be built with higher efficiency in environmentally responsible manners. This means the whole LNG supply chain, from the well heads, gas treatment, liquefaction,; transportation, and regasification, must be designed and configured with low emissions and high efficiency. Additionally, there is also a drive to lower the cost of natural gas liquefaction and improve the value of the LNG regasification plant. This chapter discusses the development, advances, innovations, and new ideas in the LNG supply chain. The focus will be on more efficient liquefaction technology, larger and higher efficiency drivers, improved liquefaction equipment design, NGL recovery, LNG regasification, and LNG cold utilization. The applications of some of these technologies may further improve the image of the LNG industries.

2014-01-01T23:59:59.000Z

32

Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive  

DOE Data Explorer (OSTI)

ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

33

STATEMENT OF CONSIDERATIONS REQUEST BY EATON INNOVATION CENTER (EATON) FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REQUEST BY EATON INNOVATION CENTER (EATON) FOR AN ADVANCE WAIVER REQUEST BY EATON INNOVATION CENTER (EATON) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE GRANT NO. DE-FG36- 06GO16054; W(A)-07-005 The Petitioner, Eaton, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced grant entitled "Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems." The Petitioner will be collaborating with subawardee Greenleaf Corporation, which is not subject to this waiver request. The objective of the grant is to develop and commercialize nano-coatings of AlMgB 14 and AlMgB 1 4 -TiB 2 , as degradation resistance materials applicable to both industrial hydraulic and tooling systems, that result in surface hardness exceeding 30 GPa. For hydraulic products, the

34

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Density Capacitor Design Offers Potential High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern, Pennsylvania's TroyCap, LLC is using nanolaminate technology patented by

35

Energy Department to Launch New Energy Innovation Hub Focused on Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Launch New Energy Innovation Hub Focused on to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage Energy Department to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage February 7, 2012 - 9:32am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu announced today plans to launch a new Energy Innovation Hub for advanced research on batteries and energy storage with an investment of up to $120 million over five years. The hub, which will be funded at up to $20 million in fiscal year 2012, will focus on accelerating research and development of electrochemical energy storage for transportation and the electric grid. The interdisciplinary research and development through the new Energy Innovation Hub will help advance cutting-edge energy storage and battery

36

Innovative  

NLE Websites -- All DOE Office Websites (Extended Search)

provides awards of time on the Oak Ridge and Argonne Leadership Computing Facility (LCF) high performance computer systems for researchers to pursue transformational advances in...

37

Advanced Technologies and Practices- Building America Top Innovations  

Energy.gov (U.S. Department of Energy (DOE))

Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope, HVAC components, ventilation, and health and safety issues.

38

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28  

E-Print Network (OSTI)

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. (b) ESTABLISHMENT OF TECHNOLOGY INNOVATION PROGRAM.-- The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq

Magee, Joseph W.

39

Department of Energy Awards More Than $11 Million to Advance Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than $11 Million to Advance More Than $11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than $11 Million to Advance Innovative Geothermal Energy Technologies June 23, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced that eight projects in five states - California, Connecticut, Louisiana, Texas, and Utah - have been selected to receive up to $11.3 million to support the research and development of pioneering geothermal technologies. The projects selected today will foster innovation in the technologies and methods used to generate geothermal energy, which will help strengthen U.S. energy security and increase America's competitiveness in the global clean energy economy. Continued innovation and technical advances will also help

40

High Temperature Capabililty and Innovative Cooling with a Spar and Shell Turbine Blade - Florida Turbine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Capability and Temperature Capability and Innovative Cooling with a Spar and Shell Turbine Blade-Florida Turbine Technologies Background Florida Turbine Technologies, Inc. (FTT) is currently developing advanced aerothermal technologies centered on spar and shell airfoil concepts meant to provide highly durable turbine components that require the lowest cooling flow possible. The spar-shell system represents a unique opportunity for the use of advanced, high-temperature materials

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AMO's New Institute for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use  

Energy.gov (U.S. Department of Energy (DOE))

The Institute for Advanced Composites Manufacturing Innovation announced by President Obama today is a public-private consortium of 122 leading U.S. manufacturers, universities, and non-profits that will focus on advanced compositesmaterials that are three times as strong and twice as light as the lightest metals. These advanced materials have the potential to transform products ranging from wind turbines to automobiles. This new Innovation Institute, headquartered in Knoxville, Tennessee and led by the University of Tennessee, will receive $70 million in federal funding provided by the U.S. Department of Energy's Advanced Manufacturing Office.

42

Building America Top Innovations Hall of Fame Profile … Advanced Framing Systems and Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

studies involving studies involving thousands of homes have documented significant material, labor, and energy savings when production builders implement advanced framing techniques. Advanced framing can reduce the number of studs in the walls by up to one-third, reducing the cost of materials. and reducing the cost of labor in terms of the time it takes to handle, cut, install, drill, and attach to studs. Actual savings have exceeded $1,000 per home. Studies show the resulting improvement in thermal performance can yield 13% energy savings. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Advanced Framing Systems and Packages Building America has developed best practices for advanced framing

43

Innovative Drying Technology Extracts More Energy from High Moisture Coal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Drying Technology Extracts More Energy from High Innovative Drying Technology Extracts More Energy from High Moisture Coal Innovative Drying Technology Extracts More Energy from High Moisture Coal March 11, 2010 - 12:00pm Addthis Washington, DC - An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility. The DryFining(TM) technology was developed with funding from the first round of the U.S. Department of Energy's Clean Coal Power Initiative (CCPI). Great River Energy of Maple Grove, Minn., has selected the WorleyParsons Group to exclusively distribute licenses for the technology, which essentially uses waste heat from a power plant to reduce moisture content

44

Energy Department Announces New ARPA-E Projects to Advance Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New ARPA-E Projects to Advance Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July 12, 2012 - 11:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 HOUSTON - U.S. Deputy Secretary of Energy Daniel Poneman today announced 13 new cutting-edge research projects that will receive a total of $30 million to find new ways of harnessing America's abundant natural gas supplies for cars and trucks and expand the use of natural gas as a vehicle fuel. Through its Advanced Research Projects Agency - Energy (ARPA-E), the Department's new program, titled Methane Opportunities for Vehicular Energy - or "MOVE" - aims to engineer light-weight, affordable

45

Energy Department Announces New ARPA-E Projects to Advance Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New ARPA-E Projects to Advance Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July 12, 2012 - 11:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 HOUSTON - U.S. Deputy Secretary of Energy Daniel Poneman today announced 13 new cutting-edge research projects that will receive a total of $30 million to find new ways of harnessing America's abundant natural gas supplies for cars and trucks and expand the use of natural gas as a vehicle fuel. Through its Advanced Research Projects Agency - Energy (ARPA-E), the Department's new program, titled Methane Opportunities for Vehicular Energy - or "MOVE" - aims to engineer light-weight, affordable

46

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

Science Journals Connector (OSTI)

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques ... (80-86) These energetic electrons that are not in thermal equilibrium with the metal atoms are called hot electrons. ... The activation energies are 22-33 kcal/mol, close to the desorption energy of CO from these surfaces. ...

Gabor A. Somorjai; Heinz Frei; Jeong Y. Park

2009-11-04T23:59:59.000Z

47

Building America Top Innovations 2013 Profile … Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It's well known that advanced framing techniques that reduce the amount of It's well known that advanced framing techniques that reduce the amount of framing in the stud-framed walls improve the thermal performance of walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

48

Building America Top Innovations 2013 Profile … Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It is well known that advanced framing techniques that reduce the amount of It is well known that advanced framing techniques that reduce the amount of framing in stud-framed walls improve the thermal performance of the walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately, even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

49

Recap: Advancing Scientific Innovation at the National Labs ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lab Fri, Mar 07 2014 18:19:31 OLCF Industry User Named Person to Watch in High-Performance Computing for 2014 http:t.copXTjgsn0XJ Titan Industry @ORNL @GEResearch - OLCF ...

50

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

51

Innovative  

NLE Websites -- All DOE Office Websites (Extended Search)

and Novel Computational Impact on Theory and Experiment The INCITE program provides awards of time on the Oak Ridge and Argonne Leadership Computing Facility (LCF) high performance computer systems for researchers to pursue transformational advances in science and technology. If you answer yes to the following questions, INCITE may be right for you. To begin the process, submit an RFI: http://hpc.science.doe.gov/allocations/incite Is your science campaign outpacing the computing resources available to you? Do you have a long-term vision for your research campaign, over a period of years rather than months? Can you effectively use an INCITE-sized award, more than twenty million core-hours? INCITE INCITE issues an annual call for proposals of high-impact,

52

Innovative technical advances in the application of regenerative thermal oxidizers  

SciTech Connect

Regenerative Thermal Oxidizers (RTOs) have been applied in industry for over twenty (20) years to reduce the emissions of Volatile Organic compounds (VOCs) into the atmosphere from industrial process emissions. The Clean Air Act and its amendments have established a regulatory framework setting standards for allowable levels of VOC emissions. Several forces are driving the increasing use and acceptance of this technology: (1) High efficiency and increasing stringent standards require higher destruction efficiency; (2) Low operating cost and control of emission streams with less VOCs (therefore, less fuel value) causing higher use of natural gas for combustion; (3) Low NO{sub x}--the overlapping concern of NO{sub x} generation from the combustion process; (4) Low process upsets with improved productivity of industrial process require continuous integration of VOC abatement equipment; and (5) Reduced capital cost--capital cost criteria is $/ton of VOC abated. The latest development in RTO technology is the Single Can Oxidizer (SCO). This regenerative thermal oxidizer is the accumulation of developments in many subsystems of RTOs, combined with a dramatic new configuration. Several features of the system offer unique benefits to industrial end users: (1) Single can configuration gives reduced weight, material usage, and cost; (2) Rotary valve design gives smooth operation, and low pressure fluctuations; (3) Structured block heat recovery media reduces pressure drop, and lowers HP/operating cost; and (4) SMART system lowers NO{sub x} output/reduced operation cost. This paper will present a discussion of the features listed above. In addition, it will provide analytical documentation of test results for a full scale commercial unit.

Grzanka, R.; Truppi, T.

1999-07-01T23:59:59.000Z

53

An Innovative Approach for Data Collection and Handling to Enable Advancements in Micro Air Vehicle Persistent Surveillance  

E-Print Network (OSTI)

AN INNOVATIVE APPROACH FOR DATA COLLECTION AND HANDLING TO ENABLE ADVANCEMENTS IN MICRO AIR VEHICLE PERSISTENT SURVEILLANCE A Thesis by RYAN DAVID GOODNIGHT Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Aerospace Engineering AN INNOVATIVE APPROACH FOR DATA COLLECTION AND HANDLING TO ENABLE ADVANCEMENTS IN MICRO AIR VEHICLE PERSISTENT...

Goodnight, Ryan David

2010-10-12T23:59:59.000Z

54

Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Creating the Next Generation of Government * Make Government Stronger - Transparency * Make Government More Efficient - Participation * Stimulate Economic Growth- Collaboration challenges Solutions * Government as a Platform * Provide services directly to the citizen wherever and whenever * Enabled by Technology Impact - Transparency Impact - Participation Impact - collaboration Tools At Our Disposal Open Government Open Government QuickTime(tm) and a decompressor are needed to see this picture. 4. Data Communities 5. Reviewing Existing Agency Rules * Three grand challenges * 26 projects * One year to complete QuickTime(tm) and a decompressor are needed to see this picture. 1. Launch "We the People"

55

Innovation  

Energy.gov (U.S. Department of Energy (DOE))

In 1945, Vannevar Bush began the innovation conversation by writing Science: The Endless Frontier. In that report Bush said that "New products and new processes do not appear full-grown [they]are painstakingly developed by research in the purest realms of science." With those words The Endless Frontier launched a national conversation linking science to the nation's manufacturing industry and thence to our country's economic prosperity and national security.

56

Advanced Combustion Technology to Enable High Efficiency Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

57

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

58

Advanced Materials and Processing of Composites for High Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Advanced Materials and Processing of Composites for High Volume Applications Carbon Fiber SMC Advanced Materials and Processing of Composites for High Volume...

59

Development of 3rd Generation Advanced High Strength Steels ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

60

Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012  

SciTech Connect

On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set of recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nations energy future.

Larzelere, Alex R.; Ashby, Steven F.; Christensen, Dana C.; Crawford, Dona L.; Khaleel, Mohammad A.; John, Grosh; Stults, B. Ray; Lee, Steven L.; Hammond, Steven W.; Grover, Benjamin T.; Neely, Rob; Dudney, Lee Ann; Goldstein, Noah C.; Wells, Jack; Peltz, Jim

2013-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Received two 2013 Sustainability Awards from DOE for "Sustainable Campus" and "Innovative and Holistic Sustainability." PNNL advances the DOE sustainability  

E-Print Network (OSTI)

strength through mutual support and integration, our three pillars and twelve focus areas createReceived two 2013 Sustainability Awards from DOE for "Sustainable Campus" and "Innovative and Holistic Sustainability." PNNL advances the DOE sustainability mission with a diverse, focused effort

62

Advanced Recyclable Media System{reg_sign}. Innovative technology summary report  

SciTech Connect

The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory East`s (ANL) Chicago Pile-5 (CP-5) Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved deactivation and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. This report describes a demonstration of the Advanced Recyclable Media System{reg_sign} technology which was employed by Surface Technology Systems, Inc. to remove coatings from a concrete floor. This demonstration is part of the CP-5 LSDP sponsored by the US Department of Energy (DOE) Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA). The Advanced Recyclable Media System{reg_sign} (ARMS) technology is an open blast technology which uses a soft recyclable media. The patented ARMS Engineered Blast Media consists of a fiber-reinforced polymer matrix which can be manufactured in various grades of abrasiveness. The fiber media can be remade and/or reused up to 20 times and can clean almost any surface (e.g., metal, wood, concrete, lead) and geometry including corners and the inside of air ducts.

NONE

1998-12-01T23:59:59.000Z

63

Funding Opportunity Webinar Building America Industry Partnerships for High Performance Housing Innovations  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the Building America Industry Partnerships for High Performance Housing Innovations Funding Opportunity Announcement, DE-FOA-0001117.

64

Funding Opportunity Webinar Building America Industry Partnerships for High Performance Housing Innovations (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

65

St. Gobain Innovation Competition for Start-Ups  

Energy.gov (U.S. Department of Energy (DOE))

The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

66

High Temperature Membrane & Advanced Cathode Catalyst Development  

SciTech Connect

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

67

High-Efficiency Window Air Conditioners- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

68

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network (OSTI)

Figure 21. (a) Schemes of energy conversion from exothermicand Renewable Energy Conversion by Innovations of Surfacebiointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

69

Riad, EPS Structures Innovations on Central Artery/Tunnel (CA/T) Project 2005 BSCES-GEO-INSTITUTE RECENT ADVANCES IN GEOTECHNICAL  

E-Print Network (OSTI)

Riad, EPS Structures Innovations on Central Artery/Tunnel (CA/T) Project 2005 BSCES-GEO-INSTITUTE RECENT ADVANCES IN GEOTECHNICAL ENGINEERING Seminar 1 EPS STRUCTURES INNOVATIONS ON CENTRAL ARTERY/TUNNEL (CA/T) PROJECT Hany L. Riad, Ph.D., P.E. (1) Abstract The use of Expanded Polystyrene (EPS) in block

Horvath, John S.

70

In Texas, Energy Sec. Moniz to Echo Presidents State of the Union Call to Foster Advanced Manufacturing and Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Secretary of Energy Ernest Moniz will travel to Austin and San Antonio, Texas to highlight the Presidents State of the Union Address and the Administrations efforts to foster innovation and advanced manufacturing

71

High Performance Home Cost Performance Trade-Offs: Production Builders- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance again measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

72

From Professor to Inventor to Entrepreneur: The Excitement of High Tech Innovation  

E-Print Network (OSTI)

From Professor to Inventor to Entrepreneur: The Excitement of High Tech Innovation James Wyant OSA Gold Medal, the SPIE Technology Achievement Award, and the OSA Joseph Fraunhofer Award. #12;

Zanibbi, Richard

73

Development of Advanced High Temperature Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

74

E-Print Network 3.0 - advancing drug innovation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

works best... of Innovation, Technological Change and Quality-Adjusted Patents in the US Pharmaceutical Industry Gautier... DUFLOS 2006.29 halshs-00113499,version2-15Jan2007...

75

Effective marketing of technical innovation  

Science Journals Connector (OSTI)

Recent trends in the global business market point to the increasing importance of technology and technical innovations to gain and maintain competitive business strategic advantage. However, the marketing of technical innovations throughout the supply chain is still governed by traditional strategies and practices. Such strategies and practices are ineffective in a highly technologically advanced marketplace. As a result, the marketers of technologically innovative products and concepts are left with many questions and very few practical answers. This research offers a practical, integrated approach to marketing technical innovations. The approach offered is presented within an organisational, people and technology strategic context. A field study is utilised to illustrate the utility of the proposed approach.

Andrew J. Czuchry; Mahmoud M. Yasin

2007-01-01T23:59:59.000Z

76

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

77

Top Innovations 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top Innovations 2012 Top Innovations 2012 Top Innovations 2012 On this page, you will find Building America's Top Innovations from 1995 through 2012, with links to a profile describing each innovation. Note that some categories may not have a top innovation each year. Flow chart graphic 1. Advanced Technologies and Practices Top Innovations in this category cover research in thermal enclosure improvements, HVAC components, ventilation and other health and safety issues. 1.1 Building Science Solutions Thermal Enclosure: Basement Insulation Systems Advanced Framing Systems and Packages Unvented, Conditioned Attics Unvented, Conditioned Crawlspaces High-R Walls Heating, Ventilation, and Air Conditioning: Integration of HVAC System Design with Simplified Duct Distribution Ducts in Conditioned Space

78

The Innovation Innovation  

E-Print Network (OSTI)

K. N. (2002). Social intelligence, innovation, and enhancedPerspectives in Innovation and Social Change, MethodosThe Innovation Innovation Any social system must combine (1)

Read, Dwight W; van der Leeuw, Sander E; Lane, David

2009-01-01T23:59:59.000Z

79

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

80

Advanced Combustion Technology to Enable High Efficiency Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion System + Air Handling Air Handling + Sensors + Calibration Low P, High Flow Rate EGR + VVA - Simulated Robustness Advanced Combustion Concepts - Simulated 0.0...

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced CFD Models for High Efficiency Compression Ignition Engines  

Energy.gov (U.S. Department of Energy (DOE))

Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

82

Friction Stir Spot Welding of Advanced High Strength Steels II...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

83

First Generation Advanced High-Strength Steels Deformation Fundamental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deformation Fundamentals First Generation Advanced High-Strength Steels Deformation Fundamentals 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

84

Characterization of Thermo-Mechanical Behaviors of Advanced High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS) Presenter: Mark Smith Principal Investigator: Xin Sun Pacific Northwest National Laboratory Principal...

85

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

SciTech Connect

The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

Somorjai, G.A.; Frei, H.; Park, J.Y.

2009-07-23T23:59:59.000Z

86

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

87

Energy Department Announces $18 Million for Innovative Projects to Advance Geothermal Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of the Administrations all-of-the-above energy strategy, the Energy Department today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States.

88

Innovative High Energy Density Capacitor Design Offers Potential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

like TroyCap's High Density Energy Nanolaminate Capacitor (HEDCAP) that may offer new clean energy applications to meet the nation's strategic energy goals and secure...

89

The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods  

Science Journals Connector (OSTI)

Abstract The scope of the HIGH-COMBI project is the development of high solar fraction systems by innovative combination of optimized solar heating, cooling and storage technologies as well as control strategies, in order to contribute and assist the further deployment of the solar energy market. Within this project, six demonstration plants were installed in four European countries (Greece, Italy, Spain and Austria). The purpose of this article is to assess the result achieved in the technical field of the project and to present the technical aspects of the six innovative demonstration systems realised during the project period.

Vassiliki N. Drosou; Panagiotis D. Tsekouras; Th.I. Oikonomou; Panos I. Kosmopoulos; Constantine S. Karytsas

2014-01-01T23:59:59.000Z

90

Apply: Funding Opportunity- Building America Industry Partnerships for High Performance Housing Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Application Deadline: February 4, 2015 The Building Technologies Office (BTO)s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry Partnerships for High Performance Housing Innovation Funding Opportunity Announcement (FOA) DE-FOA-0001117.

91

High Performance Without Increased Cost: Urbane Homes, Louisville, KY- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes work with Urbane Homes of Louisville, Kentucky, to build a high-performance home that cost $36 per ft2 (not counting the lot).Between 2005 and 2010, Building America research partners worked with 34 builders to construct nearly 3,000 HERS

92

High-R Walls - Building America Top Innovation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R values and the need for vented cladding to reduce condensation potential with some insulation types. Research on common high-R wall assemblies has shown that the measured R-value...

93

Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.  

SciTech Connect

This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

Saffer, Shelley (Sam) I.

2014-12-01T23:59:59.000Z

94

Friction Stir Spot Welding of Advanced High Strength Steels ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm14grant.pdf More Documents & Publications Friction Stir Spot Welding of Advanced High...

95

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network (OSTI)

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

96

Friction Stir Spot Welding of Advanced High Strength Steels ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Steels (AHSS) Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February...

97

Advanced Environments and Tools for High Performance Computing  

E-Print Network (OSTI)

Advanced Environments and Tools for High Performance Computing Problem-Solving Environments Environments and Tools for High Performance Computing. The conference was chaired by Professor D. W. Walker and managing distributed high performance comput- ing resources is important for a PSE to meet the requirements

Walker, David W.

98

HIGH ENERGY ELECTRON BEAM (HEEB) PROCESSING OF ADVANCED MATERIALS  

E-Print Network (OSTI)

) ) HIGH ENERGY ELECTRON BEAM (HEEB) PROCESSING OF ADVANCED MATERIALS V. R. Dave*, D. L. Goodman 02143. ABSTRACT High Energy Electron Beams (HEEBs) offer a unique heat source that may be used- based processing so attractive are : in-depth energy penetration, very high average power levels, shock

Eagar, Thomas W.

99

Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report  

SciTech Connect

Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

1996-02-01T23:59:59.000Z

100

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Diagnostics for High Pressure Spray Combustion.  

SciTech Connect

The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

2014-06-01T23:59:59.000Z

102

Competition Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition Innovations Competition Innovations Through the years, innovations, advancements and research projects have resulted from competitions. From Challenge X 2007 Mississippi State University on the road during the on-road fuel economy event Forrest Jehlik, Lead Technical Coordinator, Advanced Vehicle Technology Competitions, and the University of Wisconsin-Madison preparing for an on-road vehicle emissions event. Pennsylvania State University racing through the cones of the autocross event. Left: Mississippi State University on the road during the on-road fuel economy event. Center: Forrest Jehlik and the University of Wisconsin-Madison preparing for an on-road fuel economy event. Right: Pennsylvania State University on the road during the on-road fuel economy event.

103

Advanced cathode material for high power applications.  

SciTech Connect

In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF{sub 6}/spinel cells indicated a very significant degradation of capacity with cycling at 55 C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C{sub 2}O{sub 4}){sub 2} ('LiBoB'). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 C and better abuse tolerance, as well as excellent power. A second system based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} layered material was also investigated and its performance was compared to commercial LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}. Cells based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} showed lower power fade and better thermal safety than the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li{sub 1.1}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}) exhibited excellent power performance that exceeded the FreedomCAR requirements.

Amine, K.; Belharouak, I.; Kang, S. H.; Liu, J.; Vissers, D.; Henriksen, G.; Chemical Engineering

2005-01-01T23:59:59.000Z

104

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network (OSTI)

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford

105

Hindawi Publishing Corporation Advances in High Energy Physics  

E-Print Network (OSTI)

Hindawi Publishing Corporation Advances in High Energy Physics Volume 2012, Article ID 235686, 34 to resolve mantle models with current detection methods. Multiple-site measurement in oceanic areas away from . The initial hot state 4.5 billion years ago was a result of gravitational energy of accretion and global

Mcdonough, William F.

106

Apparatus for advancing a wellbore using high power laser energy  

DOE Patents (OSTI)

Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-09-02T23:59:59.000Z

107

Advanced Inverter Functions to Support High Levels of Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

of advanced inverters. THE NEED FOR ADVANCED INVERTER FUNCTIONS Distributed solar capacity is increasing rapidly as technologies advance, prices decline, markets shift, and...

108

Disruptive Innovation in Numerical Hydrodynamics  

SciTech Connect

We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

Waltz, Jacob I. [Los Alamos National Laboratory

2012-09-06T23:59:59.000Z

109

STATEMENT OF CONSIDERA"nONS REQUEST BY LlGNOL INNOVATIONS, LTD, (LIGNOL LTD) FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSIDERA"nONS CONSIDERA"nONS REQUEST BY LlGNOL INNOVATIONS, LTD, (LIGNOL LTD) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A PROPOSED SUB-AWARD OF COOPERATIVE AGREEMENT NO. DE-FG36-0BG01B047 BETWEEN LlGNOL INNOVATIONS, INC. (LIGNOL INC) AND DOE; W(A)200B-036, CH-1463 The Petitioner, LlGNOL LTD, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced award entitled "Lignol Demonstration Biorefinery." Petitioner is proposed to become a subawardee under LlGNOL INC (which is Petitioner's U.S. entity) by means of a sub-award agreement. Since LlGNOL INC has certified that it is a domestic small business entity, subject inventions made by LlGNOL INC under the award are not subject to the U.S. Competitiveness provision. However,

110

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 Advanced Fault Tolerance Solutions  

E-Print Network (OSTI)

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 RAS RAS Advanced Fault Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Solutions for High Performance Computing 2/47 · Nation's largest energy laboratory · Nation's largest

Engelmann, Christian

111

Advancing the technology base for high-temperature membranes  

SciTech Connect

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

1997-10-01T23:59:59.000Z

112

Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamak  

SciTech Connect

A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30?s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.

Guo, H. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Li, J.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Gong, X. Z.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); and others

2014-05-15T23:59:59.000Z

113

NUG 2013 User Day: Trends and Innovation in High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Home » For Users » NERSC Users Group » Annual Meetings » NUG 2013 » Home » For Users » NERSC Users Group » Annual Meetings » NUG 2013 » User Day NUG 2013 User Day: Trends, Discovery, and Innovation in High Performance Computing Wednesday, Feb. 13 Berkeley Lab Building 50 Auditorium Live streaming: http://hosting.epresence.tv/LBL/1.aspx 8:45 - Welcome: Kathy Yelick, Berkeley Lab Associate Director for Computing Sciences Trends 9:00 - The Future of High Performance Scientific Computing, Kathy Yelick, Berkeley Lab Associate Director for Computing Sciences 9:45 - NERSC Today and over the Next Ten Years, Sudip Dosanjh, NERSC Director 10:30 - The 2013 NERSC Achievement Awards 10:45 - Break Discovery 11:00 - Discovery of the Higgs Boson and the role of LBNL and World-Wide Computing , Ian Hinchliffe, Berkeley Lab 11:30 - Discovery of the θ13 Weak Mixing Angle at Daya Bay using NERSC &

114

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

115

High-temperature corrosion in advanced combustion systems  

SciTech Connect

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

1993-11-01T23:59:59.000Z

116

Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in ESS Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to innovations in energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics ESS 2007 Peer Review - Evaluation of Lead-Carbon Storage Devices for Utility Applications - Enders Dickinson, MeadWestvaco.pdf ESS 2007 Peer Review - High Voltage Electrochemical Capacitor - David

117

SP-100 high-temperautre advanced radiator development. [Nb; C  

SciTech Connect

Under contract to NASA-Lewis Research Center, an advanced radiator concept design has been developed meeting SP-100 thermoelectric requirements. Carbon-carbon heat pipes are utilized to produce this lightweight, high performance radiator. Two fundamental feasibility issues had to be solved to enable the design: first, to produce a carbon-carbon heat pipe tube with integral fins, meeting both thermal and mechanical requirements; and second, to develop a coating that protects the carbon-carbon substrate from 875 K potassium working fluid.

Rovang, R.D.; Hunt, M.E. (Rocketdyne Div./Rockwell Int., 6633 Canoga Ave., Canoga Park, CA (USA)); Dirling, R.B. Jr. (Science Applications International Corp., 1720 E. Wilshire, Santa Ana, CA (USA)); Holzl, R.A. (Delta G Corporation, 9960-A Glenoaks Blvd., Sun Valley, CA (USA))

1991-01-05T23:59:59.000Z

118

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

119

Recent advances in high-performance direct methanol fuel cells  

SciTech Connect

Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

Narayanan, S.R.; Chun, W.; Valdez, T.I. [California Institute of Technology, Pasadena, CA (United States)] [and others

1996-12-31T23:59:59.000Z

120

High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors  

SciTech Connect

The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L. [Luna Innovations, Inc., 2851 Commerce Street, Blacksburg, VA 24060 (United States)

2004-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.  

SciTech Connect

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

2007-07-01T23:59:59.000Z

122

NETL: Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

AR AR Coal and Power Systems Advanced Research 12.11.13: Request for Information entitled "Novel Crosscutting Research and Development to Support Advanced Energy Systems". Application due date is January 15, 2014. The RFI and/or instructions can be found on the FedConnect site at FedConnect. Achieving Successes in High Performance Materials, Coal Utilization Sciences, Sensors & Controls Innovations, Computational Energy Sciences, Cooperative Research and Development, and sponsoring Education Initiatives. The Advanced Research (AR) program within NETL's Office of Coal and Power Systems fosters the development of innovative, cost-effective technologies for improving the efficiency and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental

123

High-Performance Affordable Housing with Habitat for Humanity- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

124

Innovative, Cost Effective and Energy Efficient Desgin for New Construction at a Texas High School  

E-Print Network (OSTI)

, which includes innovative dual-duct Variable Air Volume (VAV) systems for cooling and pre-treated ventilation air delivery integrated with occupancy sensors and digital controls, and optimized HVAC controls for dynamic balancing of air and hydronic sides...

Khan, S.; Bible, M.

2013-01-01T23:59:59.000Z

125

High-Performance Computing for Advanced Smart Grid Applications  

SciTech Connect

The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

Huang, Zhenyu; Chen, Yousu

2012-07-06T23:59:59.000Z

126

Building America Top Innovations Hall of Fame Profile … Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help from Building America, Artistic help from Building America, Artistic Homes built affordable, high-performance homes in New Mexico and Colorado with HERS scores of 0 to 60. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Artistic Homes have had an extraordinary impact, demonstrating the mainstream builder's business case for adopting proven innovations such as efficient thermal enclosures and ducts inside the conditioned space, even in entry-level homes. The U.S. Department of Energy's Building America program has helped develop best practices for creating efficient thermal enclosures and locating HVAC ducts inside the conditioned space. These measures cost-effectively reduce heating and

127

Building America Top Innovations Hall of Fame Profile … Reduced Call-Backs with High-Performance Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Grupe of Stockton, California, worked When Grupe of Stockton, California, worked with Building America to build 144 energy- efficient homes in its Carsten Crossings development, the site superintendent said he had the lowest call-back rate of any community he had worked on. He credited the third-party HERS inspections and testing for keeping the quality of work high and catching problems before move-in (Dakin et al. 2008). BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Reduced Call-Backs with High-Performance Production Builders It is essential to engage production builders to successfully transform the market to high-performance homes. Building America has effectively addressed this

128

Thermo-Economic Assessment of Advanced,High-Temperature CANDU Reactors  

SciTech Connect

Research underway on the advanced CANDU examines new, innovative, reactor concepts with the aim of significant cost reduction and resource sustainability through improved thermodynamic efficiency and plant simplification. The so-called CANDU-X concept retains the key elements of the current CANDU designs, including heavy-water moderator that provides a passive heat sink and horizontal pressure tubes. Improvement in thermodynamic efficiency is sought via substantial increases in both pressure and temperature of the reactor coolant. Following on from the new Next Generation (NG) CANDU, which is ready for markets in 2005 and beyond, the reactor coolant is chosen to be light water but at supercritical operating conditions. Two different temperature regimes are being studied, Mark 1 and Mark 2, based respectively on continued use of zirconium or on stainless-steel-based fuel cladding. Three distinct cycle options have been proposed for Mark 1: the High-Pressure Steam Generator (HPSG) cycle, the Dual cycle, and the Direct cycle. For Mark 2, the focus is on simplification via a Direct cycle. This paper presents comparative thermo-economic assessments of the CANDU-X cycle options, with the ultimate goal of ascertaining which particular cycle option is the best overall in terms of thermodynamics and economics. A similar assessment was already performed for the NG CANDU. The economic analyses entail obtaining cost estimates of major plant components, such as heat exchangers, turbines and pumps. (authors)

Spinks, Norman J.; Pontikakis, Nikos; Duffey, Romney B. [Atomic Energy of Canada Limited, Chalk River, ON KOJ 1J0 (Canada)

2002-07-01T23:59:59.000Z

129

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities in High

Engelmann, Christian

130

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

131

Secretary Moniz Announces Nearly $50 Million to Advance High...  

Energy Savers (EERE)

lightweighting materials; cost-effective batteries and power electronics; advanced heating, ventilation and air conditioning systems; and improved fuels and lubricants. By...

132

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Heat Transfer Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping yourself cool while driving your car on a hot, sunny day can be a challenge. But it can be even more challenging to cool the power electronic components that are critically important in hybrid electric and all-electric vehicles. Researchers at the National Renewable Energy Laboratory (NREL) investigate and develop these vehicles and their components to help reduce our use of imported petroleum and curb the emissions associated with climate change. A vehicle's power electronic components include the motor controller, converters, and inverters that condition the flow of electrical power between the battery and the electric motor. The problem is that power electronics generate a lot of heat. This heat can decrease

133

Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)  

SciTech Connect

This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

Not Available

2014-11-01T23:59:59.000Z

134

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

135

Editorial for Advanced Theory and Practice for High Performance Computing and Communications Geoffrey Fox  

E-Print Network (OSTI)

Editorial for Advanced Theory and Practice for High Performance Computing and Communications Theory and Practice for High Performance Computing and Communications. I would like to thank Omer Rana International Conference on High Performance Computing and Communications (HPCC-09) http

136

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak Solutions for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities

Engelmann, Christian

137

High Performance Computing Modeling Advances Accelerator Science for High Energy Physics  

SciTech Connect

The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

2014-04-29T23:59:59.000Z

138

Deploying Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Deploying Innovation FCI deploys Laboratory technology for enhanced economic impact regionally and nationally. We offer both negotiable and non-negotiable license...

139

A Comparative Approach to the Protection of Fashion Innovations  

E-Print Network (OSTI)

of creating new innovations in line with social trends. Thethe new innovations and thereby maintain social status. Thusa fashion innovation that can suggest a high social standing

Wulf, Alexander

2007-01-01T23:59:59.000Z

140

Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Pulte Homes of Tucsons work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report  

SciTech Connect

It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payloads communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

2014-06-01T23:59:59.000Z

142

Innovative Separations Technologies  

SciTech Connect

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

143

Historical perspective of innovation in electronic payment instruments  

E-Print Network (OSTI)

Electronic Payment Instruments have seen unprecedented innovation in the past XX-th century. Most of this innovation was made possible by advances in information and communication technology. Advances in ICT paired with ...

Pogor, Iulian

2011-01-01T23:59:59.000Z

144

Lignol Innovations, Inc. Demonstration-Scale Biorefinery  

Energy.gov (U.S. Department of Energy (DOE))

The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

145

National Network for Manufacturing Innovation: A Preliminary...  

Energy Savers (EERE)

capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing. nstcnnmiprelimdesignfinal.pdf...

146

Advanced Boost System Developing for High EGR Applications  

SciTech Connect

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

147

Method and system for advancement of a borehole using a high power laser  

DOE Patents (OSTI)

There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

2014-09-09T23:59:59.000Z

148

Innovation Practices  

Science Journals Connector (OSTI)

This Chapter focuses on examples of digital innovation in practice, providing fact-sheets of 10 of the most interesting ideas in the field of digital innovation worldwide in 2013. The genesis of the selected i...

Vincenzo Morabito

2014-01-01T23:59:59.000Z

149

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

150

Solar Innovator | Alta Devices  

SciTech Connect

Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

Mattos, Laila; Le, Minh

2012-01-01T23:59:59.000Z

151

Advanced packaging technology for high frequency photonic applications  

SciTech Connect

An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

1996-03-01T23:59:59.000Z

152

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

153

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

154

Building America Top Innovations Hall of Fame Profile … Community Scale High-Performance with Solar: Pulte Homes, Tucson, AZ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pulte Homes' Civano project in Tucson, Pulte Homes' Civano project in Tucson, Arizona, is one of the few communities in the United States to integrate passive and active solar with a comprehensive building science strategy. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Pulte Homes' Civano project in Tucson, Arizona, have an extraordinary impact, demonstrating the business case for adopting proven energy-efficiency measures along with solar energy systems for an entire community. Building America has shown in numerous field demonstrations that critical economies of scale and maximum energy benefits can be realized when production builders select energy-efficiency

155

SunShot Initiative: Solar Innovation Timeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to SunShot Initiative: Solar Innovation Timeline to someone by E-mail Share SunShot Initiative: Solar Innovation Timeline on Facebook Tweet about SunShot Initiative: Solar Innovation Timeline on Twitter Bookmark SunShot Initiative: Solar Innovation Timeline on Google Bookmark SunShot Initiative: Solar Innovation Timeline on Delicious Rank SunShot Initiative: Solar Innovation Timeline on Digg Find More places to share SunShot Initiative: Solar Innovation Timeline on AddThis.com... Publications Newsletter Resource Center Multimedia Meetings & Workshops Solar Innovation Timeline Solar Career Map Glossary Solar Innovation Timeline This timeline features the key innovations that have advanced the solar

156

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

157

NETL: Innovations for Existing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

158

Advanced Materials and Processing of Composites for High Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Processing of Composites for High Volume Applications FY 2009 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development Carbon Fiber SMC...

159

Advanced CFD Models for High Efficiency Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf More Documents &...

160

Advanced measurements and techniques in high magnetic fields  

SciTech Connect

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

Campbell, L.J.; Rickel, D.G. [Los Alamos National Lab., NM (United States); Lacerda, A.H. [Florida State Univ., Tallahassee, FL (United States); Kim, Y. [Northeastern Univ., Boston, MA (United States)

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Innovations: Making Biofuels More Efficient | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations: Making Biofuels More Efficient Innovations: Making Biofuels More Efficient Innovations: Making Biofuels More Efficient December 3, 2010 - 11:40am Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? Currently all biofuels rely on photosynthetic plants to convert energy from sunlight into usable fuel, but the overall efficiency of this is low. A new ARPA-E project is using thermophilic extremophiles -- microorganisms that grow optimally in temperatures above 160 deg F -- to produce a new highly efficient fuel. On Tuesday, Secretary Chu spoke of the need for new innovations to lead the U.S. into a new green economy. This project out of Energy's Advanced Research Projects Agency is an example of just that. Currently all biofuels rely on photosynthetic plants to convert energy from

162

Green Light-Emitting Diode Makes Highly Efficient White Light, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Spectrum of Clean Energy Innovation innovati n Green Light-Emitting Diode Makes Highly Efficient White Light Scientists at the National Renewable Energy Laboratory (NREL) have invented a deep green light-emitting diode (LED) that can lead to higher efficiency white light, which is of prime value in the indoor lighting world. LEDs are fundamentally solar cells operating in reverse-that is, when an electrical current is applied to a thin-film semiconductor, the result is the emission of light. These devices are a key technology for producing a new generation of efficient lighting, in which the amount of light generated far outweighs the amount of heat produced. But at the moment, LEDs that emit white light are produced using an inefficient process known as phosphor conversion. In this process, light from a blue- or ultraviolet-emitting LED energizes

163

NREL: Innovation Spectrum Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Spectrum Innovation Spectrum Te xt version The scope of NREL's capabilities emulates the nature of the innovation process itself. Moving new technologies from initial concept to commercial application requires a breadth of expertise across the innovation spectrum, encompassing: Fundamental science Market-relevant research Systems integration Testing and validation Commercialization Deployment The NREL innovation spectrum is highly interactive within the laboratory and across other research institutions and private industry. NREL provides the scientific and analytical leadership to guide the innovation process, contributing knowledge and expertise at each stage. Innovation Success Stories Learn more about the spectrum of clean energy innovation and how NREL is creating a future of sustainable energy systems based on clean,

164

Innovation Celebration  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Celebration Innovation Celebration Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Innovation Celebration showcases economic development in Northern New Mexico Ten local businesses honored at the event. May 1, 2013 Chantal Lau of PediBioMetrix, LLC was one of those recogned at the Innovation Celebration Chantal Lau of PediBioMetrix, LLC was one of those recognized at the Innovation Celebration. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Last month 10 New Mexico businesses were recognized during the 12th annual Innovation Celebration in Albuquerque. The companies highlighted are involved in everything from helping with premature infants' feeding difficulties to separating water from natural gas pumped from wells. They

165

Advanced Klystrons for High Efficiency Accelerator Systems - Final Report  

SciTech Connect

This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

Read, Michael; Ives, Robert Lawrence

2014-03-26T23:59:59.000Z

166

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

167

Innovation and collective entrepreneurship.  

E-Print Network (OSTI)

??This paper aims to examine different forms of innovation including social innovation, and why innovation and social innovation have become important themes in public policy (more)

Spear, Roger

2012-01-01T23:59:59.000Z

168

Advanced Alloys for Compact, High-Efficiency, High-Temperature Heat-Exchangers  

SciTech Connect

Oak Ridge National Laboratory (ORNL) has conducted research and development for several years which has been focused on the behavior and performance improvements of sheets and foils of various alloys for compact heat-exchangers (recuperators) for advanced microturbines. The performance and reliability of such thin sections are challenged at 650-750 C by fine grain size causing excessive creep, and by moisture effects greatly enhancing oxidation attack in exhaust gas environments. Standard 347 stainless steel has been used successfully at or below 600 C, but has suffered from both of these kinds of degradation at 650 C and above. Alloys have been identified which can have very good properties for such heat-exchangers, especially with careful control of microstructure during processing, including alloy 625, HR120 and the new AL20-25+Nb. These alloys, and the mechanistic understanding behind their behavior, are also applicable to achieving the better heat-exchanger technology needed for fuel cells or other high-temperature, clean-energy applications.

Maziasz, Philip J [ORNL; Pint, Bruce A [ORNL; Shingledecker, John P [ORNL; Evans, Neal D [ORNL; Yamamoto, Yukinori [ORNL; More, Karren Leslie [ORNL; Lara-Curzio, Edgar [ORNL

2006-01-01T23:59:59.000Z

169

Strategy Guideline: Advanced Construction Documentation Recommendations for High Performance Homes  

SciTech Connect

As whole house energy efficiency increases, new houses become less like conventional houses that were built in the past. New materials and new systems require greater coordination and communication between industry stakeholders. The Guideline for Construction Documents for High Performance Housing provides advice to address this need. The reader will be presented with four changes that are recommended to achieve improvements in energy efficiency, durability and health in Building America houses: create coordination drawings, improve specifications, improve detail drawings, and review drawings and prepare a Quality Control Plan.

Lukachko, A.; Gates, C.; Straube, J.

2011-12-01T23:59:59.000Z

170

High temperature chemistry of advanced heavy water reactor fuel  

Science Journals Connector (OSTI)

The Department of Atomic Energy envisages the use of thoria based fuel in the third phase of nuclear power generation. The fuel will consist of solid solution of thorium-uranium and thorium-plutonium in the form of their oxides. The former will contain 2.5 mole % UO2 while the latter about 4 mole % PuO2. Since no other country in the world has used such fuel, no data is available on its behavior under long-term irradiation. The high temperature chemistry of fuel can however provide some insight into the behavior of such fuel during irradiation and could be of considerable help in the assessment of its long-term integrity. The high temperature chemistry of the fuel essentially involves the measurement of thermodynamic properties of the compounds formed in the multi-component systems comprising the fuel matrix, the fission products and the clad. The physical integrity of the fuel under long-term irradiation can be predicted with the help of basic thermodynamic data such as the Gibbs energy of formation of various compounds and their thermophysical properties such as thermal conductivity and coefficient of thermal expansion derived from experimental measurements. The paper highlights the measurements made on some typical systems relevant to the prediction of thoria based fuel behaviour during long-term irradiation. The experimental problems faced in such measurements are also discussed.

S.R. Dharwadkar

2002-01-01T23:59:59.000Z

171

Advanced Gate Drive for the SNS High Voltage Converter Modulator  

SciTech Connect

SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; /SLAC; Anderson, D.E.; /Oak Ridge

2009-05-07T23:59:59.000Z

172

All Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

70 Years of Innovations » 70 Years of Innovations » All Innovations /about/_assets/images/icon-about.jpg All Innovations Since 1943, some of the world's smartest and most passionate technical people have accomplished the difficult, the unexpected, and what sometimes seems impossible at Los Alamos *70 YEARS OF INNOVATIONS 1940s 1943 WAR-ENDING INVENTIONS The Laboratory was created with one crucial objective: gather the world's brightest scientific minds to design and build a weapon that would help to end World War II. Fight power with power xx Essential for obtaining data to design war-ending weapons, Los Alamos scientists constructed the first homogeneous liquid-fuel reactor fueled by enriched uranium, code-named Water Boiler, as a neutron source. Two more were built. These reactors led to pioneering research on radiation's effects.

173

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

174

ADVANCED SILICIDE-BASED MATERIALS FOR HIGH TEMPERATURE GLASS PROCESSING SENSORS  

SciTech Connect

Materials research is needed to improve the performance of high temperature materials that must withstand the hostile environment of the glassmaking process and to improve the operating efficiency. Advances in materials used for sensors and controls is perhaps one of the most important requirements for improving the efficiency of the glass production process. The use of molybdenum disilicide (MoSi{sub 2}) based materials, which are corrosion resistant in glass, are being investigated for improving the performance of advance temperature sensors. Using advanced plasma spray forming techniques, laminate and functionally graded composite tubes of MoSi{sub 2} and Al{sub 2}O{sub 3} are being developed to protect advanced temperature sensors from the hostile environment of the glassmaking process.

Castro, R. G. (Richard G.); Peters, M. I. (Maria I.); Mendoza, D. (Daniel); Vaidya, R. U. (Rajendra U.); Petrovic, J. J.

2001-01-01T23:59:59.000Z

175

Innovation Hubs Kendall Square as Laboratory for High-Density Urban Living  

E-Print Network (OSTI)

% of total energy consumption. It is a global imperative to develop systems that improve the livability of cities while dramatically reducing resource consumption. This workshop will explore new urban systems for high-density cities including systems for mobility, energy, food production, and live

176

Manufacturing Innovation Topics Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

177

Innovative Power?Augmentation?Guide?Vane Design of Wind?Solar Hybrid Renewable Energy Harvester for Urban High Rise Application  

Science Journals Connector (OSTI)

To generate greater quantities of energy from wind the most efficient solution would be by increasing the wind speed. Also due to the decreasing number of economic wind energy sites there are plans to place wind turbines closer to populated areas. To site wind turbines out from rural areas the current problems of wind turbines need to be resolved especially visual impact poor starting behaviour in low wind speeds noise and danger caused by blade failure. In this paper a patented wind?solar hybrid renewable energy harvester is introduced. It is a compact system that integrates and optimizes several green elements and can be built on the top (or between upper levels) of high rise buildings or structures. This system can be used in remote and urban areas particularly at locations where the wind speed is lower and more turbulent. It overcomes the inferior aspect on the low wind speed by guiding and increasing the speed of the high altitude free?stream wind through fixed or yaw?able power?augmentation?guide?vane (PAGV) before entering the wind turbine (straight?bladed vertical axis wind turbine VAWT in this project) at center portion. PAGV is a new and innovative design where its appearance or outer design can be blended into the building architecture without negative visual impact. From the studies it is shown that the wind speed increment in the PAGV can be produced according to the Bernoullis principle. Computational fluid dynamics (CFD) simulation is used to optimize the geometry of the PAGV and the simulation results demonstrated the technical possibility of this innovative concept. The PAGV replaces the free air?stream from wind by multiple channels of speed?increased and directional?controlled air?stream. With the PAGV this lift?type VAWT can be self?started and its size can be reduced for a given power output. The design is also safer since the VAWT is enclosed by the PAGV. By integrating the PAGV with the VAWT (the diameter and height of PAGV are 2 times larger than the VAWTs) the predicted power generated (at free?stream wind speed ?=?3.5? m / s ) is 1.25 times higher than the VAWT that has the same size as the PAGV. This new wind energy generation configuration should generate interest in the international market even for regions with weaker winds. The correlation between CFD simulation and wind tunnel test will be carried out and reported elsewhere.

Chong Wen Tong; M. Z. Zainon; Poh Sin Chew; Soo Chun Kui; Wee Seng Keong; Pan Kok Chen

2010-01-01T23:59:59.000Z

178

Overview of the DOE Advanced Power Electronics and Electric Motor...  

Energy Savers (EERE)

electronics manufacturing plant in the US - Packaging innovations utilized by US OEM fuel cell vehicle * Advanced DCDC Converter - - Developed innovative packaging topologies...

179

Building America Top Innovations Hall of Fame Profile … High-R Walls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

require walls that cost-effectively require walls that cost-effectively control both thermal and moisture flow. Building America research results have provided proven high-R wall options for builders across the country. Building America's research teams have conducted modeling analysis as well as field studies of several different wall assemblies to identify effective "whole- wall" R-values that take into account thermal bridging of framing members. Researchers have also investigated critical moisture potential and durability issues since high-R walls have much less drying potential. Between 2008 and 2012, CARB conducted several evaluations of wall types (see for example Aldrich et al. 2010). In one study, CARB performed THERM and WUFI analysis on three typical cold climate wall assemblies modeled at ASHRAE

180

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect

The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

Seong W. Lee

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Innovative Offshore Vertical-Axis...  

NLE Websites -- All DOE Office Websites (Extended Search)

WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

182

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

183

High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

184

Recent advances in III-V on Si integration for high-efficiency,  

E-Print Network (OSTI)

. Iso-efficiency contour plots of ideal series-connected two-junction solar cell with an function of topRecent advances in III-V on Si integration for high-efficiency, low cost MJ cells Minjoo Larry Lee Department of Electrical Engineering Yale University Solar Workshop: Terawatt Challenge!!? UD Energy

Firestone, Jeremy

185

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic and Density  

E-Print Network (OSTI)

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic Surface-Imaging Scanning Electron Microscope 205 C. Electrons as Probes in Scanning Microscopes 205 D. Limitations Associated with the Use of Electrons as the Probing Radiation 206 E. Response to These Limitations

Pawley, James

186

Innovation Spaces  

E-Print Network (OSTI)

Innovation ecosystems today are the lifeblood or the great hope of many major economies, but at the heart of these ecosystems, there are places and spaces. Silicon Valley is not just a place, but a cluster of spaces where ...

Schneider-Sikorsky, Patrick A

2014-01-01T23:59:59.000Z

187

Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

188

Building America Top Innovations Hall of Fame Profile … High Performance Without Increased Cost: Urbane Homes, Louiseville KY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urbane's first Urbane's first home, built for $36 per ft 2 in 2008, incorporated both energy efficiency and strategies to reduce building costs. The home won two EnergyValue Housing Awards, and homebuyers began seeking out the builder for energy-efficient, high-quality homes. Building America field projects that demonstrated minimal or cost-neutral impacts for high-performance homes have significantly influenced the housing industry to apply advanced technologies and best practices. In 2006, the U.S. Department of Energy's Building America program set a goal of proving that cost-neutral energy savings of 40% over code were possible at a production scale for new home builders in every U.S. climate zone. Between 2005 and 2010, Building America research partners worked with 34 builders to

189

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

190

OCIO Technology Summit: Cyber Innovation | Department of Energy  

Energy Savers (EERE)

Articles OCIO Technology Summit: Cyber Innovation OCIO Technology Summit: Data Analytics OCIO Technology Summit: Cyber Innovation OCIO Technology Summit: High Performance Computing...

191

Energy Department Awards More Than $7 Million for Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. These investments are a part of the...

192

Light Water Reactors A DOE Energy Innovation Hub for Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors CASL is focused on three issues for nuclear...

193

Building America Webinar: High-Performance Enclosure Strategies...  

Energy Savers (EERE)

and Innovative Advanced Framing Strategies February 12, 2015 3:00PM to 4:30PM EST This free webinar will focus on on methods to design and build roof and wall systems for high...

195

When does labor scarcity encourage innovation?  

E-Print Network (OSTI)

This paper studies whether labor scarcity encourages technological advances, i.e., technology adoption or innovation, for example, as claimed by Habakkuk in the context of 19th-century United States. I define technology ...

Acemoglu, Daron

196

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

197

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

198

ECUT energy data reference series: high-temperature materials for advanced heat engines  

SciTech Connect

Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

199

Scientific Issues and Gaps for High-Performance Steady-State Burning-Plasmas Fusion Innovation Research and Energy  

E-Print Network (OSTI)

Innovation Research and Energy Princeton, NJ 08540 Introduction Fusion energy is a potential energy source for an electricity producing power plant. Recently, the FESAC Priorities, Gaps and Opportunities Panel identified, and extracting plasma exhaust power) Theme C ­ Harnessing the Power of Fusion (extracting neutron power, breeding

200

Lignol Innovations Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lignol Innovations Inc. Lignol Innovations Inc. Corporate Headquarters: Berwyn, PA Global Headquarters: Canada Proposed Facility Location: Commerce City, Colorado Description: This project will design, construct, and operate a demonstration plant to produce ethanol, lignin and furfural from cellulosic feedstock, including hard and softwood residues. CEO or Equivalent: Ross MacLachlan, President and CEO Participants: Suncor Energy and; Parker Messana & Associates Engineering Production: Excess of 2 million gallons/year of cellulosic ethanol plus biochemical co-products, including High Purity-Lignin ("HP- L(tm)") Technology and Feedstocks: * Proprietary solvent pretreatment process integrated with saccharification, fermentation and product recovery processes

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Secondary heat exchanger design and comparison for advanced high temperature reactor  

SciTech Connect

Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States); Kim, E. S. [Seoul National Univ., P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Siahpush, A.; McKellar, M.; Patterson, M. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States)

2012-07-01T23:59:59.000Z

202

Building a More Competitive American Manufacturing Industry with Advanced Composites  

Office of Energy Efficiency and Renewable Energy (EERE)

Our new Manufacturing Innovation Institute for Advanced Composites will help revolutionize clean energy technology one material at a time.

203

Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

204

Application technologies for effective utilization of advanced high strength steel sheets  

SciTech Connect

Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

Suehiro, Masayoshi, E-mail: suehiro.kp5.masayoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511 (Japan)

2013-12-16T23:59:59.000Z

205

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

206

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

207

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-12-31T23:59:59.000Z

208

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

209

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

210

Temporal Evolution of Social Innovation  

E-Print Network (OSTI)

Acceptance of an innovation can occur through mutliple exposures to individuals who have already accepted it. Presented here is a model to trace the evolution of an innovation in a social network with a preference $\\lambda$, amidst topological constraints specified mainly by connectivity, $k$ and population size, $N_k$. With the interplay between properties of innovation and network structure, the model attempts to explain the variations in patterns of innovations across social networks. Time in which the propagation attains highest velocity depends on $\\lambda^{-2}k^{-2}N_{k}^{1/2}$. Dynamics in random networks may lead or lag behind that in scale-free networks depending on the average connectivity. Hierarchical propagation is evident across connectivity classes within scale-free networks, as well as across random networks with distinct topological indices. For highly preferred innovations, the hierarchy observed within scale-free networks tends to be insignificant. The results have implications for administ...

Kulkarni, Varsha S

2014-01-01T23:59:59.000Z

211

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS  

SciTech Connect

High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

2012-07-01T23:59:59.000Z

212

Optimization and modeling studies for obtaining high injection efficiency at the Advanced Photon Source.  

SciTech Connect

In recent years, the optics of the Advanced Photon Source storage ring has evolved to a lower equilibrium emittance (2.5 nm-rad) at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from the virtual 100% of the high emittance mode. Over the years we have developed a series of optimizations, measurements, and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. The above will be described along with the injection configuration.

Emery, L.; APS Operations Division

2005-01-01T23:59:59.000Z

213

Advances in high-throughput speed, low-latency communication for embedded instrumentation ( 7th Annual SFAF Meeting, 2012)  

SciTech Connect

Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jordan, Scott [Physik Instrumente] [Physik Instrumente

2012-06-01T23:59:59.000Z

214

Advances in high-throughput speed, low-latency communication for embedded instrumentation ( 7th Annual SFAF Meeting, 2012)  

ScienceCinema (OSTI)

Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jordan, Scott [Physik Instrumente

2013-02-11T23:59:59.000Z

215

Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

216

Energy Innovation Hubs: A Home for Scientific Collaboration  

ScienceCinema (OSTI)

Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

Chu, Steven

2013-05-29T23:59:59.000Z

217

Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in Energy Technology Are "Winning the Future" Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in Energy Technology Are "Winning the Future" February 28, 2011 - 9:38am Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy President Obama has recently been talking about his plan to "Win the Future." Whether it's taking steps to reform our education system, rebuilding our infrastructure, or encouraging breakthroughs in technology, the phrase is about marshaling the country's best and brightest to solve today's problems. As the President put it, "To win the future, we have to out-innovate, out-educate and out-build the rest of the world, tapping

218

STATEMENT OF CONSIDERATIONS REQUEST BY HEADWATERS TECHNOLOGY INNOVATION GROUP FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEADWATERS TECHNOLOGY INNOVATION GROUP FOR AN HEADWATERS TECHNOLOGY INNOVATION GROUP FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42448; W(A)-05-023, CH-1287 The Petitioner, Headwaters Technology Innovation Group (HTI) was awarded a cooperative agreement for the performance of work entitled, "Production and Optimization of Coal-Derived High Hydrogen Content Fischer-Tropsch Liquids". The purpose of the cooperative agreement is to select the optimum Fischer-Tropsch (FT) catalyst for producing high-hydrogen content FT liquids based on bench-scale testing of high and medium alpha iron-based catalysts and to produce barrel quantity samples of high-hydrogen content FT liquids in a process demonstration unit. This waiver is only for inventions of HTI made under its cooperative

219

Title: An Advanced Solution for the Storage, Transportation and Disposal of Vitrified High Level Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 1 AN ADVANCED SOLUTION FOR THE STORAGE, TRANSPORTATION AND DISPOSAL OF SPENT FUEL AND VITRIFIED HIGH LEVEL WASTE William J. Quapp Teton Technologies, Inc. 860 W. Riverview Dr. Idaho Falls, ID 83401 208-535-9001 ABSTRACT For future nuclear power deployment in the US, certain changes in the back end of the fuel cycle, i.e., disposal of high level waste and spent fuel, must become a real options. However, there exists another problem from the front end of the fuel cycle which has until recently, received less attention. Depleted uranium hexafluoride is a by-product of the enrichment process and has accumulated for over 50 years. It now represents a potential environmental problem. This paper describes a

220

Advanced Technologies and Practices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top Innovations Buried and Encapsulated Ducts High Efficiency Window Air Conditioners Furnace Blower Performance Improvements 1995-2012 Top Innovations Integration of HVAC...

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Water Management Guide- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation highlights the DOE-sponsored Water Management Guide, which has proven to be a highly effective tool for disseminating much needed best practices.

222

Scientific Innovation Through Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

www.emsl.pnl.gov www.emsl.pnl.gov National asset for high- impact science As a national scientific user facility, EMSL provides scientific solutions to scientists from universities, industry, and government who seek out our unique capabilities and scientific expertise for their most challenging research objectives. At EMSL, we collaborate with these scientists-our users-to enable discovery and innovative solutions for the nation's energy, environmental, and national security problems. EMSL user projects by funding source in FY11. ACCELERATING INNOVATION ACROSS AMERICA PREPARING THE NEXT GENERATION User facilities provide training ground for educating next generation of scientists EMSL supports postdoctoral researchers, as well as graduate, undergraduate, and high school

223

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

ASP Jump to: navigation, search Name: Advanced Solar Power (ASP) Place: Israel Sector: Solar Product: Involved in the development and manufacturing of innovative solar energy...

224

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

225

Identity and Social Innovation  

E-Print Network (OSTI)

the microfoundation of social innovation and social change.it is a source of innovation and social change as it actspromote innovation in the performance of a social role, the

Bell, Duran

2007-01-01T23:59:59.000Z

226

Innovation Through Collaboration  

E-Print Network (OSTI)

Innovation Through Collaboration: Criterion 3 Student Learning and Effec0ve Teaching IUPUI Town Hall, March 19, 2012 #12;Innovation Through Collaboration: The organiza;Innovation Through Collaboration: 3a. The organiza0on's goals for student learning outcomes

Zhou, Yaoqi

227

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

228

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

229

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

230

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

231

In today's highly competitive marketplace,  

NLE Websites -- All DOE Office Websites (Extended Search)

today's highly competitive marketplace, rapid creation today's highly competitive marketplace, rapid creation and commercialization of scientific advances and innovative technologies are key to the continued prosperity of the United States. Scientists and engineers at Lawrence Livermore National Laboratory (LLNL) have achieved numerous science and technology breakthroughs that have led to new industries, spurred economic growth and benefited the national welfare.

232

Science and Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation science-innovationassetsimagesicon-science.jpg Science and Innovation Our strong interdisciplinary teaming and unique research facilities allow us to develop...

233

Innovization: Innovative Design Principles Through Optimization  

E-Print Network (OSTI)

Innovization: Innovative Design Principles Through Optimization Kalyanmoy Deb and Aravind) in the context of finding new and innovative design principles by means of optimization techniques. Although optimization algorithms are routinely used to find an optimal solution corresponding to an optimization problem

Srivastava, Kumar Vaibhav

234

An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design  

SciTech Connect

This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based sollely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

Farzad Rahnema

2009-11-12T23:59:59.000Z

235

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

236

Innovating science communication  

E-Print Network (OSTI)

The ATLAS Education & Outreach project has, over the years, developed a strong reputation for supporting innovation. Animated event displays, musical CDs, 3d movies, 3-storey murals, photo books, data sonifications, multi-media art installations, pub slams, masterclasses, documentaries, pop-up books, LEGO models, and virtual visits are among the many diverse methods being exploited to communicate to the world the goals and accomplishments of the ATLAS Experiment at CERN. This variety of creativity and innovation does not pop out of a vacuum. It requires underlying motivation by the collaboration to communicate with the public; freedom and encouragement to do so in a creative manner; and a support structure for developing, implementing and promoting these activities. The ATLAS Outreach project has built this support structure on a well-defined communication plan, high-quality content, and effective delivery platforms. Most importantly, implementation of the program has been based on the effective engagem...

Goldfarb, Steven; The ATLAS collaboration; Shaw, Kate

2015-01-01T23:59:59.000Z

237

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy...

238

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-NT0005578, W(A)-2012-031; CH-1666 The Petitioner, Advanced Technology Materials, Inc. (ATMI) was awarded a subcontract under the subject cooperative agreement between the Department of Energy and SRI International (SRI) for the performance of work entitled , "Development of Novel Carbon Sorbents for C02 Capture". The objective of the program is to develop an innovative, low cost, and low energy consuming carbon dioxide (C02) capture technology based on adsorption on a high-capacity and low-cost carbon sorbent. The specific objectives are to validate the performance of this concept on a bench-scale system

239

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

240

Geothermal innovative technologies catalog  

SciTech Connect

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

242

Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)  

SciTech Connect

Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

2012-04-16T23:59:59.000Z

243

DOE Supercomputing Resources Available for Advancing Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Resources Available for Advancing Scientific Supercomputing Resources Available for Advancing Scientific Breakthroughs DOE Supercomputing Resources Available for Advancing Scientific Breakthroughs April 15, 2009 - 12:00am Addthis Washington, DC - The U.S. Department of Energy (DOE) announced today it is accepting proposals for a program to support high-impact scientific advances through the use of some of the world's most powerful supercomputers located at DOE national laboratories. Approximately 1.3 billion supercomputer processor-hours will be awarded in 2010 through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program for large-scale, computationally intensive projects addressing some of the toughest challenges in science and engineering. Researchers are currently using supercomputing time under this year's

244

AMO to Issue FOA for New Innovation Institute on Smart Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Manufacturing Office posted a Notice of Intent (NOI) entitled Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing. President Obama announced that the Energy Department will lead this competition. The NOI supports the creation of the Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing (ASCPMM).

245

MATLAB muliplatform research license: Numeric computation, advanced graphics and visualization, and a high-level programming  

E-Print Network (OSTI)

MATLAB muliplatform research license: Numeric computation, advanced graphics and visualization license allows research and includes the following: Feature # of users MATLAB 7 Simulink 6 Control System

Dawson, Jeff W.

246

BETO Ranks High in Biofuels Digests Top 125 in the Advanced Bioeconomy  

Energy.gov (U.S. Department of Energy (DOE))

Biofuels Digest recently released its Top 125 in the Advanced Bioeconomy, ranking Bioenergy Technologies Office (BETO) Director Dr. Jonathan Male , Deputy Director Dr. Valerie Reed, Technology...

247

Innovative & Novel Computational Impact on Theory & Experiement (INCITE) |  

Office of Science (SC) Website

Innovative Innovative & Novel Computational Impact on Theory and Experiment (INCITE) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building

248

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

249

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

250

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

251

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

252

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

253

Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor  

SciTech Connect

The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangershelical coiled heat exchanger and printed circuit heat exchangeras possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

2012-06-01T23:59:59.000Z

254

A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers  

SciTech Connect

Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

2010-01-28T23:59:59.000Z

255

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

256

Sandia National Laboratories: advanced materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy, Solar, Systems Engineering On May 21st, the Department of Energy SunShot Initiative announced 10M for six new R&D projects that will advance innovative...

257

Nanobiocatalyst advancements and bioprocessing applications  

Science Journals Connector (OSTI)

...develop a synergistic biocatalyst-medicine device. They used a cleavable enzyme-linker...innovative discovery reported in Nature Nanotechnology [32]. The authors characterized...integrates two advanced technologies: nanotechnology and biotechnology. The perspectives...

2015-01-01T23:59:59.000Z

258

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

259

Innovative Technologies, Innovative Diplomacy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technologies, Innovative Diplomacy Innovative Technologies, Innovative Diplomacy Innovative Technologies, Innovative Diplomacy April 30, 2012 - 3:26pm Addthis 1 of 5 U.S. Energy Department Secretary Steven Chu, along with other leading energy decision-makers from around the world, at the third Clean Energy Ministerial annual meeting in London. Image: Department of Energy and Climate Change. 2 of 5 Prime Minister David Cameron, Secretary of State Edward Davey, U.S. Energy Department Secretary Steven Chu and Minister of State Greg Barker at the third Clean Energy Ministerial event in London. Image: Department of Energy and Climate Change. 3 of 5 Energy Ministers from around the world at the third Clean Energy Ministerial event in London. Image: Department of Energy and Climate Change. 4 of 5 U.S. Department of Energy Secretary Steven Chu and Secretary of State

260

ARPA-E Energy Innovation Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Energy Innovation ARPA-E Energy Innovation Summit ARPA-E Energy Innovation Summit Elon Musk, CEO of Tesla Motors, and Secretary Chu during a fireside chat at the 2013 ARPA-E Energy Innovation Summit | Energy Department image | Photo by Sarah Garrity Elon Musk, CEO of Tesla Motors, and Secretary Chu during a fireside chat at the 2013 ARPA-E Energy Innovation Summit | Energy Department image | Photo by Sarah Garrity Modeled after the Defense Advanced Research Projects Agency (DARPA), the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E) funds game-changing energy technologies that are typically too early for private-sector investment. From new wind turbine designs and transportation fuels made from bacteria to innovative energy storage solutions and smaller, more efficient

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

262

Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak  

SciTech Connect

Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Shi, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of); Bitter, M.; Hill, K. W. [Princeton Plasma Physics Laboratory, MS37-B332, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of)

2012-10-15T23:59:59.000Z

263

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS  

SciTech Connect

An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

X. Zhang; J. E. O'Brien; R. C. O'Brien

2012-07-01T23:59:59.000Z

264

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

265

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

266

Advanced High-Speed Framing Camera Development for Fast, Visible Imaging Experiments  

SciTech Connect

The advances in high-voltage switching developed in this project allow a camera user to rapidly vary the number of output frames from 1 to 25. A high-voltage, variable-amplitude pulse train shifts the deflection location to the new frame location during the interlude between frames, making multiple frame counts and locations possible. The final deflection circuit deflects to five different frame positions per axis, including the center position, making for a total of 25 frames. To create the preset voltages, electronically adjustable {+-}500 V power supplies were chosen. Digital-to-analog converters provide digital control of the supplies. The power supplies are clamped to {+-}400 V so as not to exceed the voltage ratings of the transistors. A field-programmable gated array (FPGA) receives the trigger signal and calculates the combination of plate voltages for each frame. The interframe time and number of frames are specified by the user, but are limited by the camera electronics. The variable-frame circuit shifts the plate voltages of the first frame to those of the second frame during the user-specified interframe time. Designed around an electrostatic image tube, a framing camera images the light present during each frame (at the photocathode) onto the tubes phosphor. The phosphor persistence allows the camera to display multiple frames on the phosphor at one time. During this persistence, a CCD camera is triggered and the analog image is collected digitally. The tube functions by converting photons to electrons at the negatively charged photocathode. The electrons move quickly toward the more positive charge of the phosphor. Two sets of deflection plates skew the electrons path in horizontal and vertical (x axis and y axis, respectively) directions. Hence, each frames electrons bombard the phosphor surface at a controlled location defined by the voltages on the deflection plates. To prevent the phosphor from being exposed between frames, the image tube is gated off between exposures.

Amy Lewis, Stuart Baker, Brian Cox, Abel Diaz, David Glass, Matthew Martin

2011-05-11T23:59:59.000Z

267

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

268

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

269

Building America Top Innovations Hall of Fame Profile … Unvented, Conditioned Attics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

additional heat loss and gain of ducts additional heat loss and gain of ducts in unconditioned, vented attics increases energy use for heating and cooling 10%. Additionally, duct air leakage has been measured to commonly exceed 20% of conditioned air flow, which results in a significant energy loss when ducts are in unconditioned space. In addition to influencing builders across the country to adopt unvented, conditioned attics, Building America research has helped influence code acceptance of this innovation since 2006. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Unvented, Conditioned Attics The preference for a large segment of the U.S. housing industry has been to locate HVAC systems in unconditioned attics, but this is highly inefficient.

270

Contaminated soil and sediments in a highly developed catchment-estuary system (Sydney estuary, Australia): an innovative stormwater remediation strategy  

Science Journals Connector (OSTI)

The objective of the current research was to provide a strategy to remediate stormwater from an old, high-developed catchment dominated (94%) by diffuse sources. Contaminated catchment soils, a dense road netw...

Gavin F. Birch

2011-01-01T23:59:59.000Z

271

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...S. 1468, H.R. 2996, 1st. Sess. (2013). 7 Industry 4.0 Working Group, National Academy of Science and Engineering...Recommendations for implementing the strategic initiative Industry 4.0 ( Sponsored by the Federal Ministry of Education...

William B. Bonvillian

2013-12-06T23:59:59.000Z

272

18Connected Talented Innovative Advance livable communities  

E-Print Network (OSTI)

wastewater treatment facilities with ac- tive permits, according to the Indiana De- partment of Environmental- ernments in proper waste disposal and recycling efforts. Currently, there are 9 multi-county SWMDs

273

Advanced Research: Innovation Leading to Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

operation at steady state as well as during load and fuel changes with coal and coal-petcoke blend fuels. Overall Integrated Sensing and Control Solution coupling online sensors...

274

Intellectual Property for Market Innovation  

E-Print Network (OSTI)

rents Market Innovation Parameter Gross social benefit Lowour model. Market Innovation Figure 6: Social benefit whererights for market innovations can increase social welfare by

Duffy, John F; Abramawitz, Micheal

2006-01-01T23:59:59.000Z

275

Early Customer Involvement in Innovation.  

E-Print Network (OSTI)

?? The Front End of innovation (FEI) or early innovation presents one of the greatest opportunities for improving an entire innovation process in any firm. (more)

Penn, Sylvain Bienvenu

2011-01-01T23:59:59.000Z

276

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

277

An Advanced Solar-Powered Rotary Solid Adsorption Refrigerator with High Performance  

E-Print Network (OSTI)

reported before. Through improving the refrigerant performance of heat and mass transfer in the adsorbent bed, the refrigeration cycle has been advanced from the aspect of utilization of the thermal energy from low-temperature level resources. In addition...

Zheng, A.; Gu, J.

2006-01-01T23:59:59.000Z

278

Advanced high performance solid wall blanket concepts C.P.C. Wong a,  

E-Print Network (OSTI)

and desirable attributes for the reactor design. Future needs and directions on the development of advanced FW of first wall coating material selection, design of plasma stabilization coils, consideration of reactor concepts for comparison

Raffray, A. René

279

Energy Department Announces $10 Million to Develop Innovative Bioenergy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Departments Bioenergy Technologies Office (BETO) announces the selection of seven projects across the country to receive up to $10 million to support innovative technologies and solutions to help advance bioenergy development.

280

ARPA-E TO HOLD SIXTH ANNUAL ENERGY INNOVATION SUMMIT  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Research Projects Agency-Energy (ARPA-E) will host its annual Energy Innovation Summit from February 9-11, 2015 at the Gaylord Convention Center in National Harbor, Maryland.

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Dynamic Capabilities Building Blocks of Innovation  

E-Print Network (OSTI)

Pollution Control licensing · 1992 · Irish Environmental Protection Agency. #12;High DC · strategy to `liftDynamic Capabilities Building Blocks of Innovation Rachel Hilliard Centre for Innovation the intellectual capacity of the organisation' · `routine setting of new environmental targets and objectives

Paxton, Anthony T.

282

Advanced Thomson scattering system for high-flux linear plasma generator  

SciTech Connect

An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Donne, A. J. H.; Schram, D. C. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Eindhoven (Netherlands); Naumenko, N. N. [IPh NASB, Minsk (Belarus); Tugarinov, S. N. [SRC TRINITI, Troitsk, Moscow Reg. (Russian Federation)

2012-12-15T23:59:59.000Z

283

Prospects For High Frequency Burst Searches Following Binary Neutron Star Coalescence With Advanced Gravitational Wave Detectors  

E-Print Network (OSTI)

The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less massive systems, simulations favor the formation of a hypermassive, quasi-stable neutron star, whose oscillations produce a short, high frequency burst of gravitational radiation. Its dominant frequency content is tightly correlated with the radius of the neutron star, and its measurement can be used to constrain the supranuclear equation of state. In contrast, the merger of higher mass systems results in prompt gravitational collapse to a black hole. We have developed an algorithm which combines waveform reconstruction from a morphology-independent search for gravitational wave transients with Bayesian model selection, to discriminate between post-merger scenarios and accurately measure the dominant oscillation frequency. We demonstrate the efficacy of the method using a catalogue of simulated binary merger signals in data from LIGO and Virgo, and we discuss the prospects for this analysis in advanced ground-based gravitational wave detectors. From the waveforms considered in this work and assuming an optimally oriented source, we find that the post-merger neutron star signal may be detectable by this technique to $\\sim 10\\text{--}25$\\,Mpc. We also find that we successfully discriminate between the post-merger scenarios with $\\sim 95\\%$ accuracy and determine the dominant oscillation frequency of surviving post-merger neutron stars to within $\\sim 10$\\,Hz, averaged over all detected signals. This leads to an uncertainty in the estimated radius of a non-rotating 1.6\\,M$_{\\odot}$ reference neutron star of $\\sim 100\\,$m.

J. Clark; A. Bauswein; L. Cadonati; H. -T. Janka; C. Pankow; N. Stergioulas

2014-06-20T23:59:59.000Z

284

WO3 and HPA based system for ultra high activity and stability ofInnovation for Our Energy Future  

E-Print Network (OSTI)

Future ultra-high activity and stability of Pt catalysts in PEMFC cathodes 2010 DOE Hydrogen Program Fuel modification to approach automotive PEMFC activity (4x increase) and durability target (5000h/10y). ·· Lower-support interaction ­ lower loss in ECA ­ enhance catalyst activity · Lower costs ­ simplify & lower system cost

285

Technical innovation:  

Science Journals Connector (OSTI)

...business. We hope that our technology will place us in a unique...both inside the clients Intranet and over the Internet...that the use of high technology brings to the industry...business. We hope that our technology will place us in a unique...inside the client's Intranet and over the Internet...

Roger Anderson

286

Science & Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Science & Innovation Mars Rover Curiosity Mars Rover Curiosity landed safely on the planet's surface with an array of equipment powered with technology developed at the National Labs. Read more Dark Energy Cam Fermilab's 570-megapixels, five-ton Dark Energy camera is expanding our understanding of the universe. Read more Celebrating the Higgs boson Scientists recently found evidence of the elusive particle that fills the space between subatomic particles. Read more Energy Today From R&D to You: A Thriving Innovation Engine From advanced battery technologies and new biofuel technologies to clean energy generation and energy efficient products and buildings, the Department's Office of Energy Efficiency and Renewable Energy (EERE) has played an important role in bringing novel technologies from lab to market.

287

FACTSHEET: Energy Department Investments in Biofuels Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending $1 billion each day overseas for oil imports, we can invest in a growing domestic clean energy economy here in the U.S. At the Energy Department, we are taking a number of steps to develop the next generation of biofuels that can help reduce our dependence on foreign oil, create jobs, support

288

FACTSHEET: Energy Department Investments in Biofuels Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending $1 billion each day overseas for oil imports, we can invest in a growing domestic clean energy economy here in the U.S. At the Energy Department, we are taking a number of steps to develop the next generation of biofuels that can help reduce our dependence on foreign oil, create jobs, support

289

Architecting and Innovating  

E-Print Network (OSTI)

Innovating is essential to sustained industrial growth and profitability. But experience amply demonstrates how difficult innovation is, especially for large companies. The synthesis of valued offerings by aligning customer ...

Campbell, Ronald B. Jr.

2004-04-14T23:59:59.000Z

290

NETL: Innovations for Existing Plants - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf Innovations for Existing Plants Reference Shelf Program Overview Overview Publications: IEP, Recent Accomplishments Report - [PDF-1.3MB] (Oct 2007) IEP Roadmap & Program Plan [PDF-1.2MB] (May 2006) DOE/NETL'S Innovations for Existing Plants R&D Program [PDF-42KB] (Feb 2005) Improving the Environmental Performance of Today's Coal-Fired Power Plants This paper provides an overview of the Innovations for Existing Plants (IEP) Program, managed by the DOE National Energy Technology Laboratory. IEP develops advanced low-cost environmental control technologies for the existing fleet of coal-fired power plants, specifically focusing on the development of advanced mercury, NOx, PM, and acid gas emission control technology. Research is also directed at the characterization and beneficial use of coal utilization byproducts as well as at emerging electric-utility and water issues.

291

High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Due to well-known JahnTeller distortion in spinel LiMn1.5Ni0.5O4, it can only be reversibly electrochemically cycled between 3 and 4.8V with a limited reversible capacity of ?147mAhg?1. This study intends to embed the layer-structured Li2MnO3 nanodomains into LiMn1.5Ni0.5O4 spinel matrix so that the JahnTeller distortion can be suppressed even when the average Mn oxidation state is below+3.5. A series of xLi2MnO3(1?x)LiMn1.5Ni0.5O4 where x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 are synthesized by co-precipitation method. The composites with intermediate values of x=0.1, 0.2, 0.3, 0.4 and 0.5 exhibit both spinel and layered structural domains in the particles and show greatly improved cycle stability than that of the pure spinel. Among them, 0.3Li2MnO30.7LiMn1.5Ni0.5O4 delivers the highest and almost constant capacity after a few conditional cycles and shows superior cycle stability. Ex-situ X-ray diffraction results indicate that no JahnTeller distortion occurs during the cycling of the 0.3Li2MnO30.7LiMn1.5Ni0.5O4 composite. Additionally, 0.3Li2MnO30.7LiMn1.5Ni0.5O4 possesses a high energy density of ?700Whkg?1, showing great promise for advanced high energy density lithium-ion batteries.

Jia Lu; Ya-Lin Chang; Bohang Song; Hui Xia; Jer-Ren Yang; Kim Seng Lee; Li Lu

2014-01-01T23:59:59.000Z

292

Designing a National Network for Manufacturing Innovation  

E-Print Network (OSTI)

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

293

Science, technology and innovation  

E-Print Network (OSTI)

's three core pillars of expertise: · science and technology · innovation · sustainability. YouScience, technology and innovation Taught degrees MSc in Innovation and Sustainability of strategies to achieve sustainable growth and well-being in developing countries. However, the impact of new

Sussex, University of

294

The Technology & Innovation Centre  

E-Print Network (OSTI)

The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

Mottram, Nigel

295

High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants  

Science Journals Connector (OSTI)

Development of materials plays a crucial role in the economic feasibility of fast nuclear fission and fusion power plant. In order to meet this objective, one of the methods is to extend the fuel burnup and decreasing doubling time. The burnup is largely limited by the void swelling and creep resistances of the fuel cladding and wrapping materials. India's 500 \\{MWe\\} Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are alloy D9 as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup further, titanium, phosphorous and silicon contents in alloy D9 have been optimized for better swelling and creep resistances to develop modified version of alloy D9 as IFAC-1. Creep resistance of inherently void swelling resistance 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long- term creep strength, similar to D9, for increasing the fuel burnup. Development of modified 9Cr-1Mo steel clad tube and 9Cr-1Mo steel wrapper for future metallic fuel reactors being developed for reducing the doubling time are in progress. Extensive studies on resistance of this new generation core materials to void swelling are also under progress along with material development. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt.% having higher creep strength to increase the life of fast reactor and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator are other developments. India's participation in ITER programme necessitates the development of India-specific RAFM steel for Test Blanket Module (TBM). A comprehensive research programme is being carried out to develop India-specific 9Cr-W-Ta RAFM steel with the optimization of tungsten and tantalum contents for better combination of strength and toughness. Based of the extensive mechanical tests including impact, tensile, creep and fatigue on four heats of RAFM steels having tungsten in the range 1 2 wt. % and tantalum in the range 0.06 -.014 wt., the RAFM steel having 1.4 wt. % tungsten with 0.06 wt. % tantalum is found to possess better combination of strength and toughness. This steel is considered as India-specific RAFM steel and TBM is being manufactured by this RAFM steel. To limit the emission of green house gases, a research and development programme has been initiated to develop advanced ultra super critical fossil fuel fired thermal power plants working at temperature of around 973 K and pressure of 300 bar. High temperature creep strength super 304H austenitic steel and Inconel 617 superalloy tubes are indigenously developed for this purpose.

T. Jayakumar; M.D. Mathew; K. Laha

2013-01-01T23:59:59.000Z

296

Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

297

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday)  

E-Print Network (OSTI)

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday) San Jose | Director, Social Innovation Initiative, Global Leadership Advancement Center (GLAC), San José State University 8:40 ­ 9:15am Opening Panel: Social Innovation and Housing Jennifer Loving | Executive Director

Su, Xiao

298

Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Innovation View a slideshow from the 2013 ARPA-E Summit Technology Showcase, including a Tesla Model S electric sedan. | Photo by Sarah Gerrity, Energy Department. View a slideshow from the 2013 ARPA-E Summit Technology Showcase, including a Tesla Model S electric sedan. | Photo by Sarah Gerrity, Energy Department. As a science agency, the Energy Department plays an important role in the innovation economy. The Department catalyzes the transformative growth of basic applied scientific research, the discovery and development of new clean energy technologies and prioritizes scientific innovation as a cornerstone of US economic prosperity.

299

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

300

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 1, Plenary sessions, reactor licensing topics, NUREG-1150, risk analysis/PRA applications, innovative concepts for increased safety of advanced power reactors, severe accident modeling and analysis  

SciTech Connect

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 1, discusses the following: plenary sessions; reactor licensing; NUREG-1150; risk analysis; innovative concepts for increased safety of advanced power reactors; and severe accident modeling and analysis. Thirty-two reports have been cataloged separately.

Weiss, A.J. (comp.)

1988-02-01T23:59:59.000Z

302

Technology Innovation Program 2010ANNUAL REPORT  

E-Print Network (OSTI)

Technology Innovation Program 2010ANNUAL REPORT 2010ANNUAL REPORT Technology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology

303

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

304

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

305

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

306

Energy Department Awards More Than $7 Million for Innovative Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards More Than $7 Million for Innovative Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles December 12, 2011 - 4:25pm Addthis The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington, and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles. The 3-year projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. These investments are a part of the Department's commitment to U.S. leadership in advanced fuel cell technology

307

Energy Department Awards More Than $7 Million for Innovative Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Awards More Than $7 Million for Innovative Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles December 12, 2011 - 2:13pm Addthis News Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles. The 3-year projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. These investments are a part of the Department's commitment to U.S. leadership in advanced

308

Energy Department Awards More Than $7 Million for Innovative Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards More Than $7 Million for Innovative Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles December 12, 2011 - 4:25pm Addthis The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington, and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles. The 3-year projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. These investments are a part of the Department's commitment to U.S. leadership in advanced fuel cell technology

309

Government-led performance standard and high-tech innovation in China : a case study of Zhongguancun high-tech development zone  

E-Print Network (OSTI)

The object of the thesis is to gain an understanding of the role that Chinese government has played in promoting high-tech industries through performance standards and the output the policy generates. As a latecomer in the ...

Chen, Yang, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

310

Recent advances in high-temperature superconductor wire fabrication and applications development  

SciTech Connect

In this paper, recent advances in fabrication of HTS wires are summarized, and detailed discussion is provided for developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include: liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future include fault-current limiters and short transmission lines. 25 refs.

Hull, J.R.; Uherka, K.L.

1992-01-01T23:59:59.000Z

311

Recent advances in high-temperature superconductor wire fabrication and applications development  

SciTech Connect

In this paper, recent advances in fabrication of HTS wires are summarized, and detailed discussion is provided for developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include: liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future include fault-current limiters and short transmission lines. 25 refs.

Hull, J.R.; Uherka, K.L.

1992-08-01T23:59:59.000Z

312

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ecosystem Development Initiative Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Utah Technology Commercialization Office Location: Salt Lake City, UT Project Title Energy Innovation Commercialization Center Proposed Action or Project Description The project proposes to create an Energy Innovation Commercialization Center at the University of Utah. The scope of work for this project is in two phases: tasks necessary to create the Center and actual commercialization and outreach to other institutions. Specific activities for Phase I for the Center startup include 1) negotiating contract, prepare correspondence, establishing website, meetings, scheduling activities, developing metrics, and designing and creating a database. Phase 2 activities for Center

313

Energy Innovations DOE Meeting  

Energy.gov (U.S. Department of Energy (DOE))

Leo Breton, representing Energy Innovations of Washington, DC, a small company engaged in improving the energy efficiency of appliances, automobiles, and HVAC systems, requested a meeting with DOE...

314

The Innovation Arena.  

E-Print Network (OSTI)

?? This thesis addresses the opportunities and difficulties that can occur in the creation of an innovation arena concerning sustainable city solutions. A case study (more)

Jnsson, Lovisa

2011-01-01T23:59:59.000Z

315

Innovations | Department of Energy  

Office of Environmental Management (EM)

are thinking outside the box and developing innovative ways to drive demand for energy upgrades, provide attractive financing options, foster a trained energy workforce, and...

316

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

317

High-resolution VUV spectroscopy: New results from the Advanced Light Source  

SciTech Connect

Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

Schlachter, F.; Bozek, J.

1996-06-01T23:59:59.000Z

318

Advanced properties of extended plasmas for efficient high-order harmonic generation  

SciTech Connect

We demonstrate the advanced properties of extended plasma plumes (5?mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (?0.30.5?mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

Ganeev, R. A. [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495 (Japan) [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495 (Japan); Physics Department, Voronezh State University, Voronezh 394006 (Russian Federation); Suzuki, M.; Kuroda, H. [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495 (Japan)] [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495 (Japan)

2014-05-15T23:59:59.000Z

319

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

320

The effect of intellectual capital on product innovativeness in SMEs  

Science Journals Connector (OSTI)

This paper examines the relationship between intellectual capital and different product innovation strategies based on a longitudinal study of Austrian firms assuming that intellectual capital is an important complementary asset for innovation activities. The data was collected in 1995 and 2003 using the same questionnaire among a firm sample of 91 small and medium-sized firms in manufacturing industries. The study delivers evidence for a positive association between human capital and product innovativeness. Moreover, firms, which have strength in both human and structural capital have a higher likelihood to be highly innovative. In addition, the research reveals that intellectual capital discriminates more strongly between highly and less innovative firms while the traditional measure of R&D expenditure has a stronger explanatory power in differentiating between not innovative and less innovative firms.

Karl-Heinz Leitner

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network (OSTI)

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

322

Postdoctoral Research Awards: Investing in Innovative Clean Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards offer unique research opportunities to highly talented Ph.D. recipients to engage in innovative research at...

323

Effective Guidance and Tools - Building America Top Innovations...  

Energy Savers (EERE)

Quality Management System Guidelines 1995-2012 Top Innovations EEBA Builder's Guides EEBA Water Management Guide Attic Air Sealing Guidelines High-Performance Home Metrics These...

324

Innovation Concepts in Healthcare  

SciTech Connect

AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with todays new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the industrialization of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.

None

2011-01-06T23:59:59.000Z

325

Innovation Concepts in Healthcare  

ScienceCinema (OSTI)

AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with today?s new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the ?industrialization? of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens? Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.

None

2011-04-25T23:59:59.000Z

326

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR™ (Advanced Virtual Energy Simulation Training and Research) Center.

327

Silver Peak Innovative Exploration Project  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

328

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) Fraunhofer Center for Sustainable Energy Systems Location: Cambridge, MA Project Title TechBridge Energy Innovation Acceleration Program

329

Netherlands pushes for innovation  

Science Journals Connector (OSTI)

... plan presented to Dutch parliament this week. The strategy, which focuses heavily on boosting private investment in research and innovation, has some Dutch scientists worried that fundamental research will ... government, industry and knowledge institutions and asked them to clinch 'innovation deals' publicprivate partnerships in which industry must contribute a minimum of 40% of R&D funding ...

Marian Turner

2011-09-15T23:59:59.000Z

330

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ecosystem Development Initiative Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) The Regents of the University of California, UC San Diego Location: La Jolla, CA Project Title Regional Energy Innovation and Commercialization Proposed Action or Project Description The University of California San Diego and San Diego State University are partnering to address deficiencies in the process for translation of research discoveries to the private sector in the clean energy space in the greater San Diego region and accelerate the movement of clean energy innovation from the university laboratory into the marketplace. The Phase I objective for launching the Regional Energy Innovation Challenge includes tasks such as: 1) project management and planning (organizing advisory

331

Innovation @ King's Innovation: King's strategic purpose  

E-Print Network (OSTI)

assets so the emphasis is to embed commercial, project management and regulatory planning resource their sectors. King's wants to work openly with innovators. We recognise the value of combined resources's expends and diversifies activities within themes directed towards policy-makers, cultural industries

Applebaum, David

332

Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000  

SciTech Connect

The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)

Kruger, Albert A. [WTP Engineering Division, United States Department of Energy, Office of River Protection, Post Office Box 450, Richland, Washington 99352 (United States)] [WTP Engineering Division, United States Department of Energy, Office of River Protection, Post Office Box 450, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

333

Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000  

SciTech Connect

The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.

Kruger, Albert A.

2013-01-16T23:59:59.000Z

334

The novelty of Open Innovation.  

E-Print Network (OSTI)

?? Proponents of Open Innovation argue in support of its novel additions, critics however question its novelty and argue that the roots of Open Innovation (more)

Altmann, Peter

2011-01-01T23:59:59.000Z

335

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

336

What are the Energy Innovation Hubs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are the Energy Innovation Hubs? are the Energy Innovation Hubs? What are the Energy Innovation Hubs? August 1, 2010 - 9:07am Addthis What does this project do? Hubs bring together top researchers from academia, industry and the government laboratories spanning multiple scientific and engineering disciplines. This creates an integrated, multidisciplinary systems approach to overcoming critical technological barriers to advances in energy technology. Hubs advance U.S. global leadership in the emerging green economy and are focused in areas that have exceptional potential to reduce our dependence on imported oil and greenhouse gas emissions. Energy Innovation Hubs are major multidisciplinary, multi-investigator, multi-institutional integrated research centers. The Hubs are modeled after the forceful centralized scientific management characteristics of the

337

What are the Energy Innovation Hubs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What are the Energy Innovation Hubs? What are the Energy Innovation Hubs? What are the Energy Innovation Hubs? August 1, 2010 - 9:07am Addthis What does this project do? Hubs bring together top researchers from academia, industry and the government laboratories spanning multiple scientific and engineering disciplines. This creates an integrated, multidisciplinary systems approach to overcoming critical technological barriers to advances in energy technology. Hubs advance U.S. global leadership in the emerging green economy and are focused in areas that have exceptional potential to reduce our dependence on imported oil and greenhouse gas emissions. Energy Innovation Hubs are major multidisciplinary, multi-investigator, multi-institutional integrated research centers. The Hubs are modeled after

338

Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum)  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office supports research into replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites in vehicles, which can decrease component weight by 10-60 percent.

339

Building America Research Teams: BSC and CARB20 Years of Advancing High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE))

In this article, we continue our series of profiles on the Building America research teamsmultidisciplinary industry partnerships who work to make high performance homes a reality for all Americans.

340

High Resolution X-Ray Scattering at Sector 3, Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 3 Beamlines Staff Publications Conferences IXN group Sector 3 : High Resolution X-ray Scattering Sector 3 is operated by the Inelastic X-ray Nuclear Resonant Scattering...

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Support Brings Game-Changing Advancements in Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

342

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Support Brings Game-Changing Advancements in Energy Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

343

1366 Technologies Shines a Light on American Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366 Technologies Shines a Light on American Innovation 366 Technologies Shines a Light on American Innovation 1366 Technologies Shines a Light on American Innovation December 3, 2010 - 7:09pm Addthis 1366 Technologies Shines a Light on American Innovation John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Earlier this year, we visited 1366 Technologies in North Lexington, Massachusetts to get an inside look at their innovative approach to solar manufacturing and document how a $4 million grant from the Advanced Research Projects Agency-Energy (ARPA-E), through the Recovery Act, was helping to make their ambitious goal of producing "solar at the cost of coal" a reality. A lot has happened since that time, with the company announcing plans to bring its novel wafer manufacturing process into production by 2012, thanks

344

The 2011 ARPA-E Innovation Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The 2011 ARPA-E Innovation Summit The 2011 ARPA-E Innovation Summit The 2011 ARPA-E Innovation Summit October 7, 2010 - 4:25pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Join us! The nation's energy leaders will convene February 28 - March 2 in Washington D.C. Yesterday, we announced that for the second year in a row, the Energy Department's Advanced Research Projects Agency - Energy (ARPA-E) and partner organizations will hold the ARPA-E Innovation Summit at the Gaylord Convention Center just outside Washington, D.C. The event will unite key players from all sectors of the nation's innovation community to share ideas for developing and deploying the next generation of clean energy technologies. In addition to keynote speeches from Secretary Chu and other industry

345

Funding for Small Business Innovation Research in Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for Small Business Innovation Research in Energy Efficiency Funding for Small Business Innovation Research in Energy Efficiency and Renewable Energy Funding for Small Business Innovation Research in Energy Efficiency and Renewable Energy April 10, 2012 - 9:06am Addthis Bill Valdez Bill Valdez Principal Deputy Director The Energy Department today announced up to $9 million available this year to fund approximately 50 small businesses to advance innovative energy efficiency and renewable energy technologies. This initiative will help small businesses with promising ideas that could improve manufacturing processes, boost the efficiency of buildings, reduce reliance on oil, and generate electricity from renewable sources to bring new clean energy solutions to market faster. This effort is part of the Obama Administration's strategy to drive innovative clean energy technologies

346

National Network for Manufacturing Innovation: A Preliminary Design  

Energy.gov (U.S. Department of Energy (DOE))

The Federal investment in the National Network for Manufacturing Innovation (NNMI) serves to create an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique concentrations. In an IMI, industry, academia, and government partners leverage existing resources, collaborate, and co-invest to nurture manufacturing innovation and accelerate commercialization. As sustainable manufacturing innovation hubs, IMIs will create, showcase, and deploy new capabilities, new products, and new processes that can impact commercial production. They will build workforce skills at all levels and enhance manufacturing capabilities in companies large and small. Institutes will draw together the best talents and capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing.

347

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

348

Innovations in Nuclear Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

349

NREL Spectrum of Innovation  

SciTech Connect

There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

None

2011-01-01T23:59:59.000Z

350

High speed low damage grinding of advanced ceramics - Phase II Final Report  

SciTech Connect

In the manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. As a result, one of the most challenging tasks faced by manufacturing process engineers is the development of a ceramic finishing process to maximize part throughput while minimizing costs and associated scrap levels. The efforts summarized in this report represent the second phase of a program whose overall objective was to develop a single-step, roughing-finishing process suitable for producing high-quality silicon nitride parts at high material removal rates and at substantially lower cost than traditional, multi-stage grinding processes. More specifically, this report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding which employs elevated wheel speeds to achieve the small grain depths of cut necessary for low-damage grinding while operating at relatively high material removal rates. The study employed the combined use of laboratory grinding tests, mathematical grinding models, and characterization of the resultant surface condition. A single-step, roughing-finishing process operating at high removal rates was developed and demonstrated.

Kovach, J.A.; Malkin, S.

2000-02-01T23:59:59.000Z

351

Large power users and capacity shortages in developing countries: the role of innovative pricing  

Science Journals Connector (OSTI)

This paper addresses innovative electricity pricing as a strategy for managing electric load, offering pricing as an alternative to building generating capacity to meet electric load commitments in the developing world. Drawing upon the Western experience with pricing as a demand-side management strategy, three questions are addressed: (i) Do innovative pricing strategies alter the amount and pattern of electricity consumption for high-voltage users? (ii) What are future directions in electricity pricing for industrial users? and (iii) Are these strategies relevant for power systems in the developing world? The most widely adopted innovative pricing strategies by Western utilities are variants of time-of-use (TOU) pricing, which have generally been effective in reducing load during peak periods. More recently, technological advances have allowed utilities to experiment with aligning electricity prices more closely with actual power delivery costs. While temporal aspects of these innovative pricing strategies have general applicability as a load management strategy, the power systems in many developing countries have more urgent pricing priorities than adopting the most recent strategies of Western utilities.

Lawrence J. Hill

1991-01-01T23:59:59.000Z

352

Enabling Exponential Innovation via Open Source  

E-Print Network (OSTI)

-technical innovations #12;Power law distribution #12;OSSD Projects as innovation engines Social/technical innovations OSSD projects exhibit sustained exponential growth via social and technical innovations ExponentialEnabling Exponential Innovation via Open Source Software Development Walt Scacchi Institute

Scacchi, Walt

353

Advanced cell technology for high performance Li-A1/FeS{sub 2} secondary batteries.  

SciTech Connect

In early 1993. Argonne National Laboratory (ANL) initiated a major R and D effort to develop bipolar Li-Al/LiCl-LiBr-KBr/FeS{sub 2} batteries for electric vehicles, targeting the USABC Long-Term Goals. Significant advancements were achieved in the areas of (i) chemical purity, (ii) electrode and electrolyte additives, and (iii) peripheral seals. It was determined that key chemical constituents contained undesirable impurities. ANL developed new chemical processes for preparing Li{sub 2}S, FeS, and CoS{sub 2} that were >98.5% pure. We evaluated a large variety of electrode and electrolyte additives for reducing cell area specific impedance (ASI). Candidate positive electrode additives offered increased electronic conductivity, enhanced reaction kinetics, and/or improved porous electrode morphology. CoS{sub 2}, CuFeS{sub 2}, MgO, and graphite (fibers) were identified as the most beneficial impedance-reducing positive electrode additives. Although electronically conductive carbon and graphite additives produced measurable ASI reductions in the negative electrode, they degraded its structural integrity and were deemed impractical. Lil and LiF were identified as beneficial electrolyte additives, that enhance positive electrode kinetics. ANL refined its baseline metal/ceramic peripheral seal and increased its strength by a factor of three (achieving a safety factor >10). In parallel, ANL developed a high-strength advanced metal/ceramic seal that offers appreciable cost reductions.

Henriksen, G. L.

1998-07-10T23:59:59.000Z

354

The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

than 30 years, than 30 years, the National Renewable Energy Laboratory (NREL) has advanced the science of renewable energy and energy- efficiency technologies while building the capabilities to guide rapid deployment of commercial applications. Transforming our energy systems to achieve the nation's aggressive economic, environmental, and security goals requires a comprehensive approach. Today, NREL is at the epicenter of this transformation-enabling a future of sustainable energy systems based on clean, cost- effective, and secure resources. The NREL Innovation Spectrum The scope of NREL's capabilities emulates the nature of the innovation process itself. Shepherding new technologies from initial concept to commercial application requires a breadth of expertise across the innovation spectrum,

355

Next Generation Power Electronics National Manufacturing Innovation Institute  

Energy.gov (U.S. Department of Energy (DOE))

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

356

Advanced Laser Diagnostics Development for the Characterization of Gaseous High Speed Flows  

E-Print Network (OSTI)

and two-line thermometry, employing the nascent NO(v"=1) arising from the NO2 photodissociation as a molecular tracer. The VENOM technique is expected to be not only applicable to cold high-speed flows, which is the focus of the present work, but also...

Sanchez-Gonzalez, Rodrigo

2012-07-16T23:59:59.000Z

357

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

358

Building America Top Innovations Hall of Fame Profile … Basement Insulation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Efficient and durable construction practices are critical for basements because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Basement Insulation Systems Building America research has provided essential guidance for one of the most challenging construction assemblies in cold-climate high-performance homes. Basements can easily develop mold, rot, and odor problems if not designed properly. Building America researchers have investigated basement insulation systems that keep the space dry, healthy, and odor-free. These systems effectively address the

359

Gaming & Social Innovation.  

E-Print Network (OSTI)

??Dette paper prsenterer en rkke ny computerspil, som har det fllesml at skabe borgerdreven social innovation. Indledningsvist vil paperet skitsere den udvikling, der har fundetsted (more)

Wichmand, Mette

2011-01-01T23:59:59.000Z

360

Discovery & Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Science The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {8C4B6798-0A4D-4B36-AF69-02F3EFA94CD1}http://science.energy.gov/discovery-and-innovation/stories/2013/127045/ Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex - arguably the most important bit of organic chemistry on the planet - in its complete

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Central Florida Location: Orlando, FL Project Title MegaWatt Ventures Proposed Action or Project Description The University of Central Florida is dedicated to creating innovative programs that accelerate the

362

INNOVATION HUBS INTEGRATING TECHNOLOGY + DESIGN  

E-Print Network (OSTI)

, such as city planning, social innovation, architecture, engineering, computer science, and social science

363

High current electron linacs (advanced test accelerator/experimental test accelerator)  

SciTech Connect

The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability.

Briggs, R.J.

1984-04-30T23:59:59.000Z

364

Light weight, high field, stable, superconducting magnets for advanced transportation systems  

SciTech Connect

Although the Guideway may be the most expensive component of a MAGLEV system, the importance of a suitable magnet system should not be underestimated. The reliability of operation of MAGLEV depends on the superconducting magnets performing to their specifications in a reliable manner (i.e., without training or quenching). Besides reliability the magnets should produce high field, be sufficiently stable to withstand reasonable perturbations, be light weight, be protected in the event of a quench, and be economical (although performance should outweigh cost). We propose to develop superconducting magnets that have these features. Our magnet designs are based on internally cooled, cable-in-conduit superconductor with Polymer Matrix Composites (PMC) as the structural reinforcement. Although the initial work is with metallic superconductors such as NbTi, the processes being developed will be applicable to the High Temperature Ceramic Superconductors when they become suitable for magnet applications.

Lubell, M.S.; Dresner, L.; Kenney, W.J.; Lue, J.W.; Luton, J.N.; Schwenterly, S.W.

1991-01-01T23:59:59.000Z

365

COMPUTATIONAL STEERING: TOWARDS ADVANCED INTERACTIVE HIGH PERFORMANCE COMPUTING IN ENGINEERING SCIENCES  

E-Print Network (OSTI)

Key-words: Computational steering, high-performance computing, interactive simulation, virtual reality, CFD Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities from computer visualization, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of preprocessing, computing and postprocessing. This paper will first identify some of the major obstructions of an interactive computation for complex simulation tasks in engineering sciences. These are especially found in traditional software structures, in the definition of geometric models and boundary conditions and in the often still very tedious work of generating computational meshes. It then presents a generic approach for collaborative computational steering, where pre- and postprocessing is integrated with high

Ernst Rank; Andr Borrmann; Er Dster; Christoph Van Treeck; Petra Wenisch

2008-01-01T23:59:59.000Z

366

Advanced high temperature materials for the energy efficient automotive Stirling engine  

SciTech Connect

The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

Titran, R.H.; Stephens, J.R.

1984-01-01T23:59:59.000Z

367

High heat load x-ray optics research and development at the Advanced Photon Source -- An overview  

SciTech Connect

Insertion devices at third generation synchrotron radiation sources such as the APS are capable of producing x-ray beams with total power in excess of 7 kilowatts or power densities of 150 watts/mm{sup 2} at a typical location of the optical components. Optical elements subjected to these types of heat fluxes will suffer considerably unless carefully designed to withstand these unprecedented power loadings. At the Advanced Photon Source (APS), we have an aggressive R&D program aimed at investigating possible methods to mitigate thermal distortions. The approaches being studied include, improved heat exchangers, use of liquid gallium and liquid nitrogen as coolants, novel crystal geometries, power filtering, and replacement of silicon with diamond for crystal monochromators. This paper will provide an overview of the high heat load x-ray optics program at the APS.

Lee, Wah-Keat; Mills, D.M.

1993-09-01T23:59:59.000Z

368

Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab  

SciTech Connect

A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

2012-05-10T23:59:59.000Z

369

Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources  

SciTech Connect

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2009-09-01T23:59:59.000Z

370

ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS  

SciTech Connect

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

2010-05-12T23:59:59.000Z

371

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

372

Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams  

SciTech Connect

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, Roark; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

373

Innovation in practice: Philips Applied Technologies  

Science Journals Connector (OSTI)

Different business environments within Philips demand different innovation approaches. In a high-tech business-to-business environment with demanding lead customers, innovation is driven by customer intimacy. In a fast-moving business-to-consumer environment, a combination of consumer marketing intelligence and technology is required, captured in a clear process to meet the critical time-to-market requirements. Innovation outside the existing business scope of the regular Philips divisions is handled separately. The role of Philips Applied Technologies (Apptech) is described, including competencies and processes. The central questions addressed in this paper are: 'Which innovation models are being used by Philips?' and 'What is the role of Apptech in the innovation processes and how does Apptech effectuate its role?' An open approach is evolving wherein innovation is performed in international networks of partners in new markets and with complementary skills. Assuming the task of integrator in such a network, entrepreneurs and lead customers complete the current technical and process-oriented capabilities of Apptech.

John Van Den Elst; Ronald Tol; Ruud Smits

2006-01-01T23:59:59.000Z

374

A High-Pressure Nano-imaging Breakthrough | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Structure Could Lead to Better Treatments for HIV, Early Aging Protein Structure Could Lead to Better Treatments for HIV, Early Aging The Superpower behind Iron Oxyfluoride Battery Electrodes Watching a Protein as it Functions Shedding Light on Chemistry with a Biological Twist Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A High-Pressure Nano-imaging Breakthrough APRIL 11, 2013 Bookmark and Share Bragg CXDI measurements were performed at 0.8, 1.7, 2.5, 3.2, and 6.4 GPa on the same crystal. The reconstructed images (both top and bottom views) are shown above. From W. Yang et al., Nat. Comm. 4 (2013). A team of researchers has made a major breakthrough in measuring the

375

DOE Energy Innovation Portal Connects Innovative Energy Technologies to the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Innovation Portal Connects Innovative Energy Energy Innovation Portal Connects Innovative Energy Technologies to the Marketplace DOE Energy Innovation Portal Connects Innovative Energy Technologies to the Marketplace February 2, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy's Energy Innovation Portal now has more than 300 business-friendly marketing summaries available to help investors and companies identify and license leading-edge energy efficiency and renewable energy technologies. The Portal is an online tool that links available DOE innovations to the entrepreneurs who can successfully license and commercialize them. By helping to move these innovations from the laboratory to the market, the Portal facilitates an integral step in supporting growing America's clean energy industries and

376

Recent advances in fabrication of high-T{sub c} superconductors for electric power applications.  

SciTech Connect

The U.S. Department of Energy (DOE) supports an applied superconductivity program entitled ''Superconductivity Program for Electric Power Systems.'' Activities within this program contribute to development of the high-temperature superconductor (HTS) technology needed for industry to proceed with the commercial development of electric power applications such as motors, generators, transformers, transmission cables, and current limiters. Research is conducted in three categories: wire development, systems technology development, and Superconductivity Partnership Initiative (SPI). Wire development activities are devoted to improving the critical current density (J{sub c}) of short-length HTS wires, whereas systems technology development focuses on fabrication of long-length wires, coils, and on magnets. The SPI activities are aimed at development of prototype products. Significant progress has been made in the development of (HTSs) for various applications: some applications have already made significant strides in the marketplace, while others are still in the developmental stages. For successful electric power applications, it is very important that the HTS be fabricated into long-length conductors that exhibit desired superconducting and mechanical properties. Several parameters of the PIT technique must be carefully controlled to obtain the desired properties. Long lengths of Bi-2223 tapes with respectable superconducting properties have been fabricated by a carefully designed thermomechanical treatment process. A 1-MVA capacity fault current limiter, a 286-hp motor, and 630-kVA transformers, and a 50-m-long conductor, all using HTSs, have already been demonstrated. While the use of HTS devices in the electric utility area has clear advantages, impediments to successful commercialization remain. Issues such as AC losses, conductor cost, and reliable superconducting joints must be addressed. The cost of HTS conductors are still quite high, and significant R and D effort must be focused on this issue. The general acceptance of HTS power equipment will ultimately be based on system performance, reliability and maintenance, efficiency, and installed cost relative to those of conventional technologies.

Balachandran, U.

1998-03-25T23:59:59.000Z

377

Technology innovations and experience curves for nitrogen oxides control technologies  

SciTech Connect

This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO{sub 2}) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. Patent data are used to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus 'forcing' innovation. It is demonstrated that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to {approximately} 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale. 38 refs., 10 figs., 3 tabs.

Sonia Yeh; Edward S. Rubin; Margaret R. Taylor; David A. Hounshell [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory, Office of Research and Development,

2005-12-15T23:59:59.000Z

378

Economic Model For a Return on Investment Analysis of United States Government High Performance Computing (HPC) Research and Development (R & D) Investment  

SciTech Connect

This study investigated how high-performance computing (HPC) investments can improve economic success and increase scientific innovation. This research focused on the common good and provided uses for DOE, other government agencies, industry, and academia. The study created two unique economic models and an innovation index: 1 A macroeconomic model that depicts the way HPC investments result in economic advancements in the form of ROI in revenue (GDP), profits (and cost savings), and jobs. 2 A macroeconomic model that depicts the way HPC investments result in basic and applied innovations, looking at variations by sector, industry, country, and organization size. ? A new innovation index that provides a means of measuring and comparing innovation levels. Key findings of the pilot study include: IDC collected the required data across a broad set of organizations, with enough detail to create these models and the innovation index. The research also developed an expansive list of HPC success stories.

Joseph, Earl C.; Conway, Steve; Dekate, Chirag

2013-09-30T23:59:59.000Z

379

An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor  

SciTech Connect

Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when must-take wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

2014-03-01T23:59:59.000Z

380

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a total production volume basis and having the third-highest potential for process energy savings. Advanced Production Surface Preparation Technology for Ultra High-Pressure...

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Combustion of high-sulfur coal and anthracite wastes in a rotary kiln combustor with an advanced internal air distributor  

SciTech Connect

Fluid bed combustors have received extensive testing with both high-sulfur coal and anthracite wastes. Rotary kilns are effective and popular devices for waste combustion. The Angelo Rotary Furnace{trademark} has been developed to improve the operation of rotary pyrolyzer/combustor systems through enhanced air distribution, which in this process is defined as staged, swirled combustion air injection. Fourteen of these new furnaces have been installed worldwide. Two units in Thailand, designed for rice hull feed with occasional lignite feed, have been recently started up. An older unit in Pennsylvania is being upgraded with a new, more advanced air distribution system for a series of tests this fall in which inexpensive high-sulfur coal and anthracite wastes will be fired with limestone. The purposes of these tests are to determine the burning characteristics of these two fuels in this system, to discover the Ca/S ratios necessary for operation of a rotary kiln combusting these fuels, and to observe the gas-borne emissions from the furnace. An extensive preliminary design study will be performed on a commercial installation for combustion of anthracite wastes. 14 refs., 5 figs., 1 tab.

Cobb, J.T. Jr. (Pittsburgh Univ., PA (USA)); Ahn, Y.K. (Gilbert/Commonwealth, Inc., Reading, PA (USA)); Angelo, J.F. (Universal Energy International, Inc., Little Rock, AR (USA))

1990-01-01T23:59:59.000Z

382

DOE`s high performance power systems program: Development of advanced coal-fired combined-cycle systems  

SciTech Connect

Coal currently provides more than one third of the world`s electricity and more than one half of the US`s electricity. However, for coal to be the fuel of choice in the future, highly efficient, environmentally acceptable, and economically competitive, coal-fired power plants are needed. The US Department of Energy, Federal Energy Technology Center, under its High Performance Power Systems (HIPPS) Program, has two contracts in place, one with Foster Wheeler Development Corporation and one with United Technologies Research Center, to develop advanced power generation systems. Based on an indirectly fired cycle, HIPPS uses a combined cycle for power generation at efficiencies of 47--50% (HHV) with superior environmental performance (1/10 of New Source Performance Standards) and a lower cost-of-electricity (10% reduction relative to current coal-fired plants). HIPPS, scheduled to be ready for commercialization by the year 2005, could provide a solution to the anticipated worldwide demand for clean, efficient electricity generation. In this paper, the two HIPPS designs are reviewed and on-going research is discussed.

Ruth, L.; Plasynski, S.; Shaffer, F. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

383

Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics  

SciTech Connect

A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Yang, X. F. [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)] [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

2013-08-15T23:59:59.000Z

384

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

385

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

386

Manufacturing Innovation Multi-Topic Workshop  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

387

Long Term Innovative Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Hydrogen and DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop Bryan Pivovar With Input/Feedback from Rod Borup (LANL), Debbie Myers (ANL), DOE and others as noted in presentation Lakewood, CO March 16, 2010 Long Term Innovative Technologies National Renewable Energy Laboratory Innovation for Our Energy Future Innovative/Long Term and RELEVANT Mission of DOE Mission of EERE (Applied Program) Mission of HFCT To enable the widespread commercialization of hydrogen and fuel cells in diverse sectors of the economy-with emphasis on applications that will most effectively strengthen the nation's energy security and improve our stewardship of the environment-through research, development, and demonstration of critical improvements in the technologies, and through diverse activities to overcome

388

DOE Energy Innovation Hubs  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » DOE Energy Research » DOE Energy Innovation Hubs Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research DOE Energy Innovation Hubs Print Text Size: A A A RSS Feeds

389

ARPA-E Innovators: CERES | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovators: CERES Innovators: CERES ARPA-E Innovators: CERES February 27, 2013 - 12:40pm Addthis Quentin Kruger Quentin Kruger Former Multimedia Producer, contractor to the U.S. Department of Energy CERES: Cultivating Innovation from DOE ARPA-E on Vimeo. CERES, with the help of ARPA-E funding, has rethought biofuels from the ground up. Their forward thinking approach to overcoming the traditional barriers for biofuels has resulted in creating high biomass feedstocks for switchgrass, sorghum, and miscanthus varietals. These new breeds grow taller and thicker on traditionally low rent farmland that doesn't compete with corn or other food crops. Addthis Related Articles ARPA-E Innovators: FORO ARPA-E Innovators: CREE A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

390

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

391

Obstacles to innovation management in SMEs.  

E-Print Network (OSTI)

?? This thesis examines innovation, innovation management and the innovation process in SMEs (small and medium enterprises). There are many academic researchers who work on (more)

WEI, YI

2013-01-01T23:59:59.000Z

392

Innovation and Social Capital in Silicon Valley  

E-Print Network (OSTI)

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

393

U.S.Air Force Advanced Power  

E-Print Network (OSTI)

efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

394

ScienceEducation.gov Featured on the new White House Innovation Gallery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ScienceEducation.gov Featured on the new White House Innovation ScienceEducation.gov Featured on the new White House Innovation Gallery ScienceEducation.gov Featured on the new White House Innovation Gallery December 10, 2010 - 10:27am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs The White House recently posted ScienceEducation.gov (beta version) to its Innovations Gallery - a part of the White House Open Government Initiative. The Innovations Gallery celebrates the innovations that advance the President's commitment to a more open and effective government. At the Innovations Gallery, the public can browse new ways in which agencies across the Executive branch are promoting transparency, participation, and collaboration to achieve their mission. ScienceEducation.gov has been identified by OSTP as a new way of championing open government.

395

E-Print Network 3.0 - advanced lost foam Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Fusion Energy, Madison WI, Sept. 14-16, 2004. Summary: ratios. Based on these recent innovations and advances, we suggest the development of ceramic foams... ., Pacoima...

396

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies. The projects will develop...

397

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

398

COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL  

SciTech Connect

The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

Gutowski, William J.

2013-02-07T23:59:59.000Z

399

STATEME'NT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RIGHTS FOR TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEME'NT OF CONSIDERATIONS STATEME'NT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RIGHTS FOR TECHNOLOGY DEVELOPED UNDER DOE FUNDING AGREEMENTS RELATING TO DOE'S ENERGY INNOVATION HUBS-FUELS FROM SUNLIGHT; DOE FUNDING OPPORTUNITY ANNOUNCMENT DE-FOA-0000214; W(C)-09-021; CH1532 The Department of Energy Office of Science is providing federal assistance in the form of cooperative agreements, field work authorizations, interagency agreements, or Technology Investment Agreements (TlAs) for a new R&D structure-an Energy Innovation Hub that will foster unique scientific collaboration to rapidly drive energy solutions to their fundamental limits. An Energy Innovation Hub will comprise a highly collaborative team spanning multiple scientific, engineering. economics, and public-policy

400

DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

402

DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

403

SME dependence and coordination in innovation networks RESEARCH PAPER  

E-Print Network (OSTI)

of mutually beneficial, growth-oriented relationships between high-technology SMEs. Very recently, Ngugi et al/methodology/approach: Seven case studies were carried out: six innovation networks in which SMEs play a central role of innovation networks which are increasingly important for the development of SMEs. The knowledge

Boyer, Edmond

404

Design Innovation: Historical and Theoretical Perspectives on Product Innovation  

E-Print Network (OSTI)

1 Design Innovation: Historical and Theoretical Perspectives on Product Innovation by Design A paper presented at the 5th European Academy of Design Conference held in Barcelona, in April 2003. Bilge The term `design innovation,' while not having a universally agreed upon definition, is increasingly used

Mutlu, Bilge

405

Los Alamos National Laboratory: Bioscience Division: Advanced Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

Leader, acting Leader, acting Andrew Bradbury Deputy Group Leader Laurie Tomlinson Group Office Administrator Shane French Group Office 505 665 3517 B Div People Flow Cytometry and Green Flourescent Protein Reporter are Some Innovations Developed in B-9 The Advanced Measurement Science Group is focused on the development of new instrumentation, techniques and biomolecules for a wide array of biomedical applications, from biothreat agent detection to protein structure determination to cancer diagnostics. The Group is divided into three teams focused on ligand development, optical instrumentation and structural biology. This group houses the Los Alamos Molecular Recognition Alliance, which develops novel affinity reagents in collaboration with three other Divisions at LANL. This Group also incorporates the National Flow Cytometry Resource (NFCR), which focuses on developing advanced flow cytometry instrumentation and applications, as well as facilitating their transfer to the biomedical community. Finally, the High-Throughput Gene Cloning and Protein Production Facility, which provides materials and innovative strategies for deciphering protein structure and function in collaboration with the TB Structural Genomics Consortium and the Integrated Center for Structure and Function Innovation are also a part of B-9.

406

White House Champions of Change Recognizes Solar Innovator | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Champions of Change Recognizes Solar Innovator White House Champions of Change Recognizes Solar Innovator White House Champions of Change Recognizes Solar Innovator June 10, 2013 - 4:30pm Addthis Dr. Siva Sivananthan at the Sivananthan Laboratories in Bolingbrook, Illinois. | Photo courtesy of Megan Strand, UIC Dr. Siva Sivananthan at the Sivananthan Laboratories in Bolingbrook, Illinois. | Photo courtesy of Megan Strand, UIC Minh Le Minh Le Program Manager, Solar Program What are the key facts? Dr. Sivananthan, a 2009 SunShot Incubator awardee, was recently recognized by the White House as part of the Immigrant Innovator Champions of Change initiative. Dr. Sivananthan's solar research helps to advance the SunShot Initiative's goals of achieving cost-competitive solar by the end of the decade. Recently recognized by the White House, one awardee of the Energy

407

Deep Web Technologies' Innovations Contribute to DOE Science Search  

Office of Scientific and Technical Information (OSTI)

Deep Web Technologies' Innovations Contribute to DOE Science Search Deep Web Technologies' Innovations Contribute to DOE Science Search Technology NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE June 25, 2008 Deep Web Technologies' Innovations Contribute to DOE Science Search Technology Oak Ridge, TN - The 2008 SBIR Small Business of the Year award, announced today by the Department of Energy, acknowledged the web search innovations of Deep Web Technologies, Inc., which has made remarkable advances in an unconventional technology, called federated search. Using federated search, the DOE Office of Scientific and Technical Information (OSTI) has created and deployed groundbreaking tools for making larger quantities of science and technology information available to more people, more quickly and more

408

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

409

President's Energy Budget Invests in Innovation, Clean Energy, and National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Budget Invests in Innovation, Clean Energy, and Energy Budget Invests in Innovation, Clean Energy, and National Security Priorities President's Energy Budget Invests in Innovation, Clean Energy, and National Security Priorities February 1, 2010 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today detailed President Barack Obama's $28.4 billion Fiscal Year 2011 budget request for the Department of Energy, highlighting the Administration's commitment to create jobs with the development of a clean energy economy, invest in advanced science, research and innovation, maintain a strong nuclear deterrent and secure nuclear materials both at home and abroad, and improve energy efficiency to help curb greenhouse gas emissions that contribute to climate change. The FY 2011 budget request also places an emphasis on DOE

410

Multimedia and Visualization Innovations for Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multimedia and Visualization Innovations for Science Multimedia and Visualization Innovations for Science Multimedia and Visualization Innovations for Science February 9, 2011 - 11:45am Addthis Multimedia and Visualization Innovations for Science Brian Hitson Associate Director of Administration & Information Services, OSTI I once saw a demonstration of the human brain's capacity to absorb massive amounts of visually-displayed information. "A picture's worth a thousand words" might have been an understatement. Think about what is probably the most famous graph in history, Charles Joseph Minard's visual depiction of Napoleon's disastrous Russian campaign of 1812. Now think about advances in the technology of visualization and multimedia since Minard's time. ScienceCinema is a new multimedia search engine aimed at

411

Fisker, Tesla, and American Auto Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fisker, Tesla, and American Auto Innovation Fisker, Tesla, and American Auto Innovation Fisker, Tesla, and American Auto Innovation October 20, 2011 - 10:36pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Two years ago, critics said we shouldn't be investing in American auto manufacturing because the industry wouldn't survive. They were wrong then and they're wrong today. From well established names like Ford to innovative startups like Tesla and Fisker, America's auto industry is being reinvented, and the Department's loan program is helping play an important role. Created with strong bipartisan support in 2008 and signed into law by President Bush, the Department's Advanced Technology Vehicles Manufacturing (ATVM) Loan Program is helping America compete for and win

412

Innovation by Entrants and Incumbents  

E-Print Network (OSTI)

We extend the basic Schumpeterian endogenous growth model by allowing incumbents to undertake innovations to improve their products, while entrants engage in more radical innovations to replace incumbents. Our model ...

Acemoglu, Daron

2010-09-12T23:59:59.000Z

413

Energy Innovation Hubs: Achieving Our Energy Goals with Science |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Hubs: Achieving Our Energy Goals with Science Innovation Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Michael Hess Michael Hess

414

Entrepreneurship and Innovation  

E-Print Network (OSTI)

and managers need to understand the power of innovation and how it translates into new products, processes and competitive economy. Sustaining a competitive advantage requires that individuals, companies, and nations and the ability to combine such insight with the daily practical The programme is a one-year Master's degree

van der Torre, Leon

415

TRADITION INNOVATION CELEBRATION Engineering  

E-Print Network (OSTI)

to the reunion · Complimentary College of Engineering Commemorative History Book · Recognition at C.J. MackenzieTRADITION INNOVATION CELEBRATION Engineering College of CENTENNIAL SPONSORSHIP PACKAGE Your. · Exposure at one of the biggest engineering parties this province has seen · Signage at events during

Saskatchewan, University of

416

Democratized From innovation  

E-Print Network (OSTI)

years of basic research and development at the 100-nanometer scale, the importance of nanotechnology as a source of innovations and new capabilities in everything from materials science to medicine is already well-understood. Three trends, however, will define how nanotechnology will unfold, and what impacts

Anderson, Douglas R.

417

Sandia National Laboratories: TTU Advanced Doppler Radar  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediment Transport High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Innovative Offshore Vertical-Axis Wind Turbine Rotors Offshore Publications...

418

Reducing LED Costs Through Innovation  

Energy.gov (U.S. Department of Energy (DOE))

A Wisconsin-based company is developing an innovative way to reduce manufacturing costs of light-emitting diodes (LEDs).

419

Building America 2013 Top Innovations  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a listing of and links to 2013 Top Innovations coming out of the Building America program.

420

Intellectual Property for Market Innovation  

E-Print Network (OSTI)

et al. , Quantifying Brand Image: Empirical Evidence ofbrands are identical. ). Market Innovation advertising and promotion, a spurious image

Duffy, John F; Abramawitz, Micheal

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Accelerating Innovation: PowerAmerica Is Up and Running  

Energy.gov (U.S. Department of Energy (DOE))

The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to accelerate the commercialization of wide bandgap (WBG) technologies.

422

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

423

Separations innovative concepts: Project summary  

SciTech Connect

This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

Lee, V.E. (ed.)

1988-05-01T23:59:59.000Z

424

Animal innovation defined and operationalized  

E-Print Network (OSTI)

, improvisation, innovation, invention, operational definition, social learning 1. Introduction The studyAnimal innovation defined and operationalized Grant Ramsey Department of Philosophy, University://www.aim.unizh.ch/Members/vanschaik.html Abstract: Innovation is a key component of most definitions of culture and intelligence. Additionally

Indiana University

425

Technology Innovation Program Advisory Board  

E-Print Network (OSTI)

Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

Magee, Joseph W.

426

Technology Innovation Program Advisory Board  

E-Print Network (OSTI)

Technology Innovation Program Advisory Board 2009 Annual Report of the Technology Innovation Program Advisory Board 2010 Annual Report of the #12;2010 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology

427

Innovators at Heart A publication for  

E-Print Network (OSTI)

Innovators at Heart A publication for those who support heart-related research, education, and care at the University of Minnesota Help improve heart health for future generations with a charitable bequest page 2's health was deteriorating quickly. Within days of suffering a highly damaging heart attack, she learned

Minnesota, University of

428

Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373  

SciTech Connect

NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

Barnes, T.

2013-08-01T23:59:59.000Z

429

Awards recognize outstanding innovation in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant...

430

Canada: Automobile Innovation Fund - Program Detail & Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada: Automobile Innovation Fund - Program Detail & Criteria Canada: Automobile Innovation Fund - Program Detail & Criteria Information from the Canadian Embassy Canada:...

431

Toronto University Innovation Foundation | Open Energy Information  

Open Energy Info (EERE)

Toronto University Innovation Foundation Jump to: navigation, search Name: Toronto University Innovation Foundation Place: Canada Sector: Services Product: General Financial &...

432

Interested Parties - Pittsburgh Green Innovators | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pittsburgh Green Innovators Interested Parties - Pittsburgh Green Innovators Attachment to Registered Lobbyist Disclosure Form: R More Documents & Publications Interested Parties -...

433

The Department of Energy's Energy Innovation Hubs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report The Department of Energy's Energy Innovation Hubs OAS-M-13-08 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY ASSISTANT SECRETARY FOR NUCLEAR ENERGY ACTING DIRECTOR, OFFICE OF SCIENCE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Energy Innovation Hubs" BACKGROUND The Department of Energy's (Department) Energy Innovation Hubs (Hubs) initiative addresses research challenges with potentially high impact on our national energy security. Such

434

DOE Offers Support for Innovative Manufacturing Plant That Will Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Support for Innovative Manufacturing Plant That Will Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost June 16, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $275 million loan guarantee to Calisolar Inc. to commercialize its innovative solar silicon manufacturing process. Calisolar's innovative process should produce silicon for use in solar cells at less than half the cost of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to produce 16,000 metric tons (MT) of solar silicon annually, equivalent to

435

ARPA-E Innovators: FORO | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORO FORO ARPA-E Innovators: FORO March 1, 2013 - 1:04pm Addthis Quentin Kruger Quentin Kruger Former Multimedia Producer, contractor to the U.S. Department of Energy Foro Energy: High Power Lasers from DOE ARPA-E on Vimeo. Foro Energy, with the help of ARPA-E funding, has accomplished what many though impossible - sending high powered lasers over long distances. This innovation speeds up traditional drilling applications while lowering their cost, making geothermal and natural gas more accessible. Addthis Related Articles ARPA-E Innovators: CERES ARPA-E Innovators: CREE Elon Musk, CEO of Tesla Motors, and Secretary Chu during a fireside chat at the 2013 ARPA-E Energy Innovation Summit | Photo by Sarah Gerrity, Energy Department.

436

Launching the Next Wave of Clean Fossil Energy Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory. The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced

437

A revolutionary rotatable electron energy analyzer for advanced high-resolution spin-polarized photoemission studies. Final Report  

SciTech Connect

This report details the construction and testing of a unique analyzer for spin-polarized photoemission studies of magnetic materials. This report details the progress of this project for the period from 9/1/96 through 8/31/99. Progress can be divided into two distinct areas. These are the fabrication, construction, and initial testing of the instrumentation, and the concurrent program of preliminary investigations into materials and experiments appropriate for future studies using the instrumentation developed. The analyzer complete with special input electron optics and Mott detector has been assembled in a special design UHV chamber equipped with all the capabilities needed to perform the described programs of research. These include a sophisticated five motorized axis sample manipulator with low and high temperature capability and rapid temperature cycling (acquired in collaboration with Dr. J.G. Tobin of LLNL), vacuum leak detection and gauging, in situ thin film growth instrumentation, and sample cleaning and magnetizing capabilities, The initial testing of the analyzer has been completed with successful data acquisition using both the multichannel detector mode, and spin-dependent using the Mott detector channeltrons. The data collected using the Mott detector were not truly spin dependent (see below), but demonstrate the operation of the lens and detector design. Acquisition of truly spin-dependent data await use of the EPU. Preliminary indications suggest that the analyzer performs at or above the original design parameters. In the second area of progress, we have conducted a number of preliminary studies toward the ends of identifying appropriate initial systems for investigation, and to further explore new experiments that the new instrumentation will help to pioneer. More detailed descriptions of all of these advances are given.

Waddill, G. D.; Willis, R. F.

1999-10-01T23:59:59.000Z

438

DOE Patents Database - Innovations  

Office of Scientific and Technical Information (OSTI)

DOE Innovations DOE Innovations Breakthroughs and Award Winners from the last 2 decades... Capillary Electrophoresis Ames Laboratory This technology allows multiple samples of substances to be analyzed simultaneously, providing both speed and accuracy. Has won multiple R&D 100 awards for inventor Ed Yeung and has been licensed by Spectromedix. U.S. Patent Nos. 5,324,401 and 5,582,705. Ultrananocrystalline Diamond (UNCD) Argonne National Laboratory Greatly surpasses other diamond film technologies with commercial potential, and can be used in a broad and diverse range of applications from macro to nanodevices, 2006 FLC Award Winner. U.S. Patent Nos. 5,620,512 and others. T7 Gene Expression System Brookhaven National Laboratory This patent family has been licensed to over 700 commercial entities

439

BEST VISIONS. BEST INNOVATIONS.  

E-Print Network (OSTI)

BEST VISIONS. BEST INNOVATIONS. BEST SOLUTIONS: INDUSTRIE 4.0 NRW Cluster Nordrhein INTERNATIONAL KOOPERATIONS- B?RSE KOMMUNIKATION & NETWORKING FOREN 13:30 - 17:00 Uhr Industrie 4.0 CPS in der.NRW, Geschäftsführer, IMST GmbH Moderation: Anna Planken #12;4 |www.iuk-tag-nrw.de FORUM Industrie 4.0 ­ CPS in der

Hellebrand, Sybille

440

ARPA-E Sparks Connections at the Southwest Energy Innovation Forum |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Sparks Connections at the Southwest Energy Innovation Forum ARPA-E Sparks Connections at the Southwest Energy Innovation Forum ARPA-E Sparks Connections at the Southwest Energy Innovation Forum October 21, 2010 - 11:29am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While many of the policy decisions that shape our energy future are made in Washington, almost all of the important work of actually developing and deploying the innovative and advanced technologies we need takes place in labs and at universities across the country. That's why the Advanced Research Projects Agency-Energy (ARPA-E) recently partnered with Arizona State University and the Kauffman Foundation to organize the inaugural Southwest Energy Innovation Forum. The event brought together scientific researchers in universities and national labs, executives from industry,

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wall System Innovations: Familiar Materials, Better Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Wall System Innovation Vladimir Kochkin Joseph Wiehagen April 2013 Wall Innovation Metrics  High R (thermal and air barrier)  High Performance  Durable, structural  Build-able  Low transition risk to builders  50% Building America Goal  ≈ R25+ (CZ 4 and higher) 2 Background  Technologies for high-R walls have been proposed and used for over 25 years  But real market penetration is very low  Often the last EE measure implemented by builders (e.g. E*) 3 Background  High-R wall solutions have not achieved a broad level of standardization and commonality  A large set of methods and materials entered the market  Multiple and conflicting details  Wall characteristics are more critical = RISK 4 New Home Starts -

442

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

443

Small Business Innovation Research and Small Business Technology Transfer  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

444

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

445

Better Buildings Neighborhood Program: Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations Innovations Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Innovations to someone by E-mail Share Better Buildings Neighborhood Program: Innovations on Facebook Tweet about Better Buildings Neighborhood Program: Innovations on Twitter Bookmark Better Buildings Neighborhood Program: Innovations on Google Bookmark Better Buildings Neighborhood Program: Innovations on Delicious Rank Better Buildings Neighborhood Program: Innovations on Digg Find More places to share Better Buildings Neighborhood Program: Innovations on AddThis.com... Innovations Image comprised of Better Buildings terms, each term having a clickable area. The green terms are Communitywide Competition, Carrotmobs, Neighborhood Infrared Home Scans, and Energy Data Dashboards. The dark blue terms are Loans that Stay With the Property, Cash for Carbon, and Fast Financing Approval. The medium blue terms are Community Workforce Agreement, Equipment Loans for Businesses, and Rating Contractor Performance. The orange terms are University Partnership, Energy Advisors, and Neighborhood Sweeps. Clicking on each of these terms takes you to the appropriate explanatory area in the interactive graphic below, and all of the terms in this image are also included as links in the graphic below. cash for carbon energy data dashboards neighborhood sweeps rating contractor performance Fast financing approval Carrotmobs neighborhood infrared home scans community workforce agreement Loans that stay with the property Energy advisors equipment loans for businesses University partnership communitywide competition

446

Advanced Hydrogen Turbine Development  

SciTech Connect

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

447

Removing Barriers to Innovations: Related Codes and Standards CSI Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removing Barriers to Innovation Removing Barriers to Innovation Related Codes and Standards CSI Team PAM COLE Pacific Northwest National Laboratory Building America Technical Update Meeting, April 29-30, 2013, Denver, CO PNNL-SA-95120 Background/History Transformation of U.S. housing markets to favor high- performance homes faces significant challenges, from education to technology to infrastructure and cost barriers. Some of the most difficult challenges involve industry codes and standards that may prevent or slow the innovation process. Building America Research has a history of: Successful market innovations and transformation and overcoming codes and standards barriers. Top 3 Existing Innovations C/S Challenges Thermal Bypass Air Barrier Requirements: Building America research teams effectively

448

Science Innovation '92  

Science Journals Connector (OSTI)

...exhibitors: Abacus Concepts, Inc. Advanced ChemTech Alza Corporation Applied Biosystems, Inc. Applied Imaging Corporation Autodesk, Inc. Beckman Instruments, Inc. BioSym Technologies BioTechniques/Eaton Publishing Brinkman Instruments, Inc. Cambridge...

1992-03-27T23:59:59.000Z

449

NREL: Innovation Spectrum - NREL Spectrum of Innovation Video...  

NLE Websites -- All DOE Office Websites (Extended Search)

are many...and the challenges are daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation, including Fundamental...

450

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

451

Consumer lifestyles: alternative adoption patterns for advanced mobile services  

Science Journals Connector (OSTI)

An analysis of the relationship between lifestyle traits, social influence, people's attitudes towards mobile innovations and the adoption of different types of advanced mobile services contributes to the extension of the TAM model. Based on ...

Harry Bouwman; Carolina L; pez-Nicol; s; Francisco-Jose Molina-Castillo; Pascal Van Hattum

2012-02-01T23:59:59.000Z

452

Advanced Institute for Computational Science (AICS): Japanese National High-Performance Computing Research Institute and its 10-petaflops supercomputer "K"  

Science Journals Connector (OSTI)

Advanced Institute for Computational Science (AICS) was created in July 2010 at RIKEN under the supervision of Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in order to establish the national center of excellence (COE) ... Keywords: AICS, K computer, center of excellence, supercomputer

Akinori Yonezawa; Tadashi Watanabe; Mitsuo Yokokawa; Mitsuhisa Sato; Kimihiko Hirao

2011-11-01T23:59:59.000Z

453

Advanced Separation Consortium  

SciTech Connect

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

454

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

455

Innovative explorations in apparel design to create engineered outfits with lighting technologies  

Science Journals Connector (OSTI)

The future of innovation in clothing lies within wearable technologies, advanced design development processes and advanced construction techniques. The integration of functional apparel design and engineering has attracted a lot of attention in the last ... Keywords: 3D body scanner, 3D printing, electroluminiscent tape, fast prototyping techniques

Eric Beaudette; Lina Sanchez-Botero; Susan Ashdown; Juan Hinestroza; Huiju Park

2014-09-01T23:59:59.000Z

456

Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE))

Deadline for Concept Papers: November 10, 2014, 5:00 PM ET This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

457

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

458

Energy Department Awards $116 Million to Small Businesses for Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

116 Million to Small Businesses for 116 Million to Small Businesses for Innovative Research Energy Department Awards $116 Million to Small Businesses for Innovative Research July 31, 2006 - 4:46pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded $116 million in grants to small businesses for innovative research that will help meet the department's diverse energy, environmental, science and national security missions. The awards were made under the department's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. "High-technology small companies, many of whom started in business as a result of SBIR and STTR awards, have become a valuable resource for solving high risk, high technology problems. Solving these problems will continue

459

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

460

Creating an Energy Innovation Ecosystem  

Energy.gov (U.S. Department of Energy (DOE))

Regions for the National Clean Energy Business Plan Competition, Locations of Clean Energy Business Incubators and i6 Innovative Proof of Concept Centers

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Commercialization and Innovation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

grant works to acceler- ate the transition of innovative energy efficiency and renewable energy concepts from university laboratories to the market. The i6 Green Challenge grant...

462

Retail marketing innovation in Spain  

Science Journals Connector (OSTI)

This paper presents a study carried out on innovation within the field of retail marketing. It arises from the limited scientific literature on the subject, given the significant current interest in marketing innovation as a possible solution to confront the new competitive scene in the current economic and social climate. The database utilised was provided by PITEC 2008 (June 2010). The main findings highlight that retail marketing innovation is in an initial phase; turnover, export activities and internal R&D appear to be the characteristics that make retailers more likely to develop marketing innovations.

Natalia Medrano-Sáez; Mª Cristina Olarte-Pascual

2013-01-01T23:59:59.000Z

463

Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering  

SciTech Connect

Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800C in vacuum and about 750C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (515 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high thermally conductive UO2-CNT composite is obtained with a minimal volume fraction of CNTs. The mixtures are sintered in the SPS facility at a range of temperatures, pressures, and time durations so as to identify the optimal processing conditions to obtain the desired microstructure of sintered UO2-CNT pellets. The second objective of the proposed work is to identify the optimal volume fraction of CNTs in the microstructure of the composites that provides the desired high thermal conductivity yet retaining the mechanical strength required for efficient function as a reactor fuel. We will systematically study the resulting microstructure (grain size, porosity, distribution of CNTs, etc.) obtained at various SPS processing conditions using optical microscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). We will conduct indentation hardness measurements and uniaxial strength measurements as a function of volume fraction of CNTs to determine the mechanical strength and compare them to the properties of UO2. The fracture surfaces will be studied to determine the fracture characteristics that may relate to the observed cracking during service. Finally, we will perform thermal conductivity measurements on all the composites up to 1000 C. This study will relate the microstructure, mechanical properties, and thermal properties at various volume fractions of CNTs. The overall intent is to identify optimal processing conditions that will provide a well-consolidated compact with optimal microstructure and thermo-mechanical properties. The deliverables include: (1) fully characterized UO2-CNT composite with optimal CNT volume fraction and high thermal conductivity and (2) processing conditions for production of UO2-CNT composite pellets using SPS method.

Subhash, Ghatu; Wu, Kuang-Hsi; Tulenko, James

2014-03-10T23:59:59.000Z

464

NREL: Innovation Spectrum - NREL Spectrum of Innovation Video (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Innovation Video (Text Version) Spectrum of Innovation Video (Text Version) Below is the text version of the NREL Spectrum of Innovation video. "...renewable energy is a national imperative..." "...This breakthrough technology will..." "...we are still looking for an innovative material that will..." "...we need a study to determine..." "...the right people need to work together..." "...competing priorities mean we cannot..." There are many voices calling for a future of abundant, clean energy. The choices are many...and the challenges are daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation, including Fundamental Science, Market-Relevant Research, Systems Integration, Testing and Validation, Commercialization, and

465

Commercialisation of innovations from the UK National Health Service  

Science Journals Connector (OSTI)

The potential opportunities offered by developing innovative ideas from staff within the UK National Health Service (NHS) was recognised in 2000 and this paper describes a regional organisation, Medipex, which was set up to undertake technology transfer and commercialisation of innovations from the NHS in Yorkshire. The approach adopted by Medipex has been shown to be a successful model for the commercialisation of IP, obtaining private sector investment and winning external recognition after its first three years trading. Analysis of the outputs demonstrates that though the majority of ideas emerge from service use, the innovations that have high-value commercial potential emerge from research undertaken in the hospitals.

Michael Smith; Richard Clark

2010-01-01T23:59:59.000Z

466

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

467

Energy Department Investments in Innovative Carbon Capture Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Post-Combustion CO2 Capture Technologies COMPANY CITY & STATE PROJECT TITLE DOE INVESTMENT PROJECT DESCRIPTION SRI International Menlo Park, CA CO2 Capture Using Advanced Carbon Sorbents at a Slipstream Scale Approx. $10.5 million The project team will test a CO2 sorbent capture process and conduct pilot-scale testing of the sorbent under realistic conditions to validate affordability and opportunities for CO2 use in commercial applications such as enhanced oil recovery or chemical operations. SRI International Menlo Park, CA Development of Mixed-Salt Technology for CO2 Capture from Coal Power Plants Approx. $1.7 million Researchers will develop and test a low-cost, solvent-based technology to extract CO2 from existing or new pulverized coal power plants by combining the benefits of two different solvents.

468

Building America: Bringing Building Innovations to Market | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

469

Department of Energy to Invest $60 Million to Develop Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Develop Innovative 60 Million to Develop Innovative Concentrating Solar Power Technologies Department of Energy to Invest $60 Million to Develop Innovative Concentrating Solar Power Technologies October 25, 2011 - 2:27pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, Energy Secretary Steven Chu today announced a $60 million investment over 3 years for applied scientific research to advance cutting-edge Concentrating Solar Power (CSP) technologies. CSP technologies use mirrors to reflect and concentrate sunlight to produce heat, which can then be used to produce electricity. Funded through DOE's Office of Energy Efficiency and Renewable Energy, this research supports DOE's SunShot Initiative, a collaborative national effort to reduce the cost of

470

FY 2014 Scientific Infrastructure Support for Consolidated Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientific Infrastructure Support for Consolidated Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. The development of nuclear energy-related infrastructure and basic capabilities in the research community is necessary to promote R&D that supports nuclear science and engineering (NS&E), DOE-NE's mission, and the Nation's nuclear energy challenges. Accordingly, DOE intends to

471

President Obama Announces New Public-Private Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Obama Announces New Public-Private Manufacturing President Obama Announces New Public-Private Manufacturing Innovation Institute President Obama Announces New Public-Private Manufacturing Innovation Institute January 15, 2014 - 1:37pm Addthis Today, President Obama will announce the selection of North Carolina State University to lead the Energy Department's manufacturing innovation institute for next generation power electronics. Check out more in a new animated video and blog post from Secretary Moniz and factsheet that highlight the importance of this new technology on our clean energy future. The President today will announce new steps with the private sector to strengthen the manufacturing sector, boost advanced manufacturing, and attract the good paying jobs that a growing middle class requires. The

472

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation in GM's Chevrolet Volt Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

473

Energy Department Announces New Investments in Innovative Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Innovative in Innovative Manufacturing Technologies Energy Department Announces New Investments in Innovative Manufacturing Technologies June 12, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's blueprint for an American economy built to last, the Energy Department today announced new investments that support American leadership and global competiveness in manufacturing. The Energy Department awarded more than $54 million - leveraging approximately an additional $17 million in cost share from the private sector - for 13 projects across the country to advance transformational technologies and materials that can help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. These projects will develop cutting-edge

474

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

475

Advanced Concepts Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

476

ARPA-E Announces Start-up Companies, Strategic Partnerships and Private Sector Funding at 2015 Innovation Summit  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energys Advanced Research Projects Agency-Energy (ARPA-E) today highlighted that many of its innovative projects are making significant technical and commercial progress towards ensuring Americas economic and energy security.

477

QUARTIER DE L'INNOVATION  

E-Print Network (OSTI)

, but largely unknown to the public Facing sizeable urban planning challenges Comprising three of Montreal social, cultural, and technological innovation Model of sustainable development Catalyst for the growth the development of an innovative and entrepreneurial culture that balances four pillars: Industrial, Education

Barthelat, Francois

478

Green Office Program: Innovation Credits  

E-Print Network (OSTI)

Green Office Program: Innovation Credits There are plenty of sustainable practices that aren't on our Green Office Program checklist. In an effort to encourage such practices, and reward offices Green: 5 Think outside the box, but make sure your innovation credits are approved by your Green Office

Massachusetts at Amherst, University of

479

Advanced LIGO  

E-Print Network (OSTI)

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

480

Social Innovation Fellowship Program Guidelines & Application Materials  

E-Print Network (OSTI)

8/25/2011 Social Innovation Fellowship Program Guidelines & Application Materials Introduction The Social Innovation Fellowship program was created in order to support Stanford Graduate School of Business drive social innovation and transformation in various fields including education, health, environment

Ford, James

Note: This page contains sample records for the topic "innovations advance high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Opportunities Innovation/Research  

E-Print Network (OSTI)

Outreach Q&A #12;Why Wind Power? No pollution, no greenhouse gases Energy independence Potential through research · Education ­ Train tomorrow's energy leaders and technicians · Positive Impact Partnerships ­ Work with the City of Lewes and the Board of Public Works to advance green technologies

Firestone, Jeremy

482

Innovation | OpenEI Community  

Open Energy Info (EERE)

Innovation Innovation Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Energy Data Initiative (EDI) Description: Liberating Data as Fuel for Innovation Initiative Vision: Transform gigabytes into actionable intelligence, which accelerates job creation. Fuel entrepreneurs with previously untapped data to spur new products and services that help American families and businesses save money on utility bills and at the pump, protect the environment, and ensure a safe and reliable energy future. Links: Check out the EDI on the EDG Big Data Commercialization

483

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

484

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined wit