National Library of Energy BETA

Sample records for injection wells total

  1. Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells

    E-Print Network [OSTI]

    such as drilling mud and work- over fluids. These are all shallow wells using injected fresh water to dissolve salt Disposal Wells in the Nine Township Area ­ 2009 September 2009 Prepared by Delaware Basin Drilling into a brine solution. In order to develop a solution mine, either a new well is drilled for brine extraction

  2. Well injection valve with retractable choke

    SciTech Connect (OSTI)

    Pringle, R.E.

    1986-07-22

    An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

  3. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  4. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  5. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  6. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  7. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. Non-isothermal CO2 flow through an injection well

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    production - superheated steam injection The CO2 phase, whether gas, liquid or supercritical, is determined

  9. The feasibility of deep well injection for brine disposal 

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01

    collection, groundwater modeling, and fluid compatibility are discussed in detail. Injection system design, economics, and regulatory considerations are more related to economic than technical feasibility, and are discussed only as they relate to technical...

  10. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  11. Registration of Hanford Site Class V underground injection wells. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE 1994) requires that all existing Class V injection wells be registered under WAC 173--218. (Washington Underground Injection Control Program). The purpose of this document is to fulfill this requirement by registering all active Class V underground injection control wells, on the Hanford Site, under WAC 173--218. This registration will revise the registration previously submitted in 1988 (DOE 1988). In support of this registration, an extensive effort has been made to identify all injection wells on the Hanford Site. New injection wells will not be constructed on the Hanford Site except to receive uncontaminated stormwater or groundwater heatpump return flow. All changes to Miscellaneous Streams will be tracked through the Hanford Site Miscellaneous Streams Inventory Database. Table 5--2 of this injection well registration may be updated annually at the same time as the Miscellaneous Streams Inventory, if necessary.

  12. A comparative analysis of numerical simulation and analytical modeling of horizontal well cyclic steam injection 

    E-Print Network [OSTI]

    Ravago Bastardo, Delmira Cristina

    2005-08-29

    The main objective of this research is to compare the performance of cyclic steam injection using horizontal wells based on the analytical model developed by Gunadi against that based on numerical simulation. For comparison, a common reservoir...

  13. Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...

    Open Energy Info (EERE)

    Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  14. FLOW AND REACTIVE TRANSPORT IN POROUS MEDIA INDUCED BY WELL INJECTION: SIMILARITY SOLUTION

    E-Print Network [OSTI]

    FLOW AND REACTIVE TRANSPORT IN POROUS MEDIA INDUCED BY WELL INJECTION: SIMILARITY SOLUTION C.J. VAN from laboratory batch experiments. Typical examples of isotherms are (see e.g. Freeze and Cherry [FC

  15. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes Keywords: III-Nitride InGaN QWs Light-emitting diodes Efficiency-droop a b s t r a c t Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes

  16. Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

  17. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L., E-mail: lauri.riuttanen@aalto.fi; Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Kivisaari, P.; Oksanen, J.; Tulkki, J. [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  18. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  19. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (? 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ? 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (? 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  20. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  1. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2014-03-26

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  2. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect (OSTI)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

  3. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  4. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  5. File:05HIADrillingAndModificationOfWellsForInjectionUsePermit (1).pdf |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1ORDExplorationInjectionPermit (1).pdf Jump to: navigation, search File FileOpen Energy Information

  6. Polymer treatments for D Sand water injection wells: Sooner D Sand Unit Weld County, Colorado. Final report, April 1997

    SciTech Connect (OSTI)

    Cannon, T.J.

    1998-10-01

    Polymer-gel treatments in injection wells were evaluated for improving sweep efficiency in the D Sandstone reservoir at the Sooner Unit, Weld County, Colorado. Polymer treatments of injection wells at the Sooner Unit were expected to improve ultimate recovery by 1.0 percent of original-oil-in-place of 70,000 bbl of oil. The Sooner D Sand Unit was a demonstration project under the US Department of Energy Class I Oil Program from which extensive reservoir data and characterization were obtained. Thus, successful application of polymer-gel treatments at the Sooner Unit would be a good case-history example for other operators of waterfloods in Cretaceous sandstone reservoirs in the Denver Basin.

  7. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect (OSTI)

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  8. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect (OSTI)

    Cornish, S., E-mail: cornish@physics.usyd.edu.au; Gummersall, D.; Carr, M.; Khachan, J. [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  9. Effect of flow rate on clogging processes in small diameter aquifer storage and recovery injection wells

    E-Print Network [OSTI]

    Thompson, Angela R.

    2014-12-31

    (KGS) investigates a low-cost, slow flow alternative to traditional ASR recharge systems. The project utilizes gravity-induced recharge and small diameter wells installed with direct-push technology to recharge and store ground water. The KGS ASR...

  10. Idaho Application for Permit to Convert a Geothermal Injection Well - Form

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro| Open EnergyISAppellateWell

  11. Single well field injection test of humate to enhance attenuation of uranium and other radionuclides in an acidic plume

    SciTech Connect (OSTI)

    Denham, M.

    2014-09-30

    This report documents the impact of the injected humate on targeted contaminants over a period of 4 months and suggests it is a viable attenuation-based remedy for uranium, potentially for I-129, but not for Sr-90. Future activities will focus on issues pertinent to scaling the technology to full deployment.

  12. Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells 

    E-Print Network [OSTI]

    Rodriguez, Manuel Gregorio

    1999-01-01

    cyclic steam injection and steamflooding. The Cartesian model dimensions of the three horizontal welts were 11x22x4, 11x27x5, and 12x20x5. In the steamflooding scheme investigated, the existing horizontal welts were used as injectors while existing (and...

  13. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  14. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  15. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    E-Print Network [OSTI]

    Tsang, C.-F.

    2010-01-01

    the breakthrough curve (BTC) is not sensitive to “advectiveof diffusion. Hence the BTC cannot be fitted well with theof various parameters on the BTC peak concentration, rather

  16. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect (OSTI)

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T. [Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse (France); Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y., E-mail: yuan.lu@univ-lorraine.fr [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Frougier, J.; Jaffrès, H.; George, J. M. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 avenue A. Fresnel, 91767 Palaiseau (France); Xu, B.; Wang, Z. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 (China); Zheng, Y. [Institut des NanoSciences de Paris, UPMC, CNRS UMR 7588, 4 place Jussieu, 75005 Paris (France); Tao, B. [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Han, X. F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)

    2014-07-07

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350?°C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  17. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    SciTech Connect (OSTI)

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

    2002-06-01

    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  18. Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7

    E-Print Network [OSTI]

    Boyer, Edmond

    Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

  19. -OGP 04 (1) -Predicting Injectivity Decline

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    , resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt the reservoir and the actual injection water at various locations in the system. Variations in pipeline

  20. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Arababi, Sepehr; Aziz, Khalid; Hayashida, Yasuyuki; Hewett, Thomas

    1999-11-08

    This quarterly report is based on the last activity above. It gives a brief account of the work and the complete study will be included in the next Annual Report of the project.

  1. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage...

  2. Injection Molding-Injection Molding Process Description

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Injection Molding-Injection Molding Process Description ver. 1 1ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 #12;Injection molding machineInjection molding machine Cl M ld B lClamp Mold Hopper Barrel 5ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 #12;Kraus

  3. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect (OSTI)

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  4. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    E-Print Network [OSTI]

    Liu, Wei

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...

  5. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  6. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  7. Delineating Area of Review in a System with Pre-injection Relative Overpressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oldenburg, Curtis M.; Cihan, Abdullah; Zhou, Quanlin; Fairweather, Stacey; Spangler, Lee H.

    2014-12-31

    The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flowmore »path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.« less

  8. Delineating Area of Review in a System with Pre-injection Relative Overpressure

    SciTech Connect (OSTI)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cihan, Abdullah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Quanlin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fairweather, Stacey [Montana State Univ., Boseman, MT (United States). Big Sky Carbon Sequestration Partnership; Spangler, Lee H. [Montana State Univ., Boseman, MT (United States). Big Sky Carbon Sequestration Partnership

    2014-12-31

    The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flow path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.

  9. Drilling and abandonment preparation of CO? storage wells – Experience from the Ketzin pilot site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO? research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO? were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore »the observation well Ktzi 202 shortly after shut-in of CO? injection. The experience with the first CO? well killing operation will be reviewed.« less

  10. Drilling and abandonment preparation of CO? storage wells – Experience from the Ketzin pilot site

    SciTech Connect (OSTI)

    Prevedel, Bernhard [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Martens, Sonja [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Norden, Ben [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Henninges, Jan [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO? research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO? were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation of the observation well Ktzi 202 shortly after shut-in of CO? injection. The experience with the first CO? well killing operation will be reviewed.

  11. Drilling and abandonment preparation of CO? storage wells – Experience from the Ketzin pilot site

    SciTech Connect (OSTI)

    Prevedel, Bernhard [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Martens, Sonja [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Norden, Ben [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Henninges, Jan [GFZ German Centre for Geoscience, Telegrafenberg, Potsdam (Germany); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-01

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO? research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO? were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation of the observation well Ktzi 202 shortly after shut-in of CO? injection. The experience with the first CO? well killing operation will be reviewed.

  12. Drilling and Abandonment Preparation of CO2 storage wells – Experience from the Ketzin pilot site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-01-01

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO2 research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO2 were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore »the observation well Ktzi 202 shortly after shut-in of CO2 injection. The experience with the first CO2 well killing operation will be reviewed.« less

  13. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  14. Injection Molding Injection Molding Orientation and Design

    E-Print Network [OSTI]

    Colton, Jonathan S.

    ­ 2 degreestypically 0 2 degrees ­ so the part breaks contact with mold all at once, rather than ejection pin area should be used ­ so the parts don't break · Simplify molds ­ reduce costsreduce costsInjection Molding ­Injection Molding Orientation and Design R lRules ver. 1 1ME 6222: Manufacturing

  15. Injection Molding-Injection Molding Process Description

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Injection Molding-Injection Molding Process Description ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 2 #12;EquipmentEquipment Cl M ld B lClamp Mold Hopper Barrel ME 4210;Machine schematic ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 6 #12;Mold

  16. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  17. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  18. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  19. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  20. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  1. Hanford wells

    SciTech Connect (OSTI)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  2. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  3. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  4. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  5. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  6. Total Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total Crude

  7. Lower 48 States Total Natural Gas Injections into Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020Cubic

  8. WSDE Underground Injection Control Well Registration Form | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL97-11 SEPA

  9. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01

    Mexico July 1999 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable

  10. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01

    CFE-DOE Symp. in Geothermal Energy, DOE CONF 8904129, pp.Proc. CFE-DOE Symp. in Geothermal Energy, DOE CONF 8904129,and Renewable Energy, Office of Geothermal Technologies, of

  11. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01

    water-dominated geothermal system: the Cerro Prieto field,liquid- dominated geothermal systems. Geothermal Resourcesof the Cerro Prieto geothermal system. Geothermal Resources

  12. EPA - Underground Injection Control Classes of Wells webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformation ECrNEPAState NPDES

  13. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring manual |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/NevadaaTools <REpowerForm GT-1 | Open EnergyOpen

  14. Single Well Injection Withdrawl Tracer Tests for Proppant Detection -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 UnlimitedShiftwater vapor andParticle Database of

  15. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  16. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  17. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  18. Well pump

    DOE Patents [OSTI]

    Ames, Kenneth R. (Pasco, WA); Doesburg, James M. (Chicago, IL)

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  19. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProjectAdministration NNSAWell Placement Well

  20. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  1. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  2. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to set. The system then returned to operation as before the test with no major change in the fieldwide injection. The injection and production rates for the field were monitored for approximately one year to give the production side of the system time to stabilize. The polymer treatment conducted on the injection wells in Hawk Point is believed to be the largest treatment of a hot, deep reservoir to date. These injection well treatments did produce some change in the injection profile of the injection wells. However, it is very disappointing that there was no significant improvement in the performance of the field. There was no noticeable reduction in the water production, the water-oil ratio (WOR), or an increase in oil production. The cosponsor has determined that the field is currently at its economic limit because of the high cost of this deep operation and the continual downhole problems. A restructuring of the injection-production pattern is presently being done to prolong the life of the field.

  3. Fuel injection apparatus

    SciTech Connect (OSTI)

    Suzuki, Y.; Kuroda, Y.; Ogata, K.

    1988-07-12

    A fuel injection apparatus is described for injecting fuel responsive to a rotary speed of an engine by utilizing the pressure of compressed air, the apparatus comprising means for regulating the supplying time of the compressed air responsive to at least one of the rotary speed of the engine and the load of the engine, and the regulating means including means for supplying the compressed air for a longer time at least one of low rotary speed and low load of the engine than at least one of high rotary speed and high load of the engine.

  4. Injecting Utility into Anonymized Datasets Daniel Kifer

    E-Print Network [OSTI]

    Kifer, Dan

    Injecting Utility into Anonymized Datasets Daniel Kifer Department of Computer Science Cornell@cs.cornell.edu ABSTRACT Limiting disclosure in data publishing requires a careful balance between privacy and utility. On the other hand, the utility of such data has not been well-studied. In this paper we will discuss

  5. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  6. Waterflood control system for maximizing total oil recovery

    DOE Patents [OSTI]

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  7. Waterflood control system for maximizing total oil recovery

    DOE Patents [OSTI]

    Patzek, Tadeusz Wiktor (Oakland, CA); Silin, Dimitriy Borisovich (Pleasant Hill, CA); De, Asoke Kumar (San Jose, CA)

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  8. In situ bioremediation using horizontal wells

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  9. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  10. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 – 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  11. Waterflooding injectate design systems and methods (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Citation Details In-Document Search Title: Waterflooding injectate design systems and methods A method of designing an injectate...

  12. Injectable extracellular matrix hydrogels for cardiac repair

    E-Print Network [OSTI]

    Seif-Naraghi, Sonya Baigam

    2012-01-01

    140 5.3.2 Direct injection into the LVrich-plasma samples. Direct injection of the ECM hydrogelthis material in vivo, a direct injection with a Duploject™

  13. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Querin, M.E. (USDOE Naval Petroleum Reserves in California, Tupman, CA (United States)); Williams, L.L. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1992-01-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980's by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  14. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Querin, M.E. [USDOE Naval Petroleum Reserves in California, Tupman, CA (United States); Williams, L.L. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1992-02-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  15. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibiting Individual Notch Receptors Improves TreatmentInjection

  16. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  17. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

  18. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection...

  19. Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection

    E-Print Network [OSTI]

    Vlad, Gregorio

    Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection D at the maximum nominal toroidal field (8 T), and lower, by deep multiple pellet injection. These plasmas featured due to particle concentration in the well confined hot core. Deep pellet injection in Alcator C high

  20. Steady improved confinement in FTU high field plasmas sustained by deep pellet injection

    E-Print Network [OSTI]

    Vlad, Gregorio

    Steady improved confinement in FTU high field plasmas sustained by deep pellet injection D to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas also feature high to the input power due to particle concentration in the well confined hot core. Deep pellet injection (e

  1. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  2. How the world's largest seawater injection system was designed

    SciTech Connect (OSTI)

    Morrison, J.B.; Jorque, M.A.

    1981-07-01

    The world's largest seawater injection system went on stream in Saudi Arabia in June 1978 to furnish 4.2 million bpd of water for pressure maintenance in the Uthmaniyah sector of the giant Ghawar Field. The operator, Aramco, first began water injection along the flanks in this field in 1966 using gravity injection wells. This gravity system gave way to a pressurized system under a program started in 1973. During this period, the primary source for injection was saline water from the Wasia Aquifer in the Uthmaniyah area. In 1974 it was determined that this aquifer could not supply the design requirement of 4.2 million bpd of saline water. Therefore, it was decided to convert the injection system to seawater obtained from the Arabian Gulf. This required the design and construction of a seawater treating plant and installation of pipelines and intermediate pump stations to transport the water from the treating plant to the existing Uthmaniyah Water Supply Station.

  3. Inspecting coiled tubing for well operations

    SciTech Connect (OSTI)

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  4. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect (OSTI)

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

  6. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  7. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian the first major milestone in this direction for its fleet of Diesel Locomotives. Introduction The first

  8. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect (OSTI)

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/?{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  9. Laterally injected light-emitting diode and laser diode

    DOE Patents [OSTI]

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  10. Low-pressure injection molding

    SciTech Connect (OSTI)

    Mangels, J.A. (Ceradyne Inc., Costa Mesa, CA (United States))

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  11. Well completion process for formations with unconsolidated sands

    DOE Patents [OSTI]

    Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  12. Injection nozzle for a turbomachine

    SciTech Connect (OSTI)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  13. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  14. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  15. Fueling efficiency of pellet injection on DIIID* L.R. Baylora

    E-Print Network [OSTI]

    Fueling efficiency of pellet injection on DIII­D* L.R. Baylora , T.C. Jernigana , C.J. Lasnierb , R of conditions in which to examine the fueling efficiency of pellets injected into DIII- D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel

  16. Decontaminating Flooded Wells 

    E-Print Network [OSTI]

    Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

    2005-09-30

    This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

  17. Advanced SQL Injection In SQL Server Applications

    E-Print Network [OSTI]

    Zdancewic, Steve

    Advanced SQL Injection In SQL Server Applications Chris Anley [chris]................................................................................... 15 [ActiveX automation scripts in SQL Server]........................................................................................................... 17 [Advanced SQL Injection

  18. Waterflooding injectate design systems and methods (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Citation Details In-Document Search Title: Waterflooding injectate design systems and methods You are accessing a document...

  19. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  20. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  1. Horizontal well applications in complex carbonate reservoirs

    SciTech Connect (OSTI)

    Rahman, M.; Al-Awami, H.

    1995-10-01

    Over the past four years, Saudi Aramco has drilled over eighty horizontal wells, onshore and offshore. It has successfully applied this technology to develop new reservoirs as well as enhance recovery from its mature fields. This paper presents the reservoir engineering aspects of `horizontal` and `high angle` wells drilled in a major offshore field in Saudi Arabia. It shows how horizontal wells have (a) increased the recovery of bypassed oil, (b) improved well productivity in tight reservoirs, (c) increased production from thin oil zones underlain by water, and (d) improved peripheral injection. The paper discusses the actual performance of the horizontal wells and compares them with offset conventional wells. It presents the results of logging and testing of these wells, and highlights actual field data on (a) relationship between productivity gain and horizontal length, (b) pressure loss along the horizontal wellbore, and (c) effect of heterogeneity on coning an inflow performance.

  2. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  3. Status of the NSLS-II Injection System Design

    SciTech Connect (OSTI)

    Shaftan,T.

    2008-06-23

    The NSLS-II is a new ultra-bright 3rd generation 3 GeV light source that will be built at Brookhaven National Laboratory. Its design is well under way. The requirements for the compact injector complex, which will continuously provide 3 GeV electrons for top-off injection into the storage ring, are demanding: high reliability, relatively high charge and low losses. The injector consists of a linear accelerator, a full-energy booster, as well as transport lines, and an injection straight section. In this paper we give an overview of the NSLS-II injector, discuss its status, specifications, and the design challenges.

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  7. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  10. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...

  12. Geohydrology of Pahute Mesa-3 test well, Nye County, Nevada

    SciTech Connect (OSTI)

    Kilroy, K.C.; Savard, C.S.

    1997-02-01

    The Pahute Mesa-3 test well is on Pahute Mesa about 3 miles west of the Nevada Test Site and 20 miles northeast of Oasis Valley near Beatty, Nevada. The well was drilled for the U.S. Department of Energy Radionuclide Migration Program to monitor conditions near the western edge of the Nevada Test Site. The well was drilled with conventional rotary methods and an air-foam drilling fluid to a depth of 3,019 feet. A 10.75-inch diameter steel casing was installed to a depth of 1,473 feet. The test well penetrates thick units of non-welded to partly welded ash-flow and air-fall tuff of Tertiary age with several thin layers of densely welded tuff, rhyolite and basalt flows, and breccia. Geophysical logs indicate that fractures are significant in the Tiva Canyon Tuff of the Paintbrush Group and this was confirmed by high flow in this unit during a borehole-flow survey. The geophysical logs also show that the effective porosity in tuffaceous units ranges from 19 to 38 percent and averages 30 percent, and the total porosity ranges from 33 to 55 percent and averages 42 percent. The measured temperature gradient of 1.00 degree Celsius per 100 feet is steep, but is similar to that of other nearby wells, one of which penetrates a buried granite intrusion. Injection tests for six intervals of the well yielded transmissivities that ranged from 3.1 x 10{sup -3} to 25 feet squared per day and hydraulic conductivities that ranged from 6 x 10{sup -5} to 0.12 foot per day. The sum of the transmissivities is 28 feet squared per day and the geometric mean of hydraulic conductivity is 1.7 x 10{sup -3} foot per day. Estimates of storage coefficient range from 2.1 x 10{sup -5} to 3.8 x 10{sup -3}, indicating that the aquifer responded to the injection tests in a confined manner. An aquifer test produced a drawdown of 78 feet during 31 hours of testing at 169 gallons per minute.

  13. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  14. Pre-injection brine production for managing pressure in compartmentalized CO? storage reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO? storage that combines CO? injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO?. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO? injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO? injection directly informs reservoir managers about CO? storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore »directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  15. Flow regimes for fluid injection into a confined porous medium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore »equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  16. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  17. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  18. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trenton T. Cladouhos

    2015-09-03

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  19. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trenton T. Cladouhos

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  20. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  2. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  3. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  4. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  5. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  6. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  7. Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection F-acting solenoid valves to meet the demands of pulsed detonation fuel injection and other high-frequency devices is presented. The micro-valve was found to performance well above the manufacturer's rated frequency under no

  8. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery 

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

  9. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  10. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  11. Noise Injection for Search Privacy Protection

    E-Print Network [OSTI]

    Ye, Shaozhi; Wu, S F; Pandey, Raju; Chen, Hao

    2009-01-01

    W. Gray, “On introducing noise into the bus-contention chan-R. Pandey, and H. Chen, “Noise injection for search privacyNoise Injection for Search Privacy Protection Shaozhi Ye,

  12. An environmental analysis of injection molding

    E-Print Network [OSTI]

    Thiriez, Alexandre

    2006-01-01

    This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

  13. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  14. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014:...

  15. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    E-Print Network [OSTI]

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  16. TOTAL ANNUAL Rent / Mortgage $

    E-Print Network [OSTI]

    Snider, Barry B.

    etc.) $ Child Care Expenses $ Educational Loans taken out in parent's name $ Other (itemize below): $ $ RESOURCES TOTAL ANNUAL AMOUNT Parent 1 Wages $ Parent 2 Wages $ Interest and/or Dividend Income $ Net Income $ Contributions to tax deferred plans(401K) $ Non Educational Veterans' Benefits $ Unemployment Compensation

  17. Total Sustainability Humber College

    E-Print Network [OSTI]

    Thompson, Michael

    1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

  18. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28

    is abandoned without proper plugging, upward flow of salty water from the deeper aquifer may cause contamination of the shallow, fresh water aquifer. Also, any pollu- tants that occur in one zone can migrate to another zone through a well. Unplugged abandoned... wells may deplete pres- sure within an aquifer. Pressure in artesian aquifers decreases as water discharges at land surface or to less pressurized aquifers. Eventually a drop in pres- sure causes flowing wells to stop flowing and the water level...

  19. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  20. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  1. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  2. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel Biodieself rIngosInjectivity Test Jump

  3. Isobaric groundwater well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  4. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    .............................................................19 Reduction of NOx-formation by steam injection

  5. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product: Total

  6. Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates

    SciTech Connect (OSTI)

    Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

    1996-12-31

    Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

  7. Subsurface steam sampling in Geysers wells

    SciTech Connect (OSTI)

    Lysne, P. [Lysne (Peter), Albuquerque, NM (United States); Koenig, B. [Unocal Geothermal and Power Operations Group, Santa Rose, CA (United States); Hirtz, P. [Thermochem, Inc., Santa Rosa, CA (United States); Normann, R.; Henfling, J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-01-01

    A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

  8. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  9. Injection and Monitoring at the Wallula Basalt Pilot Project

    SciTech Connect (OSTI)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show that mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.

  10. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore »mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  11. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  12. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  13. Phenomenal well-being 

    E-Print Network [OSTI]

    Campbell, Stephen Michael

    2006-08-16

    the hedonistic concept of satisfaction. An epistemic model of life-comparison (inspired by Peter RailtonÂ?s full information account of well-being) on which phenomenal lives are judged on the criterion of satisfaction is presented, followed by some objections...

  14. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  15. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  16. Helicopter Surveys for Locating Wells and Leaking Oilfield Infrastructure

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.; Hodges, G. (Fugro Airborne Surveys)

    2006-10-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys

  17. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  18. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  19. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  20. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  1. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  2. Low Temperature Catalyst for Fuel Injection System

    Broader source: Energy.gov [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

  3. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table 1Feet) Decade

  4. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales Type: Sales to EndFeet)

  5. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  6. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    E-Print Network [OSTI]

    Cotte, F.P.

    2012-01-01

    04-57, Swedish Nuclear Fuel and Waste Management Co. (SKB),02-34, Swedish Nuclear Fuel and Waste Management Co. (SKB),

  7. Calculation of unsteady-state heat and mass transfer in steam injection wells 

    E-Print Network [OSTI]

    Ruddy, Kenneth Edward

    1986-01-01

    , we have, 2 V = C ( K / v) (BP /3z) (2) For vertical flow, V = C (K / u) ((ap / az) ? G) (3) where G is the pressure gradient resulting from the fluid density. Equation (3) is very similar to Darcy's equation used to describe fluid flow in porous... of the water was equal to the geothermal gradient. Figures 7 through 12 show the results of the computations. Figure 7 shows perhaps the most important parameter, steam quality, as a function of depth. A family of curves is shown, each for a different time...

  8. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    E-Print Network [OSTI]

    Cotte, F.P.

    2012-01-01

    exchange process. Hydraulic fracturing, or hydrofracking, ismore detail below. Hydraulic fracturing, or hydrofracking,

  9. A closed-form analytical solution for thermal single-well injection withdrawal tests

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    geothermal heat exchanger at Soultz-sous-Foreˆts (France)Geothermal System) project at Soultz-sous- Foreˆts (Alsace,

  10. A closed-form analytical solution for thermal single-well injection withdrawal tests

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    dual-tracer spikings during EGS creation in Northern GermanF. Rummel (2006), The Deep EGS (Enhanced Geothermal System)enhanced geothermal systems (EGS), such as fracture spacing,

  11. A closed-form analytical solution for thermal single-well injection withdrawal tests

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    The Deep EGS (Enhanced Geothermal System) project at Soultz-properties of enhanced geothermal systems (EGS), such as1. Introduction [ 2 ] Enhanced geothermal systems (EGS) are

  12. Texas Water Code 27A General Provisions for Injection Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | OpensourceInformation Railroad CommissionOpen

  13. Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| Open Energy Information

  14. Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | OpenEnergyExperiment |

  15. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministrationAward-LNGPhase |Program

  16. Dual effects of stochastic heating on electron injection in laser wakefield acceleration

    SciTech Connect (OSTI)

    Deng, Z. G.; Wang, X. G., E-mail: wangxg@snnu.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062 (China); Yang, L. [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Zhou, C. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Ying, H. P. [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2014-08-15

    Electron injection into the wakefield of an intense short laser pulse by a weaker laser pulse propagating in the opposite direction is reconsidered using two-dimensional (2D) particle-in-cell simulations as well as analytical modeling. It is found that for linearly polarized lasers the injection efficiency and the quality of the wakefield accelerated electrons increase with the intensity of the injection laser only up to a certain level, and then decreases. Theory and simulation tracking test electrons originally in the beat region of the two laser pulses show that the reduction of the injection efficiency at high injection-laser intensities is caused by stochastic overheating of the affected electrons.

  17. Vital Elements Score Comments Introduction/Motivation: Well defined &

    E-Print Network [OSTI]

    Ito, Garrett

    Evaluator: Vital Elements Score Comments · Introduction/Motivation: Well defined & motivated: Resounding, memorable, & address objectives Vital Elements Total Presentation Mechanics · Clarity

  18. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  19. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  20. Injectivity of Rotation Invariant Windowed Radon Transforms

    E-Print Network [OSTI]

    Biermé, Hermine

    Injectivity of Rotation Invariant Windowed Radon Transforms Hermine Bierm´e MAPMO-UMR 6628, D rotation invariant windowed Radon transforms that integrate a func- tion over hyperplanes by using a radial with positive real part , the windowed Radon transform is not injective on functions with a Gaussian decay

  1. Injection Molding of Plastics from Agricultural Materials

    SciTech Connect (OSTI)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  2. Engineering-Scale Development of Injection Casting Technology for Metal Fuel Cycle

    SciTech Connect (OSTI)

    Ogata, Takanari; Tsukada, Takeshi [Central Research Institute of Electric Power Industry - CRIEPI, Nuclear Technology Research Laboratory 2-11-1 Iwado-Kita, Komae, Tokyo 201-8511 (Japan)

    2007-07-01

    Engineering-scale injection casting tests were conducted in order to demonstrate the applicability of injection casting technology to the commercialized fast reactor fuel cycle. The uranium-zirconium alloy slugs produced in the tests were examined with reference to the practical slug specifications: average diameter tolerance {+-} 0.05 mm, local diameter tolerance {+-} 0.1 mm, density range 15.3 to 16.1 g/cm{sup 3}, zirconium content range 10 {+-} 1 wt% and total impurity (C, N, O, Si) <2000 ppm, which were provisionally determined. Most of the slugs satisfied these specifications, except for zirconium content. The impurity level was sufficiently low even though the residual and scrapped alloys were repeatedly recycled. The weight ratio of injected metal to charged metal was sufficiently high for a high process throughput. The injection casting technology will be applicable to the commercialized fuel cycle when the issue of zirconium content variation is resolved. (authors)

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  4. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells...

  5. UNCORRECTED 2 Total Life Cycle-Based Materials Selection for Polymer

    E-Print Network [OSTI]

    Grujicic, Mica

    -metal stamped/formed and thermoplastic 10 injection molding subcomponents are integrated into a singular life cycle (TLC) approach to the selection of 13 metallic and thermoplastic materials (as well

  6. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOE Patents [OSTI]

    Hartwell, Jack K. (Idaho Falls, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Blackfoot, ID); Killian, E. Wayne (Idahoe Falls, ID)

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  7. Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment

    SciTech Connect (OSTI)

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-04-29

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.

  8. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA LNG Exports from Babb, MT LNG Exports from Buffalo, NY LNG Exports from Kenai, AK LNG Exports...

  9. A simulation study of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production 

    E-Print Network [OSTI]

    Sandoval Munoz, Jorge Eduardo

    2004-11-15

    in an increase of oil recovery to 35.4-32.6% OOIP at 150-300 BPDCWE. Fifth, with steam-propane injection, for both well systems, oil production acceleration increases with lower injection rates. Sixth, the second oil production peak in the vertical...

  10. Impact of uniaxial strain on P-channel 111-V quantum-well field effect transistors

    E-Print Network [OSTI]

    Xia, Ling, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Continuous scaling of Si complementary metal-oxide-semiconductor (CMOS) technology requires a boost in carrier injection velocity. With the benefits of strained Si having been exhausted, n-channel I-V quantum-well field ...

  11. Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid 

    E-Print Network [OSTI]

    Hwang, Yun Suk

    2012-02-14

    Hydraulic fracturing is a well-established technology of generating highly conductive flow path inside the rock by injecting massive amount of fracturing fluid and proppant with sufficient pressure to break the formation apart. But as the concern...

  12. OAR 340-044 - Construction and Use of Waste Disposal Wells or...

    Open Energy Info (EERE)

    OAR 340-044 - Construction and Use of Waste Disposal Wells or Other Underground Injection Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  13. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOE Patents [OSTI]

    Douglas, David R. (York County, VA)

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  14. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  15. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Mathematical modeling of silica deposition in Tongonan-I reinjection wells, Philippines

    SciTech Connect (OSTI)

    Malate, R.C.M.; O`Sullivan, M.J.

    1993-10-01

    Mathematical models of silica deposition are derived using the method of characteristics for the problem of variable rate injection into a well producing radially symmetric flow. Solutions are developed using the first order rate equation of silica deposition suggested by Rimstidt and Barnes (1980). The changes in porosity and permeability resulting from deposition are included in the models. The models developed are successfully applied in simulating the changes in injection capacity in some of the reinjection wells in Tongonan geothermal field, Philippines.

  17. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOE Patents [OSTI]

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  18. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Light Duty Engine Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition...

  19. Resonantly pumped optical pumping injection cavity lasers

    E-Print Network [OSTI]

    Santilli, Michael Robert; McAlpine, T. C.; Greene, K. R.; Olafsen, L. J.; Bewley, W. W.; Felix, C. L.; Vurgaftman, I.; Meyer, J. R.; Lee, H.; Martinelli, R. U.

    2004-11-01

    An optical parametric oscillator is tuned to the resonance wavelength of the etalon in an optical pumping injection cavity (OPIC) laser with a type-II "W" active region, thereby minimizing the threshold pump intensity and maximizing the output slope...

  20. Proper Injection Techniques in Dairy Cattle 

    E-Print Network [OSTI]

    Villarino, Mario A.

    2009-05-04

    sanitation guidelines. Selecting the drug, dosage and injection technique Consult a veterinarian and read the medication label ? and/or package insert before vaccinating animals. Administer only drugs labeled for use in dairy ? cattle. Refer...

  1. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Path to High...

  2. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Time-lapse VSP data processing for monitoring CO2 injection

    SciTech Connect (OSTI)

    Huang, Lianjie; Rutledge, James; Cheng, Arthur

    2009-01-01

    As a part of the effort of the Southwest Regional Partnership on Carbon Sequestration supported by U.S. Department of Energy and managed by the National Energy Technology Laboratory, two sets of time-lapse VSPs were acquired and processed in oil fields undergoing CO{sub 2} injection. One set of VSPs was acquired at the Aneth oil field in Utah, the other set at the Scurry Area Canyon Reef Operators Committee (SACROC) field in West Texas. One baseline and two repeat VSP surveys were conducted from 2007 to 2009 at the Aneth oil field in Utah for monitoring CO{sub 2} injection. The aim of the time-lapse VSP surveys is to study the combined enhanced oil recovery (EOR) and CO{sub 2} sequestration in collaboration with Resolute Natural Resources, Inc. VSP data were acquired using a cemented geophone string with 60 levels at depth from 805 m to 1704 m, and CO{sub 2} is injected into a horizontal well nearby within the reservoir at depth approximately from 1730 m to 1780 m. For each VSP survey, the data were acquired for one zero-offset source location and seven offset source locations (Figure 1). The baseline VSP survey was conducted before the CO{sub 2} injection. More than ten thousand tons of CO{sub 2} was injected between each of the two repeat VSP surveys. There are three horizontal injection wells, all originating from the same vertical well. One is drilled towards Southeast, directly towards the monitoring well (Figure 2), and the other two towards Northwest, directly away from the monitoring well. The injection is into the top portion of the Desert Creek formation, just beneath the Gothic shale, which acts as the reservoir seal. The initial baseline acquisition was done in October 2007; subsequent time-lapse acquisitions were conducted in July 2008, and January 2009. The acquisition geometry is shown in Figure 1. Shot point 1 is the zero-offset source location, Shot points 2 to 8 are the seven offset VSPs, arranged in a quarter circle on the Northwest side of the monitoring well. The horizontal injection well is shown in green. The black lines in Figure 1 show the approximate reflection coverage al reservoir depth from the respective offset source locations. VSP source location 5 is in a direct line with the injection. The 60 geophone sondes were cemented into the monitor well just before the baseline VSP acquisition and consisted of 96 geophone channels, with 18 three-component geophones (at the bottom of the string) and 42 single vertical component phones above. For this study, only the vertical geophone data were used.

  4. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  5. Direct liquid injection of liquid petroleum gas

    SciTech Connect (OSTI)

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  6. A case study of seawater injection incompatibility

    SciTech Connect (OSTI)

    Lindlof, J.C.; Stoffer, K.G.

    1983-07-01

    One of the primary concerns in the implementation of an effective waterflood is the compatibility between the formation water and the water to be injected. The Arabian American Oil Co. (ARAMCO) and the Saudi Arabian Ministry of Petroleum and Mineral Resources Technical Branch recognized a potential incompatibility problem and embarked on a comprehensive program to evaluate possible strontium sulfate and calcium sulfate scaling associated with the injection of seawater into the Arab-D reservoir in the northern areas of Ghawar field.

  7. Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

    SciTech Connect (OSTI)

    Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

    2010-02-01

    We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

  8. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  9. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  10. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  11. Waterflooding injectate design systems and methods Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Brady, Patrick V.; Krumhansl, James L. A method of designing an injectate to be used in a waterflooding operation is disclosed....

  12. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

  13. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  14. Carbon Storage Partner Completes First Year of CO2 Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19,...

  15. Flow Injection Amperometric Enzyme Biosensor for Direct Determination

    E-Print Network [OSTI]

    Chen, Wilfred

    Flow Injection Amperometric Enzyme Biosensor for Direct Determination of Organophosphate Nerve A flow injection amperometric biosensor for the deter- mination of organophosphate nerve agents

  16. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  17. Fact #869: April 20, 2015 Gasoline Direct Injection Captures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: April 20, 2015 Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use Fact 869: April 20, 2015 Gasoline Direct Injection Captures...

  18. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  19. Parenteral Hydrocarbon Injection and Associated Toxicities: Two Case Reports

    E-Print Network [OSTI]

    Nelson, Michael E.; Nasr, Isam

    2013-01-01

    Products Containing Hydrocarbons. JAMA. 1981;246:840–843.Tissue Injection of Hydrocarbons: A Case Report and Reviewand Nasr Parenteral Hydrocarbon Injection and Associated

  20. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  1. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  2. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  3. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Pannala, Sreekanth [ORNL

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  4. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  5. MUJERES TOTAL BIOLOGIA 21 32

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    CIENCIAS ECON�MICAS Y EMPRESARIALES TOTAL DERECHO Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS CIENCIAS MEDICINA TOTAL MEDICINA #12;MUJERES TOTAL Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS

  6. Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine

    Broader source: Energy.gov [DOE]

    Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

  7. Design and fabrication of injection-molded and 3D-printed battery clips for "Chibitronics" Circuit Sticker workbook

    E-Print Network [OSTI]

    Powell, Paelle M

    2015-01-01

    In order to create an injection-molded battery clip for the Chibitronics Circuit Sticker kit, both manufacturing and product design principles were considered to inform product feel and form as well as ensure manufacturability ...

  8. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    1.4 0.4 0.5 1.0 1.2 1.4 2.1 1.3 Table HC5.2 Living Space Characteristics by Year of Construction, 2005 Living Space Characteristics 1970 to 1979 1980 to 1989 1990 to 1999 2000 to...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump... 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat...

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    em... 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump... 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump... 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    1.5 2.3 3.0 6.0 For Two Housing Units... 0.9 0.3 0.4 Q Q N Q 0.4 Heat Pump... 9.2 1.2 2.2 2.0 1.3 2.4 0.6 1.9...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump... 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    tem... 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump... 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 22.9 9.8 14.1 11.9...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 14.1 10.0 4.0...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 10.4 14.1 20.5 13.7...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 20.5 11.0 3.4 6.1...

  1. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 11.4 8.1 3.3 Flat-panel...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 11.4 15.4 10.2 Flat-panel...

  3. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 2.3 2.5 3.1 4.8...

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 5.6 2.4 Flat-panel...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 15.4 7.9 2.8 4.8 Flat-panel...

  6. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 17.7 7.5 10.2 9.6 Flat-panel...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 13.7 4.2 9.5 Laptop...

  8. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 10.2 3.2 7.0 Flat-panel...

  9. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 3.2 3.9 4.0 6.7...

  10. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.2 0.5 0.9 3 or More... 0.6 Q Q Q Q Q N Q Plasma Television Sets... 3.6 0.6 0.8 0.5 0.6 1.2 0.3 0.9...

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 2.9 Q Q Q N For Two Housing Units... 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace... 2.8 2.4 Q Q Q 0.2 Other...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  15. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central Warm-Air Furnace... 44.7 5.2 3.1 5.6 5.2 7.1 7.4 7.3 3.9 For...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38.9 12.9 Have Equipment But Do Not Use it... 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System......

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..............................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 86.6

  2. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  3. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 111.1

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  5. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1Q

  6. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ

  7. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ14.7

  8. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6

  9. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  10. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  11. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6 13.1

  12. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6

  13. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do Not

  14. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do

  15. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do0.7

  16. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8

  17. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not Have

  18. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  19. Total................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  20. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not49.2

  1. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do

  2. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7 28.8

  3. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7

  4. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0

  5. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0.

  6. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7

  7. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0 1.2

  8. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0

  9. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0Type

  10. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8

  11. Total....................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7 7.4

  12. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7

  13. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.75.6

  14. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6 40.7

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6 17.7

  18. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.64.2

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7

  1. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3 Do

  2. Total.........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3

  3. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6

  4. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6.

  5. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7

  6. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.7

  7. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.74.2

  8. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7

  9. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1 19.0

  10. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1

  11. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.15.6

  12. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0

  13. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not Have

  14. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not

  15. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCooking

  16. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCookingDo

  17. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do

  18. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCooking

  19. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo Not

  20. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo

  1. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo20.6

  2. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1

  3. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0 8.0

  4. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0 8.07.1

  5. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0

  6. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.1 7.0

  7. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.1

  8. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.15.6

  9. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1

  10. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1Personal

  11. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1Personal4.2

  12. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1

  13. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 111.1 47.1

  14. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 111.1

  15. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4)5,Product:

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)

  17. Groundwater Heat Pump with Pumping and Recharging in the Same Well in China 

    E-Print Network [OSTI]

    Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

    2006-01-01

    In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

  18. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  19. Modelling and simulation of acrylic bone cement injection and curing within the framework of vertebroplasty

    E-Print Network [OSTI]

    Landgraf, Ralf; Kolmeder, Sebastian; Lion, Alexander; Lebsack, Helena; Kober, Cornelia

    2013-01-01

    The minimal invasive procedure of vertebroplasty is a surgical technique to treat compression fractures of vertebral bodies. During the treatment liquid bone cement gets injected into the affected vertebral body and therein cures to a solid. In order to investigate the treatment and the impact of injected bone cement on the vertebra, an integrated modelling and simulation framework has been developed. The framework includes (i) the generation of computer models based on microCT images of human cancellous bone, (ii) CFD simulations of bone cement injection into the trabecular structure of a vertebral body as well as (iii) non-linear FEM simulations of the bone cement curing. Thereby, microstructural models of trabecular bone structures are employed. Furthermore, a detailed description of the material behaviour of acrylic bone cements is provided. More precisely, a non-linear fluid flow model is chosen for the representation of the bone cement behaviour during injection and a non-linear viscoelastic material mo...

  20. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  1. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    SciTech Connect (OSTI)

    Hilbert, L.B. Jr. [Univ. of California, Berkeley, CA (United States); Fredrich, J.T. [Sandia National Labs., Albuquerque, NM (United States); Bruno, M.S. [Terralog Technologies USA, Inc., Arcadia, CA (United States); Deitrick, G.L.; Rouffignac, E.P. de [Shell Exploration and Production Co., Houston, TX (United States)

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements and surface subsidence agree with field observations.

  2. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    13 INGENIERÍA INFORMÁTICA 2 11 TOTAL ESCUELA POLITÉCNICA SUPERIOR 2 11 ANTROPOLOGÍA SOCIAL Y TEORÍA DEL ARTE 1 1 LINGÜISTICA 4 7 MÚSICA 1 3 PREHISTORIA Y ARQUEOLOGÍA 0 1 TOTAL FILOSOFÍA Y LETRAS 22 Y EMPRESARIALES Fuente: Centro de Estudios de Posgrado, a 9 de Julio del 2010 DERECHO ESCUELA

  3. Supported-sorbent injection. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr.

    1997-07-01

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  4. Testing of the Pleasant Bayou Well through October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

    1992-08-01

    Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

  5. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  6. Stratospheric Albedo Modification by Aerosol Injection

    E-Print Network [OSTI]

    Katz, J I

    2009-01-01

    This paper reviews and develops the proposal, widely discussed but not examined in detail, to use stratospheric aerosols to increase the Earth's albedo to Solar radiation in order to control climate change. The potential of this method has been demonstrated by the "natural experiments" of volcanic injection of sulfate aerosols into the stratosphere that led to subsequent observed global cooling. I consider several hygroscopic oxides as possible aerosol materials in addition to oxides of sulfur. Aerosol chemistry, dispersion and transport have been the subject of little study and are not understood, representing a significant scientific risk. Even the optimal altitude of injection and aerosol size distribution are poorly known. Past attention focused on guns and airplanes as means of lofting aerosols or their chemical precursors, but large sounding rockets are cheap, energetically efficient, can be designed to inject aerosols at any required altitude, and involve little technical risk. Sophisticated, mass-opti...

  7. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  8. Meren field water injection project offshore Nigeria

    SciTech Connect (OSTI)

    Adetoba, L.A.

    1984-04-01

    The Meren Water Injection Project, which is one of the largest in West Africa in terms of injection volume, secondary reserves to be recovered and cost, is located in the Meren field offshore Nigeria. This study presents an updated comprehensive plan to deplete 7 reservoir units in sands that have been producing under solution gas drive and gravity segregation with minimal water influx. The reservoir units contain ca 80% of the original oil-in-place in Meren field. Detailed studies have been undertaken to evaluate the performances of the 7 reservoirs with a view to developing a secondary recovery plan which has been brought into reality. Injection was to start in mid-1982 but was delayed until mid-1983. The effect of the delay and the changing of injector locations on recovery and cost is discussed.

  9. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  10. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  11. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  12. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  13. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  14. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  15. U.S. Total Exports

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports...

  16. Health And Wellness Department Of Health And Wellness

    E-Print Network [OSTI]

    McConnell, Terry

    Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

  17. MUJERES ( * ) TOTAL BIOLOGA 18 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    DE PROFESORADO Y EDUCACI�N CIENCIAS ECON�MICAS Y EMPRESARIALES Nº de tesis leídas y aprobadas por centro y departamento en el año 2010 CENTRO DEPARTAMENTO Nº TESIS CIENCIAS #12;ANATOMÍA PATOL�GICA 0 1 Y DE LA EDUCACI�N 0 2 PSICOLOGÍA SOCIAL Y METODOLOGÍA 3 8 TOTAL PSICOLOGÍA 11 26 TOTAL TESIS LEIDAS

  18. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

  19. Optical single sideband modulation using strong optical injection-locked semiconductor lasers

    E-Print Network [OSTI]

    Sung, Hyuk-Kee; Lau, Erwin K.; Wu, Ming C.

    2007-01-01

    generation by direct modulation of optical injection-lockedreported direct SSB modulation from an optically injection-

  20. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  1. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  2. Total transmission and total reflection by zero index materials

    E-Print Network [OSTI]

    Viet Cuong Nguyen; Lang Chen

    2010-07-01

    In this report, we achieved total transmission and reflection in a slab of zero index materials with defect(s). By controlling the defect's radius and dielectric constant, we can obtain total transmission and reflection of EM wave. The zero index materials, in this report, stand for materials with permittivity and permeability which are simultaneously equal to zero or so called matched impedance zero index materials. Along with theoretical calculations and simulation demonstrations, we also discuss about some possible applications for the proposed structure such as shielding or cloaking an object without restricting its view. We also suggest a way to control total transmission and reflection actively by using tunable refractive index materials such as liquid crystal and BST. The physics behind those phenomena is attributed to intrinsic properties of zero index materials: constant field inside zero index slab.

  3. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  4. A study on Raman Injection Laser 

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01

    The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman...

  5. Passive safety injection system using borated water

    DOE Patents [OSTI]

    Conway, Lawrence E. (Allegheny, PA); Schulz, Terry L. (Westmoreland, PA)

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  6. Silicone injection restores failing submarine cables

    SciTech Connect (OSTI)

    Tilstra, M.

    1995-12-01

    Faced with the prospect of replacing nearly 10 miles of aging undersea cables, Orcas Power & Light Co (Opalco) elected instead to inject silicone into as many of the cables as possible. Silicone injection has been used extensively on underground residential distribution (URD) and feeder cables, but only two underwater cables had previously been injected: a feeder cable for Florida Power Corp under an intercoastal waterway and a cable for Washington Water Power Co under a lake in western Idaho. The compound restores power cables damaged by water treeing and prevents further water damage. Selection criteria included age, type, and whether the cables had ever been spliced. Older, soldered, hand-wrapped splices were avoided as they block the CableCure fluid from flowing through. This makes the cable uninjectable unless the splices are replaced with the molded type. The first cables chosen for injection were between 15 and 30 years old and clear of soldered splices. They also were free from faults. 4 figs.

  7. Injection Molding of Micron-scale Components

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Injection Molding of Micron-scale Components ver. 1 1ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © 2009 #12;Micro MoldingMicro Molding · EquipmentEquipment · BioMEMS sensorsEjEjEjector Cylinders Bottom Mold Half Top Mold Half Nozzle Ejector Cylinders Bottom Mold Half Top Mold Half Nozzle

  8. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more »Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  9. A Spreadsheet Program for Two-Well Tracer Test Data Analysis

    SciTech Connect (OSTI)

    Tang, Guoping [ORNL; Watson, David [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL

    2011-01-01

    Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended approximate analytical solutions for the advection-dispersion equation for an injection-extraction well doublet in a homogeneous confined aquifer under steady-state flow conditions for equal injection and extraction rates with no transverse dispersion and negligible ambient flow, and implemented the solutions in Microsoft Excel using Visual Basic for Application (VBA). Functions were implemented to calculate concentrations in extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published-type curves and applied to analyze data from the literature. The method can be used as a first approximation for two-well tracer test design and data analysis, and to check accuracy of numerical solutions. The code and example files are publicly available.

  10. Well having inhibited microbial growth

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  11. An Integrated Well Performance Study for Shale Reservoir Systems - Application to the Marcellus Shale 

    E-Print Network [OSTI]

    Riser, Landon Jess

    2013-11-15

    . Mayerhofer et al. (2011) integrated microseismic fracture mapping, diagnostic injection tests, bottomhole pressure gauges, chemical tracer data and post fracture pressure transient analysis in order to gain a better knowledge on fracture effectiveness.... Downhole pressure gauge data indicated hydraulic communication between adjacent wells. This was corroborated by microseismic mapping during fracturing operations indicating activity beyond the "halfway" point in adjacent wells. 16 CHAPTER III...

  12. TOWARDS ESTIMATING TOTAL ECONOMIC VALUE

    E-Print Network [OSTI]

    Bateman, Ian J.

    TOWARDS ESTIMATING TOTAL ECONOMIC VALUE OF FORESTS IN MEXICO by Neil Adger Katrina Brown Raffaello OF FORESTS IN MEXICO by Neil Adger Katrina Brown Raffaello Cervigni Dominic Moran Centre for Social and SEDESOL for their assistance whilst in Mexico, and David Pearce and Kerry Turner for comments on earlier

  13. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  14. Well Monitoring System for EGS

    Broader source: Energy.gov [DOE]

    EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

  15. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  16. Asymmetric injection of cathodic arc plasma into a macroparticlefilter

    SciTech Connect (OSTI)

    Anders, Andre; MacGill, Robert A.

    2004-02-11

    The cathodic arc plasmas produced by cathode spots usuallyinclude macroparticles, which is undesirable for many applications. Acommon way of removing macroparticles is to use curved solenoid filterswhich guide the plasma from the source to the substrate. In this work, anarc source with relatively small cathode is used, limiting the possiblelocations of plasma production. The relative position of cathodic arcsource and macroparticle filtered was systematically varied and thefiltered plasma current was recorded. It was found that axis-symmetricplasma injection leads to maximum throughput only if an anode aperturewas used, which limited the plasma to near-axis flow by scraping offplasma at larger angles to the axis. When the anode aperture was removed,more plasma could enter the filter. In this case, maximum filtered ioncurrent was achieved when the plasma was injected off-axis, namely offsetin the direction where the filter is curved. Such behavior wasanticipated because the plasma column in the filter is known to beshifted by ExB and centrifugal drift as well as by non-axis-symmetriccomponents of the magnetic field in the filter entrance and exit plane.The data have implications for plasma transport variations caused bydifferent spot locations on cathodes that are not small compared to thefilter cross section.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  18. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  19. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  20. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  1. Evaluation of injector location and nozzle design in a direct-injection hydrogen research engine.

    SciTech Connect (OSTI)

    Wallner, T.; Nande, A. M.; Naber, J.; Energy Systems; Michigan Technological Univ.

    2008-06-01

    The favorable physical properties of hydrogen (H{sub 2}) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs.

  2. An injectable acoustic transmitter for juvenile salmon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more »and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  3. Waterflooding injectate design systems and methods

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2014-08-19

    A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.

  4. Domain wall displacement by remote spin-current injection

    E-Print Network [OSTI]

    Skirdkov, P. N.

    We demonstrate numerically the ability to displace a magnetic domain wall (DW) by remote spin current injection. We consider a long and narrow magnetic nanostripe with a single DW. The spin-polarized current is injected ...

  5. Systematic Techniques for Finding and Preventing Script Injection Vulnerabilities

    E-Print Network [OSTI]

    Saxena, Prateek

    2012-01-01

    D. Keromytis. “Sqlrand: Preventing Sql Injection At- tacks”.Automatic Generation of XSS and SQL Injec- tion Attacks withet al. “Automatic creation of SQL injection and cross-site

  6. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  7. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  8. Optimization of fractured well performance of horizontal gas wells 

    E-Print Network [OSTI]

    Magalhaes, Fellipe Vieira

    2009-06-02

    In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

  9. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  10. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  11. Liquid Propane Injection Technology Conductive to Today's North American Specification

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

  12. Percutaneous Radiofrequency Lung Ablation Combined with Transbronchial Saline Injection: An Experimental Study in Swine

    SciTech Connect (OSTI)

    Kawai, T., E-mail: t-kawai@hosp.yoka.hyogo.jp; Kaminou, T., E-mail: kaminout@grape.med.tottori-u.ac.jp; Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A. [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine (Japan); Fujioka, S.; Ito, H. [Tottori University, Division of Organ Pathology, Department of Microbiology and Pathology, Faculty of Medicine (Japan); Nakamura, K. [Hakuai Hospital, Department of Radiology (Japan); Ihaya, T. [Sanin Rosai Hospital, Department of Radiology (Japan); Ogawa, T. [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine (Japan)

    2010-02-15

    To evaluate the efficacy of radiofrequency lung ablation with transbronchial saline injection. The bilateral lungs of eight living swine were used. A 13-gauge bone biopsy needle was inserted percutaneously into the lung, and 1 ml of muscle paste was injected to create a tumor mimic. In total, 21 nodules were ablated. In the saline injection group (group A), radiofrequency ablation (RFA) was performed for 11 nodules after transbronchial saline injection under balloon occlusion with a 2-cm active single internally cooled electrode. In the control group (group B), conventional RFA was performed for 10 nodules as a control. The infused saline liquid showed a wedge-shaped and homogeneous distribution surrounding a tumor mimic. All 21 RFAs were successfully completed. The total ablation time was significantly longer (13.4 {+-} 2.8 min vs. 8.9 {+-} 3.5 min; P = 0.0061) and the tissue impedance was significantly lower in group A compared with group B (73.1 {+-} 8.8 {Omega} vs. 100.6 {+-} 16.6 {Omega}; P = 0.0002). The temperature of the ablated area was not significantly different (69.4 {+-} 9.1{sup o}C vs. 66.0 {+-} 7.9{sup o}C; P = 0.4038). There was no significant difference of tumor mimic volume (769 {+-} 343 mm{sup 3} vs. 625 {+-} 191 mm{sup 3}; P = 0.2783). The volume of the coagulated area was significantly larger in group A than in group B (3886 {+-} 1247 mm{sup 3} vs. 2375 {+-} 1395 mm{sup 3}; P = 0.0221). Percutaneous radiofrequency lung ablation combined with transbronchial saline injection can create an extended area of ablation.

  13. MUJERES ( * ) TOTAL BIOLOGA 10 19

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    mujeres que han leído tesis en la UAM en el año 2007 Fuente: Centro de Posgrado de la UAM, a 31 de Diciembre de 2007 FILOSOFÍA Y LETRAS MEDICINA PSICOLOGÍA TOTAL TESIS LEIDAS Y APROBADAS EN EL A�O 2007 EN LA UAM CIENCIAS CIENCIAS ECON�MICAS Y EMPRESARIALES DERECHO ESCUELA POLIT�CNICA SUPERIOR Nº de tesis

  14. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings forTitle XVIIof EnergyofTotal Energy

  15. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    SciTech Connect (OSTI)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  16. Gun Injection into a Microwave Plasma J. C. Sprott

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Gun Injection into a Microwave Plasma by J. C. Sprott May, 1970 Plasma Studies University high densities by rapid pulsed gun injection. TIlis no te describes measurements made -Cwo years ago in which a gun plasma was injected into a background microwave plasma of variable density in the toroidal

  17. A Classification of SQL Injection Attacks and Countermeasures

    E-Print Network [OSTI]

    Orso, Alessandro "Alex"

    A Classification of SQL Injection Attacks and Countermeasures William G.J. Halfond, Jeremy Viegas|jeremyv|orso}@cc.gatech.edu ABSTRACT SQL injection attacks pose a serious security threat to Web appli- cations: they allow attackers methods to address the SQL injection problem, current approaches either fail to address the full scope

  18. GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS

    E-Print Network [OSTI]

    Craciun, Gheorghe

    GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS MURAD BANAJI AND GHEORGHE algebraic and graph theoretic conditions for injectivity of chemical reaction systems. After developing the possibility of multiple equilibria in the systems in question. Key words. Chemical reactions; Injectivity; SR

  19. Minimizing emittance growth during H- injection in the AGS booster

    SciTech Connect (OSTI)

    Brown,K.A.; Ahrens, L.; Gardner, C.; Gassner, D.; Raparia, D.; Steski, D.; Theiberger, P.; Zeno, K.

    2009-05-04

    As part of the efforts to increase polarization and luminosity in RHIC during polarized proton operations we have modified the injection optics and stripping foil geometry in the AGS Booster in order to reduce the emittance growth during H{sup -} injection. In this paper we describe the modifications, the injection process, and present results from beam experiments.

  20. Defining Code-injection Attacks Donald Ray Jay Ligatti

    E-Print Network [OSTI]

    Ligatti, Jay

    of mechanisms for mitigating such attacks. Categories and Subject Descriptors C.2.0 [Computer Communi- cation definitions of code-injection attacks (e.g., SQL-injection attacks) are flawed. The flaws make it possible these flaws in conventional definitions of code-injection attacks, this paper proposes a new definition, which

  1. ORIGINAL ARTICLE Percutaneous Cement Injection into a Created Cavity for

    E-Print Network [OSTI]

    Casto, Joseph M.

    on these assumptions by finding minimal pressure increases (9.4 6 8.5 mm Hg) during direct injection of cement into exORIGINAL ARTICLE Percutaneous Cement Injection into a Created Cavity for the Treatment of Vertebral, CA). PV involves the injection of polymethylmethacrylate cement into an injured vertebral body via

  2. ONE-DIRECTED INDECOMPOSABLE PURE INJECTIVE MODULES OVER STRING ALGEBRAS

    E-Print Network [OSTI]

    Prest, Mike

    ONE-DIRECTED INDECOMPOSABLE PURE INJECTIVE MODULES OVER STRING ALGEBRAS MIKE PREST (MANCHESTER) AND GENA PUNINSKI (LIMA) Abstract. We classify one-directed indecomposable pure injective modules over #12. In this paper we classify one-directed indecomposable pure injective modules over a string algebra A. We prove

  3. Production Well Performance Enhancement using Sonication Technology

    SciTech Connect (OSTI)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

  4. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  5. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect (OSTI)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  6. Post-injection transmission attenuation measurements for PET

    SciTech Connect (OSTI)

    Daube-Witherspoon, M.E.; Carson, R.E.; Green, M.V.

    1988-02-01

    The feasibility of acquiring PET transmission information after tracer injection was studied using ring and rotating pin transmission sources. A combined transmission/emission scan was acquired, followed by an emission scan, used to subtract the emission counts from the transmission/emission data. The ratio of emission count rate for FDG brain scans to transmission count rate is 50-100% for a 5-mCi ring source and less than 5% for a 5-mCi pin source. Windowing of the sinogram, which rejects most random and scattered coincidences, also eliminates most emission counts. The magnitude and effects of residual random and scattered coincidences as well as increases in variability from tranmission/emission scans were studied. In addition, the results of combined transmission/emission scans for a high-contrast emission source distribution using ring and pin sources are described.

  7. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore »wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  8. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  9. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  10. Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

    E-Print Network [OSTI]

    Singelyn, Jennifer M.; Christman, Karen L.

    2010-01-01

    studies involved direct epicardial injection while a patientmodels, via direct epicardial injection [23, 25– 27, 43,tissue upon direct epicardial injection, with pore size of ~

  11. Naturally derived myocardial matrix as an injectable scaffold for cardiac repair

    E-Print Network [OSTI]

    Singelyn, Jennifer Marie

    2010-01-01

    studies involved direct epicardial injection while a patientmodels, via direct epicardial injection 23,25-27,33,46 ,Figure 1.3). Direct epicardial injection was the first

  12. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  13. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  14. Alternative Designs for the NSLS-II Injection Straight Section

    SciTech Connect (OSTI)

    Shaftan,T.; Heese, R.; Weihreter, E.; Willeke, F.; Rehak, M.; Meier, R.; Fliller, R.; Johnson, E. D.

    2009-05-04

    Brookhaven National Laboratory (BNL) is developing a state-of-the-art 3 GeV synchrotron light source, the NSLS-II [1]. The 9.3 meter-long injection straight section of its storage ring now fits a conventional injection set-up consisting of four kickers producing a closed bump, together with a DC septum and a pulsed septum. In this paper, we analyze an alternative option based on injection via a pulsed sextupole magnet. We discuss the dynamics of the injected and stored beams and, subsequently, the magnet's specifications and tolerances. We conclude by summarized the advantages and drawbacks of each injection scheme.

  15. Development of a Well Intervention Toolkit to Analyze Initial Wellbore Conditions and Evaluate Injection Pressures, Flow Path, Well Kill, and Plugging Procedures 

    E-Print Network [OSTI]

    Paknejad, Amir S

    2009-08-03

    Surface pressure rise, psi pwf Wellbore flowing pressure, psi P Pressure at any point, psia P&A Plug and Abandon PVT Pressure-Volume-Temperature Poutlet Pressure at choke outlet, psi Pb Bubble point pressure, psi Pdn Downstream pressure... 2.3.2.3 Density .......................................................... 31 2.3.2.4 Viscosity ........................................................ 32 2.3.3 PVT Models...

  16. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA's Today8Topo II: AnUsersTotalView

  17. Total Adjusted Sales of Kerosene

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015End Use: Total

  18. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total CrudeMay-15

  19. Well-Tech Award 2008 Well-Tech Award 2007

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    ://www.well-tech.it/_nuovo%20sito_/anteprima%202009/anteprima_2009_acce.html #12;ACCESSIBILITY Protesi di nuova generazione che farlo diventare il più naturale possibile, cercando un perfetto equilibrio tra protesi e corpo. Able - B Protesi di nuova generazione che punta ad ottimizzare comfort, propriocezione, andatura, postura, estetica

  20. Entiat 4Mile WELLs Completion Report, 2006.

    SciTech Connect (OSTI)

    Malinowksi, Richard

    2007-01-01

    The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

  1. Controlling formation fines at their sources to maintain well productivity

    SciTech Connect (OSTI)

    Nguyen, P.D.; Weaver, J.D.; Rickman, R.D.; Dusterhoft, R.G.; Parker, M.A.

    2007-05-15

    Migration of formation fines has been shown to cause production decline in many wells. Despite the availability of new downhole tools for use in well stimulation and completion, the ability to sustain desired production levels is often plagued with fines migration problems. The solution to this problem is appropriate treatment to mitigate fines migration at its source. This paper describes the use of an ultra-thin tackifying agent (UTTA) for stabilizing fines in high-rate producing or injection wells. This UTTA is applied as part of an initial prepad in fracturing or gravel-packing operations, as a remedial treatment, or as a post-treatment following acid fracturing or matrix acidizing treatments. The primary purpose of UTTA application is to immobilize formation fines so that they will not detach, migrate with flowing fluids, plug the pore channels, and reduce the flow path permeability. Results of laboratory testing indicate that the UTTA system is applicable to most types of formation fines, including coals, sandstones, and carbonates. Once injected into the formation matrix or proppant pack, the UTTA forms a thin film on formation surfaces, encapsulating the fines. Capillary action helps pull the tackifier into the contact points, fixing the particulate in place without plugging the pore throat. The UTTA does not require a shut-in time after its application. The thin film tackifier does not harden, but remains flexible, enhancing the ability of a formation to withstand stress cycling and allowing the formation to handle high shear stress during high flow rates.

  2. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  3. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  4. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  5. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  6. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation,Ground Gravity Survey JumpInjectivity Test

  7. Well completion and servicing fluid

    SciTech Connect (OSTI)

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  8. Long-Fiber Thermoplastic Injection Molded Composites: from Process Modeling to Property Prediction

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Holbery, Jim D.; Johnson, Kenneth I.; Smith, Mark T.

    2005-09-01

    Recently, long-fiber filled thermoplastics have become a great interest to the automotive industry since these materials offer much better property performance (e.g. elastic moduli, strength, durability…) than their short-fiber analogues, and they can be processed through injection molding with some specific tool design. However, in order that long-fiber thermoplastic injection molded composites can be used efficiently for automotive applications, there is a tremendous need to develop process and constitutive models as well as computational tools to predict the microstructure of the as-formed composite, and its resulting properties and macroscopic responses from processing to the final product. The microstructure and properties of such a composite are governed by i) flow-induced fiber orientation, ii) fiber breakage during injection molding, and iii) processing conditions (e,g. pressure, mold and melt temperatures, mold geometries, injection speed, etc.). This paper highlights our efforts to address these challenging issues. The work is an integrated part of a research program supported by the US Department of Energy, which includes • The development of process models for long-fiber filled thermoplastics, • The construction of an interface between process modeling and property prediction as well as the development of new constitutive models to perform linear and nonlinear structural analyses, • Experimental characterization of model parameters and verification of the model predictions.

  9. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H. (Inola, OK)

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  14. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  16. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis (Livermore, CA)

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  17. New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.

    2007-09-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys.

  18. Duct injection technology prototype development: Nozzle development Subtask 4. 1, Atomizer specifications for duct injection technology

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Babcock Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  19. Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation

    SciTech Connect (OSTI)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral-trapping capability can reach 80 kg per cubic meter of medium. Most sulfur is trapped through alunite precipitation, although some is trapped by anhydrite precipitation and minor amount of pyrite. The addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.

  20. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

    2008-01-01

    INTERPRETATION The injection of CO 2 causes a decrease in seismicseismic monitoring during injection. Although quantitative interpretation

  1. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect (OSTI)

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  2. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  3. Total Natural Gas Gross Withdrawals (Summary)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

  4. Health Education & Wellness - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

  5. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  6. Replenishing data descriptors in a DMA injection FIFO buffer

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Cernohous, Bob R. (Rochester, MN); Heidelberger, Philip (Cortlandt Manor, NY); Kumar, Sameer (White Plains, NY); Parker, Jeffrey J. (Rochester, MN)

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  7. A new well surveying tool 

    E-Print Network [OSTI]

    Haghighi, Manuchehr Mehdizabeh

    1966-01-01

    13 13 11 12 15 l2 48 51 51 51 49 49 49 51 50 49 Undetermined values. 'ARABLE II COMPARISON OF MEASURED ANGLES @ID ANGLES INDICATE' EY SURVEYING DEVICE ACTUAL VALUES EERIE(;QVENTAL VALUES Rnn No. 1 Run No. 2 Depth: Direction of...A NEW WELL SURVEYING TOOL A Thesis By MANUCHEHR MEHDIZABEH HAGHIGHI Submitted to the Graduate College of the Texas ANM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major Subject: PETROLEUM...

  8. Well Deepening | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind FarmWege WindWeldWell

  9. Wellness Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProjectAdministration NNSAWellWellness Services

  10. Gas Injection Apparatus for Vacuum Chamber

    SciTech Connect (OSTI)

    Almabouada, F.; Louhibi, D.; Hamici, M.

    2011-12-26

    We present in this article a gas injection apparatus which comprises the gas injector and its electronic command for vacuum chamber applications. Some of these applications are thin-film deposition by a pulsed laser deposition (PLD) or a cathodic arc deposition (arc-PVD) and the plasma generation. The electronic part has been developed to adjust the flow of the gas inside the vacuum chamber by controlling both of the injector's opening time and the repetition frequency to allow a better gas flow. In this case, the system works either on a pulsed mode or a continuous mode for some applications. In addition, the repetition frequency can be synchronised with a pulsed laser by an external signal coming from the laser, which is considered as an advantage for users. Good results have been obtained using the apparatus and testing with Argon and Nitrogen gases.

  11. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  12. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  13. Improvements in subsea well technology

    SciTech Connect (OSTI)

    Halvorsen, T.

    1995-12-31

    The next generation subsea developments will be facing a number of new challenges which have to be solved to maintain a cost-efficient solution for production of oil and gas: (1) Smaller fields, i.e. cost reduction through volume will no longer be valid. (2) Freedom in configuration of subsea development. The current idea of standardization will not be directly applicable for cost reduction. (3) Various water depth. The same technology should be applicable for both guideline- and guideline less water depth. (4) Development in new areas of the world where drilling rig deployable system is a must. (5) Various types of fluid processing may be required as an integral part of a subsea production system. The next generation subsea production system should be universal and applicable to any subsea field development. Kongsberg Offshore a.s. (KOS) have gained extensive experience in supplying standardized total subsea systems. The paper presents the approach taken by KOS to develop the next generation subsea system, and discussed the challenges associated with this.

  14. Apparatus and method for sealing perforated well casing

    DOE Patents [OSTI]

    Blount, C.G.; Benham, R.A.; Brock, J.L.; Emerson, J.A.; Ferguson, K.R.; Scheve, D.F.; Schmidt, J.H.; Schuler, K.W.; Stanton, P.L.

    1997-03-25

    Perforations and other openings in well casings, liners and other conduits may be substantially blocked or sealed to prevent fluid flow between the casing or liner interior and an earth formation by placing a radially expansible sleeve adjacent the perforations or openings and urging the sleeve into forcible engagement with the casing or inner wall using an explosive charge. An apparatus including a radially contracted sleeve formed by a coiled plate member or a tubular member having flutes defined by external and internal folds, may be deployed into a well casing or liner through a production or injection tubing string and on the end of a flexible cable or coilable tubing. An explosive charge disposed on the apparatus and within the sleeve may be detonated to urge the sleeve into forcible engagement with the casing inner wall. 17 figs.

  15. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    E-Print Network [OSTI]

    Tsang, C.-F.

    2010-01-01

    04-33, Swedish Nuclear Fuel and Waste Management Co. (SKB),208, Swedish Nuclear Fuel and Waste Management Co. (SKB),07-54. Swedish Nuclear Fuel and Waste Management Co. ( SKB),

  16. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    I. (2005), Geothermal Reservoir Characterization via Thermalfor characterization of fractured geothermal reservoirs. For

  17. Closure Report for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-06-01

    The purpose of this closure report is to document that the closure of CAU 322 complied with the Nevada Department of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 322 Corrective Action Decision Document.

  18. A practical method for estimating non-isothermal and formation damage skin factors for cold water injection wells 

    E-Print Network [OSTI]

    Warland, Arild

    1986-01-01

    0. 3 0. 3 0. 3 0. 3 1. 0 1. 0 1. 0 1. 0 1. 9 1. 9 1. 9 1. 9 1. 9 60 60 60 60 60 60 60 60 60 460 60 60 60 Iso Iso Non-Iso Non-Iso Iso Iso Non-Iso Non-Iso Iso Iso Non-Iso Iso Non;Iso 200 200 80 80 200 200 80... 80 200 200 80 200 80 yes yes yes yes yes yes 28 TABLE 3 (Continued) Run No. Conditions Case t& (day ) Th 1*fee t T& ('E) s mech 14 2 0. 3 100 Iso 167 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 0. 3 2 0. 3 2 0. 3 2 0...

  19. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    E-Print Network [OSTI]

    Pruess, K.

    2011-01-01

    at the European EGS Site Soultz-sous-Forêts, Int J. RockGeothermal Heat Exchanger at Soultz-sous- Forêts (France)

  20. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    E-Print Network [OSTI]

    Pruess, K.

    2011-01-01

    Stimulations at the European EGS Site Soultz-sous-Forêts,Dual-Tracer Spikings during EGS Creation in Northern Germanenhanced geothermal systems (EGS) in rocks with insufficient

  1. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    E-Print Network [OSTI]

    Pruess, K.

    2011-01-01

    Stimulation of an Enhanced Geothermal System Using a high pHDevelopment of enhanced geothermal systems (EGS) in rocks

  2. GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal Wetland Hydrology, and Deep Well Injection

    E-Print Network [OSTI]

    Sukop, Mike

    GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal, but is also lost to surface water drainage and potential submarine groundwater discharge. There are also to deal with issues such as submarine groundwater discharge and coastal wetland hydrology. SEAWAT also has

  3. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  4. Pneumatic direct cylinder fuel injection system

    SciTech Connect (OSTI)

    Reinke, P.E.

    1988-09-20

    This patent describes a pneumatic direct cylinder fuel injection system for use in an internal combustion engine of the type having an engine block means with an air induction means for supplying induction air to cylinders in the engine block means, with each cylinder having a piston reciprocable therein so as to define a combustion chamber which includes a stratified charge chamber as a portion thereof, the system including a plurality of pneumatic injectors, with the pneumatic injector being supported by the engine block means in position to discharge an air/fuel mixture into an associate stratified charge chamber, each of the pneumatic injectors including a body means terminating at one end thereof in a nozzle body, a bore means through the body means and the nozzle body, a valve seat encircling the bore means at the outboard free end of the nozzle body, the opposite end of the bore means being connectable to a source of air at a predetermined pressure, a poppet valve operatively positioned in the bore means. The poppet value includes a head movable between an open position and closed position relative to the valve seat and a stem extending from the head and defining with the bore means an air passage, control means operatively associated with the poppet valve to normally maintain the poppet valve in the closed position and being operative to permit movement of the poppet valve to the open position and, an electromagnetic fuel injector operatively positioned in the body means for injecting pressurized fuel into the air passage upstream of the head of the poppet valve in terms of the direction of air flow through the air passage during a compression stroke of the piston in the associate cylinder, the arrangement being such that when the compression pressure reaches a predetermined pressure the poppet valve will be moved to the valve closed position.

  5. Blast furnace injection of massive quantities of coal with enriched air or pure oxygen

    SciTech Connect (OSTI)

    Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

    1993-01-01

    An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

  6. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  7. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  8. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Beam Loading by Distributed...

  9. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

  10. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  11. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes...

  12. Summary of the Optics, IR, Injection, Operations, Reliability...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group Citation Details In-Document Search Title: Summary of the Optics,...

  13. Passive injection: A strategy for mitigating reservoir pressurization...

    Office of Scientific and Technical Information (OSTI)

    Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title:...

  14. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California, Geothermal Field; 2010 Geothermal...

  15. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry (Columbia, MO)

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  16. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards SCR Technologies for NOx Reduction Powertrain Trends and Future...

  17. Investigation of Direct Injection Vehicle Particulate Matter Emissions

    Broader source: Energy.gov [DOE]

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer.

  18. Self-powered Hydrogen + Oxygen Injection System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications PACCARHi-Z Thermoelectric Generator Project Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Caterpillar Diesel Racing: Yesterday & Today...

  19. Oxidation characteristics of gasoline direct-injection (GDI)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  20. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Value Solution for Euro VI Emissions 3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros% CO2 reduction) at a significantly...