Sample records for injection wells total

  1. Well injection valve with retractable choke

    SciTech Connect (OSTI)

    Pringle, R.E.

    1986-07-22T23:59:59.000Z

    An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

  2. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  3. Method for preventing bitumen backflow in injection wells when steam injection is interrupted

    SciTech Connect (OSTI)

    Freeman, D.C.; Djabbarah, N.F.

    1990-04-24T23:59:59.000Z

    This patent describes a method for preventing viscous hydrocarbonaceous fluids from backflowing into a well upon interruption of a steamflood. It comprises: detecting a substantial reduction in steam injection pressure in at least one injection well via a pressure sensing device; and causing automatically a pressurized fluid to be injected into the injection well in response to the reduction in pressure which prevents viscous hydrocarbonaceous fluids from backflowing into the injection well.

  4. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05T23:59:59.000Z

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  5. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

    1997-04-29T23:59:59.000Z

    A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

  6. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

    1993-01-01T23:59:59.000Z

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  7. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1993-02-16T23:59:59.000Z

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  8. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  9. The feasibility of deep well injection for brine disposal

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01T23:59:59.000Z

    feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

  10. Fully Coupled Well Models for Fluid Injection and Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and...

  11. Registration of Hanford Site Class V underground injection wells. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE 1994) requires that all existing Class V injection wells be registered under WAC 173--218. (Washington Underground Injection Control Program). The purpose of this document is to fulfill this requirement by registering all active Class V underground injection control wells, on the Hanford Site, under WAC 173--218. This registration will revise the registration previously submitted in 1988 (DOE 1988). In support of this registration, an extensive effort has been made to identify all injection wells on the Hanford Site. New injection wells will not be constructed on the Hanford Site except to receive uncontaminated stormwater or groundwater heatpump return flow. All changes to Miscellaneous Streams will be tracked through the Hanford Site Miscellaneous Streams Inventory Database. Table 5--2 of this injection well registration may be updated annually at the same time as the Miscellaneous Streams Inventory, if necessary.

  12. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

  13. Solutions for vertically fractured injection wells in heterogeneous reservoirs

    E-Print Network [OSTI]

    Spath, Jeffrey Bernard

    1990-01-01T23:59:59.000Z

    REFERENCES. APPENDIX A APPENDIX B APPENDIX C MATHIEU FUNCTIONS . COMMINGLED WELLS WITH UNEQUAL INITIAL PRESSURES . COMPUTER ALGORITHM. . . LIST OF TABLES Table 4. 1 Comparison of the Schapery Approximation vs. Stehfest - Infinite Homogeneous... Reservoir. . . . . . . . . . . . 55 Table 5. 1. 1 Comparison of pD Data Fmm This Study (infinite Reservoir Case) with pD Data From Gringarten er al. and Kuchuk er al. . . . . . . . . . . . . . . 58 Table 5. 1. 2 Comparison of pD Data Fmm This Study...

  14. Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment...

  15. A comparative analysis of numerical simulation and analytical modeling of horizontal well cyclic steam injection 

    E-Print Network [OSTI]

    Ravago Bastardo, Delmira Cristina

    2005-08-29T23:59:59.000Z

    The main objective of this research is to compare the performance of cyclic steam injection using horizontal wells based on the analytical model developed by Gunadi against that based on numerical simulation. For comparison, ...

  16. FLOW AND REACTIVE TRANSPORT IN POROUS MEDIA INDUCED BY WELL INJECTION: SIMILARITY SOLUTION

    E-Print Network [OSTI]

    FLOW AND REACTIVE TRANSPORT IN POROUS MEDIA INDUCED BY WELL INJECTION: SIMILARITY SOLUTION C.J. VAN from laboratory batch experiments. Typical examples of isotherms are (see e.g. Freeze and Cherry [FC

  17. DATA QUALITY OBJECTIVES SUMMARY REPORT FOR WASTE DISPOSITION OF FY2004 ISRM INJECTION & MONITORING WELLS

    SciTech Connect (OSTI)

    THOMAS, G.

    2004-03-03T23:59:59.000Z

    The purpose of this data quality objective (DQO) summary report is to develop a sampling plan for waste disposition of soil cuttings and other drilling-related wastes that will result from the drilling of 21 injection wells and one groundwater monitoring well west of the 184-D Powerhouse Ash Pit in the 100-D Area of the Hanford Site. The 21 In Situ Redox Manipulation (ISRM) wells will inject treatment solutions to assist in intercepting and preventing the discharge of a hexavalent chromium plume to the Columbia River. The monitoring well will help establish groundwater chemistry downgradient of the ISRM zone. The proposed well locations are shown.

  18. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect (OSTI)

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01T23:59:59.000Z

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  19. Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

  20. Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells

    SciTech Connect (OSTI)

    Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Vorobjev, L. E.; Firsov, D. A.; Mashko, M. O.; Balagula, R. M. [Saint Petersburg State Polytechnical University (Russian Federation)] [Saint Petersburg State Polytechnical University (Russian Federation); Belenky, G.; Shterengas, L.; Kipshidze, G. [State University of New York at Stony Brook, Department of Electrical and Computer Engineering (United States)] [State University of New York at Stony Brook, Department of Electrical and Computer Engineering (United States)

    2013-11-15T23:59:59.000Z

    The current dependences of spontaneous luminescence in mid-IR injection lasers with InGaAsSb/InAlGaAsSb quantum wells are experimentally studied in the subthreshold and lasing modes. The current dependence of the carrier concentration is determined using the current dependence of the total spontaneous luminescence. A lack of carrier concentration saturation with current in the lasing mode was observed. It is shown that this can be due to carrier heating at low quantum-confinement levels and an increase in light absorption by free holes in the waveguide.

  1. Method for cutting steam heat losses during cyclic steam injection of wells. Final report

    SciTech Connect (OSTI)

    Gondouin, M.

    1995-12-01T23:59:59.000Z

    Heavy Oil is abundant in California. It is a very viscous fluid, which must be thinned in order to flow from wells at economical rates. The best method of oil viscosity reduction is by cyclic steam injection into the oil-containing rock formations. Making steam in conventional generators fueled with Natural Gas is, however, a costly process. The main objective of this Project is to reduce the cost of the required steam, per Barrel of Oil produced. This is made possible by a combination of Patented new technologies with several known methods. The best known method for increasing the production rate from oil wells is to use horizontal drainholes, which provide a much greater flow area from the oil zone into the well. A recent statistic based on 344 horizontal wells in 21 Canadian Oil fields containing Heavy Oil shows that these are, on the average six times more prolific than vertical wells. The cost of horizontal wells, however, is generally two to three times that of a vertical well, in the same field, so our second goal is to reduce the net cost of horizontal wells by connecting two of them to the same vertical casing, well head and pumping system. With such a well configuration, it is possible to get two horizontal wells for the price of about one and a half times the price of a single vertical well.

  2. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes Keywords: III-Nitride InGaN QWs Light-emitting diodes Efficiency-droop a b s t r a c t Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes

  3. Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    DOE/NV

    2000-12-01T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) received effluent from truck-washing; the Drums/Oil Waste/Spill (CAS 06-20-01) consisted of four 55-gallon drums containing material removed from the Cased Hole; and the Cased Hole (CAS 06-20-02) was used for disposal of used motor oil, wastewater, and debris. These drums were transported to the Area 5 Hazardous Waste Accumulation Site in July 1991; therefore, they are no longer on site and further investigation or remediation efforts are not required. Consequently, CAS 06-20-01 will be closed with no further action and details of this decision will be described in the Closure Report for this CAU. Any spills that may have been associated with this CAS will be investigated and addressed under CAS 06-20-02. Field investigation efforts will be focused on the two remaining CASs. The scope of the investigation will center around identifying any contaminants of potential concern (COPCs) and, if present, determining the vertical and lateral extent of contamination. The COPCs for the Drain Pit include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (gasoline-and diesel-range organics), ethylene glycol monobutyl ether, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, and radionuclides. The COPCs for the Cased Hole include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (diesel-range organics only), and total Resource Conservation an d Recovery Act metals. Both biased surface and subsurface soil sampling will be conducted, augmented by visual inspection, video surveys, and electromagnetic surveys. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  4. Efficient charge carrier injection into sub-250?nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04T23:59:59.000Z

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250?nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246?nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235?nm and 263?nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234?nm with 14.5??W integrated optical output power and an external quantum efficiency of 0.012% at 18.2?A/cm{sup 2}.

  5. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L., E-mail: lauri.riuttanen@aalto.fi; Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Kivisaari, P.; Oksanen, J.; Tulkki, J. [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2014-02-24T23:59:59.000Z

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  6. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09T23:59:59.000Z

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  7. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26T23:59:59.000Z

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (? 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ? 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (? 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  8. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  9. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    SciTech Connect (OSTI)

    Mines, Greg

    2014-03-26T23:59:59.000Z

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  10. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect (OSTI)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01T23:59:59.000Z

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

  11. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect (OSTI)

    Pruess, K.; Doughty, C.

    2010-01-15T23:59:59.000Z

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  12. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, W.B. III.

    1993-02-16T23:59:59.000Z

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  13. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1993-01-01T23:59:59.000Z

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  14. Polymer treatments for D Sand water injection wells: Sooner D Sand Unit Weld County, Colorado. Final report, April 1997

    SciTech Connect (OSTI)

    Cannon, T.J.

    1998-10-01T23:59:59.000Z

    Polymer-gel treatments in injection wells were evaluated for improving sweep efficiency in the D Sandstone reservoir at the Sooner Unit, Weld County, Colorado. Polymer treatments of injection wells at the Sooner Unit were expected to improve ultimate recovery by 1.0 percent of original-oil-in-place of 70,000 bbl of oil. The Sooner D Sand Unit was a demonstration project under the US Department of Energy Class I Oil Program from which extensive reservoir data and characterization were obtained. Thus, successful application of polymer-gel treatments at the Sooner Unit would be a good case-history example for other operators of waterfloods in Cretaceous sandstone reservoirs in the Denver Basin.

  15. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    SciTech Connect (OSTI)

    Paque, M.J.

    1995-11-23T23:59:59.000Z

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  16. Productivity and injectivity of horizontal wells. Annual report, March 10, 1996--March 9, 1997

    SciTech Connect (OSTI)

    Aziz, K.; Hewett, T.A.; Arbabi, S.; Smith, M.

    1997-06-01T23:59:59.000Z

    Progress is reported on the following tasks: advanced modeling of horizontal wells; heterogeneous effects of reservoirs; development of improved methods for calculating multi-phase pressure drops within the wellbore; pseudo-functions; development of multi-well models;testing of HW models with field examples; enhanced oil recovery applications; and application studies and their optimization.

  17. Highly polarized emission from electrical spin injection into an InGaAs quantum well with free carriers

    SciTech Connect (OSTI)

    Li, C. H.; Jonker, B. T. [Naval Research Laboratory, Washington, D.C., 20375 (United States)] [Naval Research Laboratory, Washington, D.C., 20375 (United States); Kioseoglou, G. [Department of Materials Science and Technology, University of Crete, Heraklion Crete 71003 (Greece)] [Department of Materials Science and Technology, University of Crete, Heraklion Crete 71003 (Greece); Petrou, A. [SUNY Buffalo, Buffalo, New York 14260 (United States)] [SUNY Buffalo, Buffalo, New York 14260 (United States); Korkusinski, M.; Hawrylak, P. [Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A0R6 (Canada)] [Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa K1A0R6 (Canada)

    2013-11-18T23:59:59.000Z

    We report on a highly polarized emission from InGaAs/GaAs-quantum well light-emitting diodes in which we inject spin-polarized electrons from an Fe/Schottky contact. The emission spectra consist of the e{sub 1}h{sub 1} free exciton (FX) and a feature 12?meV below FX attributed to band-to-band (BB) recombination. The FX exhibits a maximum circular polarization of 22%, with a magnetic-field dependence characteristic of spin injection from Fe. The BB emission on the other hand exhibits a polarization that is strongly bias and temperature dependent, with intriguing magnetic-field dependence: The polarization exhibits a maximum of 78% at 2.5?T and 2?K, then decreases linearly with field and reaches ?78% at 7?T, attributed to magnetic-field dependent spin relaxation in the presence of excess electrons.

  18. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023 291,003

  19. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet) Decade Year-0

  20. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect (OSTI)

    Cornish, S., E-mail: cornish@physics.usyd.edu.au; Gummersall, D.; Carr, M.; Khachan, J. [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-09-15T23:59:59.000Z

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  1. Well injectivity during CO2storage operations in deep saline aquifers 6 Part 2: Numerical simulations of drying, salt deposit mechanisms and role of7

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 1 2 3 4 5 Well injectivity during CO2storage operations in deep saline aquifers ­6 Part 2 or industrial units and stored in underground geological reservoirs.30 Return on experience withCO2 injection-well field scale is proposed. This approach is of major40 importance because it makes it possible

  2. Idaho Application for Permit to Convert a Geothermal Injection Well - Form

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation 03Well -

  3. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01T23:59:59.000Z

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  4. The University of Puerto Rico is a well established and mature institution, with a total enrollment of

    E-Print Network [OSTI]

    Gilbes, Fernando

    The University of Puerto Rico is a well established and mature institution, with a total enrollment of Puerto Rico. It holds membership in the Middle States Commission on Higher Education since 1946 by professional entities. The Mayagüez Campus of the University of Puerto Rico is a member of Oak Ridge Associated

  5. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-03-01T23:59:59.000Z

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  6. Development of a Well Intervention Toolkit to Analyze Initial Wellbore Conditions and Evaluate Injection Pressures, Flow Path, Well Kill, and Plugging Procedures

    E-Print Network [OSTI]

    Paknejad, Amir S

    2009-08-03T23:59:59.000Z

    Every year, many wells are subject to well intervention operations for a variety of different reasons, such as Plug and Abandon (P&A) operations or well control situations. Wells that are not properly plugged, in addition becoming an inherent...

  7. Influence of temperature on the mechanism of carrier injection in light-emitting diodes based on InGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Prudaev, I. A., E-mail: jaia@pochta.ru; Golygin, I. Yu.; Shirapov, S. B.; Romanov, I. S.; Khludkov, S. S.; Tolbanov, O. P. [Tomsk State University (Russian Federation)] [Tomsk State University (Russian Federation)

    2013-10-15T23:59:59.000Z

    The experimental current-voltage characteristics and dependences of the external quantum yield on the current density of light-emitting diodes based on InGaN/GaN multiple quantum wells for the wide temperature range T = 10-400 K are presented. It is shown that, at low-temperatures T < 100 K, the injection of holes into the quantum wells occurs from localized acceptor states. The low-temperature injection of electrons into p-GaN occurs due to quasi-ballistic transport in the region of multiple quantum wells. An increase in temperature leads to an increase in the current which is governed by thermally activated hole and electron injection from the allowed bands of GaN.

  8. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01T23:59:59.000Z

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  9. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18T23:59:59.000Z

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  10. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect (OSTI)

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T. [Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse (France); Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y., E-mail: yuan.lu@univ-lorraine.fr [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Frougier, J.; Jaffrès, H.; George, J. M. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 avenue A. Fresnel, 91767 Palaiseau (France); Xu, B.; Wang, Z. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 (China); Zheng, Y. [Institut des NanoSciences de Paris, UPMC, CNRS UMR 7588, 4 place Jussieu, 75005 Paris (France); Tao, B. [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Han, X. F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)

    2014-07-07T23:59:59.000Z

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350?°C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  11. Development of a data management system for assistance in conducting area of reviews (AORS) on Class II injection wells in Oilahoma. Quarterly report, October 1 - December 31, 1996

    SciTech Connect (OSTI)

    Battles, M.S.; Schmidt, M.W.

    1997-01-01T23:59:59.000Z

    The purpose of this project is to provide the resources and capabilities necessary to permit the State of Oklahoma to conduct Area of Review (AOR) variance analysis on a statewide level. The project allows for the analysis and identification of areas which may qualify for AOR variances, the correlation of information from various databases and automated systems to conduct AORs in area which do not qualify for variances, the evaluation of the risk of pollution, during permitting and monitoring, using risk based data analysis, and the ability to conduct spatial analysis of injection well data in conjunction with other geographically referenced information.

  12. Overpressure prediction by mean total stress estimate using well logs for compressional environments with strike-slip or reverse faulting stress state

    E-Print Network [OSTI]

    Ozkale, Aslihan

    2007-04-25T23:59:59.000Z

    OVERPRESSURE PREDICTION BY MEAN TOTAL STRESS ESTIMATE USING WELL LOGS FOR COMPRESSIONAL ENVIRONMENTS WITH STRIKE-SLIP OR REVERSE FAULTING STRESS STATE A Thesis by ASLIHAN OZKALE Submitted to the Office of Graduate Studies... of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering OVERPRESSURE PREDICTION BY MEAN TOTAL STRESS ESTIMATE USING WELL LOGS...

  13. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01T23:59:59.000Z

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  14. Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    , and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, water saturation, and kerogen content determine the amount of hydrocarbon-in-place while mineral petrophysical interpretation techniques commonly used to quantify mineral composition from conventional well

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 546: Injection Well and Surface Releases Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-12-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 546, Injection Well and Surface Releases, at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 546 is comprised of two corrective action sites (CASs): • 06-23-02, U-6a/Russet Testing Area • 09-20-01, Injection Well The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 546. To achieve this, corrective action investigation (CAI) activities were performed from May 5 through May 28, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada (NNSA/NSO, 2008). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether a contaminant of concern is present at a given CAS. • Determine whether sufficient information is available to evaluate potential corrective action alternatives at each CAS. The CAU 546 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Because DQO data needs were met, and corrective actions have been implemented, it has been determined that no further corrective action (based on risk to human receptors) is necessary for the CAU 546 CASs. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective actions are needed for CAU 546 CASs. • No Corrective Action Plan is required. • A Notice of Completion to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 546. • Corrective Action Unit 546 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. Analytes detected during the CAI were evaluated against final action levels established in this document. No analytes were detected at concentrations exceeding final action levels. However, contaminants of concern were presumed to be present in the subsurface soil at CAS 09-20-01. Therefore, the corrective action of close in place was selected as the preferred alternative for this CAS. Potential source material was removed from CAS 06-23-02; therefore, the corrective action of clean closure was selected as the preferred alternative at this CAS.

  16. Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The work reported herein covers select tasks in Budget Phase 11. The principle Task in Budget Phase 11 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual C0{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative C0{sub 2} purchase agreement (no take-or-pay provisions, C0{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive chaotic texture. The chaotic modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non- reservoir rock. The chaotic reservoir rock extends from Zone C (4780`-4800`) to the lower part of Zone F (4640`-4680`). Zones D (4755`-4780`) and E (4680`-4755`) are considered the main floodable zones, though Zone F is also productive and Zone C is productive above the oil- water contact. During Budget Phase 1, the Stratamodel computer program was utilized as the primary tool to integrate the diverse geologic, petrophysical, and seismic data into a coherent three dimensional (3-D) model. The basic porosity model having been constructed, critiqued and modified based on field production and detailed cross-section displays, permeability data was imported into the model, and a 3-D interpolation of the permeability was completed.

  17. Underground Wells (Oklahoma)

    Broader source: Energy.gov [DOE]

    Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

  18. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01T23:59:59.000Z

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  19. Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7

    E-Print Network [OSTI]

    Boyer, Edmond

    Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

  20. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect (OSTI)

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01T23:59:59.000Z

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

  1. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  2. Optimization of Injection Scheduling in

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-I12 Optimization of Injection Scheduling in Geothermal Fields James Lovekin May 1987&injection optimization problem is broke$ into two subpmbkm:(1) choosing a configuration of injectorsfrom an existing set is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells

  3. Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells

    E-Print Network [OSTI]

    ) that use this process (minus the evaporation) to provide a brine solution for oilfield applications

  4. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-02-27T23:59:59.000Z

    The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the south Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within Task V field demonstration. Short progress reports are presented for field demonstration involving: drill horizontal injection wells 6C-25H and 7C-11H; and drill two vertical WAG injectors along South Cowden Unit boundary.

  5. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect (OSTI)

    NONE

    2005-01-01T23:59:59.000Z

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  6. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  7. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L.

    1999-10-28T23:59:59.000Z

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  8. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25T23:59:59.000Z

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  9. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, July 1, 1996--June 30, 1997

    SciTech Connect (OSTI)

    Dollens, K.B.; Harpole, K.J.; Durrett, E.G.; Bles, J.S.

    1997-12-01T23:59:59.000Z

    The work reported herein covers select tasks in Budget Phase 2. The principle Task in Budget Phase 2 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics.

  10. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

    1999-11-16T23:59:59.000Z

    The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

  11. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Arababi, Sepehr; Aziz, Khalid; Hayashida, Yasuyuki; Hewett, Thomas

    1999-11-08T23:59:59.000Z

    This quarterly report is based on the last activity above. It gives a brief account of the work and the complete study will be included in the next Annual Report of the project.

  12. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996

    SciTech Connect (OSTI)

    Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

    1997-05-01T23:59:59.000Z

    The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

  13. Fuel injection

    SciTech Connect (OSTI)

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01T23:59:59.000Z

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  14. Underground Injection Control Permits and Registrations (Texas)

    Broader source: Energy.gov [DOE]

    Chapter 27 of the Texas Water Code (the Injection Well Act) defines an “injection well” as “an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or...

  15. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  16. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  17. Continuous injection method controls downhole corrosion - 2

    SciTech Connect (OSTI)

    Bradburn, J.B.; Todd, R.B.

    1981-08-01T23:59:59.000Z

    In designing a continuous downhole corrosion inhibitor injection system, many interrelated factors must be considered: bottomhole pressure, inhibitor viscosity, injection rate, friction loss, hole geometry, cost, delivery time, annulus environment, elastomers, and corrosivity of well fluids. In view of the many variables associated with the design of a downhole injection system, the following design outline is presented. 8 refs.

  18. JET multi-pellet injection experiments

    SciTech Connect (OSTI)

    Kupschus, P.; Bartlett, D.V.; Behringer, K.; Campbell, D.J.; Cheetham, A.; Cordey, J.G.; Corti, S.; Gadeberg, M.; Gondhalekar, A.; Gottardi, N.A.; Jarvis, O.N.; Morgan, P.; O'Rourke, J.; Sadler, G.; Snipes, J.; Stubberfield, D.; Taroni, A.; Tubbing, B.; Von Hellermann, M. (JET Joint Undertaking, Abingdon (UK)); Baylor, L.R.; Houlberg, W.A.; Jernigan, T.C.; Milora, S.L. (Oak Ridge National Lab., TN (USA)); Galvao, R.

    1988-01-01T23:59:59.000Z

    The multiple injection of deuterium pellets into JET plasmas under various scenarios for limiter and X-point discharges with currents up to 5 MA with pure ohmic, neutral beam and RF heating has been undertaken in a collaborative effort between JET and an USDOE team under the umbrella of the EURATOM-USDOE (US Department of Energy) Fusion Agreement on Pellet Injection using an ORNL built 3-barrel, repetitive multi-pellet launcher. The best plasma performance with pellet injection and additional heating so far has been obtained by injecting early into 3 MA, 3.1 T pulses while centrally depositing the pellet mass, with N{sub eo} initially well in excess of 10{sup 20} m{sup {minus}3}. Subsequent central heating of this dense and clean core by ion cyclotron resonance heating (ICRH) with H and {sup 3}He minorities in the 10 MW range yields T{sub eo} up to 12 keV and T{sub io} up to more than 10 keV, while n{sub eo} is decreasing (within up to 1.5s) decaying to 0.6 {times} 10{sup 20} m{sup {minus}3}, suggesting an enhanced central energy confinement in limiter discharges with only modestly improved global L-mode confinement. In this plasma core electron pressures of more than 1 bar with gradients in the order of 4 bar*m{sup {minus}1} have been reached with the total pressure approaching ballooning stability limits. The resulting total neutron rate from D-D reactions of up to 4.5*10{sup 15} s{sup {minus}1} so far increases strongly with RF power and can exceed that of similar non-enhanced shots by factors of 3 to 5. n{sub D}(O)*T{sub i}(O)*{tau}{sub E}(a) products in the range of 1 to 2*10{sup 20} m{sup {minus}3} keVs are obtained but combined power with neutral beams (up to 28 MW total), generally degrades the performance though leading to higher neutron rates of up to 7*10{sup 15} s{sup {minus}1}. 10 refs., 8 figs.

  19. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  20. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  1. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01T23:59:59.000Z

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  2. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  3. Hanford wells

    SciTech Connect (OSTI)

    Chamness, M.A.; Merz, J.K.

    1993-08-01T23:59:59.000Z

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  4. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  5. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  6. Dimensions of Wellness Staying Well

    E-Print Network [OSTI]

    Fernandez, Eduardo

    to protect your physical health by eating a well-balanced diet, getting plenty of physical activity-evaluation and self-assessment. Wellness involves continually learning and making changes to enhance your state) A state in which your mind is engaged in lively interaction with the world around you. Intellectual

  7. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  8. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29T23:59:59.000Z

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  9. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  10. Activated Carbon Injection

    SciTech Connect (OSTI)

    None

    2014-07-16T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  11. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  12. Lower 48 States Total Natural Gas Injections into Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766236,957Cubicfrom

  13. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  14. Magnetohydrodynamic effects on pellet injection in tokamaks

    SciTech Connect (OSTI)

    Strauss, H.R. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States); Park, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    1998-07-01T23:59:59.000Z

    The location at which pellets are injected into a plasma can have a significant effect on what fraction of the pellet mass remains in the plasma for refueling purposes. Magnetohydrodynamic (MHD) simulations presented here, confirm the results of pellet injection experiments: toroidal curvature makes it favorable to inject pellets from the inboard side or from the top or bottom, rather than from the outboard side. Sufficiently large pellets injected at the inboard edge can reach the plasma center, and in the process drive magnetic reconnection to produce negative central shear. Injection at the top (or bottom) of the tokamak causes relatively little displacement of the pellet. A scaling law is obtained for pellet displacement which agrees well with the simulations. The MHD simulations were carried out with a new unstructured mesh finite element version of the MH3D full MHD code. {copyright} {ital 1998 American Institute of Physics.}

  15. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  16. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01T23:59:59.000Z

    cooperative program at the Cerro Prieto geothermal field.geothermal system: the Cerro Prieto field, Baja California,cold water entry in the Cerro Prieto geothermal reservoir

  17. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01T23:59:59.000Z

    CFE-DOE Symp. in Geothermal Energy, DOE CONF 8904129, pp.Proc. CFE-DOE Symp. in Geothermal Energy, DOE CONF 8904129,and Renewable Energy, Office of Geothermal Technologies, of

  18. WSDE Underground Injection Control Well Registration Form | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to: navigation, searchInformation

  19. Single Well Injection Withdrawl Tracer Tests for Proppant Detection -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkleSingin' in the Rain NewsSingleEnergy

  20. EPA - Underground Injection Control Classes of Wells webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2Ltd

  1. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring manual |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC SolarRFMD

  2. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03T23:59:59.000Z

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  3. Investigation of injection-induced seismicity using a coupled fluid ...

    E-Print Network [OSTI]

    2012-01-23T23:59:59.000Z

    injection of fluid for the extraction of geothermal heat: Journal of Geo- physical ... earthquakes: Disposal of waste fluids into a deep well has triggered earth-.

  4. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  5. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23T23:59:59.000Z

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  6. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01T23:59:59.000Z

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  7. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  8. Pellet injection technology

    SciTech Connect (OSTI)

    Combs, S.K. (Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8071 (United States))

    1993-07-01T23:59:59.000Z

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures ([congruent]10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of [congruent]1--2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1--40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice.

  9. Waterflood control system for maximizing total oil recovery

    DOE Patents [OSTI]

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07T23:59:59.000Z

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  10. Waterflood control system for maximizing total oil recovery

    DOE Patents [OSTI]

    Patzek, Tadeusz Wiktor (Oakland, CA); Silin, Dimitriy Borisovich (Pleasant Hill, CA); De, Asoke Kumar (San Jose, CA)

    2007-07-24T23:59:59.000Z

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  11. In situ bioremediation using horizontal wells

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  12. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  13. Accounting for Remaining Injected Fracturing Fluid

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  14. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18T23:59:59.000Z

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. The Future of Injection Molding in Food Packaging for the United States

    E-Print Network [OSTI]

    Meissbach, Kenneth

    2005-05-20T23:59:59.000Z

    threaten the future of injection molding. Continued development of materials, and processing equipment as well as the use of in mold labeling and integrated tamper evident packaging are opportunities for injection molding. The environmental issues...

  16. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery 

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a ...

  17. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  18. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  19. Alkaline flooding injection strategy

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1992-03-01T23:59:59.000Z

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  20. Testing geopressured geothermal reservoirs in existing wells. Saldana well No. 2, Zapata County, Texas. Volume I. Completion and testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-07T23:59:59.000Z

    The Saldana Well No. 2, approximately 35 miles Southeast of the city of Laredo, Texas, was the sixth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity Program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. The interval tested was from 9745 to 9820 feet. The geological section was the 1st Hinnant Sand, an upper member of the Wilcox Group. Produced water was injected into the Saldana Well No. 1, which was also acquired from Riddle Oil Company and converted to a disposal well. A Miocene salt water sand was perforated from 3005 to 3100 feet for disposal. One pressure drawdown flow test and one pressure buildup test were conducted during a 10-day period. A total of 9328 barrels of water was produced. The highest sustained flow rate was 1950 BWPD.

  1. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  2. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

  3. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31T23:59:59.000Z

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  4. Application of horizontal wells in steeply dipping reservoirs

    E-Print Network [OSTI]

    Lopez Navarro, Jose David

    1995-01-01T23:59:59.000Z

    horizontal wells can increase the oil recovery factor from almost 35% under primary production to 40%. A significant incremental oil recovery could be expected by employing horizontal wells for simultaneous gas and water injection. A comparison...

  5. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Querin, M.E. (USDOE Naval Petroleum Reserves in California, Tupman, CA (United States)); Williams, L.L. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1992-01-01T23:59:59.000Z

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980's by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  6. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Querin, M.E. [USDOE Naval Petroleum Reserves in California, Tupman, CA (United States); Williams, L.L. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1992-02-01T23:59:59.000Z

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  7. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  8. Underground Injection Control Program Rules and Regulations (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

  9. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor manyInhibiting IndividualInjection

  10. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  11. Effects of Water Injection into Fractured Geothermal Reservoirs: A Summary of Experience Worldwide

    SciTech Connect (OSTI)

    Horne, Roland N.

    1982-06-01T23:59:59.000Z

    Reinjection of water into fractured geothermal reservoirs holds potential both for improvement and degradation of total energy recovery. The replacement of reservoir fluid can mean support of placement of reservoir pressures and also more efficient thermal energy recovery, but at the same time the premature invasion of reinjected water back into production wells through high permeability fractures can reduce discharge enthalpy and hence deliverability and useful energy output. Increases in reservoir pressure and maintenance of field output have been observed in operating fields, but unfortunately so too have premature thermal breakthroughs. The design of reinjection schemes, therefore, requires careful investigation into the likely effects, using field experimentation. This paper summarizes field experience with reinjection around the world, with the intention of elucidating characteristics of possible problems. The results summarized in this paper fall into three categories of interest: permeability changes dye to injection (both increases and decreases); the path followed by injected water (as indicated by tracer tests); and the thermal and hydraulic influences of injection on the reinjection well itself and on surrounding producers. [DJE-2005

  12. Steady improved confinement in FTU high field plasmas sustained by deep pellet injection

    E-Print Network [OSTI]

    Vlad, Gregorio

    Steady improved confinement in FTU high field plasmas sustained by deep pellet injection D to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas also feature high to the input power due to particle concentration in the well confined hot core. Deep pellet injection (e

  13. Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection

    E-Print Network [OSTI]

    Vlad, Gregorio

    Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection D at the maximum nominal toroidal field (8 T), and lower, by deep multiple pellet injection. These plasmas featured due to particle concentration in the well confined hot core. Deep pellet injection in Alcator C high

  14. Do Well, Be Well with Diabetes

    E-Print Network [OSTI]

    Do Well, Be Well with Diabetes Do Well, Be Well with Diabetes Lesson Topics ·WhatisDiabetes? ·Nutrition­FirstSteptoDiabetesManagement ·OneDiabetesDiet­NoLongertheSoleOption ·ManagingYourBloodGlucose ·NutritionalLabels ·DiabetesandExercise ·ForGoodMeasureatHomeandEatingOut ·DiabetesMedicines ·Preventingand

  15. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15T23:59:59.000Z

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  16. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  17. How the world's largest seawater injection system was designed

    SciTech Connect (OSTI)

    Morrison, J.B.; Jorque, M.A.

    1981-07-01T23:59:59.000Z

    The world's largest seawater injection system went on stream in Saudi Arabia in June 1978 to furnish 4.2 million bpd of water for pressure maintenance in the Uthmaniyah sector of the giant Ghawar Field. The operator, Aramco, first began water injection along the flanks in this field in 1966 using gravity injection wells. This gravity system gave way to a pressurized system under a program started in 1973. During this period, the primary source for injection was saline water from the Wasia Aquifer in the Uthmaniyah area. In 1974 it was determined that this aquifer could not supply the design requirement of 4.2 million bpd of saline water. Therefore, it was decided to convert the injection system to seawater obtained from the Arabian Gulf. This required the design and construction of a seawater treating plant and installation of pipelines and intermediate pump stations to transport the water from the treating plant to the existing Uthmaniyah Water Supply Station.

  18. Common Rail Injection System Development

    SciTech Connect (OSTI)

    Electro-Motive,

    2005-12-30T23:59:59.000Z

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

  19. Well completion process for formations with unconsolidated sands

    DOE Patents [OSTI]

    Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

    2003-04-29T23:59:59.000Z

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  20. Terahertz graphene lasers: Injection versus optical pumping

    SciTech Connect (OSTI)

    Ryzhii, Victor; Otsuji, Taiichi [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, Maxim [Computational Nanoelectronics Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, Vladimir [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 14260-1920 (United States)

    2013-12-04T23:59:59.000Z

    We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The model used accounts for intraband and interband relaxation processes as well as deviation of the optical phonon system from equilibrium. As shown, optical pumping suffers from a significant heating of both the electron-hole plasma and the optical phonon system, which can suppress the formation of population inversion. In the graphene structures with p-i-n junction, the injected electrons and holes have relatively low energies, so that the effect of cooling can be rather pronounced, providing a significant advantage of the injection pumping in realization of graphene terahertz lasers.

  1. Injection nozzle for a turbomachine

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11T23:59:59.000Z

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  2. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01T23:59:59.000Z

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  3. Horizontal well applications in complex carbonate reservoirs

    SciTech Connect (OSTI)

    Rahman, M.; Al-Awami, H.

    1995-10-01T23:59:59.000Z

    Over the past four years, Saudi Aramco has drilled over eighty horizontal wells, onshore and offshore. It has successfully applied this technology to develop new reservoirs as well as enhance recovery from its mature fields. This paper presents the reservoir engineering aspects of `horizontal` and `high angle` wells drilled in a major offshore field in Saudi Arabia. It shows how horizontal wells have (a) increased the recovery of bypassed oil, (b) improved well productivity in tight reservoirs, (c) increased production from thin oil zones underlain by water, and (d) improved peripheral injection. The paper discusses the actual performance of the horizontal wells and compares them with offset conventional wells. It presents the results of logging and testing of these wells, and highlights actual field data on (a) relationship between productivity gain and horizontal length, (b) pressure loss along the horizontal wellbore, and (c) effect of heterogeneity on coning an inflow performance.

  4. NEUTRAL-BEAM INJECTION

    SciTech Connect (OSTI)

    Kunkel, W.B.

    1980-06-01T23:59:59.000Z

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

  5. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16T23:59:59.000Z

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  6. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  7. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Fueling efficiency of pellet injection on DIIID* L.R. Baylora

    E-Print Network [OSTI]

    Fueling efficiency of pellet injection on DIII­D* L.R. Baylora , T.C. Jernigana , C.J. Lasnierb , R of conditions in which to examine the fueling efficiency of pellets injected into DIII- D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel

  10. A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste

    E-Print Network [OSTI]

    Tsang, C.-F.

    2009-01-01T23:59:59.000Z

    J. , and Jammes, L. , Well integrity in CO 2 environments:nine areas: Injection well integrity Abandoned well problemswastes. A number of well-integrity failures in the 1960s and

  11. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  12. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...

  13. Regulations of Wells (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water...

  14. Groundwater and Wells (Nebraska)

    Broader source: Energy.gov [DOE]

    This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

  15. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01T23:59:59.000Z

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  16. The effect of injection hole geometry on flat plate film cooling and heat transfer

    E-Print Network [OSTI]

    Madsen, Eric Perry

    1994-01-01T23:59:59.000Z

    conducted at 50 000 Reynolds number , wi th bo th a ir and C02 inject ion and at f our b lowing ratios for r\\ and a l l five b lowing ratios for h . Each slot con f igurat ion was designed to give a total cross-sectional area equal to that of the holes... Averaged Heat Trans fer Coeff icient Ratio for 45? Hole Injection 20 approx imate ly 1.05. In contrast to 0? hole injection, 45? hole inject ion projects a larger cross-sect ional area to the mainf low, wh i ch results i n h igher turbu lence...

  17. Rabbit response to intravenously injected chicken and guinea pig gamma globulins

    E-Print Network [OSTI]

    Butler, Thomas Milton

    1968-01-01T23:59:59.000Z

    to obtain antisera for each gamma globulin. The injection material consisted of individual alum precipitated fluids prepared by mixing a 3. 0/ solution of the respec- tive gamma globulins and a 1% alum solution (KA1(SO4)2 ' 12H20) in a 1:1 ratio... and flocculating with a 0. 1N NaOH solution. One intravenous injection per day of the alum precipitated protein was given every other day for a total of three injections (the first injection was 1 ml. , the second 1. 5 ml. and the third 2. 0 ml. ). The animals...

  18. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  19. The energy injection and losses in the Monte Carlo simulations of a diffusive shock

    E-Print Network [OSTI]

    Wang, Xin

    2011-01-01T23:59:59.000Z

    Although diffusive shock acceleration (DSA) could be simulated by some well-established models, the assumption of the injection rate from the thermal particles to the superthermal population is still a contentious problem. But in the self-consistent Monte Carlo simulations, because of the prescribed scattering law instead of the assumption of the injected function, hence particle injection rate is intrinsically defined by the prescribed scattering law. We expect to examine the correlation of the energy injection with the prescribed multiple scattering angular distributions. According to the Rankine-Hugoniot conditions, the energy injection and the losses in the simulation system can directly decide the shock energy spectrum slope. By the simulations performed with multiple scattering law in the dynamical Monte Carlo model, the energy injection and energy loss functions are obtained. As results, the case applying anisotropic scattering law produce a small energy injection and large energy losses leading to a s...

  20. Injection system for small betatron

    SciTech Connect (OSTI)

    Zuorygin, V.P.; Chakhlov, V.L.; Pushin, U.S.

    1985-07-01T23:59:59.000Z

    In order to reduce the head loads on the injector electrodes and to raise the efficiency of electron capture during acceleration, small betatrons are provided with an injection system with a controlled three-electrode injector in which injection current pulse with steep leading and trailing edges is formed by the application of a voltage pulse to the control electrode from a separate circuit through a pulse transformer. In a betatron injection system described, elements of the controlled injector of the accelerating chamber are used to correct the shape of the current pulse. The circuit for correcting the current-pulse shape can increase the accelerated charge by the average of 75% per betatron cycle and decrease the heat loads on the electrodes of the injector without the use of a generator of controlling voltage pulses.

  1. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01T23:59:59.000Z

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  2. Plugging Abandoned Water Wells

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28T23:59:59.000Z

    This brochure explains the threat of abandoned water wells to groundwater resources and the responsibility and liability of Texas property owners. It offers information to landowners on ways to plug such wells....

  3. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01T23:59:59.000Z

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  4. Horizontal well circulation tool

    SciTech Connect (OSTI)

    Not Available

    1990-11-06T23:59:59.000Z

    This patent describes an apparatus for securement onto one end of a continuous length of remedial tubing introducible into a subterranean well and concentrically insertable through production tubing previously positioned within the well. The well having a deviated configuration including an entry portion communicating with a curved portion extending downwardly in the well from the entry portion, and a generally linear end portion traversable with a production formation.

  5. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  6. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  7. Fueling efficiency of pellet injection on DIII-D

    SciTech Connect (OSTI)

    Baylor, L.R.; Jernigan, T.C.; Maingi, R. [Oak Ridge National Lab., TN (United States); Lasnier, C.J. [Lawrence Livermore National Lab., CA (United States); Ali Mahdavi, M. [General Atomics, San Diego, CA (United States)

    1998-05-01T23:59:59.000Z

    Pellet injection has been used on the DIII-D tokamak to study density limits and particle transport in H-mode and inner wall limited L-mode plasmas. These experiments have provided a variety of conditions in which to examine the fueling efficiency of pellets injected into DIII-D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel atoms, is determined by measurements of density profiles before and just after pellet injection. The authors have found that there is a decrease in the pellet fueling efficiency with increased neutral beam injection power. The pellet penetration depth also decreases with increased neutral beam injection power so that, in general, fueling efficiency increases with penetration depth. The fueling efficiency is generally 25% lower in ELMing H-mode discharges than in L-mode due to an expulsion of particles with a pellet triggered ELM. A comparison with fueling efficiency data from other tokamaks shows similar behavior.

  8. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

  9. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  10. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

    2011-11-15T23:59:59.000Z

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  11. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  12. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30T23:59:59.000Z

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  13. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  14. Production and Injection data for NV Binary facilities

    SciTech Connect (OSTI)

    Mines, Greg

    2013-12-24T23:59:59.000Z

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  15. September 26th, 2006 The Use of Water Injection for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    methane Coal surface Desorption of Methane and Gas Production #12;Coal surface Abandoned CBM Well Depleted Reservoir #12;Coal surface CO2 Injection Process CO2 molecule #12;Coal surface Free CO2 on the Cleat System for Reservoir Data Model Design Conclusions, Publications, Redesign #12;Defining the Model #12;Model Design

  16. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-07-15T23:59:59.000Z

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  17. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28T23:59:59.000Z

    is one of our state?s most precious resources. Groundwater from aquifers (underground layers of porous rock or sand containing water, into which wells can be drilled) supplies over half of the water used in the state. Protecting the quality of this vital... of Licensing and Regulation (TDLR). Abandoned wells are a threat to our water supply An abandoned well is a direct channel from the surface to the aquifer below. Contaminants that enter a well are introduced directly into the aquifer with no opportunity...

  18. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15T23:59:59.000Z

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  19. Impurity pellet injection experiments at TFTR

    SciTech Connect (OSTI)

    Marmar, E.S.

    1992-01-01T23:59:59.000Z

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ( lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li[sup +] line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li[sup +] emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from [approximately]0.3 to [approximately]7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  20. Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    particle injection* W. P. Leemans,,a) P. Volfbeyn, K. Z. Guo, and S. Chattopadhyay Ernest Orlando Lawrence-based injection of particles into a plasma wake, are presented. Details of the experimental program at Lawrence for the accel- erating fields as well as guiding for the laser, and a suitable laser driver. The most

  1. Extending the Reach of a Rod Injected into a Cylinder Through Distributed Vibration

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    of rods fo- cused on the case of compression of a fixed length of rod inside of a frictionless cylinder [7Extending the Reach of a Rod Injected into a Cylinder Through Distributed Vibration Jay T. MIller. The injection speed (be- low a critical value that we uncover), as well as the ampli- tude and frequency

  2. Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection F-acting solenoid valves to meet the demands of pulsed detonation fuel injection and other high-frequency devices is presented. The micro-valve was found to performance well above the manufacturer's rated frequency under no

  3. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

  4. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  5. Control of water coning in gas reservoirs by injecting gas into the aquifer

    E-Print Network [OSTI]

    Haugen, Sigurd Arild

    1980-01-01T23:59:59.000Z

    implicit model. The model is thoroughly tested for both coning and other problems, including both gas and oil. It was very stable, allowing a maximum saturation change per timestep as high as 10 per cent. The condition simulated was a well in the center... of 10. The Behavior of the Injected Gas Gas was injected at different depths below the initial gas/water contact. The perforation interval for injection was 20 feet for all tests, and the r ate of injection varied, depending on the investigation. 24...

  6. An environmental analysis of injection molding

    E-Print Network [OSTI]

    Thiriez, Alexandre

    2006-01-01T23:59:59.000Z

    This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

  7. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  8. Geothermal well stimulation

    SciTech Connect (OSTI)

    Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

    1980-01-01T23:59:59.000Z

    All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

  9. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  10. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  11. Isobaric groundwater well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  12. Subsurface well apparatus

    SciTech Connect (OSTI)

    Rubbo, R.B.; Bangert, D.S.

    1993-07-13T23:59:59.000Z

    An apparatus is described for completing a subterranean well, comprising: a tubular conduit portion made up within a tubular conduit string of the type extending from a point near the surface of the earth to a remote point downwardly within said well and which is in contact with a fluid source within said well, said tubular conduit portion forming an imperforate wall and defining a central bore radially inward and further defining an exterior surface; an activating fluid body in communication with, and disposed at least in-part within, said central bore of tubular conduit portion; signal generating means including at least one sensor member coupled to said exterior surface of said tubular conduit portion for detecting circumferential stress in said imperforate wall defined by said tubular conduit portion and for producing an output signal corresponding thereto; a well bore tool disposed exteriorly of said tubular conduit portion, and including an actuating member for performing at least one desired completion function; and control means responsive to a predetermined output signal from said signal generating means for selectively activating said well bore tool and causing said actuating member to perform at least one desired completion function.

  13. Bitumen production through a horizontal well

    SciTech Connect (OSTI)

    Livesey, D.B.; Toma, P.

    1987-02-03T23:59:59.000Z

    This patent describes a method for thermal stimulation and production of a viscous hydrocarbon from a reservoir having a productive layer which retains the hydrocarbon until the latter is made flowable by contact with a hot stimulating medium. The method includes the steps of: forming a borehole having a substantially horizontal segment which transverses the productive layer, registering a well completion in the borehole which includes; an elongated perforate well liner, a fluid conduit extending through the liner and having a discharge end, and a well head at the liner upper end communicated with the fluid conduit, positioning a variable length flow diverter in the liner adjacent to the fluid conduit discharge end, whereby to define a quasi-barrier in the liner which is pervious to passage of the hot stimulating medium, and which divides the liner into injection and production segments respectively, heating the productive layer about the substantially horizontal segment of the elongated liner, introducing a pressurized stream of the hot stimulant through the fluid conduit and into the liner injection segment, and producing hydrocarbon emulsion which flows into the liner production segment.

  14. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01T23:59:59.000Z

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  15. Spacer for deep wells

    SciTech Connect (OSTI)

    Klein, G. D.

    1984-10-23T23:59:59.000Z

    A spacer for use in a deep well that is to have a submersible pump situated downhole and with a string of tubing attached to the pump for delivering the pumped fluid. The pump is electrically driven, and power is supplied via an armored cable which parallels the string of tubing. Spacers are clamped to the cable and have the tubing running through an eccentrically located passage in each spacer. The outside dimensions of a spacer fit freely inside any casing in the well.

  16. New Pellet Injection Schemes on DIII-D

    SciTech Connect (OSTI)

    Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

    1999-11-13T23:59:59.000Z

    The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

  17. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21T23:59:59.000Z

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  19. Compendium of regulatory requirements governing underground injection of drilling waste.

    SciTech Connect (OSTI)

    Puder, M. G.; Bryson, B.; Veil, J. A.

    2002-11-08T23:59:59.000Z

    Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

  20. Results of injection and tracer tests in Olkaria north east field in Kenya

    SciTech Connect (OSTI)

    Karingithi, C.W. [Kenya Power Company Ltd., Naivasha (Kenya)

    1995-12-31T23:59:59.000Z

    Tracer and injection tests were performed in the Olkaria North East Field with the objective to reduce uncertainty in the engineering design and to determine the suitability of well OW-704 as a re-injection well for the waste brine from the steam field during production. An organic dye (sodium fluorescein) was injected into well OW-704 as a slug. The tracer returns were observed in well OW-M2 which is 580 m deep, 620 m from well OW-704 and well OW-716 which is 900 m from well OW-704. The other wells on discharge, OW-714, and OW-725 did not show any tracer returns. However, other chemical constituents suggested., that well OW-716 experienced a chemical breakthrough earlier than OW-M2. Tracer return velocities of 0.31 m/hr and 1.3 m/hr were observed. Results of the tracer and injection tests indicate that OW-704 may be used as a re-injection well provided a close monitoring program is put in place.

  1. Well valve control system

    SciTech Connect (OSTI)

    Schwendemann, K.L.; McCracken, O.W.; Mondon, C.G.; Wortham, L.C.

    1987-01-13T23:59:59.000Z

    A system is described for controlling well testing through an upper and lower test string with a subsea test tree connected therebetween and latch means to release the upper test string from the subsea test tree comprising: a. first and second selectively programmable microprocessor means; b. means for storing system operating limits in each microprocessor means; c. means for changing the operating limits in response to changes in well conditions; d. means for communicating operating fluid pressure to the subsurface test tree and the latch means; e. solenoid pilot valves controlling the flow of the operating fluid pressure to the subsea test tree and the latch means; f. the first microprocessor means located at a central control console; g. the second microprocessor means located near the solenoid valves; h. means for transmitting signals between the first and second microprocessor means and validating the accuracy of the signals; and i. electronic circuits to control operation of the solenoid valves in response to validated signals.

  2. Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates

    SciTech Connect (OSTI)

    Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

    1996-12-31T23:59:59.000Z

    Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

  3. Shock Chlorination of Wells

    E-Print Network [OSTI]

    McFarland, Mark L.; Dozier, Monty

    2003-06-11T23:59:59.000Z

    method) will be necessary to ensure the safety of the water supply. Shock chlorination introduces very high levels of chlorine into a water system. During the disinfec- tion process, water from the system is not suitable for consumption and neither people... system or other continuous disinfection sys- tem. For more information about wellhead protection, see the Tex-A-Syst rural water well assessment pub- lications (B-6023 through B-6032) available from Texas Cooperative Extension. 3 This publication...

  4. Decontaminating Flooded Wells

    E-Print Network [OSTI]

    Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

    2005-09-30T23:59:59.000Z

    ER-011 6-06 Mark L. McFarland, Associate Professor and Extension Water Resources Specialist; Diane E. Boellstorff, Program Specialist Water Quality; Tony L. Provin, Associate Professor and Extension Soil Chemist; Monty C. Dozier, Assistant... and local hospitals may also test water samples for bacteria. The cost of the test ranges from $8 to $30, depending on the lab. Well disinfection does not eliminate hydrocarbons (fuels, oils), pesticides, heavy metals or other types of nonbiological...

  5. Helicopter Surveys for Locating Wells and Leaking Oilfield Infrastructure

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.; Hodges, G. (Fugro Airborne Surveys)

    2006-10-01T23:59:59.000Z

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys

  6. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov (indexed) [DOE]

    for Geothermal Wells Principal Investigator George Trabits Trabits Group, LLC Track 2 Materials Project Officer: Eric Hass Total Project Funding: 2,154,238 April 24, 2013 This...

  7. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan KingGreg Stillman Total budget: 300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi...

  8. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  9. Impacts of Humic Injection Experiments on the South Oyster Field Research Site

    SciTech Connect (OSTI)

    John F. McCarthy

    2004-04-27T23:59:59.000Z

    A closure plan for the South Oyster Focus Area (SOFA) is being implemented to assess the impacts of a series of experimental injections of microorganisms, tracers and chemical amendments on the chemical and physical properties of the aquifer. The proposed research addresses environmental monitoring of humic substances injected into the aquifer, as described in the Site Closure Plan for the South Oyster Field Research Site. The goal of the research is to demonstrate that the dissolved organic matter (DOM) in the groundwater at and downgradient from the injection site has returned to a pre-injection �baseline� conditions with respect to either the concentration or chemical composition of the DOM. For clarity, the humic solution injected during the experiment will be referred to as �humic injectate.� The term �DOM� will refer to the organic material recovered in the groundwater, which includes the autochthonous groundwater DOM as well as any of the humic injectate remaining in the groundwater. Specific objectives include: � Estimate the amount of humic material remaining in the aquifer at the completion of the push-pull experiment and the potential for environmental impacts due to release of humics retained on the sediments. � Monitor the DOM concentrations in groundwater over time at the injection well and at sampling locations within the potential downgradient plume of the injected tracers. � Evaluate the chemical composition of the DOM to determine whether the injection experiment had an impact of the chemical properties of the aquifer. The product of this research will be a contribution to the Site Closure Report documenting the impact of the humic experiments on the aquifer. Return of the aquifer to a �baseline� conditions will be achieved if the DOM concentrations in the groundwater are determined over the course of the research to have decreased to the pre-injection level, or if the chemical properties of the DOM are similar to that of the autochthonous DOM.

  10. Results of injection and tracer tests in Olkaria East Geothermal Field

    SciTech Connect (OSTI)

    Ambusso, Willis J.

    1994-01-20T23:59:59.000Z

    This paper presents results of a six month Injection and Tracer test done in Olkaria East Geothermal Field The Injection tests show that commencement of injection prior to onset of large drawdown in the reservoir leads to greater sustenance of well production and can reduce well cycling which is a common feature of wells in Olkaria East Field. For cases where injection is started after some drawdown has occurred in the reservoir, injection while leading to improvement of well output can also lead to increase in well cycling which is a non desirable side effect. Tracer tests reveal slow rate of fluid migration (< 5 m/hr). However estimates of the cumulative tracer returns over the period of injection is at least 31% which is large and reveals the danger of late time thermal drawdown and possible loss of production. It is shown in the discussion that the two sets of results are consistent with a reservoir where high permeability occurs along contact surfaces which act as horizontal "fractures" while the formations between the "fractures" have low permeability. This type of fracture system will lead to channeled flow of injected fluid and therefore greater thermal depletion along the fractures while formations further from the fracture would still be at higher temperature. In an attempt to try and achieve a more uniform thermal depletion in the reservoir, it is proposed that continuous injection be done for short periods (~2 years) and this be followed by recovery periods of the nearly the same length of time before resumption of injection again.

  11. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  12. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  13. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  14. A comparative analysis of numerical simulation and analytical modeling of horizontal well cyclic steam injection

    E-Print Network [OSTI]

    Ravago Bastardo, Delmira Cristina

    2005-08-29T23:59:59.000Z

    APPENDIX C ECONOMIDES JOSHI COLD PRODUCTIVITY INDEX ??.......215 VITA???????????????????????????.................216 16 17 18 19 20 21 22 23 24 ix 25 LIST OF TABLES Page Table 3...

  15. Calculation of unsteady-state heat and mass transfer in steam injection wells

    E-Print Network [OSTI]

    Ruddy, Kenneth Edward

    1986-01-01T23:59:59.000Z

    ) and (5) are defined as the fluid flow equations for the gas and liquid phases, respectively. Mass Balance E uation The thermodynamic system under consideration is a vertical cylindri- cal conduit as depicted in figure 1. A mass balance applied... Equation Method of Solution. RESULTS Comparison with Field Data. Comparison with Results from Steady-State Mass Transfer Model CONCLUSIONS NOMENCLATURE . REFERENCES APPENDIX A: TURBULENCE FACTOR. APPENDIX B: RELATIVE FLUID CONDUCTIVITT. Page vi...

  16. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:Energy Joshua DeLung What does this

  17. Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002)|

  18. File:05HIADrillingAndModificationOfWellsForInjectionUsePermit (1).pdf |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to:-FD-a - DrillingPreApplicationProcess.pdfOpen Energy Information

  19. Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal FieldKGRA, Idaho.Reston,|

  20. Texas Water Code 27A General Provisions for Injection Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/WindPetroleum Storage Tanks

  1. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01T23:59:59.000Z

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  2. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect (OSTI)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18T23:59:59.000Z

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  3. Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds

    SciTech Connect (OSTI)

    Gasperikova, E.; Hoversten, G.M.

    2008-09-01T23:59:59.000Z

    A sensitivity study of gravity and electromagnetic (EM) techniques, and amplitude vs. angle (AVA) analysis for CO{sub 2} movement in coal beds was based on the SECARB pilot test planned in the Black Warrior basin in Alabama. In the area of interest, coalbed methane is produced mainly from the Black Creek, Mary Lee, and Pratt coal zones at depths between 400 and 700 m and approximately 3 m thick on average. The permeability of coal in the Black Warrior basin decreases exponentially with depth as overburden stress increases. The permeability of the top layer is 100 mD, while the permeability of the deepest layer is around 1 mD. The pilot field test will include injecting a total of 1000 tons of CO{sub 2} into these three coal zones ({approx}300 tons to each zone). The density, sonic and resistivity well-logs from a deep disposal well a couple of miles from the pilot test site were used to create background (pre-injection) models. Our laboratory measurements of seismic velocity and electrical resistivity as a function of CO{sub 2} saturation on coal core samples were used to provide a link between the coalbed CO{sub 2} flow simulation models and the geophysical models. The sensitivity studies showed that while the response to the 300 tons of CO{sub 2} injected into a single layer wouldn't produce measurable surface response for either gravity or EM, the response due to an industrial-size injection would produce measurable surface signal for both techniques. Gravity inversion results illustrated that, provided we can collect high-quality gravity data in the field and we have some a priori information about the depth of the reservoir, we can recover the spatial location of CO{sub 2} plume correctly, although with the smoothing constraint of the inversion, the area was slightly overestimated, resulting in an underestimated value of density change. AVA analysis showed that by inverting seismic and EM data jointly, much better estimates of CO{sub 2} saturation can be obtained, especially in the third injection zone, where seismic AVA data fail to detect the high CO{sub 2} saturation. Analysis of spatial resolution and detectability limits show that gravity and EM measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

  4. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  5. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  6. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  7. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  9. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  10. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  11. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Investigation of Effect of Injection Parameters, Compression Ratio and Ultra-cooled EGR on CI Engine Performance and Emissions Low temperature combustion,...

  12. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  13. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

  14. Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport

    SciTech Connect (OSTI)

    M.A. Plummer

    2013-09-01T23:59:59.000Z

    Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

  15. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect (OSTI)

    Perkins, B.L.

    1982-01-01T23:59:59.000Z

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  16. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  17. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  18. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  19. Disposal of produced waters: Undergrown injection option in the Black Warrior Basin

    SciTech Connect (OSTI)

    Ortiz, I.; Weller, T.F.; Anthony, R.V. (United Energy Development Consultants, Pittsburgh, PA (United States)); Dziewulski, D. (BioIndustrial Technologies, Pittsburgh, PA (United States)); Lorenzen, J. (ResTech, Pittsburgh, PA (United States)); Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States))

    1993-08-01T23:59:59.000Z

    The disposal of large volumes of water produced simultaneously with coal-bed methane is a costly, environmentally sensitive problem. Underground injection into deeper, naturally fractured, low-porosity formations is feasible provided that the total dissolved solids level of these formation waters comply with Environmental Protection Agency guidelines. Greater fracture density in proximity to structures formed by Appalachian and Ouachita tectonism, along with a higher total dissolved solids level in both the production and injection formation waters, occurs in the eastern, southern, and northern margins of the coal-bed methane (CBM) area of the Black Warrior basin in Alabama. Injection permeability is developed where fractures intersect formations with suitable lithologies and thickness. Initial results indicate that the lower Pottsville sands, which thicken to the south, have the highest initial injection potential, although these sands appear dirty and tight on the logs. Normal faulting and matrix porosity, in addition to fracturing, may increase permeability in this formation. In the shallower, northern edge of the CBM area, thin-bedded Mississippian sands with high porosity, such as the Hartzelle, may be present. Injection potential also occurs in the fractured Devonian chert and silecous carbonate lithologies in the Upper Silurian where they thicken to the southwest, and in sandy carbonate lithologies in the undifferentiated Silurian and Ordovician at the eastern margin of the overthrust. The Cambrian-Ordovician Knox Formation has injection potential in a 6-mi wide zone at the eastern margin of the basin, where the upper Knox is dolomitized below the unconformity.

  20. The recovery of oil from carbonate reservoirs by fluid injection

    E-Print Network [OSTI]

    Coleman, Dwayne Marvin

    1954-01-01T23:59:59.000Z

    Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... index meas- ured on the wells is equal to ths productivity index estimated from cores, In reviewing the published work on the oil recovery by water in]ec- tion to be expected from non-oolitic carbonate formations, dependable methods of prediction...

  1. Well Monitoring Systems for EGS

    Broader source: Energy.gov (indexed) [DOE]

    cost for well stimulation and improves reservoir tracking. * Well stimulation through hydro-fracturing is very expensive - Our system can be in the well before stimulation,...

  2. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    E-Print Network [OSTI]

    Bhat, C M; Chaurize, S J; Garcia, F G; Seiya, K; Pellico, W A; Sullivan, T M; Triplett, A K

    2015-01-01T23:59:59.000Z

    We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  4. Effects of spin doping and spin injection in the luminescence and vibrational spectrum of C{sub 60}

    SciTech Connect (OSTI)

    Moorsom, Timothy; Wheeler, May; Taukeer Khan, Mohd; Al Ma'Mari, Fatma; Burnell, Gavin; Hickey, Bryan J.; Cespedes, Oscar, E-mail: o.cespedes@leeds.ac.uk [School of Physics and Astronomy, University of Leeds, LS2 9JT W. Yorkshire (United Kingdom); Lazarov, Vlado; Gilks, Daniel [Department of Physics, University of York, YO10 5DD N. Yorkshire (United Kingdom)

    2014-07-14T23:59:59.000Z

    We have studied the Raman spectrum and photoemission of hybrid magneto-fullerene devices. For C{sub 60} layers on cobalt, the spin polarized electron transfer shifts the photoemission energy, reducing the zero phonon contribution. The total luminescence of hybrid devices can be controlled via spin injection from magnetic electrodes, with changes of the order of 10%–20% at room temperature. Spin polarised currents alter as well the Raman spectrum of the molecules, enhancing some modes by a factor 5 while shifting others by several wavenumbers due to a spin-dependent hopping time and/or enhanced intermolecular interactions. These results can be used to measure spin polarisation in molecules or to fabricate magneto-optic and magneto-vibrational devices.

  5. OAR 340-044 - Construction and Use of Waste Disposal Wells or...

    Open Energy Info (EERE)

    OAR 340-044 - Construction and Use of Waste Disposal Wells or Other Underground Injection Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  6. Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid

    E-Print Network [OSTI]

    Hwang, Yun Suk

    2012-02-14T23:59:59.000Z

    Hydraulic fracturing is a well-established technology of generating highly conductive flow path inside the rock by injecting massive amount of fracturing fluid and proppant with sufficient pressure to break the formation apart. But as the concern...

  7. Characteristics of Microseismicity in the DV11 Injection Area, Southeast Geysers, California

    SciTech Connect (OSTI)

    Kirkpatrick, Ann; Peterson Jr., John E.; Majer, Ernest L.; Nadeau, Robe rt

    1998-11-01T23:59:59.000Z

    Microearthquake (MEQ) occurrence surrounding the injection well DV11 in Unit 18 of the Southeast (SE) Geysers is investigated. Seismicity rates are compared to the injection rate, and to flow rates in nearby steam extraction wells, which were monitored during the Unit 18 Cooperative Injection Test in 1994 and 1995. The seismicity rate is seen to mirror both injection and production rates, although a time lag sometimes occurs. Waveform cross-correlation is performed for the MEQs in the DV11 area, and the events grouped into clusters based on waveform similarity. Relative location techniques applied to the events in two of these clusters show 7 events grouped into a volume of about 25 m in diameter, at an elevation of about -0.65 km msl and 5 events grouped into a vertically-oriented linear feature about 100 m in length, at about -1.8 km msl.

  8. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  9. INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    set a screen liner and gravel pack the perforated interval.the probable radius of the gravel pack. EQUIVALENT INJECTION

  10. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOE Patents [OSTI]

    Hermes, Robert E

    2014-02-18T23:59:59.000Z

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  11. In-situ air injection, soil vacuum extraction and enhanced biodegradation: A case study in a JP-4 jet fuel contaminated site

    SciTech Connect (OSTI)

    Cho, Jong Soo; DiGiulio, D.C.; Wilson, J.T. [National Risk Management Lab., Ada, OK (United States)

    1997-12-31T23:59:59.000Z

    The US Environmental Protection Agency (US EPA) and the US Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that extended from the surface to a depth of 1.5 in. The water table was 2.0 in below land surface, and jet fuel extended from a depth of 1.0 to 3.5 in. Air was injected under pressure to depress the water table and bring the entire spill into the unsaturated zone, where hydrocarbons could be removed by volatilization and biodegradation. The injected air was recovered through soil vacuum extraction (SVE) at the treatment area. To document actual removal of hydrocarbons, core samples were acquired in August 1992 before air injection, and September 1994 at the end of the demonstration. The spill originally contained 3600 kg of JP-4. Between the core sampling events, only 55 % of the total petroleum hydrocarbons were removed, but more than 98% of benzene was removed. The initial goal was to reduce the concentration of total petroleum hydrocarbons (TPH) to concentrations less than 100 mg/kg soil. This was not accomplished within 18 months of operation. During the period of operation, ground water was monitored for the concentration of benzene, toluene, ethylbenzene, and the xylene isomers (BTEX), and methyl tertiary butyl ether (MTBE). The concentration of BTEX and MTBE in the subsurface was reduced to a very low level, but concentrations of benzene and MTBE in ground water did not meet the EPA drinking water standards in the most heavily impacted wells. The effluent gas from SVE was monitored for the concentration of total hydrocarbon vapors. 12 refs., 7 figs., 5 tabs.

  12. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOE Patents [OSTI]

    Hartwell, Jack K. (Idaho Falls, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Blackfoot, ID); Killian, E. Wayne (Idahoe Falls, ID)

    1990-01-01T23:59:59.000Z

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  13. Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment

    SciTech Connect (OSTI)

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-04-29T23:59:59.000Z

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.

  14. 1790 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005 Convexity of the Set of Feasible Injections

    E-Print Network [OSTI]

    Hiskens, Ian A.

    a large set of possible injection profiles needs to be considered. This includes such problems as optimal dispatch to serve specified load at least cost and the operation of certain electricity-related financial-known optimal dispatch problem, the injected powers at the loads are specified, as well as operational limits

  15. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOE Patents [OSTI]

    Douglas, David R. (York County, VA)

    2012-01-10T23:59:59.000Z

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  16. Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers

    SciTech Connect (OSTI)

    None

    2005-09-01T23:59:59.000Z

    Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  3. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  8. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  9. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  10. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  12. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  13. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  14. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  15. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  17. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  20. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  1. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  2. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  3. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  5. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  6. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  7. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  8. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  9. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  10. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  11. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  12. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  13. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  14. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  15. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  16. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  17. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  18. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  19. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  20. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  1. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  2. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  3. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  4. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  5. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  6. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  7. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  8. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  9. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  10. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  11. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  12. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  13. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  14. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  15. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  16. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  17. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  18. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  19. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  20. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  1. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  2. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  3. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  4. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  5. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  6. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  7. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  8. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  9. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  10. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  11. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  12. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  13. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  14. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  15. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  16. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  17. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  18. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  19. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  20. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  1. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  2. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  3. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  4. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  5. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  6. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  7. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  8. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  9. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  10. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  11. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  12. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  13. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  14. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  15. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  17. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  18. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  19. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  20. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  1. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  2. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  3. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  4. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  5. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  6. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  7. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  8. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  9. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  10. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  11. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  12. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  13. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7

  14. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  15. Total................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  16. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0

  17. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.014.7

  18. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1

  19. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1 64.1

  20. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1

  1. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1.

  2. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770

  3. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3 1.9

  4. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3

  5. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3Type

  6. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2

  7. Total....................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7 7.4

  8. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7

  9. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.75.6

  10. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0

  11. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6 40.7

  12. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6

  13. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6 17.7

  14. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6

  15. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.64.2

  16. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8

  17. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0 22.7

  18. Total.........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0

  19. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6

  20. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.

  1. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.5.6

  2. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1

  3. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6 16.6

  4. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6

  5. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.1

  6. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.10.6

  7. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2

  8. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6

  9. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6Do

  10. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2

  11. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2Cooking

  12. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2

  13. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have Cooling

  14. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have

  15. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo Not

  16. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo NotDo

  17. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo

  18. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  19. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  20. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.77.1

  1. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not

  2. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0 8.0

  3. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0

  4. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.05.6

  5. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1

  6. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal

  7. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal4.2

  8. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do

  9. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1 19.0

  10. Total.........................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1

  11. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  12. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  13. UIC permitting process for class IID and Class III wells: Protection of drinking water in New York State

    SciTech Connect (OSTI)

    Hillenbrand, C.J. [EPA, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Region II, Underground Injection Control (UIC) Program regulates injection wells in the State of New York to protect drinking water; UIC regulations can be found under Title 40 of the Code of Federal Regulations Parts 124, 144, 146 and 147. Operators of solution mining injection wells (UIC Class IIIG) and produced fluid disposal wells (UIC Class IID) are required to obtain an UIC permit for authorization to inject. The permitting process requires submittal of drinking water, geologic and proposed operational data in order to assure that pressure build-up within the injection zone will not compromise confining layers and allow vertical migration of fluid into Underground Sources of Drinking Water (USDW). Additional data is required within an Area of Review (AOR), defined as an area determined by the intersection of the adjusted potentiometric surface produced by injection and a depth 50 feet below the base of the lowermost USDW, or a radius of 1/4 mile around the injection well, whichever is greater. Locations of all wells in the AOR must be identified, and completion reports and plugging reports must be submitted. Requirements are set for maximum injection pressure and flow rates, monitoring of brine properties of the injection well and monitoring of water supply wells in the AOR for possible contamination. Any noncompliance with permit requirements constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action, including possible revocation of permit. Presently four Class IID wells are authorized under permit in New York State. The Queenston sandstone, Medina sandstone, Salina B, Akron dolomite and Oriskany sandstone have been used for brine disposal; the lower Ordovician-Cambrian section is currently being considered as an injection zone. Over one hundred Class IIIG wells are authorized under permit in New York State and all have been utilized for solution mining of the Syracuse salt.

  14. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1998-01-01T23:59:59.000Z

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  15. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  16. Intradermal needle-free powdered drug injection

    E-Print Network [OSTI]

    Liu, John (John Hsiao-Yung)

    2012-01-01T23:59:59.000Z

    This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

  17. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  18. Well Permits (District of Columbia)

    Broader source: Energy.gov [DOE]

    Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

  19. CO2 leakage through existing wells: current technology and regulations S. Taku Ide1

    E-Print Network [OSTI]

    for the most likely features, events and processes that affect well integrity after initial CO2 injection. As long as the #12;integrity of the cap rock is not compromised by permeable conduits like wellsCO2 leakage through existing wells: current technology and regulations S. Taku Ide1 , S. Julio

  20. Groundwater Heat Pump with Pumping and Recharging in the Same Well in China

    E-Print Network [OSTI]

    Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

  1. Groundwater Heat Pump with Pumping and Recharging in the Same Well in China 

    E-Print Network [OSTI]

    Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

  2. A case study of seawater injection incompatibility

    SciTech Connect (OSTI)

    Lindlof, J.C.; Stoffer, K.G.

    1983-07-01T23:59:59.000Z

    One of the primary concerns in the implementation of an effective waterflood is the compatibility between the formation water and the water to be injected. The Arabian American Oil Co. (ARAMCO) and the Saudi Arabian Ministry of Petroleum and Mineral Resources Technical Branch recognized a potential incompatibility problem and embarked on a comprehensive program to evaluate possible strontium sulfate and calcium sulfate scaling associated with the injection of seawater into the Arab-D reservoir in the northern areas of Ghawar field.

  3. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  4. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15T23:59:59.000Z

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  5. albumin ions injected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Hunt, Galen 3 Characterizing Oligosaccharides Using Injected-Ion MobilityMass Spectrometry Chemistry Websites Summary: Characterizing Oligosaccharides Using Injected-Ion...

  6. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  7. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  8. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  9. automated flow injection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the great majority the feasibility of our attack. The friend injection attack enables a stealth infiltra- tion of social networks Boyer, Edmond 7 Preventing injection attacks...

  10. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  11. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  12. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31T23:59:59.000Z

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  13. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Pannala, Sreekanth [ORNL

    2010-01-01T23:59:59.000Z

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  14. Pellet injection in the RFP (Reversed Field Pinch)

    SciTech Connect (OSTI)

    Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.

    1988-01-01T23:59:59.000Z

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub ..cap alpha../ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 ..mu..sec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs.

  15. Soda Lake Well Lithology Data and Geologic Cross-Sections

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

  16. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01T23:59:59.000Z

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  17. Testing of the Pleasant Bayou Well through October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

    1992-08-01T23:59:59.000Z

    Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

  18. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1998-10-20T23:59:59.000Z

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  19. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30T23:59:59.000Z

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  20. Well completion report on installation of horizontal wells for in-situ remediation tests

    SciTech Connect (OSTI)

    Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

    1989-08-01T23:59:59.000Z

    A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

  1. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31T23:59:59.000Z

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  2. C-26A well sets new standard for ER horizontal wells

    SciTech Connect (OSTI)

    Andresen, S.; Hovda, S. [Norsk Hydro Production a.s, Bergen (Norway); Olsen, T.L. [Baker Hughes INTEQ, Bergen (Norway)

    1995-11-01T23:59:59.000Z

    Well 30/6-C-26A in the Norwegian North Sea has a horizontal reach of 25,758 ft, which was briefly a new world record in extended reach drilling. The last 6,888 ft was drilled horizontally in the reservoir 20--26 ft vertically above the oil-water contact. The Oseberg field was discovered in 1979. To develop this giant (16.8 x 3.1 mile, 27 x 5 km) field, two platforms were placed 9.3 miles apart. To drain the oil between the platforms, two subsea wells were drilled and completed. The first horizontal well in the Oseberg field was drilled in 1992. Since then 17 horizontal wells have been successfully drilled and completed. The general trend during this period is that both the length of the horizontal reservoir section and the total depth for the wells have increased. New equipment and technology, as well as general field experience, played an important role when deciding to drill well C-26A. The paper describes well C-26A objectives, well bore stability, well path considerations, the casing program, hydraulics and hole cleaning and well completion.

  3. Supported-sorbent injection. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr.

    1997-07-01T23:59:59.000Z

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  4. INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Tests in a Naturally Fractured Reservoir--A Field Case Studyin Vertically Fractured Reservoirs," J. Pet. Tech. (Oct. ,Injection Test in a Fractured Reservoir-History Match Using

  5. Horizontal well turbulizer and method

    SciTech Connect (OSTI)

    Hopmann, M.E.

    1990-03-20T23:59:59.000Z

    This patent describes an apparatus for securement onto one end of a continuous length of remedial tubing introduceable into a subterranean well and concentrically insertable through production tubing previously positioned within the well. The well having a deviated configuration including an entry portion communicating with a curved portion extending downwardly in the well from the entry portion, and a generally linear end portion traversable with a production formation.

  6. Geologic controls influencing CO2 loss from a leaking well.

    SciTech Connect (OSTI)

    Hopkins, Polly L.; Martinez, Mario J.; McKenna, Sean Andrew; Klise, Katherine A.

    2010-12-01T23:59:59.000Z

    Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

  7. Radiation asymmetries during disruptions on DIII-D caused by massive gas injection

    SciTech Connect (OSTI)

    Commaux, N.; Baylor, L. R.; Jernigan, T. C.; Foust, C. R.; Combs, S.; Meitner, S. J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Hollmann, E. M.; Izzo, V. A.; Moyer, R. A. [University of California San Diego, San Diego, California (United States); Humphreys, D. A.; Wesley, J. C.; Eidietis, N. W.; Parks, P. B. [General Atomics, San Diego, California (United States); Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California (United States)

    2014-10-15T23:59:59.000Z

    One of the major challenges that the ITER tokamak will have to face during its operations are disruptions. During the last few years, it has been proven that the global consequences of a disruption can be mitigated by the injection of large quantities of impurities. But one aspect that has been difficult to study was the possibility of local effects inside the torus during such injection that could damage a portion of the device despite the global heat losses and generated currents remaining below design parameter. 3D MHD simulations show that there is a potential for large toroidal asymmetries of the radiated power during impurity injection due to the interaction between the particle injection plume and a large n?=?1 mode. Another aspect of 3D effects is the potential occurrence of Vertical Displacement Events (VDE), which could induce large poloidal heat load asymmetries. This potential deleterious effect of 3D phenomena has been studied on the DIII-D tokamak, thanks to the implementation of a multi-location massive gas injection (MGI) system as well as new diagnostic capabilities. This study showed the existence of a correlation between the location of the n?=?1 mode and the local heat load on the plasma facing components but shows also that this effect is much smaller than anticipated (peaking factor of ?1.1 vs 3-4 according to the simulations). There seems to be no observable heat load on the first wall of DIII-D at the location of the impurity injection port as well as no significant radiation asymmetries whether one or 2 valves are fired. This study enabled the first attempt of mitigation of a VDE using impurity injection at different poloidal locations. The results showed a more favorable heat deposition when the VDE is mitigated early (right at the onset) by impurity injection. No significant improvement of the heat load mitigation efficiency has been observed for late particle injection whether the injection is done “in the way” of the VDE (upward VDE mitigated by injection from the upper part of the vessel vs the lower part) or not.

  8. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01T23:59:59.000Z

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  9. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  10. Meren field water injection project offshore Nigeria

    SciTech Connect (OSTI)

    Adetoba, L.A.

    1984-04-01T23:59:59.000Z

    The Meren Water Injection Project, which is one of the largest in West Africa in terms of injection volume, secondary reserves to be recovered and cost, is located in the Meren field offshore Nigeria. This study presents an updated comprehensive plan to deplete 7 reservoir units in sands that have been producing under solution gas drive and gravity segregation with minimal water influx. The reservoir units contain ca 80% of the original oil-in-place in Meren field. Detailed studies have been undertaken to evaluate the performances of the 7 reservoirs with a view to developing a secondary recovery plan which has been brought into reality. Injection was to start in mid-1982 but was delayed until mid-1983. The effect of the delay and the changing of injector locations on recovery and cost is discussed.

  11. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry:

  12. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

    2012-06-21T23:59:59.000Z

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  13. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21T23:59:59.000Z

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  14. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  15. Well having inhibited microbial growth

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15T23:59:59.000Z

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  16. Recompletion Report for Well UE-10j

    SciTech Connect (OSTI)

    M. J. Townsend

    2000-05-01T23:59:59.000Z

    Existing Well UE-10j was deepened and recompleted for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was originally drilled to a total depth of 725.4 meters in 1965 for use as a hydrologic test hole in the northern portion of Yucca Flat in Area 8 of the Nevada Test Site. The well is located up-gradient of the Yucca Flat underground test area and penetrates deep into the Paleozoic rocks that form the lower carbonate aquifer of the NTS and surrounding areas. The original 24.4-centimeter-diameter borehole was drilled to a depth of 725.4 meters and left uncompleted. Water-level measurements were made periodically by the U.S. Geological Survey, but access to the water table was lost between 1979 and 1981 due to hole sloughing. In 1993, the hole was opened to 44.5 centimeters and cased off to a depth of 670.0 meters. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 796.4 meters. The depth to water in the open borehole was measured at 658.7 meters on March 18, 1993.

  17. Page (Total 3) Philadelphia University

    E-Print Network [OSTI]

    Page (Total 3) Philadelphia University Faculty of Science Department of Biotechnology and Genetic be used in animals or plants. It can be also used in environmental monitoring, food processing ...etc are developed and marketed in kit format by biotechnology companies. The main source of information is web sites

  18. Gas and Pellet Injection Systems for JT-60 and JT-60U

    SciTech Connect (OSTI)

    Kizu, K.; Hiratsuka, H.; Miyo, Y.; Ichige, H.; Sasajima, T.; Nishiyama, T.; Masaki, K.; Honda, M.; Miya, N.; Hosogane, N. [Japan Atomic Energy Research Institute (Japan)

    2002-09-15T23:59:59.000Z

    Designs and operations of the gas system and pellet injection systems for JT-60 and JT-60U are described. A gas injection valve that is a key component of the gas injection system was developed using a multilayer piezoelectric element. The maximum flow rate of this system is 43.3 Pa.m{sup 3}/s. The valve has mechanism for adjustment at atmospheric side meaning that a repair and an adjustment can be conducted without ventilation inside a vacuum vessel. It was confirmed that the effect of magnetic field and temperature change on the valves in the JT-60U environment was negligible.In JT-60U, two systems of pellet injector - a pneumatic drive and a centrifugal one - were developed. The pneumatic type attained a pellet velocity of 2.3 km/s, which was the world record at the time in 1988. On the other hand, the centrifugal one was developed in 1998. This injector can eject trains of up to 40 cubic (2.1 mm{sup 3}) pellets at frequencies of 1 to 10 Hz and speed of 0.1 to 1.0 km/s. A guide tube for a magnetic high field side injection (HFS) (top) was also developed in 1999. The pellet injection experiment with the HFS system started in 2000. In addition, another guide tube for HFS(mid) injection was newly developed and installed in March 2001. These systems are working well.

  19. Hoe Creek No. 3 - First long-term underground coal gasification experiment with oxygen-steam injection

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The paper describes the first long-term underground coal gasification experiment with oxygen-steam injection. In the Hoe Creek No. 3 underground experiment, linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, and then the forward gasification process was started - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, about 3900 tons of coal were gasified in 47 days, at an average rate of 83 tons per day. The heating value of the dry product gas averaged 218 Btu/scf, suitable for input to a processing plant for upgrading to pipeline quality, which is about 900 Btu/scf.

  20. A study on Raman Injection Laser

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01T23:59:59.000Z

    The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman...

  1. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01T23:59:59.000Z

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  2. Well Monitoring System for EGS

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review Well Monitoring Systems for EGS Principal Investigator Randy Normann Perma Works LLC May 19, 2010 This presentation does not contain any proprietary confidential, or...

  3. Efficiency limits of quantum well solar cells

    E-Print Network [OSTI]

    Connolly, J P; Barnham, K W J; Bushnell, D B; Tibbits, T N D; Roberts, J S

    2010-01-01T23:59:59.000Z

    The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative contribution to the dark current is seen to dominate in experimental data at biases corresponding to operation under concentration. The dark currents of QWSCs are analysed in terms of a light and dark current model. The model calculates the spectral response (QE) from field bearing regions and charge neutral layers and from the quantum wells by calculating the confined densities of states and absorption coefficient, and solving transport equations analytically. The total dark current is expressed as the sum of depletion layer and charge neutral radiative and non radiative currents consistent with parameter values extracted from QE fits to data. The depletion layer dark current is a sum of Shockley-Read-Hall non radiative, and radiative contributions. The charge neu...

  4. Well descriptions for geothermal drilling

    SciTech Connect (OSTI)

    Carson, C.C.; Livesay, B.J.

    1981-01-01T23:59:59.000Z

    Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

  5. Optimization of fractured well performance of horizontal gas wells

    E-Print Network [OSTI]

    Magalhaes, Fellipe Vieira

    2009-06-02T23:59:59.000Z

    In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

  6. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  7. Production Well Performance Enhancement using Sonication Technology

    SciTech Connect (OSTI)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31T23:59:59.000Z

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

  8. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEnd Use: Total

  9. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion

  10. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814 136,932

  11. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814

  12. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814Pipeline

  13. U.S. Total Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet)

  14. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08T23:59:59.000Z

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  15. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  16. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19T23:59:59.000Z

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  18. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  19. Impurity pellet injection experiments at TFTR. Final performance report

    SciTech Connect (OSTI)

    Marmar, E.S.

    1992-12-01T23:59:59.000Z

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection (`lithiumization`). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li{sup +} line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li{sup +} emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from {approximately}0.3 to {approximately}7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  20. 3. FIELD DEMONSTRATION STATUS We are currently in the final stages of preparation in the pilot area prior to CO2 injection.

    E-Print Network [OSTI]

    Schechter, David S.

    of these tests to characterize further the reservoir and develop proper reservoir management strategy has been-well interference test. Stable water injection was initiated in October of 1999 in order to increase the reservoir of a waterflood baseline decline so that all produced oil as a result of CO2 injection can be quantified